linux/drivers/parisc/pdc_stable.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* 
   3 *    Interfaces to retrieve and set PDC Stable options (firmware)
   4 *
   5 *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
   6 *
   7 *    DEV NOTE: the PDC Procedures reference states that:
   8 *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
   9 *    96 bytes of Stable Storage is optional [...]. Failure to provide the
  10 *    optional locations from 96 to 192 results in the loss of certain
  11 *    functionality during boot."
  12 *
  13 *    Since locations between 96 and 192 are the various paths, most (if not
  14 *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
  15 *    following code can deal with just 96 bytes of Stable Storage, and all
  16 *    sizes between 96 and 192 bytes (provided they are multiple of struct
  17 *    device_path size, eg: 128, 160 and 192) to provide full information.
  18 *    One last word: there's one path we can always count on: the primary path.
  19 *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
  20 *
  21 *    The first OS-dependent area should always be available. Obviously, this is
  22 *    not true for the other one. Also bear in mind that reading/writing from/to
  23 *    osdep2 is much more expensive than from/to osdep1.
  24 *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
  25 *    2 bytes of storage available right after OSID. That's a total of 4 bytes
  26 *    sacrificed: -ETOOLAZY :P
  27 *
  28 *    The current policy wrt file permissions is:
  29 *      - write: root only
  30 *      - read: (reading triggers PDC calls) ? root only : everyone
  31 *    The rationale is that PDC calls could hog (DoS) the machine.
  32 *
  33 *      TODO:
  34 *      - timer/fastsize write calls
  35 */
  36
  37#undef PDCS_DEBUG
  38#ifdef PDCS_DEBUG
  39#define DPRINTK(fmt, args...)   printk(KERN_DEBUG fmt, ## args)
  40#else
  41#define DPRINTK(fmt, args...)
  42#endif
  43
  44#include <linux/module.h>
  45#include <linux/init.h>
  46#include <linux/kernel.h>
  47#include <linux/string.h>
  48#include <linux/capability.h>
  49#include <linux/ctype.h>
  50#include <linux/sysfs.h>
  51#include <linux/kobject.h>
  52#include <linux/device.h>
  53#include <linux/errno.h>
  54#include <linux/spinlock.h>
  55
  56#include <asm/pdc.h>
  57#include <asm/page.h>
  58#include <linux/uaccess.h>
  59#include <asm/hardware.h>
  60
  61#define PDCS_VERSION    "0.30"
  62#define PDCS_PREFIX     "PDC Stable Storage"
  63
  64#define PDCS_ADDR_PPRI  0x00
  65#define PDCS_ADDR_OSID  0x40
  66#define PDCS_ADDR_OSD1  0x48
  67#define PDCS_ADDR_DIAG  0x58
  68#define PDCS_ADDR_FSIZ  0x5C
  69#define PDCS_ADDR_PCON  0x60
  70#define PDCS_ADDR_PALT  0x80
  71#define PDCS_ADDR_PKBD  0xA0
  72#define PDCS_ADDR_OSD2  0xE0
  73
  74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
  75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
  76MODULE_LICENSE("GPL");
  77MODULE_VERSION(PDCS_VERSION);
  78
  79/* holds Stable Storage size. Initialized once and for all, no lock needed */
  80static unsigned long pdcs_size __read_mostly;
  81
  82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
  83static u16 pdcs_osid __read_mostly;
  84
  85/* This struct defines what we need to deal with a parisc pdc path entry */
  86struct pdcspath_entry {
  87        rwlock_t rw_lock;               /* to protect path entry access */
  88        short ready;                    /* entry record is valid if != 0 */
  89        unsigned long addr;             /* entry address in stable storage */
  90        char *name;                     /* entry name */
  91        struct device_path devpath;     /* device path in parisc representation */
  92        struct device *dev;             /* corresponding device */
  93        struct kobject kobj;
  94};
  95
  96struct pdcspath_attribute {
  97        struct attribute attr;
  98        ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
  99        ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
 100};
 101
 102#define PDCSPATH_ENTRY(_addr, _name) \
 103struct pdcspath_entry pdcspath_entry_##_name = { \
 104        .ready = 0, \
 105        .addr = _addr, \
 106        .name = __stringify(_name), \
 107};
 108
 109#define PDCS_ATTR(_name, _mode, _show, _store) \
 110struct kobj_attribute pdcs_attr_##_name = { \
 111        .attr = {.name = __stringify(_name), .mode = _mode}, \
 112        .show = _show, \
 113        .store = _store, \
 114};
 115
 116#define PATHS_ATTR(_name, _mode, _show, _store) \
 117struct pdcspath_attribute paths_attr_##_name = { \
 118        .attr = {.name = __stringify(_name), .mode = _mode}, \
 119        .show = _show, \
 120        .store = _store, \
 121};
 122
 123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
 124#define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
 125
 126/**
 127 * pdcspath_fetch - This function populates the path entry structs.
 128 * @entry: A pointer to an allocated pdcspath_entry.
 129 * 
 130 * The general idea is that you don't read from the Stable Storage every time
 131 * you access the files provided by the facilities. We store a copy of the
 132 * content of the stable storage WRT various paths in these structs. We read
 133 * these structs when reading the files, and we will write to these structs when
 134 * writing to the files, and only then write them back to the Stable Storage.
 135 *
 136 * This function expects to be called with @entry->rw_lock write-hold.
 137 */
 138static int
 139pdcspath_fetch(struct pdcspath_entry *entry)
 140{
 141        struct device_path *devpath;
 142
 143        if (!entry)
 144                return -EINVAL;
 145
 146        devpath = &entry->devpath;
 147        
 148        DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 149                        entry, devpath, entry->addr);
 150
 151        /* addr, devpath and count must be word aligned */
 152        if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 153                return -EIO;
 154                
 155        /* Find the matching device.
 156           NOTE: hardware_path overlays with device_path, so the nice cast can
 157           be used */
 158        entry->dev = hwpath_to_device((struct hardware_path *)devpath);
 159
 160        entry->ready = 1;
 161        
 162        DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 163        
 164        return 0;
 165}
 166
 167/**
 168 * pdcspath_store - This function writes a path to stable storage.
 169 * @entry: A pointer to an allocated pdcspath_entry.
 170 * 
 171 * It can be used in two ways: either by passing it a preset devpath struct
 172 * containing an already computed hardware path, or by passing it a device
 173 * pointer, from which it'll find out the corresponding hardware path.
 174 * For now we do not handle the case where there's an error in writing to the
 175 * Stable Storage area, so you'd better not mess up the data :P
 176 *
 177 * This function expects to be called with @entry->rw_lock write-hold.
 178 */
 179static void
 180pdcspath_store(struct pdcspath_entry *entry)
 181{
 182        struct device_path *devpath;
 183
 184        BUG_ON(!entry);
 185
 186        devpath = &entry->devpath;
 187        
 188        /* We expect the caller to set the ready flag to 0 if the hardware
 189           path struct provided is invalid, so that we know we have to fill it.
 190           First case, we don't have a preset hwpath... */
 191        if (!entry->ready) {
 192                /* ...but we have a device, map it */
 193                BUG_ON(!entry->dev);
 194                device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
 195        }
 196        /* else, we expect the provided hwpath to be valid. */
 197        
 198        DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 199                        entry, devpath, entry->addr);
 200
 201        /* addr, devpath and count must be word aligned */
 202        if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 203                WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
 204                                "It is likely that the Stable Storage data has been corrupted.\n"
 205                                "Please check it carefully upon next reboot.\n", __func__);
 206                
 207        /* kobject is already registered */
 208        entry->ready = 2;
 209        
 210        DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 211}
 212
 213/**
 214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
 215 * @entry: An allocated and populated pdscpath_entry struct.
 216 * @buf: The output buffer to write to.
 217 * 
 218 * We will call this function to format the output of the hwpath attribute file.
 219 */
 220static ssize_t
 221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
 222{
 223        char *out = buf;
 224        struct device_path *devpath;
 225        short i;
 226
 227        if (!entry || !buf)
 228                return -EINVAL;
 229
 230        read_lock(&entry->rw_lock);
 231        devpath = &entry->devpath;
 232        i = entry->ready;
 233        read_unlock(&entry->rw_lock);
 234
 235        if (!i) /* entry is not ready */
 236                return -ENODATA;
 237        
 238        for (i = 0; i < 6; i++) {
 239                if (devpath->bc[i] >= 128)
 240                        continue;
 241                out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
 242        }
 243        out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
 244        
 245        return out - buf;
 246}
 247
 248/**
 249 * pdcspath_hwpath_write - This function handles hardware path modifying.
 250 * @entry: An allocated and populated pdscpath_entry struct.
 251 * @buf: The input buffer to read from.
 252 * @count: The number of bytes to be read.
 253 * 
 254 * We will call this function to change the current hardware path.
 255 * Hardware paths are to be given '/'-delimited, without brackets.
 256 * We make sure that the provided path actually maps to an existing
 257 * device, BUT nothing would prevent some foolish user to set the path to some
 258 * PCI bridge or even a CPU...
 259 * A better work around would be to make sure we are at the end of a device tree
 260 * for instance, but it would be IMHO beyond the simple scope of that driver.
 261 * The aim is to provide a facility. Data correctness is left to userland.
 262 */
 263static ssize_t
 264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 265{
 266        struct hardware_path hwpath;
 267        unsigned short i;
 268        char in[64], *temp;
 269        struct device *dev;
 270        int ret;
 271
 272        if (!entry || !buf || !count)
 273                return -EINVAL;
 274
 275        /* We'll use a local copy of buf */
 276        count = min_t(size_t, count, sizeof(in)-1);
 277        strncpy(in, buf, count);
 278        in[count] = '\0';
 279        
 280        /* Let's clean up the target. 0xff is a blank pattern */
 281        memset(&hwpath, 0xff, sizeof(hwpath));
 282        
 283        /* First, pick the mod field (the last one of the input string) */
 284        if (!(temp = strrchr(in, '/')))
 285                return -EINVAL;
 286                        
 287        hwpath.mod = simple_strtoul(temp+1, NULL, 10);
 288        in[temp-in] = '\0';     /* truncate the remaining string. just precaution */
 289        DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
 290        
 291        /* Then, loop for each delimiter, making sure we don't have too many.
 292           we write the bc fields in a down-top way. No matter what, we stop
 293           before writing the last field. If there are too many fields anyway,
 294           then the user is a moron and it'll be caught up later when we'll
 295           check the consistency of the given hwpath. */
 296        for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
 297                hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
 298                in[temp-in] = '\0';
 299                DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
 300        }
 301        
 302        /* Store the final field */             
 303        hwpath.bc[i] = simple_strtoul(in, NULL, 10);
 304        DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
 305        
 306        /* Now we check that the user isn't trying to lure us */
 307        if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
 308                printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
 309                        "hardware path: %s\n", __func__, entry->name, buf);
 310                return -EINVAL;
 311        }
 312        
 313        /* So far so good, let's get in deep */
 314        write_lock(&entry->rw_lock);
 315        entry->ready = 0;
 316        entry->dev = dev;
 317        
 318        /* Now, dive in. Write back to the hardware */
 319        pdcspath_store(entry);
 320        
 321        /* Update the symlink to the real device */
 322        sysfs_remove_link(&entry->kobj, "device");
 323        write_unlock(&entry->rw_lock);
 324
 325        ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 326        WARN_ON(ret);
 327
 328        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
 329                entry->name, buf);
 330        
 331        return count;
 332}
 333
 334/**
 335 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
 336 * @entry: An allocated and populated pdscpath_entry struct.
 337 * @buf: The output buffer to write to.
 338 * 
 339 * We will call this function to format the output of the layer attribute file.
 340 */
 341static ssize_t
 342pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
 343{
 344        char *out = buf;
 345        struct device_path *devpath;
 346        short i;
 347
 348        if (!entry || !buf)
 349                return -EINVAL;
 350        
 351        read_lock(&entry->rw_lock);
 352        devpath = &entry->devpath;
 353        i = entry->ready;
 354        read_unlock(&entry->rw_lock);
 355
 356        if (!i) /* entry is not ready */
 357                return -ENODATA;
 358        
 359        for (i = 0; i < 6 && devpath->layers[i]; i++)
 360                out += sprintf(out, "%u ", devpath->layers[i]);
 361
 362        out += sprintf(out, "\n");
 363        
 364        return out - buf;
 365}
 366
 367/**
 368 * pdcspath_layer_write - This function handles extended layer modifying.
 369 * @entry: An allocated and populated pdscpath_entry struct.
 370 * @buf: The input buffer to read from.
 371 * @count: The number of bytes to be read.
 372 * 
 373 * We will call this function to change the current layer value.
 374 * Layers are to be given '.'-delimited, without brackets.
 375 * XXX beware we are far less checky WRT input data provided than for hwpath.
 376 * Potential harm can be done, since there's no way to check the validity of
 377 * the layer fields.
 378 */
 379static ssize_t
 380pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 381{
 382        unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
 383        unsigned short i;
 384        char in[64], *temp;
 385
 386        if (!entry || !buf || !count)
 387                return -EINVAL;
 388
 389        /* We'll use a local copy of buf */
 390        count = min_t(size_t, count, sizeof(in)-1);
 391        strncpy(in, buf, count);
 392        in[count] = '\0';
 393        
 394        /* Let's clean up the target. 0 is a blank pattern */
 395        memset(&layers, 0, sizeof(layers));
 396        
 397        /* First, pick the first layer */
 398        if (unlikely(!isdigit(*in)))
 399                return -EINVAL;
 400        layers[0] = simple_strtoul(in, NULL, 10);
 401        DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
 402        
 403        temp = in;
 404        for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
 405                if (unlikely(!isdigit(*(++temp))))
 406                        return -EINVAL;
 407                layers[i] = simple_strtoul(temp, NULL, 10);
 408                DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
 409        }
 410                
 411        /* So far so good, let's get in deep */
 412        write_lock(&entry->rw_lock);
 413        
 414        /* First, overwrite the current layers with the new ones, not touching
 415           the hardware path. */
 416        memcpy(&entry->devpath.layers, &layers, sizeof(layers));
 417        
 418        /* Now, dive in. Write back to the hardware */
 419        pdcspath_store(entry);
 420        write_unlock(&entry->rw_lock);
 421        
 422        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
 423                entry->name, buf);
 424        
 425        return count;
 426}
 427
 428/**
 429 * pdcspath_attr_show - Generic read function call wrapper.
 430 * @kobj: The kobject to get info from.
 431 * @attr: The attribute looked upon.
 432 * @buf: The output buffer.
 433 */
 434static ssize_t
 435pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
 436{
 437        struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 438        struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 439        ssize_t ret = 0;
 440
 441        if (pdcs_attr->show)
 442                ret = pdcs_attr->show(entry, buf);
 443
 444        return ret;
 445}
 446
 447/**
 448 * pdcspath_attr_store - Generic write function call wrapper.
 449 * @kobj: The kobject to write info to.
 450 * @attr: The attribute to be modified.
 451 * @buf: The input buffer.
 452 * @count: The size of the buffer.
 453 */
 454static ssize_t
 455pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
 456                        const char *buf, size_t count)
 457{
 458        struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 459        struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 460        ssize_t ret = 0;
 461
 462        if (!capable(CAP_SYS_ADMIN))
 463                return -EACCES;
 464
 465        if (pdcs_attr->store)
 466                ret = pdcs_attr->store(entry, buf, count);
 467
 468        return ret;
 469}
 470
 471static const struct sysfs_ops pdcspath_attr_ops = {
 472        .show = pdcspath_attr_show,
 473        .store = pdcspath_attr_store,
 474};
 475
 476/* These are the two attributes of any PDC path. */
 477static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
 478static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
 479
 480static struct attribute *paths_subsys_attrs[] = {
 481        &paths_attr_hwpath.attr,
 482        &paths_attr_layer.attr,
 483        NULL,
 484};
 485ATTRIBUTE_GROUPS(paths_subsys);
 486
 487/* Specific kobject type for our PDC paths */
 488static struct kobj_type ktype_pdcspath = {
 489        .sysfs_ops = &pdcspath_attr_ops,
 490        .default_groups = paths_subsys_groups,
 491};
 492
 493/* We hard define the 4 types of path we expect to find */
 494static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
 495static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
 496static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
 497static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
 498
 499/* An array containing all PDC paths we will deal with */
 500static struct pdcspath_entry *pdcspath_entries[] = {
 501        &pdcspath_entry_primary,
 502        &pdcspath_entry_alternative,
 503        &pdcspath_entry_console,
 504        &pdcspath_entry_keyboard,
 505        NULL,
 506};
 507
 508
 509/* For more insight of what's going on here, refer to PDC Procedures doc,
 510 * Section PDC_STABLE */
 511
 512/**
 513 * pdcs_size_read - Stable Storage size output.
 514 * @buf: The output buffer to write to.
 515 */
 516static ssize_t pdcs_size_read(struct kobject *kobj,
 517                              struct kobj_attribute *attr,
 518                              char *buf)
 519{
 520        char *out = buf;
 521
 522        if (!buf)
 523                return -EINVAL;
 524
 525        /* show the size of the stable storage */
 526        out += sprintf(out, "%ld\n", pdcs_size);
 527
 528        return out - buf;
 529}
 530
 531/**
 532 * pdcs_auto_read - Stable Storage autoboot/search flag output.
 533 * @buf: The output buffer to write to.
 534 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 535 */
 536static ssize_t pdcs_auto_read(struct kobject *kobj,
 537                              struct kobj_attribute *attr,
 538                              char *buf, int knob)
 539{
 540        char *out = buf;
 541        struct pdcspath_entry *pathentry;
 542
 543        if (!buf)
 544                return -EINVAL;
 545
 546        /* Current flags are stored in primary boot path entry */
 547        pathentry = &pdcspath_entry_primary;
 548
 549        read_lock(&pathentry->rw_lock);
 550        out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
 551                                        "On" : "Off");
 552        read_unlock(&pathentry->rw_lock);
 553
 554        return out - buf;
 555}
 556
 557/**
 558 * pdcs_autoboot_read - Stable Storage autoboot flag output.
 559 * @buf: The output buffer to write to.
 560 */
 561static ssize_t pdcs_autoboot_read(struct kobject *kobj,
 562                                  struct kobj_attribute *attr, char *buf)
 563{
 564        return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
 565}
 566
 567/**
 568 * pdcs_autosearch_read - Stable Storage autoboot flag output.
 569 * @buf: The output buffer to write to.
 570 */
 571static ssize_t pdcs_autosearch_read(struct kobject *kobj,
 572                                    struct kobj_attribute *attr, char *buf)
 573{
 574        return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
 575}
 576
 577/**
 578 * pdcs_timer_read - Stable Storage timer count output (in seconds).
 579 * @buf: The output buffer to write to.
 580 *
 581 * The value of the timer field correponds to a number of seconds in powers of 2.
 582 */
 583static ssize_t pdcs_timer_read(struct kobject *kobj,
 584                               struct kobj_attribute *attr, char *buf)
 585{
 586        char *out = buf;
 587        struct pdcspath_entry *pathentry;
 588
 589        if (!buf)
 590                return -EINVAL;
 591
 592        /* Current flags are stored in primary boot path entry */
 593        pathentry = &pdcspath_entry_primary;
 594
 595        /* print the timer value in seconds */
 596        read_lock(&pathentry->rw_lock);
 597        out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
 598                                (1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
 599        read_unlock(&pathentry->rw_lock);
 600
 601        return out - buf;
 602}
 603
 604/**
 605 * pdcs_osid_read - Stable Storage OS ID register output.
 606 * @buf: The output buffer to write to.
 607 */
 608static ssize_t pdcs_osid_read(struct kobject *kobj,
 609                              struct kobj_attribute *attr, char *buf)
 610{
 611        char *out = buf;
 612
 613        if (!buf)
 614                return -EINVAL;
 615
 616        out += sprintf(out, "%s dependent data (0x%.4x)\n",
 617                os_id_to_string(pdcs_osid), pdcs_osid);
 618
 619        return out - buf;
 620}
 621
 622/**
 623 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
 624 * @buf: The output buffer to write to.
 625 *
 626 * This can hold 16 bytes of OS-Dependent data.
 627 */
 628static ssize_t pdcs_osdep1_read(struct kobject *kobj,
 629                                struct kobj_attribute *attr, char *buf)
 630{
 631        char *out = buf;
 632        u32 result[4];
 633
 634        if (!buf)
 635                return -EINVAL;
 636
 637        if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
 638                return -EIO;
 639
 640        out += sprintf(out, "0x%.8x\n", result[0]);
 641        out += sprintf(out, "0x%.8x\n", result[1]);
 642        out += sprintf(out, "0x%.8x\n", result[2]);
 643        out += sprintf(out, "0x%.8x\n", result[3]);
 644
 645        return out - buf;
 646}
 647
 648/**
 649 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
 650 * @buf: The output buffer to write to.
 651 *
 652 * I have NFC how to interpret the content of that register ;-).
 653 */
 654static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
 655                                    struct kobj_attribute *attr, char *buf)
 656{
 657        char *out = buf;
 658        u32 result;
 659
 660        if (!buf)
 661                return -EINVAL;
 662
 663        /* get diagnostic */
 664        if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
 665                return -EIO;
 666
 667        out += sprintf(out, "0x%.4x\n", (result >> 16));
 668
 669        return out - buf;
 670}
 671
 672/**
 673 * pdcs_fastsize_read - Stable Storage FastSize register output.
 674 * @buf: The output buffer to write to.
 675 *
 676 * This register holds the amount of system RAM to be tested during boot sequence.
 677 */
 678static ssize_t pdcs_fastsize_read(struct kobject *kobj,
 679                                  struct kobj_attribute *attr, char *buf)
 680{
 681        char *out = buf;
 682        u32 result;
 683
 684        if (!buf)
 685                return -EINVAL;
 686
 687        /* get fast-size */
 688        if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
 689                return -EIO;
 690
 691        if ((result & 0x0F) < 0x0E)
 692                out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
 693        else
 694                out += sprintf(out, "All");
 695        out += sprintf(out, "\n");
 696        
 697        return out - buf;
 698}
 699
 700/**
 701 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
 702 * @buf: The output buffer to write to.
 703 *
 704 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
 705 */
 706static ssize_t pdcs_osdep2_read(struct kobject *kobj,
 707                                struct kobj_attribute *attr, char *buf)
 708{
 709        char *out = buf;
 710        unsigned long size;
 711        unsigned short i;
 712        u32 result;
 713
 714        if (unlikely(pdcs_size <= 224))
 715                return -ENODATA;
 716
 717        size = pdcs_size - 224;
 718
 719        if (!buf)
 720                return -EINVAL;
 721
 722        for (i=0; i<size; i+=4) {
 723                if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
 724                                        sizeof(result)) != PDC_OK))
 725                        return -EIO;
 726                out += sprintf(out, "0x%.8x\n", result);
 727        }
 728
 729        return out - buf;
 730}
 731
 732/**
 733 * pdcs_auto_write - This function handles autoboot/search flag modifying.
 734 * @buf: The input buffer to read from.
 735 * @count: The number of bytes to be read.
 736 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 737 * 
 738 * We will call this function to change the current autoboot flag.
 739 * We expect a precise syntax:
 740 *      \"n\" (n == 0 or 1) to toggle AutoBoot Off or On
 741 */
 742static ssize_t pdcs_auto_write(struct kobject *kobj,
 743                               struct kobj_attribute *attr, const char *buf,
 744                               size_t count, int knob)
 745{
 746        struct pdcspath_entry *pathentry;
 747        unsigned char flags;
 748        char in[8], *temp;
 749        char c;
 750
 751        if (!capable(CAP_SYS_ADMIN))
 752                return -EACCES;
 753
 754        if (!buf || !count)
 755                return -EINVAL;
 756
 757        /* We'll use a local copy of buf */
 758        count = min_t(size_t, count, sizeof(in)-1);
 759        strncpy(in, buf, count);
 760        in[count] = '\0';
 761
 762        /* Current flags are stored in primary boot path entry */
 763        pathentry = &pdcspath_entry_primary;
 764        
 765        /* Be nice to the existing flag record */
 766        read_lock(&pathentry->rw_lock);
 767        flags = pathentry->devpath.flags;
 768        read_unlock(&pathentry->rw_lock);
 769        
 770        DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
 771
 772        temp = skip_spaces(in);
 773
 774        c = *temp++ - '0';
 775        if ((c != 0) && (c != 1))
 776                goto parse_error;
 777        if (c == 0)
 778                flags &= ~knob;
 779        else
 780                flags |= knob;
 781        
 782        DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
 783                
 784        /* So far so good, let's get in deep */
 785        write_lock(&pathentry->rw_lock);
 786        
 787        /* Change the path entry flags first */
 788        pathentry->devpath.flags = flags;
 789                
 790        /* Now, dive in. Write back to the hardware */
 791        pdcspath_store(pathentry);
 792        write_unlock(&pathentry->rw_lock);
 793        
 794        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
 795                (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
 796                (flags & knob) ? "On" : "Off");
 797        
 798        return count;
 799
 800parse_error:
 801        printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
 802        return -EINVAL;
 803}
 804
 805/**
 806 * pdcs_autoboot_write - This function handles autoboot flag modifying.
 807 * @buf: The input buffer to read from.
 808 * @count: The number of bytes to be read.
 809 *
 810 * We will call this function to change the current boot flags.
 811 * We expect a precise syntax:
 812 *      \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 813 */
 814static ssize_t pdcs_autoboot_write(struct kobject *kobj,
 815                                   struct kobj_attribute *attr,
 816                                   const char *buf, size_t count)
 817{
 818        return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
 819}
 820
 821/**
 822 * pdcs_autosearch_write - This function handles autosearch flag modifying.
 823 * @buf: The input buffer to read from.
 824 * @count: The number of bytes to be read.
 825 *
 826 * We will call this function to change the current boot flags.
 827 * We expect a precise syntax:
 828 *      \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 829 */
 830static ssize_t pdcs_autosearch_write(struct kobject *kobj,
 831                                     struct kobj_attribute *attr,
 832                                     const char *buf, size_t count)
 833{
 834        return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
 835}
 836
 837/**
 838 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
 839 * @buf: The input buffer to read from.
 840 * @count: The number of bytes to be read.
 841 *
 842 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
 843 * write approach. It's up to userspace to deal with it when constructing
 844 * its input buffer.
 845 */
 846static ssize_t pdcs_osdep1_write(struct kobject *kobj,
 847                                 struct kobj_attribute *attr,
 848                                 const char *buf, size_t count)
 849{
 850        u8 in[16];
 851
 852        if (!capable(CAP_SYS_ADMIN))
 853                return -EACCES;
 854
 855        if (!buf || !count)
 856                return -EINVAL;
 857
 858        if (unlikely(pdcs_osid != OS_ID_LINUX))
 859                return -EPERM;
 860
 861        if (count > 16)
 862                return -EMSGSIZE;
 863
 864        /* We'll use a local copy of buf */
 865        memset(in, 0, 16);
 866        memcpy(in, buf, count);
 867
 868        if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
 869                return -EIO;
 870
 871        return count;
 872}
 873
 874/**
 875 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
 876 * @buf: The input buffer to read from.
 877 * @count: The number of bytes to be read.
 878 *
 879 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
 880 * byte-by-byte write approach. It's up to userspace to deal with it when
 881 * constructing its input buffer.
 882 */
 883static ssize_t pdcs_osdep2_write(struct kobject *kobj,
 884                                 struct kobj_attribute *attr,
 885                                 const char *buf, size_t count)
 886{
 887        unsigned long size;
 888        unsigned short i;
 889        u8 in[4];
 890
 891        if (!capable(CAP_SYS_ADMIN))
 892                return -EACCES;
 893
 894        if (!buf || !count)
 895                return -EINVAL;
 896
 897        if (unlikely(pdcs_size <= 224))
 898                return -ENOSYS;
 899
 900        if (unlikely(pdcs_osid != OS_ID_LINUX))
 901                return -EPERM;
 902
 903        size = pdcs_size - 224;
 904
 905        if (count > size)
 906                return -EMSGSIZE;
 907
 908        /* We'll use a local copy of buf */
 909
 910        for (i=0; i<count; i+=4) {
 911                memset(in, 0, 4);
 912                memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
 913                if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
 914                                        sizeof(in)) != PDC_OK))
 915                        return -EIO;
 916        }
 917
 918        return count;
 919}
 920
 921/* The remaining attributes. */
 922static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
 923static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
 924static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
 925static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
 926static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
 927static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
 928static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
 929static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
 930static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
 931
 932static struct attribute *pdcs_subsys_attrs[] = {
 933        &pdcs_attr_size.attr,
 934        &pdcs_attr_autoboot.attr,
 935        &pdcs_attr_autosearch.attr,
 936        &pdcs_attr_timer.attr,
 937        &pdcs_attr_osid.attr,
 938        &pdcs_attr_osdep1.attr,
 939        &pdcs_attr_diagnostic.attr,
 940        &pdcs_attr_fastsize.attr,
 941        &pdcs_attr_osdep2.attr,
 942        NULL,
 943};
 944
 945static const struct attribute_group pdcs_attr_group = {
 946        .attrs = pdcs_subsys_attrs,
 947};
 948
 949static struct kobject *stable_kobj;
 950static struct kset *paths_kset;
 951
 952/**
 953 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
 954 * 
 955 * It creates kobjects corresponding to each path entry with nice sysfs
 956 * links to the real device. This is where the magic takes place: when
 957 * registering the subsystem attributes during module init, each kobject hereby
 958 * created will show in the sysfs tree as a folder containing files as defined
 959 * by path_subsys_attr[].
 960 */
 961static inline int __init
 962pdcs_register_pathentries(void)
 963{
 964        unsigned short i;
 965        struct pdcspath_entry *entry;
 966        int err;
 967        
 968        /* Initialize the entries rw_lock before anything else */
 969        for (i = 0; (entry = pdcspath_entries[i]); i++)
 970                rwlock_init(&entry->rw_lock);
 971
 972        for (i = 0; (entry = pdcspath_entries[i]); i++) {
 973                write_lock(&entry->rw_lock);
 974                err = pdcspath_fetch(entry);
 975                write_unlock(&entry->rw_lock);
 976
 977                if (err < 0)
 978                        continue;
 979
 980                entry->kobj.kset = paths_kset;
 981                err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
 982                                           "%s", entry->name);
 983                if (err) {
 984                        kobject_put(&entry->kobj);
 985                        return err;
 986                }
 987
 988                /* kobject is now registered */
 989                write_lock(&entry->rw_lock);
 990                entry->ready = 2;
 991                write_unlock(&entry->rw_lock);
 992                
 993                /* Add a nice symlink to the real device */
 994                if (entry->dev) {
 995                        err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 996                        WARN_ON(err);
 997                }
 998
 999                kobject_uevent(&entry->kobj, KOBJ_ADD);
1000        }
1001        
1002        return 0;
1003}
1004
1005/**
1006 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1007 */
1008static inline void
1009pdcs_unregister_pathentries(void)
1010{
1011        unsigned short i;
1012        struct pdcspath_entry *entry;
1013        
1014        for (i = 0; (entry = pdcspath_entries[i]); i++) {
1015                read_lock(&entry->rw_lock);
1016                if (entry->ready >= 2)
1017                        kobject_put(&entry->kobj);
1018                read_unlock(&entry->rw_lock);
1019        }
1020}
1021
1022/*
1023 * For now we register the stable subsystem with the firmware subsystem
1024 * and the paths subsystem with the stable subsystem
1025 */
1026static int __init
1027pdc_stable_init(void)
1028{
1029        int rc = 0, error = 0;
1030        u32 result;
1031
1032        /* find the size of the stable storage */
1033        if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 
1034                return -ENODEV;
1035
1036        /* make sure we have enough data */
1037        if (pdcs_size < 96)
1038                return -ENODATA;
1039
1040        printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1041
1042        /* get OSID */
1043        if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1044                return -EIO;
1045
1046        /* the actual result is 16 bits away */
1047        pdcs_osid = (u16)(result >> 16);
1048
1049        /* For now we'll register the directory at /sys/firmware/stable */
1050        stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1051        if (!stable_kobj) {
1052                rc = -ENOMEM;
1053                goto fail_firmreg;
1054        }
1055
1056        /* Don't forget the root entries */
1057        error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1058
1059        /* register the paths kset as a child of the stable kset */
1060        paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1061        if (!paths_kset) {
1062                rc = -ENOMEM;
1063                goto fail_ksetreg;
1064        }
1065
1066        /* now we create all "files" for the paths kset */
1067        if ((rc = pdcs_register_pathentries()))
1068                goto fail_pdcsreg;
1069
1070        return rc;
1071        
1072fail_pdcsreg:
1073        pdcs_unregister_pathentries();
1074        kset_unregister(paths_kset);
1075        
1076fail_ksetreg:
1077        kobject_put(stable_kobj);
1078        
1079fail_firmreg:
1080        printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1081        return rc;
1082}
1083
1084static void __exit
1085pdc_stable_exit(void)
1086{
1087        pdcs_unregister_pathentries();
1088        kset_unregister(paths_kset);
1089        kobject_put(stable_kobj);
1090}
1091
1092
1093module_init(pdc_stable_init);
1094module_exit(pdc_stable_exit);
1095