linux/drivers/spi/spi-geni-qcom.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
   3
   4#include <linux/clk.h>
   5#include <linux/dmaengine.h>
   6#include <linux/dma-mapping.h>
   7#include <linux/dma/qcom-gpi-dma.h>
   8#include <linux/interrupt.h>
   9#include <linux/io.h>
  10#include <linux/log2.h>
  11#include <linux/module.h>
  12#include <linux/platform_device.h>
  13#include <linux/pm_opp.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/qcom-geni-se.h>
  16#include <linux/spi/spi.h>
  17#include <linux/spinlock.h>
  18
  19/* SPI SE specific registers and respective register fields */
  20#define SE_SPI_CPHA             0x224
  21#define CPHA                    BIT(0)
  22
  23#define SE_SPI_LOOPBACK         0x22c
  24#define LOOPBACK_ENABLE         0x1
  25#define NORMAL_MODE             0x0
  26#define LOOPBACK_MSK            GENMASK(1, 0)
  27
  28#define SE_SPI_CPOL             0x230
  29#define CPOL                    BIT(2)
  30
  31#define SE_SPI_DEMUX_OUTPUT_INV 0x24c
  32#define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0)
  33
  34#define SE_SPI_DEMUX_SEL        0x250
  35#define CS_DEMUX_OUTPUT_SEL     GENMASK(3, 0)
  36
  37#define SE_SPI_TRANS_CFG        0x25c
  38#define CS_TOGGLE               BIT(0)
  39
  40#define SE_SPI_WORD_LEN         0x268
  41#define WORD_LEN_MSK            GENMASK(9, 0)
  42#define MIN_WORD_LEN            4
  43
  44#define SE_SPI_TX_TRANS_LEN     0x26c
  45#define SE_SPI_RX_TRANS_LEN     0x270
  46#define TRANS_LEN_MSK           GENMASK(23, 0)
  47
  48#define SE_SPI_PRE_POST_CMD_DLY 0x274
  49
  50#define SE_SPI_DELAY_COUNTERS   0x278
  51#define SPI_INTER_WORDS_DELAY_MSK       GENMASK(9, 0)
  52#define SPI_CS_CLK_DELAY_MSK            GENMASK(19, 10)
  53#define SPI_CS_CLK_DELAY_SHFT           10
  54
  55/* M_CMD OP codes for SPI */
  56#define SPI_TX_ONLY             1
  57#define SPI_RX_ONLY             2
  58#define SPI_TX_RX               7
  59#define SPI_CS_ASSERT           8
  60#define SPI_CS_DEASSERT         9
  61#define SPI_SCK_ONLY            10
  62/* M_CMD params for SPI */
  63#define SPI_PRE_CMD_DELAY       BIT(0)
  64#define TIMESTAMP_BEFORE        BIT(1)
  65#define FRAGMENTATION           BIT(2)
  66#define TIMESTAMP_AFTER         BIT(3)
  67#define POST_CMD_DELAY          BIT(4)
  68
  69#define GSI_LOOPBACK_EN         BIT(0)
  70#define GSI_CS_TOGGLE           BIT(3)
  71#define GSI_CPHA                BIT(4)
  72#define GSI_CPOL                BIT(5)
  73
  74struct spi_geni_master {
  75        struct geni_se se;
  76        struct device *dev;
  77        u32 tx_fifo_depth;
  78        u32 fifo_width_bits;
  79        u32 tx_wm;
  80        u32 last_mode;
  81        unsigned long cur_speed_hz;
  82        unsigned long cur_sclk_hz;
  83        unsigned int cur_bits_per_word;
  84        unsigned int tx_rem_bytes;
  85        unsigned int rx_rem_bytes;
  86        const struct spi_transfer *cur_xfer;
  87        struct completion cs_done;
  88        struct completion cancel_done;
  89        struct completion abort_done;
  90        unsigned int oversampling;
  91        spinlock_t lock;
  92        int irq;
  93        bool cs_flag;
  94        bool abort_failed;
  95        struct dma_chan *tx;
  96        struct dma_chan *rx;
  97        int cur_xfer_mode;
  98};
  99
 100static int get_spi_clk_cfg(unsigned int speed_hz,
 101                        struct spi_geni_master *mas,
 102                        unsigned int *clk_idx,
 103                        unsigned int *clk_div)
 104{
 105        unsigned long sclk_freq;
 106        unsigned int actual_hz;
 107        int ret;
 108
 109        ret = geni_se_clk_freq_match(&mas->se,
 110                                speed_hz * mas->oversampling,
 111                                clk_idx, &sclk_freq, false);
 112        if (ret) {
 113                dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
 114                                                        ret, speed_hz);
 115                return ret;
 116        }
 117
 118        *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
 119        actual_hz = sclk_freq / (mas->oversampling * *clk_div);
 120
 121        dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
 122                                actual_hz, sclk_freq, *clk_idx, *clk_div);
 123        ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
 124        if (ret)
 125                dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
 126        else
 127                mas->cur_sclk_hz = sclk_freq;
 128
 129        return ret;
 130}
 131
 132static void handle_fifo_timeout(struct spi_master *spi,
 133                                struct spi_message *msg)
 134{
 135        struct spi_geni_master *mas = spi_master_get_devdata(spi);
 136        unsigned long time_left;
 137        struct geni_se *se = &mas->se;
 138
 139        spin_lock_irq(&mas->lock);
 140        reinit_completion(&mas->cancel_done);
 141        writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 142        mas->cur_xfer = NULL;
 143        geni_se_cancel_m_cmd(se);
 144        spin_unlock_irq(&mas->lock);
 145
 146        time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
 147        if (time_left)
 148                return;
 149
 150        spin_lock_irq(&mas->lock);
 151        reinit_completion(&mas->abort_done);
 152        geni_se_abort_m_cmd(se);
 153        spin_unlock_irq(&mas->lock);
 154
 155        time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
 156        if (!time_left) {
 157                dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
 158
 159                /*
 160                 * No need for a lock since SPI core has a lock and we never
 161                 * access this from an interrupt.
 162                 */
 163                mas->abort_failed = true;
 164        }
 165}
 166
 167static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg)
 168{
 169        struct spi_geni_master *mas = spi_master_get_devdata(spi);
 170
 171        dmaengine_terminate_sync(mas->tx);
 172        dmaengine_terminate_sync(mas->rx);
 173}
 174
 175static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg)
 176{
 177        struct spi_geni_master *mas = spi_master_get_devdata(spi);
 178
 179        switch (mas->cur_xfer_mode) {
 180        case GENI_SE_FIFO:
 181                handle_fifo_timeout(spi, msg);
 182                break;
 183        case GENI_GPI_DMA:
 184                handle_gpi_timeout(spi, msg);
 185                break;
 186        default:
 187                dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
 188        }
 189}
 190
 191static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
 192{
 193        struct geni_se *se = &mas->se;
 194        u32 m_irq, m_irq_en;
 195
 196        if (!mas->abort_failed)
 197                return false;
 198
 199        /*
 200         * The only known case where a transfer times out and then a cancel
 201         * times out then an abort times out is if something is blocking our
 202         * interrupt handler from running.  Avoid starting any new transfers
 203         * until that sorts itself out.
 204         */
 205        spin_lock_irq(&mas->lock);
 206        m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 207        m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
 208        spin_unlock_irq(&mas->lock);
 209
 210        if (m_irq & m_irq_en) {
 211                dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
 212                        m_irq & m_irq_en);
 213                return true;
 214        }
 215
 216        /*
 217         * If we're here the problem resolved itself so no need to check more
 218         * on future transfers.
 219         */
 220        mas->abort_failed = false;
 221
 222        return false;
 223}
 224
 225static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
 226{
 227        struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
 228        struct spi_master *spi = dev_get_drvdata(mas->dev);
 229        struct geni_se *se = &mas->se;
 230        unsigned long time_left;
 231
 232        if (!(slv->mode & SPI_CS_HIGH))
 233                set_flag = !set_flag;
 234
 235        if (set_flag == mas->cs_flag)
 236                return;
 237
 238        pm_runtime_get_sync(mas->dev);
 239
 240        if (spi_geni_is_abort_still_pending(mas)) {
 241                dev_err(mas->dev, "Can't set chip select\n");
 242                goto exit;
 243        }
 244
 245        spin_lock_irq(&mas->lock);
 246        if (mas->cur_xfer) {
 247                dev_err(mas->dev, "Can't set CS when prev xfer running\n");
 248                spin_unlock_irq(&mas->lock);
 249                goto exit;
 250        }
 251
 252        mas->cs_flag = set_flag;
 253        reinit_completion(&mas->cs_done);
 254        if (set_flag)
 255                geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
 256        else
 257                geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
 258        spin_unlock_irq(&mas->lock);
 259
 260        time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
 261        if (!time_left) {
 262                dev_warn(mas->dev, "Timeout setting chip select\n");
 263                handle_fifo_timeout(spi, NULL);
 264        }
 265
 266exit:
 267        pm_runtime_put(mas->dev);
 268}
 269
 270static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
 271                                        unsigned int bits_per_word)
 272{
 273        unsigned int pack_words;
 274        bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
 275        struct geni_se *se = &mas->se;
 276        u32 word_len;
 277
 278        /*
 279         * If bits_per_word isn't a byte aligned value, set the packing to be
 280         * 1 SPI word per FIFO word.
 281         */
 282        if (!(mas->fifo_width_bits % bits_per_word))
 283                pack_words = mas->fifo_width_bits / bits_per_word;
 284        else
 285                pack_words = 1;
 286        geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
 287                                                                true, true);
 288        word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
 289        writel(word_len, se->base + SE_SPI_WORD_LEN);
 290}
 291
 292static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
 293                                        unsigned long clk_hz)
 294{
 295        u32 clk_sel, m_clk_cfg, idx, div;
 296        struct geni_se *se = &mas->se;
 297        int ret;
 298
 299        if (clk_hz == mas->cur_speed_hz)
 300                return 0;
 301
 302        ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
 303        if (ret) {
 304                dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
 305                return ret;
 306        }
 307
 308        /*
 309         * SPI core clock gets configured with the requested frequency
 310         * or the frequency closer to the requested frequency.
 311         * For that reason requested frequency is stored in the
 312         * cur_speed_hz and referred in the consecutive transfer instead
 313         * of calling clk_get_rate() API.
 314         */
 315        mas->cur_speed_hz = clk_hz;
 316
 317        clk_sel = idx & CLK_SEL_MSK;
 318        m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
 319        writel(clk_sel, se->base + SE_GENI_CLK_SEL);
 320        writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
 321
 322        /* Set BW quota for CPU as driver supports FIFO mode only. */
 323        se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
 324        ret = geni_icc_set_bw(se);
 325        if (ret)
 326                return ret;
 327
 328        return 0;
 329}
 330
 331static int setup_fifo_params(struct spi_device *spi_slv,
 332                                        struct spi_master *spi)
 333{
 334        struct spi_geni_master *mas = spi_master_get_devdata(spi);
 335        struct geni_se *se = &mas->se;
 336        u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
 337        u32 demux_sel;
 338
 339        if (mas->last_mode != spi_slv->mode) {
 340                if (spi_slv->mode & SPI_LOOP)
 341                        loopback_cfg = LOOPBACK_ENABLE;
 342
 343                if (spi_slv->mode & SPI_CPOL)
 344                        cpol = CPOL;
 345
 346                if (spi_slv->mode & SPI_CPHA)
 347                        cpha = CPHA;
 348
 349                if (spi_slv->mode & SPI_CS_HIGH)
 350                        demux_output_inv = BIT(spi_slv->chip_select);
 351
 352                demux_sel = spi_slv->chip_select;
 353                mas->cur_bits_per_word = spi_slv->bits_per_word;
 354
 355                spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
 356                writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
 357                writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
 358                writel(cpha, se->base + SE_SPI_CPHA);
 359                writel(cpol, se->base + SE_SPI_CPOL);
 360                writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
 361
 362                mas->last_mode = spi_slv->mode;
 363        }
 364
 365        return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
 366}
 367
 368static void
 369spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
 370{
 371        struct spi_master *spi = cb;
 372
 373        spi->cur_msg->status = -EIO;
 374        if (result->result != DMA_TRANS_NOERROR) {
 375                dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
 376                spi_finalize_current_transfer(spi);
 377                return;
 378        }
 379
 380        if (!result->residue) {
 381                spi->cur_msg->status = 0;
 382                dev_dbg(&spi->dev, "DMA txn completed\n");
 383        } else {
 384                dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
 385        }
 386
 387        spi_finalize_current_transfer(spi);
 388}
 389
 390static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
 391                          struct spi_device *spi_slv, struct spi_master *spi)
 392{
 393        unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
 394        struct dma_slave_config config = {};
 395        struct gpi_spi_config peripheral = {};
 396        struct dma_async_tx_descriptor *tx_desc, *rx_desc;
 397        int ret;
 398
 399        config.peripheral_config = &peripheral;
 400        config.peripheral_size = sizeof(peripheral);
 401        peripheral.set_config = true;
 402
 403        if (xfer->bits_per_word != mas->cur_bits_per_word ||
 404            xfer->speed_hz != mas->cur_speed_hz) {
 405                mas->cur_bits_per_word = xfer->bits_per_word;
 406                mas->cur_speed_hz = xfer->speed_hz;
 407        }
 408
 409        if (xfer->tx_buf && xfer->rx_buf) {
 410                peripheral.cmd = SPI_DUPLEX;
 411        } else if (xfer->tx_buf) {
 412                peripheral.cmd = SPI_TX;
 413                peripheral.rx_len = 0;
 414        } else if (xfer->rx_buf) {
 415                peripheral.cmd = SPI_RX;
 416                if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
 417                        peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
 418                } else {
 419                        int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
 420
 421                        peripheral.rx_len = (xfer->len / bytes_per_word);
 422                }
 423        }
 424
 425        peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
 426        peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
 427        peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
 428        peripheral.cs = spi_slv->chip_select;
 429        peripheral.pack_en = true;
 430        peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
 431
 432        ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
 433                              &peripheral.clk_src, &peripheral.clk_div);
 434        if (ret) {
 435                dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
 436                return ret;
 437        }
 438
 439        if (!xfer->cs_change) {
 440                if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
 441                        peripheral.fragmentation = FRAGMENTATION;
 442        }
 443
 444        if (peripheral.cmd & SPI_RX) {
 445                dmaengine_slave_config(mas->rx, &config);
 446                rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
 447                                                  DMA_DEV_TO_MEM, flags);
 448                if (!rx_desc) {
 449                        dev_err(mas->dev, "Err setting up rx desc\n");
 450                        return -EIO;
 451                }
 452        }
 453
 454        /*
 455         * Prepare the TX always, even for RX or tx_buf being null, we would
 456         * need TX to be prepared per GSI spec
 457         */
 458        dmaengine_slave_config(mas->tx, &config);
 459        tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
 460                                          DMA_MEM_TO_DEV, flags);
 461        if (!tx_desc) {
 462                dev_err(mas->dev, "Err setting up tx desc\n");
 463                return -EIO;
 464        }
 465
 466        tx_desc->callback_result = spi_gsi_callback_result;
 467        tx_desc->callback_param = spi;
 468
 469        if (peripheral.cmd & SPI_RX)
 470                dmaengine_submit(rx_desc);
 471        dmaengine_submit(tx_desc);
 472
 473        if (peripheral.cmd & SPI_RX)
 474                dma_async_issue_pending(mas->rx);
 475
 476        dma_async_issue_pending(mas->tx);
 477        return 1;
 478}
 479
 480static bool geni_can_dma(struct spi_controller *ctlr,
 481                         struct spi_device *slv, struct spi_transfer *xfer)
 482{
 483        struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
 484
 485        /* check if dma is supported */
 486        return mas->cur_xfer_mode != GENI_SE_FIFO;
 487}
 488
 489static int spi_geni_prepare_message(struct spi_master *spi,
 490                                        struct spi_message *spi_msg)
 491{
 492        struct spi_geni_master *mas = spi_master_get_devdata(spi);
 493        int ret;
 494
 495        switch (mas->cur_xfer_mode) {
 496        case GENI_SE_FIFO:
 497                if (spi_geni_is_abort_still_pending(mas))
 498                        return -EBUSY;
 499                ret = setup_fifo_params(spi_msg->spi, spi);
 500                if (ret)
 501                        dev_err(mas->dev, "Couldn't select mode %d\n", ret);
 502                return ret;
 503
 504        case GENI_GPI_DMA:
 505                /* nothing to do for GPI DMA */
 506                return 0;
 507        }
 508
 509        dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
 510        return -EINVAL;
 511}
 512
 513static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
 514{
 515        int ret;
 516
 517        mas->tx = dma_request_chan(mas->dev, "tx");
 518        if (IS_ERR(mas->tx)) {
 519                ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
 520                                    "Failed to get tx DMA ch\n");
 521                goto err_tx;
 522        }
 523
 524        mas->rx = dma_request_chan(mas->dev, "rx");
 525        if (IS_ERR(mas->rx)) {
 526                ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
 527                                    "Failed to get rx DMA ch\n");
 528                goto err_rx;
 529        }
 530
 531        return 0;
 532
 533err_rx:
 534        mas->rx = NULL;
 535        dma_release_channel(mas->tx);
 536err_tx:
 537        mas->tx = NULL;
 538        return ret;
 539}
 540
 541static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
 542{
 543        if (mas->rx) {
 544                dma_release_channel(mas->rx);
 545                mas->rx = NULL;
 546        }
 547
 548        if (mas->tx) {
 549                dma_release_channel(mas->tx);
 550                mas->tx = NULL;
 551        }
 552}
 553
 554static int spi_geni_init(struct spi_geni_master *mas)
 555{
 556        struct geni_se *se = &mas->se;
 557        unsigned int proto, major, minor, ver;
 558        u32 spi_tx_cfg, fifo_disable;
 559        int ret = -ENXIO;
 560
 561        pm_runtime_get_sync(mas->dev);
 562
 563        proto = geni_se_read_proto(se);
 564        if (proto != GENI_SE_SPI) {
 565                dev_err(mas->dev, "Invalid proto %d\n", proto);
 566                goto out_pm;
 567        }
 568        mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
 569
 570        /* Width of Tx and Rx FIFO is same */
 571        mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
 572
 573        /*
 574         * Hardware programming guide suggests to configure
 575         * RX FIFO RFR level to fifo_depth-2.
 576         */
 577        geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
 578        /* Transmit an entire FIFO worth of data per IRQ */
 579        mas->tx_wm = 1;
 580        ver = geni_se_get_qup_hw_version(se);
 581        major = GENI_SE_VERSION_MAJOR(ver);
 582        minor = GENI_SE_VERSION_MINOR(ver);
 583
 584        if (major == 1 && minor == 0)
 585                mas->oversampling = 2;
 586        else
 587                mas->oversampling = 1;
 588
 589        fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
 590        switch (fifo_disable) {
 591        case 1:
 592                ret = spi_geni_grab_gpi_chan(mas);
 593                if (!ret) { /* success case */
 594                        mas->cur_xfer_mode = GENI_GPI_DMA;
 595                        geni_se_select_mode(se, GENI_GPI_DMA);
 596                        dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
 597                        break;
 598                }
 599                /*
 600                 * in case of failure to get dma channel, we can still do the
 601                 * FIFO mode, so fallthrough
 602                 */
 603                dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
 604                fallthrough;
 605
 606        case 0:
 607                mas->cur_xfer_mode = GENI_SE_FIFO;
 608                geni_se_select_mode(se, GENI_SE_FIFO);
 609                ret = 0;
 610                break;
 611        }
 612
 613        /* We always control CS manually */
 614        spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
 615        spi_tx_cfg &= ~CS_TOGGLE;
 616        writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
 617
 618out_pm:
 619        pm_runtime_put(mas->dev);
 620        return ret;
 621}
 622
 623static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
 624{
 625        /*
 626         * Calculate how many bytes we'll put in each FIFO word.  If the
 627         * transfer words don't pack cleanly into a FIFO word we'll just put
 628         * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
 629         */
 630        if (mas->fifo_width_bits % mas->cur_bits_per_word)
 631                return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
 632                                                       BITS_PER_BYTE));
 633
 634        return mas->fifo_width_bits / BITS_PER_BYTE;
 635}
 636
 637static bool geni_spi_handle_tx(struct spi_geni_master *mas)
 638{
 639        struct geni_se *se = &mas->se;
 640        unsigned int max_bytes;
 641        const u8 *tx_buf;
 642        unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 643        unsigned int i = 0;
 644
 645        /* Stop the watermark IRQ if nothing to send */
 646        if (!mas->cur_xfer) {
 647                writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 648                return false;
 649        }
 650
 651        max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
 652        if (mas->tx_rem_bytes < max_bytes)
 653                max_bytes = mas->tx_rem_bytes;
 654
 655        tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
 656        while (i < max_bytes) {
 657                unsigned int j;
 658                unsigned int bytes_to_write;
 659                u32 fifo_word = 0;
 660                u8 *fifo_byte = (u8 *)&fifo_word;
 661
 662                bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
 663                for (j = 0; j < bytes_to_write; j++)
 664                        fifo_byte[j] = tx_buf[i++];
 665                iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
 666        }
 667        mas->tx_rem_bytes -= max_bytes;
 668        if (!mas->tx_rem_bytes) {
 669                writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 670                return false;
 671        }
 672        return true;
 673}
 674
 675static void geni_spi_handle_rx(struct spi_geni_master *mas)
 676{
 677        struct geni_se *se = &mas->se;
 678        u32 rx_fifo_status;
 679        unsigned int rx_bytes;
 680        unsigned int rx_last_byte_valid;
 681        u8 *rx_buf;
 682        unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 683        unsigned int i = 0;
 684
 685        rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
 686        rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
 687        if (rx_fifo_status & RX_LAST) {
 688                rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
 689                rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
 690                if (rx_last_byte_valid && rx_last_byte_valid < 4)
 691                        rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
 692        }
 693
 694        /* Clear out the FIFO and bail if nowhere to put it */
 695        if (!mas->cur_xfer) {
 696                for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
 697                        readl(se->base + SE_GENI_RX_FIFOn);
 698                return;
 699        }
 700
 701        if (mas->rx_rem_bytes < rx_bytes)
 702                rx_bytes = mas->rx_rem_bytes;
 703
 704        rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
 705        while (i < rx_bytes) {
 706                u32 fifo_word = 0;
 707                u8 *fifo_byte = (u8 *)&fifo_word;
 708                unsigned int bytes_to_read;
 709                unsigned int j;
 710
 711                bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
 712                ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
 713                for (j = 0; j < bytes_to_read; j++)
 714                        rx_buf[i++] = fifo_byte[j];
 715        }
 716        mas->rx_rem_bytes -= rx_bytes;
 717}
 718
 719static void setup_fifo_xfer(struct spi_transfer *xfer,
 720                                struct spi_geni_master *mas,
 721                                u16 mode, struct spi_master *spi)
 722{
 723        u32 m_cmd = 0;
 724        u32 len;
 725        struct geni_se *se = &mas->se;
 726        int ret;
 727
 728        /*
 729         * Ensure that our interrupt handler isn't still running from some
 730         * prior command before we start messing with the hardware behind
 731         * its back.  We don't need to _keep_ the lock here since we're only
 732         * worried about racing with out interrupt handler.  The SPI core
 733         * already handles making sure that we're not trying to do two
 734         * transfers at once or setting a chip select and doing a transfer
 735         * concurrently.
 736         *
 737         * NOTE: we actually _can't_ hold the lock here because possibly we
 738         * might call clk_set_rate() which needs to be able to sleep.
 739         */
 740        spin_lock_irq(&mas->lock);
 741        spin_unlock_irq(&mas->lock);
 742
 743        if (xfer->bits_per_word != mas->cur_bits_per_word) {
 744                spi_setup_word_len(mas, mode, xfer->bits_per_word);
 745                mas->cur_bits_per_word = xfer->bits_per_word;
 746        }
 747
 748        /* Speed and bits per word can be overridden per transfer */
 749        ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
 750        if (ret)
 751                return;
 752
 753        mas->tx_rem_bytes = 0;
 754        mas->rx_rem_bytes = 0;
 755
 756        if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
 757                len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
 758        else
 759                len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
 760        len &= TRANS_LEN_MSK;
 761
 762        mas->cur_xfer = xfer;
 763        if (xfer->tx_buf) {
 764                m_cmd |= SPI_TX_ONLY;
 765                mas->tx_rem_bytes = xfer->len;
 766                writel(len, se->base + SE_SPI_TX_TRANS_LEN);
 767        }
 768
 769        if (xfer->rx_buf) {
 770                m_cmd |= SPI_RX_ONLY;
 771                writel(len, se->base + SE_SPI_RX_TRANS_LEN);
 772                mas->rx_rem_bytes = xfer->len;
 773        }
 774
 775        /*
 776         * Lock around right before we start the transfer since our
 777         * interrupt could come in at any time now.
 778         */
 779        spin_lock_irq(&mas->lock);
 780        geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
 781        if (m_cmd & SPI_TX_ONLY) {
 782                if (geni_spi_handle_tx(mas))
 783                        writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
 784        }
 785        spin_unlock_irq(&mas->lock);
 786}
 787
 788static int spi_geni_transfer_one(struct spi_master *spi,
 789                                struct spi_device *slv,
 790                                struct spi_transfer *xfer)
 791{
 792        struct spi_geni_master *mas = spi_master_get_devdata(spi);
 793
 794        if (spi_geni_is_abort_still_pending(mas))
 795                return -EBUSY;
 796
 797        /* Terminate and return success for 0 byte length transfer */
 798        if (!xfer->len)
 799                return 0;
 800
 801        if (mas->cur_xfer_mode == GENI_SE_FIFO) {
 802                setup_fifo_xfer(xfer, mas, slv->mode, spi);
 803                return 1;
 804        }
 805        return setup_gsi_xfer(xfer, mas, slv, spi);
 806}
 807
 808static irqreturn_t geni_spi_isr(int irq, void *data)
 809{
 810        struct spi_master *spi = data;
 811        struct spi_geni_master *mas = spi_master_get_devdata(spi);
 812        struct geni_se *se = &mas->se;
 813        u32 m_irq;
 814
 815        m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 816        if (!m_irq)
 817                return IRQ_NONE;
 818
 819        if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
 820                     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
 821                     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
 822                dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
 823
 824        spin_lock(&mas->lock);
 825
 826        if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
 827                geni_spi_handle_rx(mas);
 828
 829        if (m_irq & M_TX_FIFO_WATERMARK_EN)
 830                geni_spi_handle_tx(mas);
 831
 832        if (m_irq & M_CMD_DONE_EN) {
 833                if (mas->cur_xfer) {
 834                        spi_finalize_current_transfer(spi);
 835                        mas->cur_xfer = NULL;
 836                        /*
 837                         * If this happens, then a CMD_DONE came before all the
 838                         * Tx buffer bytes were sent out. This is unusual, log
 839                         * this condition and disable the WM interrupt to
 840                         * prevent the system from stalling due an interrupt
 841                         * storm.
 842                         *
 843                         * If this happens when all Rx bytes haven't been
 844                         * received, log the condition. The only known time
 845                         * this can happen is if bits_per_word != 8 and some
 846                         * registers that expect xfer lengths in num spi_words
 847                         * weren't written correctly.
 848                         */
 849                        if (mas->tx_rem_bytes) {
 850                                writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 851                                dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
 852                                        mas->tx_rem_bytes, mas->cur_bits_per_word);
 853                        }
 854                        if (mas->rx_rem_bytes)
 855                                dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
 856                                        mas->rx_rem_bytes, mas->cur_bits_per_word);
 857                } else {
 858                        complete(&mas->cs_done);
 859                }
 860        }
 861
 862        if (m_irq & M_CMD_CANCEL_EN)
 863                complete(&mas->cancel_done);
 864        if (m_irq & M_CMD_ABORT_EN)
 865                complete(&mas->abort_done);
 866
 867        /*
 868         * It's safe or a good idea to Ack all of our interrupts at the end
 869         * of the function. Specifically:
 870         * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
 871         *   clearing Acks. Clearing at the end relies on nobody else having
 872         *   started a new transfer yet or else we could be clearing _their_
 873         *   done bit, but everyone grabs the spinlock before starting a new
 874         *   transfer.
 875         * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
 876         *   to be "latched level" interrupts so it's important to clear them
 877         *   _after_ you've handled the condition and always safe to do so
 878         *   since they'll re-assert if they're still happening.
 879         */
 880        writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
 881
 882        spin_unlock(&mas->lock);
 883
 884        return IRQ_HANDLED;
 885}
 886
 887static int spi_geni_probe(struct platform_device *pdev)
 888{
 889        int ret, irq;
 890        struct spi_master *spi;
 891        struct spi_geni_master *mas;
 892        void __iomem *base;
 893        struct clk *clk;
 894        struct device *dev = &pdev->dev;
 895
 896        irq = platform_get_irq(pdev, 0);
 897        if (irq < 0)
 898                return irq;
 899
 900        ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
 901        if (ret) {
 902                ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
 903                if (ret)
 904                        return dev_err_probe(dev, ret, "could not set DMA mask\n");
 905        }
 906
 907        base = devm_platform_ioremap_resource(pdev, 0);
 908        if (IS_ERR(base))
 909                return PTR_ERR(base);
 910
 911        clk = devm_clk_get(dev, "se");
 912        if (IS_ERR(clk))
 913                return PTR_ERR(clk);
 914
 915        spi = devm_spi_alloc_master(dev, sizeof(*mas));
 916        if (!spi)
 917                return -ENOMEM;
 918
 919        platform_set_drvdata(pdev, spi);
 920        mas = spi_master_get_devdata(spi);
 921        mas->irq = irq;
 922        mas->dev = dev;
 923        mas->se.dev = dev;
 924        mas->se.wrapper = dev_get_drvdata(dev->parent);
 925        mas->se.base = base;
 926        mas->se.clk = clk;
 927
 928        ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
 929        if (ret)
 930                return ret;
 931        /* OPP table is optional */
 932        ret = devm_pm_opp_of_add_table(&pdev->dev);
 933        if (ret && ret != -ENODEV) {
 934                dev_err(&pdev->dev, "invalid OPP table in device tree\n");
 935                return ret;
 936        }
 937
 938        spi->bus_num = -1;
 939        spi->dev.of_node = dev->of_node;
 940        spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
 941        spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
 942        spi->num_chipselect = 4;
 943        spi->max_speed_hz = 50000000;
 944        spi->prepare_message = spi_geni_prepare_message;
 945        spi->transfer_one = spi_geni_transfer_one;
 946        spi->can_dma = geni_can_dma;
 947        spi->dma_map_dev = dev->parent;
 948        spi->auto_runtime_pm = true;
 949        spi->handle_err = spi_geni_handle_err;
 950        spi->use_gpio_descriptors = true;
 951
 952        init_completion(&mas->cs_done);
 953        init_completion(&mas->cancel_done);
 954        init_completion(&mas->abort_done);
 955        spin_lock_init(&mas->lock);
 956        pm_runtime_use_autosuspend(&pdev->dev);
 957        pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
 958        pm_runtime_enable(dev);
 959
 960        ret = geni_icc_get(&mas->se, NULL);
 961        if (ret)
 962                goto spi_geni_probe_runtime_disable;
 963        /* Set the bus quota to a reasonable value for register access */
 964        mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
 965        mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
 966
 967        ret = geni_icc_set_bw(&mas->se);
 968        if (ret)
 969                goto spi_geni_probe_runtime_disable;
 970
 971        ret = spi_geni_init(mas);
 972        if (ret)
 973                goto spi_geni_probe_runtime_disable;
 974
 975        /*
 976         * check the mode supported and set_cs for fifo mode only
 977         * for dma (gsi) mode, the gsi will set cs based on params passed in
 978         * TRE
 979         */
 980        if (mas->cur_xfer_mode == GENI_SE_FIFO)
 981                spi->set_cs = spi_geni_set_cs;
 982
 983        ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
 984        if (ret)
 985                goto spi_geni_release_dma;
 986
 987        ret = spi_register_master(spi);
 988        if (ret)
 989                goto spi_geni_probe_free_irq;
 990
 991        return 0;
 992spi_geni_probe_free_irq:
 993        free_irq(mas->irq, spi);
 994spi_geni_release_dma:
 995        spi_geni_release_dma_chan(mas);
 996spi_geni_probe_runtime_disable:
 997        pm_runtime_disable(dev);
 998        return ret;
 999}
1000
1001static int spi_geni_remove(struct platform_device *pdev)
1002{
1003        struct spi_master *spi = platform_get_drvdata(pdev);
1004        struct spi_geni_master *mas = spi_master_get_devdata(spi);
1005
1006        /* Unregister _before_ disabling pm_runtime() so we stop transfers */
1007        spi_unregister_master(spi);
1008
1009        spi_geni_release_dma_chan(mas);
1010
1011        free_irq(mas->irq, spi);
1012        pm_runtime_disable(&pdev->dev);
1013        return 0;
1014}
1015
1016static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1017{
1018        struct spi_master *spi = dev_get_drvdata(dev);
1019        struct spi_geni_master *mas = spi_master_get_devdata(spi);
1020        int ret;
1021
1022        /* Drop the performance state vote */
1023        dev_pm_opp_set_rate(dev, 0);
1024
1025        ret = geni_se_resources_off(&mas->se);
1026        if (ret)
1027                return ret;
1028
1029        return geni_icc_disable(&mas->se);
1030}
1031
1032static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1033{
1034        struct spi_master *spi = dev_get_drvdata(dev);
1035        struct spi_geni_master *mas = spi_master_get_devdata(spi);
1036        int ret;
1037
1038        ret = geni_icc_enable(&mas->se);
1039        if (ret)
1040                return ret;
1041
1042        ret = geni_se_resources_on(&mas->se);
1043        if (ret)
1044                return ret;
1045
1046        return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
1047}
1048
1049static int __maybe_unused spi_geni_suspend(struct device *dev)
1050{
1051        struct spi_master *spi = dev_get_drvdata(dev);
1052        int ret;
1053
1054        ret = spi_master_suspend(spi);
1055        if (ret)
1056                return ret;
1057
1058        ret = pm_runtime_force_suspend(dev);
1059        if (ret)
1060                spi_master_resume(spi);
1061
1062        return ret;
1063}
1064
1065static int __maybe_unused spi_geni_resume(struct device *dev)
1066{
1067        struct spi_master *spi = dev_get_drvdata(dev);
1068        int ret;
1069
1070        ret = pm_runtime_force_resume(dev);
1071        if (ret)
1072                return ret;
1073
1074        ret = spi_master_resume(spi);
1075        if (ret)
1076                pm_runtime_force_suspend(dev);
1077
1078        return ret;
1079}
1080
1081static const struct dev_pm_ops spi_geni_pm_ops = {
1082        SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1083                                        spi_geni_runtime_resume, NULL)
1084        SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1085};
1086
1087static const struct of_device_id spi_geni_dt_match[] = {
1088        { .compatible = "qcom,geni-spi" },
1089        {}
1090};
1091MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1092
1093static struct platform_driver spi_geni_driver = {
1094        .probe  = spi_geni_probe,
1095        .remove = spi_geni_remove,
1096        .driver = {
1097                .name = "geni_spi",
1098                .pm = &spi_geni_pm_ops,
1099                .of_match_table = spi_geni_dt_match,
1100        },
1101};
1102module_platform_driver(spi_geni_driver);
1103
1104MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1105MODULE_LICENSE("GPL v2");
1106