linux/drivers/spi/spi-rspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SH RSPI driver
   4 *
   5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   6 * Copyright (C) 2014 Glider bvba
   7 *
   8 * Based on spi-sh.c:
   9 * Copyright (C) 2011 Renesas Solutions Corp.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/dmaengine.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/of_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/reset.h>
  25#include <linux/sh_dma.h>
  26#include <linux/spi/spi.h>
  27#include <linux/spi/rspi.h>
  28#include <linux/spinlock.h>
  29
  30#define RSPI_SPCR               0x00    /* Control Register */
  31#define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
  32#define RSPI_SPPCR              0x02    /* Pin Control Register */
  33#define RSPI_SPSR               0x03    /* Status Register */
  34#define RSPI_SPDR               0x04    /* Data Register */
  35#define RSPI_SPSCR              0x08    /* Sequence Control Register */
  36#define RSPI_SPSSR              0x09    /* Sequence Status Register */
  37#define RSPI_SPBR               0x0a    /* Bit Rate Register */
  38#define RSPI_SPDCR              0x0b    /* Data Control Register */
  39#define RSPI_SPCKD              0x0c    /* Clock Delay Register */
  40#define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
  41#define RSPI_SPND               0x0e    /* Next-Access Delay Register */
  42#define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
  43#define RSPI_SPCMD0             0x10    /* Command Register 0 */
  44#define RSPI_SPCMD1             0x12    /* Command Register 1 */
  45#define RSPI_SPCMD2             0x14    /* Command Register 2 */
  46#define RSPI_SPCMD3             0x16    /* Command Register 3 */
  47#define RSPI_SPCMD4             0x18    /* Command Register 4 */
  48#define RSPI_SPCMD5             0x1a    /* Command Register 5 */
  49#define RSPI_SPCMD6             0x1c    /* Command Register 6 */
  50#define RSPI_SPCMD7             0x1e    /* Command Register 7 */
  51#define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
  52#define RSPI_NUM_SPCMD          8
  53#define RSPI_RZ_NUM_SPCMD       4
  54#define QSPI_NUM_SPCMD          4
  55
  56/* RSPI on RZ only */
  57#define RSPI_SPBFCR             0x20    /* Buffer Control Register */
  58#define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
  59
  60/* QSPI only */
  61#define QSPI_SPBFCR             0x18    /* Buffer Control Register */
  62#define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
  63#define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
  64#define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
  65#define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
  66#define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
  67#define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
  68
  69/* SPCR - Control Register */
  70#define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
  71#define SPCR_SPE                0x40    /* Function Enable */
  72#define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
  73#define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
  74#define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
  75#define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
  76/* RSPI on SH only */
  77#define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
  78#define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
  79/* QSPI on R-Car Gen2 only */
  80#define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
  81#define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
  82
  83/* SSLP - Slave Select Polarity Register */
  84#define SSLP_SSLP(i)            BIT(i)  /* SSLi Signal Polarity Setting */
  85
  86/* SPPCR - Pin Control Register */
  87#define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
  88#define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
  89#define SPPCR_SPOM              0x04
  90#define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
  91#define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
  92
  93#define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  94#define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  95
  96/* SPSR - Status Register */
  97#define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
  98#define SPSR_TEND               0x40    /* Transmit End */
  99#define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
 100#define SPSR_PERF               0x08    /* Parity Error Flag */
 101#define SPSR_MODF               0x04    /* Mode Fault Error Flag */
 102#define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
 103#define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
 104
 105/* SPSCR - Sequence Control Register */
 106#define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
 107
 108/* SPSSR - Sequence Status Register */
 109#define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
 110#define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
 111
 112/* SPDCR - Data Control Register */
 113#define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
 114#define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
 115#define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
 116#define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
 117#define SPDCR_SPLWORD           SPDCR_SPLW1
 118#define SPDCR_SPLBYTE           SPDCR_SPLW0
 119#define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
 120#define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
 121#define SPDCR_SLSEL1            0x08
 122#define SPDCR_SLSEL0            0x04
 123#define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
 124#define SPDCR_SPFC1             0x02
 125#define SPDCR_SPFC0             0x01
 126#define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
 127
 128/* SPCKD - Clock Delay Register */
 129#define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
 130
 131/* SSLND - Slave Select Negation Delay Register */
 132#define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
 133
 134/* SPND - Next-Access Delay Register */
 135#define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
 136
 137/* SPCR2 - Control Register 2 */
 138#define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
 139#define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
 140#define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
 141#define SPCR2_SPPE              0x01    /* Parity Enable */
 142
 143/* SPCMDn - Command Registers */
 144#define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
 145#define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
 146#define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
 147#define SPCMD_LSBF              0x1000  /* LSB First */
 148#define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
 149#define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
 150#define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
 151#define SPCMD_SPB_16BIT         0x0100
 152#define SPCMD_SPB_20BIT         0x0000
 153#define SPCMD_SPB_24BIT         0x0100
 154#define SPCMD_SPB_32BIT         0x0200
 155#define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
 156#define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
 157#define SPCMD_SPIMOD1           0x0040
 158#define SPCMD_SPIMOD0           0x0020
 159#define SPCMD_SPIMOD_SINGLE     0
 160#define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
 161#define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
 162#define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
 163#define SPCMD_SSLA(i)           ((i) << 4)      /* SSL Assert Signal Setting */
 164#define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
 165#define SPCMD_BRDV(brdv)        ((brdv) << 2)
 166#define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
 167#define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
 168
 169/* SPBFCR - Buffer Control Register */
 170#define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
 171#define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
 172#define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
 173#define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
 174/* QSPI on R-Car Gen2 */
 175#define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
 176#define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
 177#define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
 178#define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
 179
 180#define QSPI_BUFFER_SIZE        32u
 181
 182struct rspi_data {
 183        void __iomem *addr;
 184        u32 speed_hz;
 185        struct spi_controller *ctlr;
 186        struct platform_device *pdev;
 187        wait_queue_head_t wait;
 188        spinlock_t lock;                /* Protects RMW-access to RSPI_SSLP */
 189        struct clk *clk;
 190        u16 spcmd;
 191        u8 spsr;
 192        u8 sppcr;
 193        int rx_irq, tx_irq;
 194        const struct spi_ops *ops;
 195
 196        unsigned dma_callbacked:1;
 197        unsigned byte_access:1;
 198};
 199
 200static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 201{
 202        iowrite8(data, rspi->addr + offset);
 203}
 204
 205static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 206{
 207        iowrite16(data, rspi->addr + offset);
 208}
 209
 210static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 211{
 212        iowrite32(data, rspi->addr + offset);
 213}
 214
 215static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 216{
 217        return ioread8(rspi->addr + offset);
 218}
 219
 220static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 221{
 222        return ioread16(rspi->addr + offset);
 223}
 224
 225static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 226{
 227        if (rspi->byte_access)
 228                rspi_write8(rspi, data, RSPI_SPDR);
 229        else /* 16 bit */
 230                rspi_write16(rspi, data, RSPI_SPDR);
 231}
 232
 233static u16 rspi_read_data(const struct rspi_data *rspi)
 234{
 235        if (rspi->byte_access)
 236                return rspi_read8(rspi, RSPI_SPDR);
 237        else /* 16 bit */
 238                return rspi_read16(rspi, RSPI_SPDR);
 239}
 240
 241/* optional functions */
 242struct spi_ops {
 243        int (*set_config_register)(struct rspi_data *rspi, int access_size);
 244        int (*transfer_one)(struct spi_controller *ctlr,
 245                            struct spi_device *spi, struct spi_transfer *xfer);
 246        u16 extra_mode_bits;
 247        u16 min_div;
 248        u16 max_div;
 249        u16 flags;
 250        u16 fifo_size;
 251        u8 num_hw_ss;
 252};
 253
 254static void rspi_set_rate(struct rspi_data *rspi)
 255{
 256        unsigned long clksrc;
 257        int brdv = 0, spbr;
 258
 259        clksrc = clk_get_rate(rspi->clk);
 260        spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
 261        while (spbr > 255 && brdv < 3) {
 262                brdv++;
 263                spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
 264        }
 265
 266        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 267        rspi->spcmd |= SPCMD_BRDV(brdv);
 268        rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
 269}
 270
 271/*
 272 * functions for RSPI on legacy SH
 273 */
 274static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 275{
 276        /* Sets output mode, MOSI signal, and (optionally) loopback */
 277        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 278
 279        /* Sets transfer bit rate */
 280        rspi_set_rate(rspi);
 281
 282        /* Disable dummy transmission, set 16-bit word access, 1 frame */
 283        rspi_write8(rspi, 0, RSPI_SPDCR);
 284        rspi->byte_access = 0;
 285
 286        /* Sets RSPCK, SSL, next-access delay value */
 287        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 288        rspi_write8(rspi, 0x00, RSPI_SSLND);
 289        rspi_write8(rspi, 0x00, RSPI_SPND);
 290
 291        /* Sets parity, interrupt mask */
 292        rspi_write8(rspi, 0x00, RSPI_SPCR2);
 293
 294        /* Resets sequencer */
 295        rspi_write8(rspi, 0, RSPI_SPSCR);
 296        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 297        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 298
 299        /* Sets RSPI mode */
 300        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 301
 302        return 0;
 303}
 304
 305/*
 306 * functions for RSPI on RZ
 307 */
 308static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 309{
 310        /* Sets output mode, MOSI signal, and (optionally) loopback */
 311        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 312
 313        /* Sets transfer bit rate */
 314        rspi_set_rate(rspi);
 315
 316        /* Disable dummy transmission, set byte access */
 317        rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 318        rspi->byte_access = 1;
 319
 320        /* Sets RSPCK, SSL, next-access delay value */
 321        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 322        rspi_write8(rspi, 0x00, RSPI_SSLND);
 323        rspi_write8(rspi, 0x00, RSPI_SPND);
 324
 325        /* Resets sequencer */
 326        rspi_write8(rspi, 0, RSPI_SPSCR);
 327        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 328        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 329
 330        /* Sets RSPI mode */
 331        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 332
 333        return 0;
 334}
 335
 336/*
 337 * functions for QSPI
 338 */
 339static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 340{
 341        unsigned long clksrc;
 342        int brdv = 0, spbr;
 343
 344        /* Sets output mode, MOSI signal, and (optionally) loopback */
 345        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 346
 347        /* Sets transfer bit rate */
 348        clksrc = clk_get_rate(rspi->clk);
 349        if (rspi->speed_hz >= clksrc) {
 350                spbr = 0;
 351                rspi->speed_hz = clksrc;
 352        } else {
 353                spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
 354                while (spbr > 255 && brdv < 3) {
 355                        brdv++;
 356                        spbr = DIV_ROUND_UP(spbr, 2);
 357                }
 358                spbr = clamp(spbr, 0, 255);
 359                rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
 360        }
 361        rspi_write8(rspi, spbr, RSPI_SPBR);
 362        rspi->spcmd |= SPCMD_BRDV(brdv);
 363
 364        /* Disable dummy transmission, set byte access */
 365        rspi_write8(rspi, 0, RSPI_SPDCR);
 366        rspi->byte_access = 1;
 367
 368        /* Sets RSPCK, SSL, next-access delay value */
 369        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 370        rspi_write8(rspi, 0x00, RSPI_SSLND);
 371        rspi_write8(rspi, 0x00, RSPI_SPND);
 372
 373        /* Data Length Setting */
 374        if (access_size == 8)
 375                rspi->spcmd |= SPCMD_SPB_8BIT;
 376        else if (access_size == 16)
 377                rspi->spcmd |= SPCMD_SPB_16BIT;
 378        else
 379                rspi->spcmd |= SPCMD_SPB_32BIT;
 380
 381        rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 382
 383        /* Resets transfer data length */
 384        rspi_write32(rspi, 0, QSPI_SPBMUL0);
 385
 386        /* Resets transmit and receive buffer */
 387        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 388        /* Sets buffer to allow normal operation */
 389        rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 390
 391        /* Resets sequencer */
 392        rspi_write8(rspi, 0, RSPI_SPSCR);
 393        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 394
 395        /* Sets RSPI mode */
 396        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 397
 398        return 0;
 399}
 400
 401static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 402{
 403        u8 data;
 404
 405        data = rspi_read8(rspi, reg);
 406        data &= ~mask;
 407        data |= (val & mask);
 408        rspi_write8(rspi, data, reg);
 409}
 410
 411static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 412                                          unsigned int len)
 413{
 414        unsigned int n;
 415
 416        n = min(len, QSPI_BUFFER_SIZE);
 417
 418        if (len >= QSPI_BUFFER_SIZE) {
 419                /* sets triggering number to 32 bytes */
 420                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 421                             SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 422        } else {
 423                /* sets triggering number to 1 byte */
 424                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 425                             SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 426        }
 427
 428        return n;
 429}
 430
 431static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 432{
 433        unsigned int n;
 434
 435        n = min(len, QSPI_BUFFER_SIZE);
 436
 437        if (len >= QSPI_BUFFER_SIZE) {
 438                /* sets triggering number to 32 bytes */
 439                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 440                             SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 441        } else {
 442                /* sets triggering number to 1 byte */
 443                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 444                             SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 445        }
 446        return n;
 447}
 448
 449static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 450{
 451        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 452}
 453
 454static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 455{
 456        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 457}
 458
 459static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 460                                   u8 enable_bit)
 461{
 462        int ret;
 463
 464        rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 465        if (rspi->spsr & wait_mask)
 466                return 0;
 467
 468        rspi_enable_irq(rspi, enable_bit);
 469        ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 470        if (ret == 0 && !(rspi->spsr & wait_mask))
 471                return -ETIMEDOUT;
 472
 473        return 0;
 474}
 475
 476static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 477{
 478        return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 479}
 480
 481static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 482{
 483        return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 484}
 485
 486static int rspi_data_out(struct rspi_data *rspi, u8 data)
 487{
 488        int error = rspi_wait_for_tx_empty(rspi);
 489        if (error < 0) {
 490                dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 491                return error;
 492        }
 493        rspi_write_data(rspi, data);
 494        return 0;
 495}
 496
 497static int rspi_data_in(struct rspi_data *rspi)
 498{
 499        int error;
 500        u8 data;
 501
 502        error = rspi_wait_for_rx_full(rspi);
 503        if (error < 0) {
 504                dev_err(&rspi->ctlr->dev, "receive timeout\n");
 505                return error;
 506        }
 507        data = rspi_read_data(rspi);
 508        return data;
 509}
 510
 511static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 512                             unsigned int n)
 513{
 514        while (n-- > 0) {
 515                if (tx) {
 516                        int ret = rspi_data_out(rspi, *tx++);
 517                        if (ret < 0)
 518                                return ret;
 519                }
 520                if (rx) {
 521                        int ret = rspi_data_in(rspi);
 522                        if (ret < 0)
 523                                return ret;
 524                        *rx++ = ret;
 525                }
 526        }
 527
 528        return 0;
 529}
 530
 531static void rspi_dma_complete(void *arg)
 532{
 533        struct rspi_data *rspi = arg;
 534
 535        rspi->dma_callbacked = 1;
 536        wake_up_interruptible(&rspi->wait);
 537}
 538
 539static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 540                             struct sg_table *rx)
 541{
 542        struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 543        u8 irq_mask = 0;
 544        unsigned int other_irq = 0;
 545        dma_cookie_t cookie;
 546        int ret;
 547
 548        /* First prepare and submit the DMA request(s), as this may fail */
 549        if (rx) {
 550                desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
 551                                        rx->nents, DMA_DEV_TO_MEM,
 552                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 553                if (!desc_rx) {
 554                        ret = -EAGAIN;
 555                        goto no_dma_rx;
 556                }
 557
 558                desc_rx->callback = rspi_dma_complete;
 559                desc_rx->callback_param = rspi;
 560                cookie = dmaengine_submit(desc_rx);
 561                if (dma_submit_error(cookie)) {
 562                        ret = cookie;
 563                        goto no_dma_rx;
 564                }
 565
 566                irq_mask |= SPCR_SPRIE;
 567        }
 568
 569        if (tx) {
 570                desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
 571                                        tx->nents, DMA_MEM_TO_DEV,
 572                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 573                if (!desc_tx) {
 574                        ret = -EAGAIN;
 575                        goto no_dma_tx;
 576                }
 577
 578                if (rx) {
 579                        /* No callback */
 580                        desc_tx->callback = NULL;
 581                } else {
 582                        desc_tx->callback = rspi_dma_complete;
 583                        desc_tx->callback_param = rspi;
 584                }
 585                cookie = dmaengine_submit(desc_tx);
 586                if (dma_submit_error(cookie)) {
 587                        ret = cookie;
 588                        goto no_dma_tx;
 589                }
 590
 591                irq_mask |= SPCR_SPTIE;
 592        }
 593
 594        /*
 595         * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 596         * called. So, this driver disables the IRQ while DMA transfer.
 597         */
 598        if (tx)
 599                disable_irq(other_irq = rspi->tx_irq);
 600        if (rx && rspi->rx_irq != other_irq)
 601                disable_irq(rspi->rx_irq);
 602
 603        rspi_enable_irq(rspi, irq_mask);
 604        rspi->dma_callbacked = 0;
 605
 606        /* Now start DMA */
 607        if (rx)
 608                dma_async_issue_pending(rspi->ctlr->dma_rx);
 609        if (tx)
 610                dma_async_issue_pending(rspi->ctlr->dma_tx);
 611
 612        ret = wait_event_interruptible_timeout(rspi->wait,
 613                                               rspi->dma_callbacked, HZ);
 614        if (ret > 0 && rspi->dma_callbacked) {
 615                ret = 0;
 616        } else {
 617                if (!ret) {
 618                        dev_err(&rspi->ctlr->dev, "DMA timeout\n");
 619                        ret = -ETIMEDOUT;
 620                }
 621                if (tx)
 622                        dmaengine_terminate_sync(rspi->ctlr->dma_tx);
 623                if (rx)
 624                        dmaengine_terminate_sync(rspi->ctlr->dma_rx);
 625        }
 626
 627        rspi_disable_irq(rspi, irq_mask);
 628
 629        if (tx)
 630                enable_irq(rspi->tx_irq);
 631        if (rx && rspi->rx_irq != other_irq)
 632                enable_irq(rspi->rx_irq);
 633
 634        return ret;
 635
 636no_dma_tx:
 637        if (rx)
 638                dmaengine_terminate_sync(rspi->ctlr->dma_rx);
 639no_dma_rx:
 640        if (ret == -EAGAIN) {
 641                dev_warn_once(&rspi->ctlr->dev,
 642                              "DMA not available, falling back to PIO\n");
 643        }
 644        return ret;
 645}
 646
 647static void rspi_receive_init(const struct rspi_data *rspi)
 648{
 649        u8 spsr;
 650
 651        spsr = rspi_read8(rspi, RSPI_SPSR);
 652        if (spsr & SPSR_SPRF)
 653                rspi_read_data(rspi);   /* dummy read */
 654        if (spsr & SPSR_OVRF)
 655                rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 656                            RSPI_SPSR);
 657}
 658
 659static void rspi_rz_receive_init(const struct rspi_data *rspi)
 660{
 661        rspi_receive_init(rspi);
 662        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 663        rspi_write8(rspi, 0, RSPI_SPBFCR);
 664}
 665
 666static void qspi_receive_init(const struct rspi_data *rspi)
 667{
 668        u8 spsr;
 669
 670        spsr = rspi_read8(rspi, RSPI_SPSR);
 671        if (spsr & SPSR_SPRF)
 672                rspi_read_data(rspi);   /* dummy read */
 673        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 674        rspi_write8(rspi, 0, QSPI_SPBFCR);
 675}
 676
 677static bool __rspi_can_dma(const struct rspi_data *rspi,
 678                           const struct spi_transfer *xfer)
 679{
 680        return xfer->len > rspi->ops->fifo_size;
 681}
 682
 683static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
 684                         struct spi_transfer *xfer)
 685{
 686        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 687
 688        return __rspi_can_dma(rspi, xfer);
 689}
 690
 691static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 692                                         struct spi_transfer *xfer)
 693{
 694        if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
 695                return -EAGAIN;
 696
 697        /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 698        return rspi_dma_transfer(rspi, &xfer->tx_sg,
 699                                xfer->rx_buf ? &xfer->rx_sg : NULL);
 700}
 701
 702static int rspi_common_transfer(struct rspi_data *rspi,
 703                                struct spi_transfer *xfer)
 704{
 705        int ret;
 706
 707        xfer->effective_speed_hz = rspi->speed_hz;
 708
 709        ret = rspi_dma_check_then_transfer(rspi, xfer);
 710        if (ret != -EAGAIN)
 711                return ret;
 712
 713        ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 714        if (ret < 0)
 715                return ret;
 716
 717        /* Wait for the last transmission */
 718        rspi_wait_for_tx_empty(rspi);
 719
 720        return 0;
 721}
 722
 723static int rspi_transfer_one(struct spi_controller *ctlr,
 724                             struct spi_device *spi, struct spi_transfer *xfer)
 725{
 726        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 727        u8 spcr;
 728
 729        spcr = rspi_read8(rspi, RSPI_SPCR);
 730        if (xfer->rx_buf) {
 731                rspi_receive_init(rspi);
 732                spcr &= ~SPCR_TXMD;
 733        } else {
 734                spcr |= SPCR_TXMD;
 735        }
 736        rspi_write8(rspi, spcr, RSPI_SPCR);
 737
 738        return rspi_common_transfer(rspi, xfer);
 739}
 740
 741static int rspi_rz_transfer_one(struct spi_controller *ctlr,
 742                                struct spi_device *spi,
 743                                struct spi_transfer *xfer)
 744{
 745        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 746
 747        rspi_rz_receive_init(rspi);
 748
 749        return rspi_common_transfer(rspi, xfer);
 750}
 751
 752static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 753                                        u8 *rx, unsigned int len)
 754{
 755        unsigned int i, n;
 756        int ret;
 757
 758        while (len > 0) {
 759                n = qspi_set_send_trigger(rspi, len);
 760                qspi_set_receive_trigger(rspi, len);
 761                ret = rspi_wait_for_tx_empty(rspi);
 762                if (ret < 0) {
 763                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 764                        return ret;
 765                }
 766                for (i = 0; i < n; i++)
 767                        rspi_write_data(rspi, *tx++);
 768
 769                ret = rspi_wait_for_rx_full(rspi);
 770                if (ret < 0) {
 771                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 772                        return ret;
 773                }
 774                for (i = 0; i < n; i++)
 775                        *rx++ = rspi_read_data(rspi);
 776
 777                len -= n;
 778        }
 779
 780        return 0;
 781}
 782
 783static int qspi_transfer_out_in(struct rspi_data *rspi,
 784                                struct spi_transfer *xfer)
 785{
 786        int ret;
 787
 788        qspi_receive_init(rspi);
 789
 790        ret = rspi_dma_check_then_transfer(rspi, xfer);
 791        if (ret != -EAGAIN)
 792                return ret;
 793
 794        return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 795                                            xfer->rx_buf, xfer->len);
 796}
 797
 798static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 799{
 800        const u8 *tx = xfer->tx_buf;
 801        unsigned int n = xfer->len;
 802        unsigned int i, len;
 803        int ret;
 804
 805        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 806                ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 807                if (ret != -EAGAIN)
 808                        return ret;
 809        }
 810
 811        while (n > 0) {
 812                len = qspi_set_send_trigger(rspi, n);
 813                ret = rspi_wait_for_tx_empty(rspi);
 814                if (ret < 0) {
 815                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 816                        return ret;
 817                }
 818                for (i = 0; i < len; i++)
 819                        rspi_write_data(rspi, *tx++);
 820
 821                n -= len;
 822        }
 823
 824        /* Wait for the last transmission */
 825        rspi_wait_for_tx_empty(rspi);
 826
 827        return 0;
 828}
 829
 830static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 831{
 832        u8 *rx = xfer->rx_buf;
 833        unsigned int n = xfer->len;
 834        unsigned int i, len;
 835        int ret;
 836
 837        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 838                ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 839                if (ret != -EAGAIN)
 840                        return ret;
 841        }
 842
 843        while (n > 0) {
 844                len = qspi_set_receive_trigger(rspi, n);
 845                ret = rspi_wait_for_rx_full(rspi);
 846                if (ret < 0) {
 847                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 848                        return ret;
 849                }
 850                for (i = 0; i < len; i++)
 851                        *rx++ = rspi_read_data(rspi);
 852
 853                n -= len;
 854        }
 855
 856        return 0;
 857}
 858
 859static int qspi_transfer_one(struct spi_controller *ctlr,
 860                             struct spi_device *spi, struct spi_transfer *xfer)
 861{
 862        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 863
 864        xfer->effective_speed_hz = rspi->speed_hz;
 865        if (spi->mode & SPI_LOOP) {
 866                return qspi_transfer_out_in(rspi, xfer);
 867        } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 868                /* Quad or Dual SPI Write */
 869                return qspi_transfer_out(rspi, xfer);
 870        } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 871                /* Quad or Dual SPI Read */
 872                return qspi_transfer_in(rspi, xfer);
 873        } else {
 874                /* Single SPI Transfer */
 875                return qspi_transfer_out_in(rspi, xfer);
 876        }
 877}
 878
 879static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 880{
 881        if (xfer->tx_buf)
 882                switch (xfer->tx_nbits) {
 883                case SPI_NBITS_QUAD:
 884                        return SPCMD_SPIMOD_QUAD;
 885                case SPI_NBITS_DUAL:
 886                        return SPCMD_SPIMOD_DUAL;
 887                default:
 888                        return 0;
 889                }
 890        if (xfer->rx_buf)
 891                switch (xfer->rx_nbits) {
 892                case SPI_NBITS_QUAD:
 893                        return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 894                case SPI_NBITS_DUAL:
 895                        return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 896                default:
 897                        return 0;
 898                }
 899
 900        return 0;
 901}
 902
 903static int qspi_setup_sequencer(struct rspi_data *rspi,
 904                                const struct spi_message *msg)
 905{
 906        const struct spi_transfer *xfer;
 907        unsigned int i = 0, len = 0;
 908        u16 current_mode = 0xffff, mode;
 909
 910        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 911                mode = qspi_transfer_mode(xfer);
 912                if (mode == current_mode) {
 913                        len += xfer->len;
 914                        continue;
 915                }
 916
 917                /* Transfer mode change */
 918                if (i) {
 919                        /* Set transfer data length of previous transfer */
 920                        rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 921                }
 922
 923                if (i >= QSPI_NUM_SPCMD) {
 924                        dev_err(&msg->spi->dev,
 925                                "Too many different transfer modes");
 926                        return -EINVAL;
 927                }
 928
 929                /* Program transfer mode for this transfer */
 930                rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 931                current_mode = mode;
 932                len = xfer->len;
 933                i++;
 934        }
 935        if (i) {
 936                /* Set final transfer data length and sequence length */
 937                rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 938                rspi_write8(rspi, i - 1, RSPI_SPSCR);
 939        }
 940
 941        return 0;
 942}
 943
 944static int rspi_setup(struct spi_device *spi)
 945{
 946        struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
 947        u8 sslp;
 948
 949        if (spi->cs_gpiod)
 950                return 0;
 951
 952        pm_runtime_get_sync(&rspi->pdev->dev);
 953        spin_lock_irq(&rspi->lock);
 954
 955        sslp = rspi_read8(rspi, RSPI_SSLP);
 956        if (spi->mode & SPI_CS_HIGH)
 957                sslp |= SSLP_SSLP(spi->chip_select);
 958        else
 959                sslp &= ~SSLP_SSLP(spi->chip_select);
 960        rspi_write8(rspi, sslp, RSPI_SSLP);
 961
 962        spin_unlock_irq(&rspi->lock);
 963        pm_runtime_put(&rspi->pdev->dev);
 964        return 0;
 965}
 966
 967static int rspi_prepare_message(struct spi_controller *ctlr,
 968                                struct spi_message *msg)
 969{
 970        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 971        struct spi_device *spi = msg->spi;
 972        const struct spi_transfer *xfer;
 973        int ret;
 974
 975        /*
 976         * As the Bit Rate Register must not be changed while the device is
 977         * active, all transfers in a message must use the same bit rate.
 978         * In theory, the sequencer could be enabled, and each Command Register
 979         * could divide the base bit rate by a different value.
 980         * However, most RSPI variants do not have Transfer Data Length
 981         * Multiplier Setting Registers, so each sequence step would be limited
 982         * to a single word, making this feature unsuitable for large
 983         * transfers, which would gain most from it.
 984         */
 985        rspi->speed_hz = spi->max_speed_hz;
 986        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 987                if (xfer->speed_hz < rspi->speed_hz)
 988                        rspi->speed_hz = xfer->speed_hz;
 989        }
 990
 991        rspi->spcmd = SPCMD_SSLKP;
 992        if (spi->mode & SPI_CPOL)
 993                rspi->spcmd |= SPCMD_CPOL;
 994        if (spi->mode & SPI_CPHA)
 995                rspi->spcmd |= SPCMD_CPHA;
 996        if (spi->mode & SPI_LSB_FIRST)
 997                rspi->spcmd |= SPCMD_LSBF;
 998
 999        /* Configure slave signal to assert */
1000        rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1001                                                : spi->chip_select);
1002
1003        /* CMOS output mode and MOSI signal from previous transfer */
1004        rspi->sppcr = 0;
1005        if (spi->mode & SPI_LOOP)
1006                rspi->sppcr |= SPPCR_SPLP;
1007
1008        rspi->ops->set_config_register(rspi, 8);
1009
1010        if (msg->spi->mode &
1011            (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1012                /* Setup sequencer for messages with multiple transfer modes */
1013                ret = qspi_setup_sequencer(rspi, msg);
1014                if (ret < 0)
1015                        return ret;
1016        }
1017
1018        /* Enable SPI function in master mode */
1019        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1020        return 0;
1021}
1022
1023static int rspi_unprepare_message(struct spi_controller *ctlr,
1024                                  struct spi_message *msg)
1025{
1026        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1027
1028        /* Disable SPI function */
1029        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1030
1031        /* Reset sequencer for Single SPI Transfers */
1032        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1033        rspi_write8(rspi, 0, RSPI_SPSCR);
1034        return 0;
1035}
1036
1037static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1038{
1039        struct rspi_data *rspi = _sr;
1040        u8 spsr;
1041        irqreturn_t ret = IRQ_NONE;
1042        u8 disable_irq = 0;
1043
1044        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1045        if (spsr & SPSR_SPRF)
1046                disable_irq |= SPCR_SPRIE;
1047        if (spsr & SPSR_SPTEF)
1048                disable_irq |= SPCR_SPTIE;
1049
1050        if (disable_irq) {
1051                ret = IRQ_HANDLED;
1052                rspi_disable_irq(rspi, disable_irq);
1053                wake_up(&rspi->wait);
1054        }
1055
1056        return ret;
1057}
1058
1059static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1060{
1061        struct rspi_data *rspi = _sr;
1062        u8 spsr;
1063
1064        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1065        if (spsr & SPSR_SPRF) {
1066                rspi_disable_irq(rspi, SPCR_SPRIE);
1067                wake_up(&rspi->wait);
1068                return IRQ_HANDLED;
1069        }
1070
1071        return 0;
1072}
1073
1074static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1075{
1076        struct rspi_data *rspi = _sr;
1077        u8 spsr;
1078
1079        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1080        if (spsr & SPSR_SPTEF) {
1081                rspi_disable_irq(rspi, SPCR_SPTIE);
1082                wake_up(&rspi->wait);
1083                return IRQ_HANDLED;
1084        }
1085
1086        return 0;
1087}
1088
1089static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1090                                              enum dma_transfer_direction dir,
1091                                              unsigned int id,
1092                                              dma_addr_t port_addr)
1093{
1094        dma_cap_mask_t mask;
1095        struct dma_chan *chan;
1096        struct dma_slave_config cfg;
1097        int ret;
1098
1099        dma_cap_zero(mask);
1100        dma_cap_set(DMA_SLAVE, mask);
1101
1102        chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1103                                (void *)(unsigned long)id, dev,
1104                                dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1105        if (!chan) {
1106                dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1107                return NULL;
1108        }
1109
1110        memset(&cfg, 0, sizeof(cfg));
1111        cfg.direction = dir;
1112        if (dir == DMA_MEM_TO_DEV) {
1113                cfg.dst_addr = port_addr;
1114                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1115        } else {
1116                cfg.src_addr = port_addr;
1117                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118        }
1119
1120        ret = dmaengine_slave_config(chan, &cfg);
1121        if (ret) {
1122                dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1123                dma_release_channel(chan);
1124                return NULL;
1125        }
1126
1127        return chan;
1128}
1129
1130static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1131                            const struct resource *res)
1132{
1133        const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1134        unsigned int dma_tx_id, dma_rx_id;
1135
1136        if (dev->of_node) {
1137                /* In the OF case we will get the slave IDs from the DT */
1138                dma_tx_id = 0;
1139                dma_rx_id = 0;
1140        } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1141                dma_tx_id = rspi_pd->dma_tx_id;
1142                dma_rx_id = rspi_pd->dma_rx_id;
1143        } else {
1144                /* The driver assumes no error. */
1145                return 0;
1146        }
1147
1148        ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1149                                             res->start + RSPI_SPDR);
1150        if (!ctlr->dma_tx)
1151                return -ENODEV;
1152
1153        ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1154                                             res->start + RSPI_SPDR);
1155        if (!ctlr->dma_rx) {
1156                dma_release_channel(ctlr->dma_tx);
1157                ctlr->dma_tx = NULL;
1158                return -ENODEV;
1159        }
1160
1161        ctlr->can_dma = rspi_can_dma;
1162        dev_info(dev, "DMA available");
1163        return 0;
1164}
1165
1166static void rspi_release_dma(struct spi_controller *ctlr)
1167{
1168        if (ctlr->dma_tx)
1169                dma_release_channel(ctlr->dma_tx);
1170        if (ctlr->dma_rx)
1171                dma_release_channel(ctlr->dma_rx);
1172}
1173
1174static int rspi_remove(struct platform_device *pdev)
1175{
1176        struct rspi_data *rspi = platform_get_drvdata(pdev);
1177
1178        rspi_release_dma(rspi->ctlr);
1179        pm_runtime_disable(&pdev->dev);
1180
1181        return 0;
1182}
1183
1184static const struct spi_ops rspi_ops = {
1185        .set_config_register =  rspi_set_config_register,
1186        .transfer_one =         rspi_transfer_one,
1187        .min_div =              2,
1188        .max_div =              4096,
1189        .flags =                SPI_CONTROLLER_MUST_TX,
1190        .fifo_size =            8,
1191        .num_hw_ss =            2,
1192};
1193
1194static const struct spi_ops rspi_rz_ops = {
1195        .set_config_register =  rspi_rz_set_config_register,
1196        .transfer_one =         rspi_rz_transfer_one,
1197        .min_div =              2,
1198        .max_div =              4096,
1199        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1200        .fifo_size =            8,      /* 8 for TX, 32 for RX */
1201        .num_hw_ss =            1,
1202};
1203
1204static const struct spi_ops qspi_ops = {
1205        .set_config_register =  qspi_set_config_register,
1206        .transfer_one =         qspi_transfer_one,
1207        .extra_mode_bits =      SPI_TX_DUAL | SPI_TX_QUAD |
1208                                SPI_RX_DUAL | SPI_RX_QUAD,
1209        .min_div =              1,
1210        .max_div =              4080,
1211        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1212        .fifo_size =            32,
1213        .num_hw_ss =            1,
1214};
1215
1216#ifdef CONFIG_OF
1217static const struct of_device_id rspi_of_match[] = {
1218        /* RSPI on legacy SH */
1219        { .compatible = "renesas,rspi", .data = &rspi_ops },
1220        /* RSPI on RZ/A1H */
1221        { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1222        /* QSPI on R-Car Gen2 */
1223        { .compatible = "renesas,qspi", .data = &qspi_ops },
1224        { /* sentinel */ }
1225};
1226
1227MODULE_DEVICE_TABLE(of, rspi_of_match);
1228
1229static void rspi_reset_control_assert(void *data)
1230{
1231        reset_control_assert(data);
1232}
1233
1234static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1235{
1236        struct reset_control *rstc;
1237        u32 num_cs;
1238        int error;
1239
1240        /* Parse DT properties */
1241        error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1242        if (error) {
1243                dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1244                return error;
1245        }
1246
1247        ctlr->num_chipselect = num_cs;
1248
1249        rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
1250        if (IS_ERR(rstc))
1251                return dev_err_probe(dev, PTR_ERR(rstc),
1252                                             "failed to get reset ctrl\n");
1253
1254        error = reset_control_deassert(rstc);
1255        if (error) {
1256                dev_err(dev, "failed to deassert reset %d\n", error);
1257                return error;
1258        }
1259
1260        error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
1261        if (error) {
1262                dev_err(dev, "failed to register assert devm action, %d\n", error);
1263                return error;
1264        }
1265
1266        return 0;
1267}
1268#else
1269#define rspi_of_match   NULL
1270static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1271{
1272        return -EINVAL;
1273}
1274#endif /* CONFIG_OF */
1275
1276static int rspi_request_irq(struct device *dev, unsigned int irq,
1277                            irq_handler_t handler, const char *suffix,
1278                            void *dev_id)
1279{
1280        const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1281                                          dev_name(dev), suffix);
1282        if (!name)
1283                return -ENOMEM;
1284
1285        return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1286}
1287
1288static int rspi_probe(struct platform_device *pdev)
1289{
1290        struct resource *res;
1291        struct spi_controller *ctlr;
1292        struct rspi_data *rspi;
1293        int ret;
1294        const struct rspi_plat_data *rspi_pd;
1295        const struct spi_ops *ops;
1296        unsigned long clksrc;
1297
1298        ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1299        if (ctlr == NULL)
1300                return -ENOMEM;
1301
1302        ops = of_device_get_match_data(&pdev->dev);
1303        if (ops) {
1304                ret = rspi_parse_dt(&pdev->dev, ctlr);
1305                if (ret)
1306                        goto error1;
1307        } else {
1308                ops = (struct spi_ops *)pdev->id_entry->driver_data;
1309                rspi_pd = dev_get_platdata(&pdev->dev);
1310                if (rspi_pd && rspi_pd->num_chipselect)
1311                        ctlr->num_chipselect = rspi_pd->num_chipselect;
1312                else
1313                        ctlr->num_chipselect = 2; /* default */
1314        }
1315
1316        rspi = spi_controller_get_devdata(ctlr);
1317        platform_set_drvdata(pdev, rspi);
1318        rspi->ops = ops;
1319        rspi->ctlr = ctlr;
1320
1321        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1322        rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1323        if (IS_ERR(rspi->addr)) {
1324                ret = PTR_ERR(rspi->addr);
1325                goto error1;
1326        }
1327
1328        rspi->clk = devm_clk_get(&pdev->dev, NULL);
1329        if (IS_ERR(rspi->clk)) {
1330                dev_err(&pdev->dev, "cannot get clock\n");
1331                ret = PTR_ERR(rspi->clk);
1332                goto error1;
1333        }
1334
1335        rspi->pdev = pdev;
1336        pm_runtime_enable(&pdev->dev);
1337
1338        init_waitqueue_head(&rspi->wait);
1339        spin_lock_init(&rspi->lock);
1340
1341        ctlr->bus_num = pdev->id;
1342        ctlr->setup = rspi_setup;
1343        ctlr->auto_runtime_pm = true;
1344        ctlr->transfer_one = ops->transfer_one;
1345        ctlr->prepare_message = rspi_prepare_message;
1346        ctlr->unprepare_message = rspi_unprepare_message;
1347        ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1348                          SPI_LOOP | ops->extra_mode_bits;
1349        clksrc = clk_get_rate(rspi->clk);
1350        ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1351        ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1352        ctlr->flags = ops->flags;
1353        ctlr->dev.of_node = pdev->dev.of_node;
1354        ctlr->use_gpio_descriptors = true;
1355        ctlr->max_native_cs = rspi->ops->num_hw_ss;
1356
1357        ret = platform_get_irq_byname_optional(pdev, "rx");
1358        if (ret < 0) {
1359                ret = platform_get_irq_byname_optional(pdev, "mux");
1360                if (ret < 0)
1361                        ret = platform_get_irq(pdev, 0);
1362                if (ret >= 0)
1363                        rspi->rx_irq = rspi->tx_irq = ret;
1364        } else {
1365                rspi->rx_irq = ret;
1366                ret = platform_get_irq_byname(pdev, "tx");
1367                if (ret >= 0)
1368                        rspi->tx_irq = ret;
1369        }
1370
1371        if (rspi->rx_irq == rspi->tx_irq) {
1372                /* Single multiplexed interrupt */
1373                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1374                                       "mux", rspi);
1375        } else {
1376                /* Multi-interrupt mode, only SPRI and SPTI are used */
1377                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1378                                       "rx", rspi);
1379                if (!ret)
1380                        ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1381                                               rspi_irq_tx, "tx", rspi);
1382        }
1383        if (ret < 0) {
1384                dev_err(&pdev->dev, "request_irq error\n");
1385                goto error2;
1386        }
1387
1388        ret = rspi_request_dma(&pdev->dev, ctlr, res);
1389        if (ret < 0)
1390                dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1391
1392        ret = devm_spi_register_controller(&pdev->dev, ctlr);
1393        if (ret < 0) {
1394                dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1395                goto error3;
1396        }
1397
1398        dev_info(&pdev->dev, "probed\n");
1399
1400        return 0;
1401
1402error3:
1403        rspi_release_dma(ctlr);
1404error2:
1405        pm_runtime_disable(&pdev->dev);
1406error1:
1407        spi_controller_put(ctlr);
1408
1409        return ret;
1410}
1411
1412static const struct platform_device_id spi_driver_ids[] = {
1413        { "rspi",       (kernel_ulong_t)&rspi_ops },
1414        {},
1415};
1416
1417MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1418
1419#ifdef CONFIG_PM_SLEEP
1420static int rspi_suspend(struct device *dev)
1421{
1422        struct rspi_data *rspi = dev_get_drvdata(dev);
1423
1424        return spi_controller_suspend(rspi->ctlr);
1425}
1426
1427static int rspi_resume(struct device *dev)
1428{
1429        struct rspi_data *rspi = dev_get_drvdata(dev);
1430
1431        return spi_controller_resume(rspi->ctlr);
1432}
1433
1434static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1435#define DEV_PM_OPS      &rspi_pm_ops
1436#else
1437#define DEV_PM_OPS      NULL
1438#endif /* CONFIG_PM_SLEEP */
1439
1440static struct platform_driver rspi_driver = {
1441        .probe =        rspi_probe,
1442        .remove =       rspi_remove,
1443        .id_table =     spi_driver_ids,
1444        .driver         = {
1445                .name = "renesas_spi",
1446                .pm = DEV_PM_OPS,
1447                .of_match_table = of_match_ptr(rspi_of_match),
1448        },
1449};
1450module_platform_driver(rspi_driver);
1451
1452MODULE_DESCRIPTION("Renesas RSPI bus driver");
1453MODULE_LICENSE("GPL v2");
1454MODULE_AUTHOR("Yoshihiro Shimoda");
1455