linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "ctree.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "print-tree.h"
  15#include "locking.h"
  16#include "volumes.h"
  17#include "qgroup.h"
  18#include "tree-mod-log.h"
  19
  20static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  21                      *root, struct btrfs_path *path, int level);
  22static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  23                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  24                      int data_size, int extend);
  25static int push_node_left(struct btrfs_trans_handle *trans,
  26                          struct extent_buffer *dst,
  27                          struct extent_buffer *src, int empty);
  28static int balance_node_right(struct btrfs_trans_handle *trans,
  29                              struct extent_buffer *dst_buf,
  30                              struct extent_buffer *src_buf);
  31static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  32                    int level, int slot);
  33
  34static const struct btrfs_csums {
  35        u16             size;
  36        const char      name[10];
  37        const char      driver[12];
  38} btrfs_csums[] = {
  39        [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  40        [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  41        [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  42        [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  43                                     .driver = "blake2b-256" },
  44};
  45
  46int btrfs_super_csum_size(const struct btrfs_super_block *s)
  47{
  48        u16 t = btrfs_super_csum_type(s);
  49        /*
  50         * csum type is validated at mount time
  51         */
  52        return btrfs_csums[t].size;
  53}
  54
  55const char *btrfs_super_csum_name(u16 csum_type)
  56{
  57        /* csum type is validated at mount time */
  58        return btrfs_csums[csum_type].name;
  59}
  60
  61/*
  62 * Return driver name if defined, otherwise the name that's also a valid driver
  63 * name
  64 */
  65const char *btrfs_super_csum_driver(u16 csum_type)
  66{
  67        /* csum type is validated at mount time */
  68        return btrfs_csums[csum_type].driver[0] ?
  69                btrfs_csums[csum_type].driver :
  70                btrfs_csums[csum_type].name;
  71}
  72
  73size_t __attribute_const__ btrfs_get_num_csums(void)
  74{
  75        return ARRAY_SIZE(btrfs_csums);
  76}
  77
  78struct btrfs_path *btrfs_alloc_path(void)
  79{
  80        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  81}
  82
  83/* this also releases the path */
  84void btrfs_free_path(struct btrfs_path *p)
  85{
  86        if (!p)
  87                return;
  88        btrfs_release_path(p);
  89        kmem_cache_free(btrfs_path_cachep, p);
  90}
  91
  92/*
  93 * path release drops references on the extent buffers in the path
  94 * and it drops any locks held by this path
  95 *
  96 * It is safe to call this on paths that no locks or extent buffers held.
  97 */
  98noinline void btrfs_release_path(struct btrfs_path *p)
  99{
 100        int i;
 101
 102        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 103                p->slots[i] = 0;
 104                if (!p->nodes[i])
 105                        continue;
 106                if (p->locks[i]) {
 107                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 108                        p->locks[i] = 0;
 109                }
 110                free_extent_buffer(p->nodes[i]);
 111                p->nodes[i] = NULL;
 112        }
 113}
 114
 115/*
 116 * safely gets a reference on the root node of a tree.  A lock
 117 * is not taken, so a concurrent writer may put a different node
 118 * at the root of the tree.  See btrfs_lock_root_node for the
 119 * looping required.
 120 *
 121 * The extent buffer returned by this has a reference taken, so
 122 * it won't disappear.  It may stop being the root of the tree
 123 * at any time because there are no locks held.
 124 */
 125struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 126{
 127        struct extent_buffer *eb;
 128
 129        while (1) {
 130                rcu_read_lock();
 131                eb = rcu_dereference(root->node);
 132
 133                /*
 134                 * RCU really hurts here, we could free up the root node because
 135                 * it was COWed but we may not get the new root node yet so do
 136                 * the inc_not_zero dance and if it doesn't work then
 137                 * synchronize_rcu and try again.
 138                 */
 139                if (atomic_inc_not_zero(&eb->refs)) {
 140                        rcu_read_unlock();
 141                        break;
 142                }
 143                rcu_read_unlock();
 144                synchronize_rcu();
 145        }
 146        return eb;
 147}
 148
 149/*
 150 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 151 * just get put onto a simple dirty list.  Transaction walks this list to make
 152 * sure they get properly updated on disk.
 153 */
 154static void add_root_to_dirty_list(struct btrfs_root *root)
 155{
 156        struct btrfs_fs_info *fs_info = root->fs_info;
 157
 158        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 159            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 160                return;
 161
 162        spin_lock(&fs_info->trans_lock);
 163        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 164                /* Want the extent tree to be the last on the list */
 165                if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 166                        list_move_tail(&root->dirty_list,
 167                                       &fs_info->dirty_cowonly_roots);
 168                else
 169                        list_move(&root->dirty_list,
 170                                  &fs_info->dirty_cowonly_roots);
 171        }
 172        spin_unlock(&fs_info->trans_lock);
 173}
 174
 175/*
 176 * used by snapshot creation to make a copy of a root for a tree with
 177 * a given objectid.  The buffer with the new root node is returned in
 178 * cow_ret, and this func returns zero on success or a negative error code.
 179 */
 180int btrfs_copy_root(struct btrfs_trans_handle *trans,
 181                      struct btrfs_root *root,
 182                      struct extent_buffer *buf,
 183                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 184{
 185        struct btrfs_fs_info *fs_info = root->fs_info;
 186        struct extent_buffer *cow;
 187        int ret = 0;
 188        int level;
 189        struct btrfs_disk_key disk_key;
 190
 191        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 192                trans->transid != fs_info->running_transaction->transid);
 193        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 194                trans->transid != root->last_trans);
 195
 196        level = btrfs_header_level(buf);
 197        if (level == 0)
 198                btrfs_item_key(buf, &disk_key, 0);
 199        else
 200                btrfs_node_key(buf, &disk_key, 0);
 201
 202        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 203                                     &disk_key, level, buf->start, 0,
 204                                     BTRFS_NESTING_NEW_ROOT);
 205        if (IS_ERR(cow))
 206                return PTR_ERR(cow);
 207
 208        copy_extent_buffer_full(cow, buf);
 209        btrfs_set_header_bytenr(cow, cow->start);
 210        btrfs_set_header_generation(cow, trans->transid);
 211        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 212        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 213                                     BTRFS_HEADER_FLAG_RELOC);
 214        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 215                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 216        else
 217                btrfs_set_header_owner(cow, new_root_objectid);
 218
 219        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 220
 221        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 222        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 223                ret = btrfs_inc_ref(trans, root, cow, 1);
 224        else
 225                ret = btrfs_inc_ref(trans, root, cow, 0);
 226        if (ret) {
 227                btrfs_tree_unlock(cow);
 228                free_extent_buffer(cow);
 229                btrfs_abort_transaction(trans, ret);
 230                return ret;
 231        }
 232
 233        btrfs_mark_buffer_dirty(cow);
 234        *cow_ret = cow;
 235        return 0;
 236}
 237
 238/*
 239 * check if the tree block can be shared by multiple trees
 240 */
 241int btrfs_block_can_be_shared(struct btrfs_root *root,
 242                              struct extent_buffer *buf)
 243{
 244        /*
 245         * Tree blocks not in shareable trees and tree roots are never shared.
 246         * If a block was allocated after the last snapshot and the block was
 247         * not allocated by tree relocation, we know the block is not shared.
 248         */
 249        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 250            buf != root->node && buf != root->commit_root &&
 251            (btrfs_header_generation(buf) <=
 252             btrfs_root_last_snapshot(&root->root_item) ||
 253             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 254                return 1;
 255
 256        return 0;
 257}
 258
 259static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 260                                       struct btrfs_root *root,
 261                                       struct extent_buffer *buf,
 262                                       struct extent_buffer *cow,
 263                                       int *last_ref)
 264{
 265        struct btrfs_fs_info *fs_info = root->fs_info;
 266        u64 refs;
 267        u64 owner;
 268        u64 flags;
 269        u64 new_flags = 0;
 270        int ret;
 271
 272        /*
 273         * Backrefs update rules:
 274         *
 275         * Always use full backrefs for extent pointers in tree block
 276         * allocated by tree relocation.
 277         *
 278         * If a shared tree block is no longer referenced by its owner
 279         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 280         * use full backrefs for extent pointers in tree block.
 281         *
 282         * If a tree block is been relocating
 283         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 284         * use full backrefs for extent pointers in tree block.
 285         * The reason for this is some operations (such as drop tree)
 286         * are only allowed for blocks use full backrefs.
 287         */
 288
 289        if (btrfs_block_can_be_shared(root, buf)) {
 290                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 291                                               btrfs_header_level(buf), 1,
 292                                               &refs, &flags);
 293                if (ret)
 294                        return ret;
 295                if (refs == 0) {
 296                        ret = -EROFS;
 297                        btrfs_handle_fs_error(fs_info, ret, NULL);
 298                        return ret;
 299                }
 300        } else {
 301                refs = 1;
 302                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 303                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 304                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 305                else
 306                        flags = 0;
 307        }
 308
 309        owner = btrfs_header_owner(buf);
 310        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 311               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 312
 313        if (refs > 1) {
 314                if ((owner == root->root_key.objectid ||
 315                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 316                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 317                        ret = btrfs_inc_ref(trans, root, buf, 1);
 318                        if (ret)
 319                                return ret;
 320
 321                        if (root->root_key.objectid ==
 322                            BTRFS_TREE_RELOC_OBJECTID) {
 323                                ret = btrfs_dec_ref(trans, root, buf, 0);
 324                                if (ret)
 325                                        return ret;
 326                                ret = btrfs_inc_ref(trans, root, cow, 1);
 327                                if (ret)
 328                                        return ret;
 329                        }
 330                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 331                } else {
 332
 333                        if (root->root_key.objectid ==
 334                            BTRFS_TREE_RELOC_OBJECTID)
 335                                ret = btrfs_inc_ref(trans, root, cow, 1);
 336                        else
 337                                ret = btrfs_inc_ref(trans, root, cow, 0);
 338                        if (ret)
 339                                return ret;
 340                }
 341                if (new_flags != 0) {
 342                        int level = btrfs_header_level(buf);
 343
 344                        ret = btrfs_set_disk_extent_flags(trans, buf,
 345                                                          new_flags, level, 0);
 346                        if (ret)
 347                                return ret;
 348                }
 349        } else {
 350                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 351                        if (root->root_key.objectid ==
 352                            BTRFS_TREE_RELOC_OBJECTID)
 353                                ret = btrfs_inc_ref(trans, root, cow, 1);
 354                        else
 355                                ret = btrfs_inc_ref(trans, root, cow, 0);
 356                        if (ret)
 357                                return ret;
 358                        ret = btrfs_dec_ref(trans, root, buf, 1);
 359                        if (ret)
 360                                return ret;
 361                }
 362                btrfs_clean_tree_block(buf);
 363                *last_ref = 1;
 364        }
 365        return 0;
 366}
 367
 368/*
 369 * does the dirty work in cow of a single block.  The parent block (if
 370 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 371 * dirty and returned locked.  If you modify the block it needs to be marked
 372 * dirty again.
 373 *
 374 * search_start -- an allocation hint for the new block
 375 *
 376 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 377 * bytes the allocator should try to find free next to the block it returns.
 378 * This is just a hint and may be ignored by the allocator.
 379 */
 380static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 381                             struct btrfs_root *root,
 382                             struct extent_buffer *buf,
 383                             struct extent_buffer *parent, int parent_slot,
 384                             struct extent_buffer **cow_ret,
 385                             u64 search_start, u64 empty_size,
 386                             enum btrfs_lock_nesting nest)
 387{
 388        struct btrfs_fs_info *fs_info = root->fs_info;
 389        struct btrfs_disk_key disk_key;
 390        struct extent_buffer *cow;
 391        int level, ret;
 392        int last_ref = 0;
 393        int unlock_orig = 0;
 394        u64 parent_start = 0;
 395
 396        if (*cow_ret == buf)
 397                unlock_orig = 1;
 398
 399        btrfs_assert_tree_write_locked(buf);
 400
 401        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 402                trans->transid != fs_info->running_transaction->transid);
 403        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 404                trans->transid != root->last_trans);
 405
 406        level = btrfs_header_level(buf);
 407
 408        if (level == 0)
 409                btrfs_item_key(buf, &disk_key, 0);
 410        else
 411                btrfs_node_key(buf, &disk_key, 0);
 412
 413        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 414                parent_start = parent->start;
 415
 416        cow = btrfs_alloc_tree_block(trans, root, parent_start,
 417                                     root->root_key.objectid, &disk_key, level,
 418                                     search_start, empty_size, nest);
 419        if (IS_ERR(cow))
 420                return PTR_ERR(cow);
 421
 422        /* cow is set to blocking by btrfs_init_new_buffer */
 423
 424        copy_extent_buffer_full(cow, buf);
 425        btrfs_set_header_bytenr(cow, cow->start);
 426        btrfs_set_header_generation(cow, trans->transid);
 427        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 428        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 429                                     BTRFS_HEADER_FLAG_RELOC);
 430        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 431                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 432        else
 433                btrfs_set_header_owner(cow, root->root_key.objectid);
 434
 435        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 436
 437        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 438        if (ret) {
 439                btrfs_tree_unlock(cow);
 440                free_extent_buffer(cow);
 441                btrfs_abort_transaction(trans, ret);
 442                return ret;
 443        }
 444
 445        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 446                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 447                if (ret) {
 448                        btrfs_tree_unlock(cow);
 449                        free_extent_buffer(cow);
 450                        btrfs_abort_transaction(trans, ret);
 451                        return ret;
 452                }
 453        }
 454
 455        if (buf == root->node) {
 456                WARN_ON(parent && parent != buf);
 457                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 458                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 459                        parent_start = buf->start;
 460
 461                atomic_inc(&cow->refs);
 462                ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 463                BUG_ON(ret < 0);
 464                rcu_assign_pointer(root->node, cow);
 465
 466                btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 467                                      parent_start, last_ref);
 468                free_extent_buffer(buf);
 469                add_root_to_dirty_list(root);
 470        } else {
 471                WARN_ON(trans->transid != btrfs_header_generation(parent));
 472                btrfs_tree_mod_log_insert_key(parent, parent_slot,
 473                                              BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
 474                btrfs_set_node_blockptr(parent, parent_slot,
 475                                        cow->start);
 476                btrfs_set_node_ptr_generation(parent, parent_slot,
 477                                              trans->transid);
 478                btrfs_mark_buffer_dirty(parent);
 479                if (last_ref) {
 480                        ret = btrfs_tree_mod_log_free_eb(buf);
 481                        if (ret) {
 482                                btrfs_tree_unlock(cow);
 483                                free_extent_buffer(cow);
 484                                btrfs_abort_transaction(trans, ret);
 485                                return ret;
 486                        }
 487                }
 488                btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 489                                      parent_start, last_ref);
 490        }
 491        if (unlock_orig)
 492                btrfs_tree_unlock(buf);
 493        free_extent_buffer_stale(buf);
 494        btrfs_mark_buffer_dirty(cow);
 495        *cow_ret = cow;
 496        return 0;
 497}
 498
 499static inline int should_cow_block(struct btrfs_trans_handle *trans,
 500                                   struct btrfs_root *root,
 501                                   struct extent_buffer *buf)
 502{
 503        if (btrfs_is_testing(root->fs_info))
 504                return 0;
 505
 506        /* Ensure we can see the FORCE_COW bit */
 507        smp_mb__before_atomic();
 508
 509        /*
 510         * We do not need to cow a block if
 511         * 1) this block is not created or changed in this transaction;
 512         * 2) this block does not belong to TREE_RELOC tree;
 513         * 3) the root is not forced COW.
 514         *
 515         * What is forced COW:
 516         *    when we create snapshot during committing the transaction,
 517         *    after we've finished copying src root, we must COW the shared
 518         *    block to ensure the metadata consistency.
 519         */
 520        if (btrfs_header_generation(buf) == trans->transid &&
 521            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 522            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 523              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 524            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 525                return 0;
 526        return 1;
 527}
 528
 529/*
 530 * cows a single block, see __btrfs_cow_block for the real work.
 531 * This version of it has extra checks so that a block isn't COWed more than
 532 * once per transaction, as long as it hasn't been written yet
 533 */
 534noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 535                    struct btrfs_root *root, struct extent_buffer *buf,
 536                    struct extent_buffer *parent, int parent_slot,
 537                    struct extent_buffer **cow_ret,
 538                    enum btrfs_lock_nesting nest)
 539{
 540        struct btrfs_fs_info *fs_info = root->fs_info;
 541        u64 search_start;
 542        int ret;
 543
 544        if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 545                btrfs_err(fs_info,
 546                        "COW'ing blocks on a fs root that's being dropped");
 547
 548        if (trans->transaction != fs_info->running_transaction)
 549                WARN(1, KERN_CRIT "trans %llu running %llu\n",
 550                       trans->transid,
 551                       fs_info->running_transaction->transid);
 552
 553        if (trans->transid != fs_info->generation)
 554                WARN(1, KERN_CRIT "trans %llu running %llu\n",
 555                       trans->transid, fs_info->generation);
 556
 557        if (!should_cow_block(trans, root, buf)) {
 558                *cow_ret = buf;
 559                return 0;
 560        }
 561
 562        search_start = buf->start & ~((u64)SZ_1G - 1);
 563
 564        /*
 565         * Before CoWing this block for later modification, check if it's
 566         * the subtree root and do the delayed subtree trace if needed.
 567         *
 568         * Also We don't care about the error, as it's handled internally.
 569         */
 570        btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 571        ret = __btrfs_cow_block(trans, root, buf, parent,
 572                                 parent_slot, cow_ret, search_start, 0, nest);
 573
 574        trace_btrfs_cow_block(root, buf, *cow_ret);
 575
 576        return ret;
 577}
 578ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 579
 580/*
 581 * helper function for defrag to decide if two blocks pointed to by a
 582 * node are actually close by
 583 */
 584static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 585{
 586        if (blocknr < other && other - (blocknr + blocksize) < 32768)
 587                return 1;
 588        if (blocknr > other && blocknr - (other + blocksize) < 32768)
 589                return 1;
 590        return 0;
 591}
 592
 593#ifdef __LITTLE_ENDIAN
 594
 595/*
 596 * Compare two keys, on little-endian the disk order is same as CPU order and
 597 * we can avoid the conversion.
 598 */
 599static int comp_keys(const struct btrfs_disk_key *disk_key,
 600                     const struct btrfs_key *k2)
 601{
 602        const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 603
 604        return btrfs_comp_cpu_keys(k1, k2);
 605}
 606
 607#else
 608
 609/*
 610 * compare two keys in a memcmp fashion
 611 */
 612static int comp_keys(const struct btrfs_disk_key *disk,
 613                     const struct btrfs_key *k2)
 614{
 615        struct btrfs_key k1;
 616
 617        btrfs_disk_key_to_cpu(&k1, disk);
 618
 619        return btrfs_comp_cpu_keys(&k1, k2);
 620}
 621#endif
 622
 623/*
 624 * same as comp_keys only with two btrfs_key's
 625 */
 626int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 627{
 628        if (k1->objectid > k2->objectid)
 629                return 1;
 630        if (k1->objectid < k2->objectid)
 631                return -1;
 632        if (k1->type > k2->type)
 633                return 1;
 634        if (k1->type < k2->type)
 635                return -1;
 636        if (k1->offset > k2->offset)
 637                return 1;
 638        if (k1->offset < k2->offset)
 639                return -1;
 640        return 0;
 641}
 642
 643/*
 644 * this is used by the defrag code to go through all the
 645 * leaves pointed to by a node and reallocate them so that
 646 * disk order is close to key order
 647 */
 648int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 649                       struct btrfs_root *root, struct extent_buffer *parent,
 650                       int start_slot, u64 *last_ret,
 651                       struct btrfs_key *progress)
 652{
 653        struct btrfs_fs_info *fs_info = root->fs_info;
 654        struct extent_buffer *cur;
 655        u64 blocknr;
 656        u64 search_start = *last_ret;
 657        u64 last_block = 0;
 658        u64 other;
 659        u32 parent_nritems;
 660        int end_slot;
 661        int i;
 662        int err = 0;
 663        u32 blocksize;
 664        int progress_passed = 0;
 665        struct btrfs_disk_key disk_key;
 666
 667        WARN_ON(trans->transaction != fs_info->running_transaction);
 668        WARN_ON(trans->transid != fs_info->generation);
 669
 670        parent_nritems = btrfs_header_nritems(parent);
 671        blocksize = fs_info->nodesize;
 672        end_slot = parent_nritems - 1;
 673
 674        if (parent_nritems <= 1)
 675                return 0;
 676
 677        for (i = start_slot; i <= end_slot; i++) {
 678                int close = 1;
 679
 680                btrfs_node_key(parent, &disk_key, i);
 681                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 682                        continue;
 683
 684                progress_passed = 1;
 685                blocknr = btrfs_node_blockptr(parent, i);
 686                if (last_block == 0)
 687                        last_block = blocknr;
 688
 689                if (i > 0) {
 690                        other = btrfs_node_blockptr(parent, i - 1);
 691                        close = close_blocks(blocknr, other, blocksize);
 692                }
 693                if (!close && i < end_slot) {
 694                        other = btrfs_node_blockptr(parent, i + 1);
 695                        close = close_blocks(blocknr, other, blocksize);
 696                }
 697                if (close) {
 698                        last_block = blocknr;
 699                        continue;
 700                }
 701
 702                cur = btrfs_read_node_slot(parent, i);
 703                if (IS_ERR(cur))
 704                        return PTR_ERR(cur);
 705                if (search_start == 0)
 706                        search_start = last_block;
 707
 708                btrfs_tree_lock(cur);
 709                err = __btrfs_cow_block(trans, root, cur, parent, i,
 710                                        &cur, search_start,
 711                                        min(16 * blocksize,
 712                                            (end_slot - i) * blocksize),
 713                                        BTRFS_NESTING_COW);
 714                if (err) {
 715                        btrfs_tree_unlock(cur);
 716                        free_extent_buffer(cur);
 717                        break;
 718                }
 719                search_start = cur->start;
 720                last_block = cur->start;
 721                *last_ret = search_start;
 722                btrfs_tree_unlock(cur);
 723                free_extent_buffer(cur);
 724        }
 725        return err;
 726}
 727
 728/*
 729 * Search for a key in the given extent_buffer.
 730 *
 731 * The lower boundary for the search is specified by the slot number @low. Use a
 732 * value of 0 to search over the whole extent buffer.
 733 *
 734 * The slot in the extent buffer is returned via @slot. If the key exists in the
 735 * extent buffer, then @slot will point to the slot where the key is, otherwise
 736 * it points to the slot where you would insert the key.
 737 *
 738 * Slot may point to the total number of items (i.e. one position beyond the last
 739 * key) if the key is bigger than the last key in the extent buffer.
 740 */
 741static noinline int generic_bin_search(struct extent_buffer *eb, int low,
 742                                       const struct btrfs_key *key, int *slot)
 743{
 744        unsigned long p;
 745        int item_size;
 746        int high = btrfs_header_nritems(eb);
 747        int ret;
 748        const int key_size = sizeof(struct btrfs_disk_key);
 749
 750        if (low > high) {
 751                btrfs_err(eb->fs_info,
 752                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 753                          __func__, low, high, eb->start,
 754                          btrfs_header_owner(eb), btrfs_header_level(eb));
 755                return -EINVAL;
 756        }
 757
 758        if (btrfs_header_level(eb) == 0) {
 759                p = offsetof(struct btrfs_leaf, items);
 760                item_size = sizeof(struct btrfs_item);
 761        } else {
 762                p = offsetof(struct btrfs_node, ptrs);
 763                item_size = sizeof(struct btrfs_key_ptr);
 764        }
 765
 766        while (low < high) {
 767                unsigned long oip;
 768                unsigned long offset;
 769                struct btrfs_disk_key *tmp;
 770                struct btrfs_disk_key unaligned;
 771                int mid;
 772
 773                mid = (low + high) / 2;
 774                offset = p + mid * item_size;
 775                oip = offset_in_page(offset);
 776
 777                if (oip + key_size <= PAGE_SIZE) {
 778                        const unsigned long idx = get_eb_page_index(offset);
 779                        char *kaddr = page_address(eb->pages[idx]);
 780
 781                        oip = get_eb_offset_in_page(eb, offset);
 782                        tmp = (struct btrfs_disk_key *)(kaddr + oip);
 783                } else {
 784                        read_extent_buffer(eb, &unaligned, offset, key_size);
 785                        tmp = &unaligned;
 786                }
 787
 788                ret = comp_keys(tmp, key);
 789
 790                if (ret < 0)
 791                        low = mid + 1;
 792                else if (ret > 0)
 793                        high = mid;
 794                else {
 795                        *slot = mid;
 796                        return 0;
 797                }
 798        }
 799        *slot = low;
 800        return 1;
 801}
 802
 803/*
 804 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
 805 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
 806 */
 807int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 808                     int *slot)
 809{
 810        return generic_bin_search(eb, 0, key, slot);
 811}
 812
 813static void root_add_used(struct btrfs_root *root, u32 size)
 814{
 815        spin_lock(&root->accounting_lock);
 816        btrfs_set_root_used(&root->root_item,
 817                            btrfs_root_used(&root->root_item) + size);
 818        spin_unlock(&root->accounting_lock);
 819}
 820
 821static void root_sub_used(struct btrfs_root *root, u32 size)
 822{
 823        spin_lock(&root->accounting_lock);
 824        btrfs_set_root_used(&root->root_item,
 825                            btrfs_root_used(&root->root_item) - size);
 826        spin_unlock(&root->accounting_lock);
 827}
 828
 829/* given a node and slot number, this reads the blocks it points to.  The
 830 * extent buffer is returned with a reference taken (but unlocked).
 831 */
 832struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 833                                           int slot)
 834{
 835        int level = btrfs_header_level(parent);
 836        struct extent_buffer *eb;
 837        struct btrfs_key first_key;
 838
 839        if (slot < 0 || slot >= btrfs_header_nritems(parent))
 840                return ERR_PTR(-ENOENT);
 841
 842        BUG_ON(level == 0);
 843
 844        btrfs_node_key_to_cpu(parent, &first_key, slot);
 845        eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 846                             btrfs_header_owner(parent),
 847                             btrfs_node_ptr_generation(parent, slot),
 848                             level - 1, &first_key);
 849        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
 850                free_extent_buffer(eb);
 851                eb = ERR_PTR(-EIO);
 852        }
 853
 854        return eb;
 855}
 856
 857/*
 858 * node level balancing, used to make sure nodes are in proper order for
 859 * item deletion.  We balance from the top down, so we have to make sure
 860 * that a deletion won't leave an node completely empty later on.
 861 */
 862static noinline int balance_level(struct btrfs_trans_handle *trans,
 863                         struct btrfs_root *root,
 864                         struct btrfs_path *path, int level)
 865{
 866        struct btrfs_fs_info *fs_info = root->fs_info;
 867        struct extent_buffer *right = NULL;
 868        struct extent_buffer *mid;
 869        struct extent_buffer *left = NULL;
 870        struct extent_buffer *parent = NULL;
 871        int ret = 0;
 872        int wret;
 873        int pslot;
 874        int orig_slot = path->slots[level];
 875        u64 orig_ptr;
 876
 877        ASSERT(level > 0);
 878
 879        mid = path->nodes[level];
 880
 881        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 882        WARN_ON(btrfs_header_generation(mid) != trans->transid);
 883
 884        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 885
 886        if (level < BTRFS_MAX_LEVEL - 1) {
 887                parent = path->nodes[level + 1];
 888                pslot = path->slots[level + 1];
 889        }
 890
 891        /*
 892         * deal with the case where there is only one pointer in the root
 893         * by promoting the node below to a root
 894         */
 895        if (!parent) {
 896                struct extent_buffer *child;
 897
 898                if (btrfs_header_nritems(mid) != 1)
 899                        return 0;
 900
 901                /* promote the child to a root */
 902                child = btrfs_read_node_slot(mid, 0);
 903                if (IS_ERR(child)) {
 904                        ret = PTR_ERR(child);
 905                        btrfs_handle_fs_error(fs_info, ret, NULL);
 906                        goto enospc;
 907                }
 908
 909                btrfs_tree_lock(child);
 910                ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 911                                      BTRFS_NESTING_COW);
 912                if (ret) {
 913                        btrfs_tree_unlock(child);
 914                        free_extent_buffer(child);
 915                        goto enospc;
 916                }
 917
 918                ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 919                BUG_ON(ret < 0);
 920                rcu_assign_pointer(root->node, child);
 921
 922                add_root_to_dirty_list(root);
 923                btrfs_tree_unlock(child);
 924
 925                path->locks[level] = 0;
 926                path->nodes[level] = NULL;
 927                btrfs_clean_tree_block(mid);
 928                btrfs_tree_unlock(mid);
 929                /* once for the path */
 930                free_extent_buffer(mid);
 931
 932                root_sub_used(root, mid->len);
 933                btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 934                /* once for the root ptr */
 935                free_extent_buffer_stale(mid);
 936                return 0;
 937        }
 938        if (btrfs_header_nritems(mid) >
 939            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
 940                return 0;
 941
 942        left = btrfs_read_node_slot(parent, pslot - 1);
 943        if (IS_ERR(left))
 944                left = NULL;
 945
 946        if (left) {
 947                __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 948                wret = btrfs_cow_block(trans, root, left,
 949                                       parent, pslot - 1, &left,
 950                                       BTRFS_NESTING_LEFT_COW);
 951                if (wret) {
 952                        ret = wret;
 953                        goto enospc;
 954                }
 955        }
 956
 957        right = btrfs_read_node_slot(parent, pslot + 1);
 958        if (IS_ERR(right))
 959                right = NULL;
 960
 961        if (right) {
 962                __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 963                wret = btrfs_cow_block(trans, root, right,
 964                                       parent, pslot + 1, &right,
 965                                       BTRFS_NESTING_RIGHT_COW);
 966                if (wret) {
 967                        ret = wret;
 968                        goto enospc;
 969                }
 970        }
 971
 972        /* first, try to make some room in the middle buffer */
 973        if (left) {
 974                orig_slot += btrfs_header_nritems(left);
 975                wret = push_node_left(trans, left, mid, 1);
 976                if (wret < 0)
 977                        ret = wret;
 978        }
 979
 980        /*
 981         * then try to empty the right most buffer into the middle
 982         */
 983        if (right) {
 984                wret = push_node_left(trans, mid, right, 1);
 985                if (wret < 0 && wret != -ENOSPC)
 986                        ret = wret;
 987                if (btrfs_header_nritems(right) == 0) {
 988                        btrfs_clean_tree_block(right);
 989                        btrfs_tree_unlock(right);
 990                        del_ptr(root, path, level + 1, pslot + 1);
 991                        root_sub_used(root, right->len);
 992                        btrfs_free_tree_block(trans, btrfs_root_id(root), right,
 993                                              0, 1);
 994                        free_extent_buffer_stale(right);
 995                        right = NULL;
 996                } else {
 997                        struct btrfs_disk_key right_key;
 998                        btrfs_node_key(right, &right_key, 0);
 999                        ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1000                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1001                        BUG_ON(ret < 0);
1002                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1003                        btrfs_mark_buffer_dirty(parent);
1004                }
1005        }
1006        if (btrfs_header_nritems(mid) == 1) {
1007                /*
1008                 * we're not allowed to leave a node with one item in the
1009                 * tree during a delete.  A deletion from lower in the tree
1010                 * could try to delete the only pointer in this node.
1011                 * So, pull some keys from the left.
1012                 * There has to be a left pointer at this point because
1013                 * otherwise we would have pulled some pointers from the
1014                 * right
1015                 */
1016                if (!left) {
1017                        ret = -EROFS;
1018                        btrfs_handle_fs_error(fs_info, ret, NULL);
1019                        goto enospc;
1020                }
1021                wret = balance_node_right(trans, mid, left);
1022                if (wret < 0) {
1023                        ret = wret;
1024                        goto enospc;
1025                }
1026                if (wret == 1) {
1027                        wret = push_node_left(trans, left, mid, 1);
1028                        if (wret < 0)
1029                                ret = wret;
1030                }
1031                BUG_ON(wret == 1);
1032        }
1033        if (btrfs_header_nritems(mid) == 0) {
1034                btrfs_clean_tree_block(mid);
1035                btrfs_tree_unlock(mid);
1036                del_ptr(root, path, level + 1, pslot);
1037                root_sub_used(root, mid->len);
1038                btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1039                free_extent_buffer_stale(mid);
1040                mid = NULL;
1041        } else {
1042                /* update the parent key to reflect our changes */
1043                struct btrfs_disk_key mid_key;
1044                btrfs_node_key(mid, &mid_key, 0);
1045                ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1046                                BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1047                BUG_ON(ret < 0);
1048                btrfs_set_node_key(parent, &mid_key, pslot);
1049                btrfs_mark_buffer_dirty(parent);
1050        }
1051
1052        /* update the path */
1053        if (left) {
1054                if (btrfs_header_nritems(left) > orig_slot) {
1055                        atomic_inc(&left->refs);
1056                        /* left was locked after cow */
1057                        path->nodes[level] = left;
1058                        path->slots[level + 1] -= 1;
1059                        path->slots[level] = orig_slot;
1060                        if (mid) {
1061                                btrfs_tree_unlock(mid);
1062                                free_extent_buffer(mid);
1063                        }
1064                } else {
1065                        orig_slot -= btrfs_header_nritems(left);
1066                        path->slots[level] = orig_slot;
1067                }
1068        }
1069        /* double check we haven't messed things up */
1070        if (orig_ptr !=
1071            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1072                BUG();
1073enospc:
1074        if (right) {
1075                btrfs_tree_unlock(right);
1076                free_extent_buffer(right);
1077        }
1078        if (left) {
1079                if (path->nodes[level] != left)
1080                        btrfs_tree_unlock(left);
1081                free_extent_buffer(left);
1082        }
1083        return ret;
1084}
1085
1086/* Node balancing for insertion.  Here we only split or push nodes around
1087 * when they are completely full.  This is also done top down, so we
1088 * have to be pessimistic.
1089 */
1090static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1091                                          struct btrfs_root *root,
1092                                          struct btrfs_path *path, int level)
1093{
1094        struct btrfs_fs_info *fs_info = root->fs_info;
1095        struct extent_buffer *right = NULL;
1096        struct extent_buffer *mid;
1097        struct extent_buffer *left = NULL;
1098        struct extent_buffer *parent = NULL;
1099        int ret = 0;
1100        int wret;
1101        int pslot;
1102        int orig_slot = path->slots[level];
1103
1104        if (level == 0)
1105                return 1;
1106
1107        mid = path->nodes[level];
1108        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109
1110        if (level < BTRFS_MAX_LEVEL - 1) {
1111                parent = path->nodes[level + 1];
1112                pslot = path->slots[level + 1];
1113        }
1114
1115        if (!parent)
1116                return 1;
1117
1118        left = btrfs_read_node_slot(parent, pslot - 1);
1119        if (IS_ERR(left))
1120                left = NULL;
1121
1122        /* first, try to make some room in the middle buffer */
1123        if (left) {
1124                u32 left_nr;
1125
1126                __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1127
1128                left_nr = btrfs_header_nritems(left);
1129                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1130                        wret = 1;
1131                } else {
1132                        ret = btrfs_cow_block(trans, root, left, parent,
1133                                              pslot - 1, &left,
1134                                              BTRFS_NESTING_LEFT_COW);
1135                        if (ret)
1136                                wret = 1;
1137                        else {
1138                                wret = push_node_left(trans, left, mid, 0);
1139                        }
1140                }
1141                if (wret < 0)
1142                        ret = wret;
1143                if (wret == 0) {
1144                        struct btrfs_disk_key disk_key;
1145                        orig_slot += left_nr;
1146                        btrfs_node_key(mid, &disk_key, 0);
1147                        ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1148                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1149                        BUG_ON(ret < 0);
1150                        btrfs_set_node_key(parent, &disk_key, pslot);
1151                        btrfs_mark_buffer_dirty(parent);
1152                        if (btrfs_header_nritems(left) > orig_slot) {
1153                                path->nodes[level] = left;
1154                                path->slots[level + 1] -= 1;
1155                                path->slots[level] = orig_slot;
1156                                btrfs_tree_unlock(mid);
1157                                free_extent_buffer(mid);
1158                        } else {
1159                                orig_slot -=
1160                                        btrfs_header_nritems(left);
1161                                path->slots[level] = orig_slot;
1162                                btrfs_tree_unlock(left);
1163                                free_extent_buffer(left);
1164                        }
1165                        return 0;
1166                }
1167                btrfs_tree_unlock(left);
1168                free_extent_buffer(left);
1169        }
1170        right = btrfs_read_node_slot(parent, pslot + 1);
1171        if (IS_ERR(right))
1172                right = NULL;
1173
1174        /*
1175         * then try to empty the right most buffer into the middle
1176         */
1177        if (right) {
1178                u32 right_nr;
1179
1180                __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1181
1182                right_nr = btrfs_header_nritems(right);
1183                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1184                        wret = 1;
1185                } else {
1186                        ret = btrfs_cow_block(trans, root, right,
1187                                              parent, pslot + 1,
1188                                              &right, BTRFS_NESTING_RIGHT_COW);
1189                        if (ret)
1190                                wret = 1;
1191                        else {
1192                                wret = balance_node_right(trans, right, mid);
1193                        }
1194                }
1195                if (wret < 0)
1196                        ret = wret;
1197                if (wret == 0) {
1198                        struct btrfs_disk_key disk_key;
1199
1200                        btrfs_node_key(right, &disk_key, 0);
1201                        ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1202                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1203                        BUG_ON(ret < 0);
1204                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
1205                        btrfs_mark_buffer_dirty(parent);
1206
1207                        if (btrfs_header_nritems(mid) <= orig_slot) {
1208                                path->nodes[level] = right;
1209                                path->slots[level + 1] += 1;
1210                                path->slots[level] = orig_slot -
1211                                        btrfs_header_nritems(mid);
1212                                btrfs_tree_unlock(mid);
1213                                free_extent_buffer(mid);
1214                        } else {
1215                                btrfs_tree_unlock(right);
1216                                free_extent_buffer(right);
1217                        }
1218                        return 0;
1219                }
1220                btrfs_tree_unlock(right);
1221                free_extent_buffer(right);
1222        }
1223        return 1;
1224}
1225
1226/*
1227 * readahead one full node of leaves, finding things that are close
1228 * to the block in 'slot', and triggering ra on them.
1229 */
1230static void reada_for_search(struct btrfs_fs_info *fs_info,
1231                             struct btrfs_path *path,
1232                             int level, int slot, u64 objectid)
1233{
1234        struct extent_buffer *node;
1235        struct btrfs_disk_key disk_key;
1236        u32 nritems;
1237        u64 search;
1238        u64 target;
1239        u64 nread = 0;
1240        u64 nread_max;
1241        u32 nr;
1242        u32 blocksize;
1243        u32 nscan = 0;
1244
1245        if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1246                return;
1247
1248        if (!path->nodes[level])
1249                return;
1250
1251        node = path->nodes[level];
1252
1253        /*
1254         * Since the time between visiting leaves is much shorter than the time
1255         * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1256         * much IO at once (possibly random).
1257         */
1258        if (path->reada == READA_FORWARD_ALWAYS) {
1259                if (level > 1)
1260                        nread_max = node->fs_info->nodesize;
1261                else
1262                        nread_max = SZ_128K;
1263        } else {
1264                nread_max = SZ_64K;
1265        }
1266
1267        search = btrfs_node_blockptr(node, slot);
1268        blocksize = fs_info->nodesize;
1269        if (path->reada != READA_FORWARD_ALWAYS) {
1270                struct extent_buffer *eb;
1271
1272                eb = find_extent_buffer(fs_info, search);
1273                if (eb) {
1274                        free_extent_buffer(eb);
1275                        return;
1276                }
1277        }
1278
1279        target = search;
1280
1281        nritems = btrfs_header_nritems(node);
1282        nr = slot;
1283
1284        while (1) {
1285                if (path->reada == READA_BACK) {
1286                        if (nr == 0)
1287                                break;
1288                        nr--;
1289                } else if (path->reada == READA_FORWARD ||
1290                           path->reada == READA_FORWARD_ALWAYS) {
1291                        nr++;
1292                        if (nr >= nritems)
1293                                break;
1294                }
1295                if (path->reada == READA_BACK && objectid) {
1296                        btrfs_node_key(node, &disk_key, nr);
1297                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
1298                                break;
1299                }
1300                search = btrfs_node_blockptr(node, nr);
1301                if (path->reada == READA_FORWARD_ALWAYS ||
1302                    (search <= target && target - search <= 65536) ||
1303                    (search > target && search - target <= 65536)) {
1304                        btrfs_readahead_node_child(node, nr);
1305                        nread += blocksize;
1306                }
1307                nscan++;
1308                if (nread > nread_max || nscan > 32)
1309                        break;
1310        }
1311}
1312
1313static noinline void reada_for_balance(struct btrfs_path *path, int level)
1314{
1315        struct extent_buffer *parent;
1316        int slot;
1317        int nritems;
1318
1319        parent = path->nodes[level + 1];
1320        if (!parent)
1321                return;
1322
1323        nritems = btrfs_header_nritems(parent);
1324        slot = path->slots[level + 1];
1325
1326        if (slot > 0)
1327                btrfs_readahead_node_child(parent, slot - 1);
1328        if (slot + 1 < nritems)
1329                btrfs_readahead_node_child(parent, slot + 1);
1330}
1331
1332
1333/*
1334 * when we walk down the tree, it is usually safe to unlock the higher layers
1335 * in the tree.  The exceptions are when our path goes through slot 0, because
1336 * operations on the tree might require changing key pointers higher up in the
1337 * tree.
1338 *
1339 * callers might also have set path->keep_locks, which tells this code to keep
1340 * the lock if the path points to the last slot in the block.  This is part of
1341 * walking through the tree, and selecting the next slot in the higher block.
1342 *
1343 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1344 * if lowest_unlock is 1, level 0 won't be unlocked
1345 */
1346static noinline void unlock_up(struct btrfs_path *path, int level,
1347                               int lowest_unlock, int min_write_lock_level,
1348                               int *write_lock_level)
1349{
1350        int i;
1351        int skip_level = level;
1352        bool check_skip = true;
1353
1354        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1355                if (!path->nodes[i])
1356                        break;
1357                if (!path->locks[i])
1358                        break;
1359
1360                if (check_skip) {
1361                        if (path->slots[i] == 0) {
1362                                skip_level = i + 1;
1363                                continue;
1364                        }
1365
1366                        if (path->keep_locks) {
1367                                u32 nritems;
1368
1369                                nritems = btrfs_header_nritems(path->nodes[i]);
1370                                if (nritems < 1 || path->slots[i] >= nritems - 1) {
1371                                        skip_level = i + 1;
1372                                        continue;
1373                                }
1374                        }
1375                }
1376
1377                if (i >= lowest_unlock && i > skip_level) {
1378                        check_skip = false;
1379                        btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1380                        path->locks[i] = 0;
1381                        if (write_lock_level &&
1382                            i > min_write_lock_level &&
1383                            i <= *write_lock_level) {
1384                                *write_lock_level = i - 1;
1385                        }
1386                }
1387        }
1388}
1389
1390/*
1391 * helper function for btrfs_search_slot.  The goal is to find a block
1392 * in cache without setting the path to blocking.  If we find the block
1393 * we return zero and the path is unchanged.
1394 *
1395 * If we can't find the block, we set the path blocking and do some
1396 * reada.  -EAGAIN is returned and the search must be repeated.
1397 */
1398static int
1399read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1400                      struct extent_buffer **eb_ret, int level, int slot,
1401                      const struct btrfs_key *key)
1402{
1403        struct btrfs_fs_info *fs_info = root->fs_info;
1404        u64 blocknr;
1405        u64 gen;
1406        struct extent_buffer *tmp;
1407        struct btrfs_key first_key;
1408        int ret;
1409        int parent_level;
1410
1411        blocknr = btrfs_node_blockptr(*eb_ret, slot);
1412        gen = btrfs_node_ptr_generation(*eb_ret, slot);
1413        parent_level = btrfs_header_level(*eb_ret);
1414        btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1415
1416        tmp = find_extent_buffer(fs_info, blocknr);
1417        if (tmp) {
1418                if (p->reada == READA_FORWARD_ALWAYS)
1419                        reada_for_search(fs_info, p, level, slot, key->objectid);
1420
1421                /* first we do an atomic uptodate check */
1422                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1423                        /*
1424                         * Do extra check for first_key, eb can be stale due to
1425                         * being cached, read from scrub, or have multiple
1426                         * parents (shared tree blocks).
1427                         */
1428                        if (btrfs_verify_level_key(tmp,
1429                                        parent_level - 1, &first_key, gen)) {
1430                                free_extent_buffer(tmp);
1431                                return -EUCLEAN;
1432                        }
1433                        *eb_ret = tmp;
1434                        return 0;
1435                }
1436
1437                /* now we're allowed to do a blocking uptodate check */
1438                ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1439                if (!ret) {
1440                        *eb_ret = tmp;
1441                        return 0;
1442                }
1443                free_extent_buffer(tmp);
1444                btrfs_release_path(p);
1445                return -EIO;
1446        }
1447
1448        /*
1449         * reduce lock contention at high levels
1450         * of the btree by dropping locks before
1451         * we read.  Don't release the lock on the current
1452         * level because we need to walk this node to figure
1453         * out which blocks to read.
1454         */
1455        btrfs_unlock_up_safe(p, level + 1);
1456
1457        if (p->reada != READA_NONE)
1458                reada_for_search(fs_info, p, level, slot, key->objectid);
1459
1460        ret = -EAGAIN;
1461        tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1462                              gen, parent_level - 1, &first_key);
1463        if (!IS_ERR(tmp)) {
1464                /*
1465                 * If the read above didn't mark this buffer up to date,
1466                 * it will never end up being up to date.  Set ret to EIO now
1467                 * and give up so that our caller doesn't loop forever
1468                 * on our EAGAINs.
1469                 */
1470                if (!extent_buffer_uptodate(tmp))
1471                        ret = -EIO;
1472                free_extent_buffer(tmp);
1473        } else {
1474                ret = PTR_ERR(tmp);
1475        }
1476
1477        btrfs_release_path(p);
1478        return ret;
1479}
1480
1481/*
1482 * helper function for btrfs_search_slot.  This does all of the checks
1483 * for node-level blocks and does any balancing required based on
1484 * the ins_len.
1485 *
1486 * If no extra work was required, zero is returned.  If we had to
1487 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1488 * start over
1489 */
1490static int
1491setup_nodes_for_search(struct btrfs_trans_handle *trans,
1492                       struct btrfs_root *root, struct btrfs_path *p,
1493                       struct extent_buffer *b, int level, int ins_len,
1494                       int *write_lock_level)
1495{
1496        struct btrfs_fs_info *fs_info = root->fs_info;
1497        int ret = 0;
1498
1499        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1500            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1501
1502                if (*write_lock_level < level + 1) {
1503                        *write_lock_level = level + 1;
1504                        btrfs_release_path(p);
1505                        return -EAGAIN;
1506                }
1507
1508                reada_for_balance(p, level);
1509                ret = split_node(trans, root, p, level);
1510
1511                b = p->nodes[level];
1512        } else if (ins_len < 0 && btrfs_header_nritems(b) <
1513                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1514
1515                if (*write_lock_level < level + 1) {
1516                        *write_lock_level = level + 1;
1517                        btrfs_release_path(p);
1518                        return -EAGAIN;
1519                }
1520
1521                reada_for_balance(p, level);
1522                ret = balance_level(trans, root, p, level);
1523                if (ret)
1524                        return ret;
1525
1526                b = p->nodes[level];
1527                if (!b) {
1528                        btrfs_release_path(p);
1529                        return -EAGAIN;
1530                }
1531                BUG_ON(btrfs_header_nritems(b) == 1);
1532        }
1533        return ret;
1534}
1535
1536int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1537                u64 iobjectid, u64 ioff, u8 key_type,
1538                struct btrfs_key *found_key)
1539{
1540        int ret;
1541        struct btrfs_key key;
1542        struct extent_buffer *eb;
1543
1544        ASSERT(path);
1545        ASSERT(found_key);
1546
1547        key.type = key_type;
1548        key.objectid = iobjectid;
1549        key.offset = ioff;
1550
1551        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1552        if (ret < 0)
1553                return ret;
1554
1555        eb = path->nodes[0];
1556        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1557                ret = btrfs_next_leaf(fs_root, path);
1558                if (ret)
1559                        return ret;
1560                eb = path->nodes[0];
1561        }
1562
1563        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1564        if (found_key->type != key.type ||
1565                        found_key->objectid != key.objectid)
1566                return 1;
1567
1568        return 0;
1569}
1570
1571static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1572                                                        struct btrfs_path *p,
1573                                                        int write_lock_level)
1574{
1575        struct extent_buffer *b;
1576        int root_lock = 0;
1577        int level = 0;
1578
1579        if (p->search_commit_root) {
1580                b = root->commit_root;
1581                atomic_inc(&b->refs);
1582                level = btrfs_header_level(b);
1583                /*
1584                 * Ensure that all callers have set skip_locking when
1585                 * p->search_commit_root = 1.
1586                 */
1587                ASSERT(p->skip_locking == 1);
1588
1589                goto out;
1590        }
1591
1592        if (p->skip_locking) {
1593                b = btrfs_root_node(root);
1594                level = btrfs_header_level(b);
1595                goto out;
1596        }
1597
1598        /* We try very hard to do read locks on the root */
1599        root_lock = BTRFS_READ_LOCK;
1600
1601        /*
1602         * If the level is set to maximum, we can skip trying to get the read
1603         * lock.
1604         */
1605        if (write_lock_level < BTRFS_MAX_LEVEL) {
1606                /*
1607                 * We don't know the level of the root node until we actually
1608                 * have it read locked
1609                 */
1610                b = btrfs_read_lock_root_node(root);
1611                level = btrfs_header_level(b);
1612                if (level > write_lock_level)
1613                        goto out;
1614
1615                /* Whoops, must trade for write lock */
1616                btrfs_tree_read_unlock(b);
1617                free_extent_buffer(b);
1618        }
1619
1620        b = btrfs_lock_root_node(root);
1621        root_lock = BTRFS_WRITE_LOCK;
1622
1623        /* The level might have changed, check again */
1624        level = btrfs_header_level(b);
1625
1626out:
1627        /*
1628         * The root may have failed to write out at some point, and thus is no
1629         * longer valid, return an error in this case.
1630         */
1631        if (!extent_buffer_uptodate(b)) {
1632                if (root_lock)
1633                        btrfs_tree_unlock_rw(b, root_lock);
1634                free_extent_buffer(b);
1635                return ERR_PTR(-EIO);
1636        }
1637
1638        p->nodes[level] = b;
1639        if (!p->skip_locking)
1640                p->locks[level] = root_lock;
1641        /*
1642         * Callers are responsible for dropping b's references.
1643         */
1644        return b;
1645}
1646
1647/*
1648 * Replace the extent buffer at the lowest level of the path with a cloned
1649 * version. The purpose is to be able to use it safely, after releasing the
1650 * commit root semaphore, even if relocation is happening in parallel, the
1651 * transaction used for relocation is committed and the extent buffer is
1652 * reallocated in the next transaction.
1653 *
1654 * This is used in a context where the caller does not prevent transaction
1655 * commits from happening, either by holding a transaction handle or holding
1656 * some lock, while it's doing searches through a commit root.
1657 * At the moment it's only used for send operations.
1658 */
1659static int finish_need_commit_sem_search(struct btrfs_path *path)
1660{
1661        const int i = path->lowest_level;
1662        const int slot = path->slots[i];
1663        struct extent_buffer *lowest = path->nodes[i];
1664        struct extent_buffer *clone;
1665
1666        ASSERT(path->need_commit_sem);
1667
1668        if (!lowest)
1669                return 0;
1670
1671        lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1672
1673        clone = btrfs_clone_extent_buffer(lowest);
1674        if (!clone)
1675                return -ENOMEM;
1676
1677        btrfs_release_path(path);
1678        path->nodes[i] = clone;
1679        path->slots[i] = slot;
1680
1681        return 0;
1682}
1683
1684static inline int search_for_key_slot(struct extent_buffer *eb,
1685                                      int search_low_slot,
1686                                      const struct btrfs_key *key,
1687                                      int prev_cmp,
1688                                      int *slot)
1689{
1690        /*
1691         * If a previous call to btrfs_bin_search() on a parent node returned an
1692         * exact match (prev_cmp == 0), we can safely assume the target key will
1693         * always be at slot 0 on lower levels, since each key pointer
1694         * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1695         * subtree it points to. Thus we can skip searching lower levels.
1696         */
1697        if (prev_cmp == 0) {
1698                *slot = 0;
1699                return 0;
1700        }
1701
1702        return generic_bin_search(eb, search_low_slot, key, slot);
1703}
1704
1705static int search_leaf(struct btrfs_trans_handle *trans,
1706                       struct btrfs_root *root,
1707                       const struct btrfs_key *key,
1708                       struct btrfs_path *path,
1709                       int ins_len,
1710                       int prev_cmp)
1711{
1712        struct extent_buffer *leaf = path->nodes[0];
1713        int leaf_free_space = -1;
1714        int search_low_slot = 0;
1715        int ret;
1716        bool do_bin_search = true;
1717
1718        /*
1719         * If we are doing an insertion, the leaf has enough free space and the
1720         * destination slot for the key is not slot 0, then we can unlock our
1721         * write lock on the parent, and any other upper nodes, before doing the
1722         * binary search on the leaf (with search_for_key_slot()), allowing other
1723         * tasks to lock the parent and any other upper nodes.
1724         */
1725        if (ins_len > 0) {
1726                /*
1727                 * Cache the leaf free space, since we will need it later and it
1728                 * will not change until then.
1729                 */
1730                leaf_free_space = btrfs_leaf_free_space(leaf);
1731
1732                /*
1733                 * !path->locks[1] means we have a single node tree, the leaf is
1734                 * the root of the tree.
1735                 */
1736                if (path->locks[1] && leaf_free_space >= ins_len) {
1737                        struct btrfs_disk_key first_key;
1738
1739                        ASSERT(btrfs_header_nritems(leaf) > 0);
1740                        btrfs_item_key(leaf, &first_key, 0);
1741
1742                        /*
1743                         * Doing the extra comparison with the first key is cheap,
1744                         * taking into account that the first key is very likely
1745                         * already in a cache line because it immediately follows
1746                         * the extent buffer's header and we have recently accessed
1747                         * the header's level field.
1748                         */
1749                        ret = comp_keys(&first_key, key);
1750                        if (ret < 0) {
1751                                /*
1752                                 * The first key is smaller than the key we want
1753                                 * to insert, so we are safe to unlock all upper
1754                                 * nodes and we have to do the binary search.
1755                                 *
1756                                 * We do use btrfs_unlock_up_safe() and not
1757                                 * unlock_up() because the later does not unlock
1758                                 * nodes with a slot of 0 - we can safely unlock
1759                                 * any node even if its slot is 0 since in this
1760                                 * case the key does not end up at slot 0 of the
1761                                 * leaf and there's no need to split the leaf.
1762                                 */
1763                                btrfs_unlock_up_safe(path, 1);
1764                                search_low_slot = 1;
1765                        } else {
1766                                /*
1767                                 * The first key is >= then the key we want to
1768                                 * insert, so we can skip the binary search as
1769                                 * the target key will be at slot 0.
1770                                 *
1771                                 * We can not unlock upper nodes when the key is
1772                                 * less than the first key, because we will need
1773                                 * to update the key at slot 0 of the parent node
1774                                 * and possibly of other upper nodes too.
1775                                 * If the key matches the first key, then we can
1776                                 * unlock all the upper nodes, using
1777                                 * btrfs_unlock_up_safe() instead of unlock_up()
1778                                 * as stated above.
1779                                 */
1780                                if (ret == 0)
1781                                        btrfs_unlock_up_safe(path, 1);
1782                                /*
1783                                 * ret is already 0 or 1, matching the result of
1784                                 * a btrfs_bin_search() call, so there is no need
1785                                 * to adjust it.
1786                                 */
1787                                do_bin_search = false;
1788                                path->slots[0] = 0;
1789                        }
1790                }
1791        }
1792
1793        if (do_bin_search) {
1794                ret = search_for_key_slot(leaf, search_low_slot, key,
1795                                          prev_cmp, &path->slots[0]);
1796                if (ret < 0)
1797                        return ret;
1798        }
1799
1800        if (ins_len > 0) {
1801                /*
1802                 * Item key already exists. In this case, if we are allowed to
1803                 * insert the item (for example, in dir_item case, item key
1804                 * collision is allowed), it will be merged with the original
1805                 * item. Only the item size grows, no new btrfs item will be
1806                 * added. If search_for_extension is not set, ins_len already
1807                 * accounts the size btrfs_item, deduct it here so leaf space
1808                 * check will be correct.
1809                 */
1810                if (ret == 0 && !path->search_for_extension) {
1811                        ASSERT(ins_len >= sizeof(struct btrfs_item));
1812                        ins_len -= sizeof(struct btrfs_item);
1813                }
1814
1815                ASSERT(leaf_free_space >= 0);
1816
1817                if (leaf_free_space < ins_len) {
1818                        int err;
1819
1820                        err = split_leaf(trans, root, key, path, ins_len,
1821                                         (ret == 0));
1822                        ASSERT(err <= 0);
1823                        if (WARN_ON(err > 0))
1824                                err = -EUCLEAN;
1825                        if (err)
1826                                ret = err;
1827                }
1828        }
1829
1830        return ret;
1831}
1832
1833/*
1834 * btrfs_search_slot - look for a key in a tree and perform necessary
1835 * modifications to preserve tree invariants.
1836 *
1837 * @trans:      Handle of transaction, used when modifying the tree
1838 * @p:          Holds all btree nodes along the search path
1839 * @root:       The root node of the tree
1840 * @key:        The key we are looking for
1841 * @ins_len:    Indicates purpose of search:
1842 *              >0  for inserts it's size of item inserted (*)
1843 *              <0  for deletions
1844 *               0  for plain searches, not modifying the tree
1845 *
1846 *              (*) If size of item inserted doesn't include
1847 *              sizeof(struct btrfs_item), then p->search_for_extension must
1848 *              be set.
1849 * @cow:        boolean should CoW operations be performed. Must always be 1
1850 *              when modifying the tree.
1851 *
1852 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1853 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1854 *
1855 * If @key is found, 0 is returned and you can find the item in the leaf level
1856 * of the path (level 0)
1857 *
1858 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1859 * points to the slot where it should be inserted
1860 *
1861 * If an error is encountered while searching the tree a negative error number
1862 * is returned
1863 */
1864int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1865                      const struct btrfs_key *key, struct btrfs_path *p,
1866                      int ins_len, int cow)
1867{
1868        struct btrfs_fs_info *fs_info = root->fs_info;
1869        struct extent_buffer *b;
1870        int slot;
1871        int ret;
1872        int err;
1873        int level;
1874        int lowest_unlock = 1;
1875        /* everything at write_lock_level or lower must be write locked */
1876        int write_lock_level = 0;
1877        u8 lowest_level = 0;
1878        int min_write_lock_level;
1879        int prev_cmp;
1880
1881        lowest_level = p->lowest_level;
1882        WARN_ON(lowest_level && ins_len > 0);
1883        WARN_ON(p->nodes[0] != NULL);
1884        BUG_ON(!cow && ins_len);
1885
1886        if (ins_len < 0) {
1887                lowest_unlock = 2;
1888
1889                /* when we are removing items, we might have to go up to level
1890                 * two as we update tree pointers  Make sure we keep write
1891                 * for those levels as well
1892                 */
1893                write_lock_level = 2;
1894        } else if (ins_len > 0) {
1895                /*
1896                 * for inserting items, make sure we have a write lock on
1897                 * level 1 so we can update keys
1898                 */
1899                write_lock_level = 1;
1900        }
1901
1902        if (!cow)
1903                write_lock_level = -1;
1904
1905        if (cow && (p->keep_locks || p->lowest_level))
1906                write_lock_level = BTRFS_MAX_LEVEL;
1907
1908        min_write_lock_level = write_lock_level;
1909
1910        if (p->need_commit_sem) {
1911                ASSERT(p->search_commit_root);
1912                down_read(&fs_info->commit_root_sem);
1913        }
1914
1915again:
1916        prev_cmp = -1;
1917        b = btrfs_search_slot_get_root(root, p, write_lock_level);
1918        if (IS_ERR(b)) {
1919                ret = PTR_ERR(b);
1920                goto done;
1921        }
1922
1923        while (b) {
1924                int dec = 0;
1925
1926                level = btrfs_header_level(b);
1927
1928                if (cow) {
1929                        bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1930
1931                        /*
1932                         * if we don't really need to cow this block
1933                         * then we don't want to set the path blocking,
1934                         * so we test it here
1935                         */
1936                        if (!should_cow_block(trans, root, b))
1937                                goto cow_done;
1938
1939                        /*
1940                         * must have write locks on this node and the
1941                         * parent
1942                         */
1943                        if (level > write_lock_level ||
1944                            (level + 1 > write_lock_level &&
1945                            level + 1 < BTRFS_MAX_LEVEL &&
1946                            p->nodes[level + 1])) {
1947                                write_lock_level = level + 1;
1948                                btrfs_release_path(p);
1949                                goto again;
1950                        }
1951
1952                        if (last_level)
1953                                err = btrfs_cow_block(trans, root, b, NULL, 0,
1954                                                      &b,
1955                                                      BTRFS_NESTING_COW);
1956                        else
1957                                err = btrfs_cow_block(trans, root, b,
1958                                                      p->nodes[level + 1],
1959                                                      p->slots[level + 1], &b,
1960                                                      BTRFS_NESTING_COW);
1961                        if (err) {
1962                                ret = err;
1963                                goto done;
1964                        }
1965                }
1966cow_done:
1967                p->nodes[level] = b;
1968
1969                /*
1970                 * we have a lock on b and as long as we aren't changing
1971                 * the tree, there is no way to for the items in b to change.
1972                 * It is safe to drop the lock on our parent before we
1973                 * go through the expensive btree search on b.
1974                 *
1975                 * If we're inserting or deleting (ins_len != 0), then we might
1976                 * be changing slot zero, which may require changing the parent.
1977                 * So, we can't drop the lock until after we know which slot
1978                 * we're operating on.
1979                 */
1980                if (!ins_len && !p->keep_locks) {
1981                        int u = level + 1;
1982
1983                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1984                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1985                                p->locks[u] = 0;
1986                        }
1987                }
1988
1989                if (level == 0) {
1990                        if (ins_len > 0)
1991                                ASSERT(write_lock_level >= 1);
1992
1993                        ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
1994                        if (!p->search_for_split)
1995                                unlock_up(p, level, lowest_unlock,
1996                                          min_write_lock_level, NULL);
1997                        goto done;
1998                }
1999
2000                ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2001                if (ret < 0)
2002                        goto done;
2003                prev_cmp = ret;
2004
2005                if (ret && slot > 0) {
2006                        dec = 1;
2007                        slot--;
2008                }
2009                p->slots[level] = slot;
2010                err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2011                                             &write_lock_level);
2012                if (err == -EAGAIN)
2013                        goto again;
2014                if (err) {
2015                        ret = err;
2016                        goto done;
2017                }
2018                b = p->nodes[level];
2019                slot = p->slots[level];
2020
2021                /*
2022                 * Slot 0 is special, if we change the key we have to update
2023                 * the parent pointer which means we must have a write lock on
2024                 * the parent
2025                 */
2026                if (slot == 0 && ins_len && write_lock_level < level + 1) {
2027                        write_lock_level = level + 1;
2028                        btrfs_release_path(p);
2029                        goto again;
2030                }
2031
2032                unlock_up(p, level, lowest_unlock, min_write_lock_level,
2033                          &write_lock_level);
2034
2035                if (level == lowest_level) {
2036                        if (dec)
2037                                p->slots[level]++;
2038                        goto done;
2039                }
2040
2041                err = read_block_for_search(root, p, &b, level, slot, key);
2042                if (err == -EAGAIN)
2043                        goto again;
2044                if (err) {
2045                        ret = err;
2046                        goto done;
2047                }
2048
2049                if (!p->skip_locking) {
2050                        level = btrfs_header_level(b);
2051                        if (level <= write_lock_level) {
2052                                btrfs_tree_lock(b);
2053                                p->locks[level] = BTRFS_WRITE_LOCK;
2054                        } else {
2055                                btrfs_tree_read_lock(b);
2056                                p->locks[level] = BTRFS_READ_LOCK;
2057                        }
2058                        p->nodes[level] = b;
2059                }
2060        }
2061        ret = 1;
2062done:
2063        if (ret < 0 && !p->skip_release_on_error)
2064                btrfs_release_path(p);
2065
2066        if (p->need_commit_sem) {
2067                int ret2;
2068
2069                ret2 = finish_need_commit_sem_search(p);
2070                up_read(&fs_info->commit_root_sem);
2071                if (ret2)
2072                        ret = ret2;
2073        }
2074
2075        return ret;
2076}
2077ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2078
2079/*
2080 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2081 * current state of the tree together with the operations recorded in the tree
2082 * modification log to search for the key in a previous version of this tree, as
2083 * denoted by the time_seq parameter.
2084 *
2085 * Naturally, there is no support for insert, delete or cow operations.
2086 *
2087 * The resulting path and return value will be set up as if we called
2088 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2089 */
2090int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2091                          struct btrfs_path *p, u64 time_seq)
2092{
2093        struct btrfs_fs_info *fs_info = root->fs_info;
2094        struct extent_buffer *b;
2095        int slot;
2096        int ret;
2097        int err;
2098        int level;
2099        int lowest_unlock = 1;
2100        u8 lowest_level = 0;
2101
2102        lowest_level = p->lowest_level;
2103        WARN_ON(p->nodes[0] != NULL);
2104
2105        if (p->search_commit_root) {
2106                BUG_ON(time_seq);
2107                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2108        }
2109
2110again:
2111        b = btrfs_get_old_root(root, time_seq);
2112        if (!b) {
2113                ret = -EIO;
2114                goto done;
2115        }
2116        level = btrfs_header_level(b);
2117        p->locks[level] = BTRFS_READ_LOCK;
2118
2119        while (b) {
2120                int dec = 0;
2121
2122                level = btrfs_header_level(b);
2123                p->nodes[level] = b;
2124
2125                /*
2126                 * we have a lock on b and as long as we aren't changing
2127                 * the tree, there is no way to for the items in b to change.
2128                 * It is safe to drop the lock on our parent before we
2129                 * go through the expensive btree search on b.
2130                 */
2131                btrfs_unlock_up_safe(p, level + 1);
2132
2133                ret = btrfs_bin_search(b, key, &slot);
2134                if (ret < 0)
2135                        goto done;
2136
2137                if (level == 0) {
2138                        p->slots[level] = slot;
2139                        unlock_up(p, level, lowest_unlock, 0, NULL);
2140                        goto done;
2141                }
2142
2143                if (ret && slot > 0) {
2144                        dec = 1;
2145                        slot--;
2146                }
2147                p->slots[level] = slot;
2148                unlock_up(p, level, lowest_unlock, 0, NULL);
2149
2150                if (level == lowest_level) {
2151                        if (dec)
2152                                p->slots[level]++;
2153                        goto done;
2154                }
2155
2156                err = read_block_for_search(root, p, &b, level, slot, key);
2157                if (err == -EAGAIN)
2158                        goto again;
2159                if (err) {
2160                        ret = err;
2161                        goto done;
2162                }
2163
2164                level = btrfs_header_level(b);
2165                btrfs_tree_read_lock(b);
2166                b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2167                if (!b) {
2168                        ret = -ENOMEM;
2169                        goto done;
2170                }
2171                p->locks[level] = BTRFS_READ_LOCK;
2172                p->nodes[level] = b;
2173        }
2174        ret = 1;
2175done:
2176        if (ret < 0)
2177                btrfs_release_path(p);
2178
2179        return ret;
2180}
2181
2182/*
2183 * helper to use instead of search slot if no exact match is needed but
2184 * instead the next or previous item should be returned.
2185 * When find_higher is true, the next higher item is returned, the next lower
2186 * otherwise.
2187 * When return_any and find_higher are both true, and no higher item is found,
2188 * return the next lower instead.
2189 * When return_any is true and find_higher is false, and no lower item is found,
2190 * return the next higher instead.
2191 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2192 * < 0 on error
2193 */
2194int btrfs_search_slot_for_read(struct btrfs_root *root,
2195                               const struct btrfs_key *key,
2196                               struct btrfs_path *p, int find_higher,
2197                               int return_any)
2198{
2199        int ret;
2200        struct extent_buffer *leaf;
2201
2202again:
2203        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2204        if (ret <= 0)
2205                return ret;
2206        /*
2207         * a return value of 1 means the path is at the position where the
2208         * item should be inserted. Normally this is the next bigger item,
2209         * but in case the previous item is the last in a leaf, path points
2210         * to the first free slot in the previous leaf, i.e. at an invalid
2211         * item.
2212         */
2213        leaf = p->nodes[0];
2214
2215        if (find_higher) {
2216                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2217                        ret = btrfs_next_leaf(root, p);
2218                        if (ret <= 0)
2219                                return ret;
2220                        if (!return_any)
2221                                return 1;
2222                        /*
2223                         * no higher item found, return the next
2224                         * lower instead
2225                         */
2226                        return_any = 0;
2227                        find_higher = 0;
2228                        btrfs_release_path(p);
2229                        goto again;
2230                }
2231        } else {
2232                if (p->slots[0] == 0) {
2233                        ret = btrfs_prev_leaf(root, p);
2234                        if (ret < 0)
2235                                return ret;
2236                        if (!ret) {
2237                                leaf = p->nodes[0];
2238                                if (p->slots[0] == btrfs_header_nritems(leaf))
2239                                        p->slots[0]--;
2240                                return 0;
2241                        }
2242                        if (!return_any)
2243                                return 1;
2244                        /*
2245                         * no lower item found, return the next
2246                         * higher instead
2247                         */
2248                        return_any = 0;
2249                        find_higher = 1;
2250                        btrfs_release_path(p);
2251                        goto again;
2252                } else {
2253                        --p->slots[0];
2254                }
2255        }
2256        return 0;
2257}
2258
2259/*
2260 * Execute search and call btrfs_previous_item to traverse backwards if the item
2261 * was not found.
2262 *
2263 * Return 0 if found, 1 if not found and < 0 if error.
2264 */
2265int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2266                           struct btrfs_path *path)
2267{
2268        int ret;
2269
2270        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2271        if (ret > 0)
2272                ret = btrfs_previous_item(root, path, key->objectid, key->type);
2273
2274        if (ret == 0)
2275                btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2276
2277        return ret;
2278}
2279
2280/*
2281 * adjust the pointers going up the tree, starting at level
2282 * making sure the right key of each node is points to 'key'.
2283 * This is used after shifting pointers to the left, so it stops
2284 * fixing up pointers when a given leaf/node is not in slot 0 of the
2285 * higher levels
2286 *
2287 */
2288static void fixup_low_keys(struct btrfs_path *path,
2289                           struct btrfs_disk_key *key, int level)
2290{
2291        int i;
2292        struct extent_buffer *t;
2293        int ret;
2294
2295        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2296                int tslot = path->slots[i];
2297
2298                if (!path->nodes[i])
2299                        break;
2300                t = path->nodes[i];
2301                ret = btrfs_tree_mod_log_insert_key(t, tslot,
2302                                BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2303                BUG_ON(ret < 0);
2304                btrfs_set_node_key(t, key, tslot);
2305                btrfs_mark_buffer_dirty(path->nodes[i]);
2306                if (tslot != 0)
2307                        break;
2308        }
2309}
2310
2311/*
2312 * update item key.
2313 *
2314 * This function isn't completely safe. It's the caller's responsibility
2315 * that the new key won't break the order
2316 */
2317void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2318                             struct btrfs_path *path,
2319                             const struct btrfs_key *new_key)
2320{
2321        struct btrfs_disk_key disk_key;
2322        struct extent_buffer *eb;
2323        int slot;
2324
2325        eb = path->nodes[0];
2326        slot = path->slots[0];
2327        if (slot > 0) {
2328                btrfs_item_key(eb, &disk_key, slot - 1);
2329                if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2330                        btrfs_crit(fs_info,
2331                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2332                                   slot, btrfs_disk_key_objectid(&disk_key),
2333                                   btrfs_disk_key_type(&disk_key),
2334                                   btrfs_disk_key_offset(&disk_key),
2335                                   new_key->objectid, new_key->type,
2336                                   new_key->offset);
2337                        btrfs_print_leaf(eb);
2338                        BUG();
2339                }
2340        }
2341        if (slot < btrfs_header_nritems(eb) - 1) {
2342                btrfs_item_key(eb, &disk_key, slot + 1);
2343                if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2344                        btrfs_crit(fs_info,
2345                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2346                                   slot, btrfs_disk_key_objectid(&disk_key),
2347                                   btrfs_disk_key_type(&disk_key),
2348                                   btrfs_disk_key_offset(&disk_key),
2349                                   new_key->objectid, new_key->type,
2350                                   new_key->offset);
2351                        btrfs_print_leaf(eb);
2352                        BUG();
2353                }
2354        }
2355
2356        btrfs_cpu_key_to_disk(&disk_key, new_key);
2357        btrfs_set_item_key(eb, &disk_key, slot);
2358        btrfs_mark_buffer_dirty(eb);
2359        if (slot == 0)
2360                fixup_low_keys(path, &disk_key, 1);
2361}
2362
2363/*
2364 * Check key order of two sibling extent buffers.
2365 *
2366 * Return true if something is wrong.
2367 * Return false if everything is fine.
2368 *
2369 * Tree-checker only works inside one tree block, thus the following
2370 * corruption can not be detected by tree-checker:
2371 *
2372 * Leaf @left                   | Leaf @right
2373 * --------------------------------------------------------------
2374 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2375 *
2376 * Key f6 in leaf @left itself is valid, but not valid when the next
2377 * key in leaf @right is 7.
2378 * This can only be checked at tree block merge time.
2379 * And since tree checker has ensured all key order in each tree block
2380 * is correct, we only need to bother the last key of @left and the first
2381 * key of @right.
2382 */
2383static bool check_sibling_keys(struct extent_buffer *left,
2384                               struct extent_buffer *right)
2385{
2386        struct btrfs_key left_last;
2387        struct btrfs_key right_first;
2388        int level = btrfs_header_level(left);
2389        int nr_left = btrfs_header_nritems(left);
2390        int nr_right = btrfs_header_nritems(right);
2391
2392        /* No key to check in one of the tree blocks */
2393        if (!nr_left || !nr_right)
2394                return false;
2395
2396        if (level) {
2397                btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2398                btrfs_node_key_to_cpu(right, &right_first, 0);
2399        } else {
2400                btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2401                btrfs_item_key_to_cpu(right, &right_first, 0);
2402        }
2403
2404        if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2405                btrfs_crit(left->fs_info,
2406"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2407                           left_last.objectid, left_last.type,
2408                           left_last.offset, right_first.objectid,
2409                           right_first.type, right_first.offset);
2410                return true;
2411        }
2412        return false;
2413}
2414
2415/*
2416 * try to push data from one node into the next node left in the
2417 * tree.
2418 *
2419 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2420 * error, and > 0 if there was no room in the left hand block.
2421 */
2422static int push_node_left(struct btrfs_trans_handle *trans,
2423                          struct extent_buffer *dst,
2424                          struct extent_buffer *src, int empty)
2425{
2426        struct btrfs_fs_info *fs_info = trans->fs_info;
2427        int push_items = 0;
2428        int src_nritems;
2429        int dst_nritems;
2430        int ret = 0;
2431
2432        src_nritems = btrfs_header_nritems(src);
2433        dst_nritems = btrfs_header_nritems(dst);
2434        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2435        WARN_ON(btrfs_header_generation(src) != trans->transid);
2436        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2437
2438        if (!empty && src_nritems <= 8)
2439                return 1;
2440
2441        if (push_items <= 0)
2442                return 1;
2443
2444        if (empty) {
2445                push_items = min(src_nritems, push_items);
2446                if (push_items < src_nritems) {
2447                        /* leave at least 8 pointers in the node if
2448                         * we aren't going to empty it
2449                         */
2450                        if (src_nritems - push_items < 8) {
2451                                if (push_items <= 8)
2452                                        return 1;
2453                                push_items -= 8;
2454                        }
2455                }
2456        } else
2457                push_items = min(src_nritems - 8, push_items);
2458
2459        /* dst is the left eb, src is the middle eb */
2460        if (check_sibling_keys(dst, src)) {
2461                ret = -EUCLEAN;
2462                btrfs_abort_transaction(trans, ret);
2463                return ret;
2464        }
2465        ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2466        if (ret) {
2467                btrfs_abort_transaction(trans, ret);
2468                return ret;
2469        }
2470        copy_extent_buffer(dst, src,
2471                           btrfs_node_key_ptr_offset(dst_nritems),
2472                           btrfs_node_key_ptr_offset(0),
2473                           push_items * sizeof(struct btrfs_key_ptr));
2474
2475        if (push_items < src_nritems) {
2476                /*
2477                 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2478                 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2479                 */
2480                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2481                                      btrfs_node_key_ptr_offset(push_items),
2482                                      (src_nritems - push_items) *
2483                                      sizeof(struct btrfs_key_ptr));
2484        }
2485        btrfs_set_header_nritems(src, src_nritems - push_items);
2486        btrfs_set_header_nritems(dst, dst_nritems + push_items);
2487        btrfs_mark_buffer_dirty(src);
2488        btrfs_mark_buffer_dirty(dst);
2489
2490        return ret;
2491}
2492
2493/*
2494 * try to push data from one node into the next node right in the
2495 * tree.
2496 *
2497 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2498 * error, and > 0 if there was no room in the right hand block.
2499 *
2500 * this will  only push up to 1/2 the contents of the left node over
2501 */
2502static int balance_node_right(struct btrfs_trans_handle *trans,
2503                              struct extent_buffer *dst,
2504                              struct extent_buffer *src)
2505{
2506        struct btrfs_fs_info *fs_info = trans->fs_info;
2507        int push_items = 0;
2508        int max_push;
2509        int src_nritems;
2510        int dst_nritems;
2511        int ret = 0;
2512
2513        WARN_ON(btrfs_header_generation(src) != trans->transid);
2514        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2515
2516        src_nritems = btrfs_header_nritems(src);
2517        dst_nritems = btrfs_header_nritems(dst);
2518        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2519        if (push_items <= 0)
2520                return 1;
2521
2522        if (src_nritems < 4)
2523                return 1;
2524
2525        max_push = src_nritems / 2 + 1;
2526        /* don't try to empty the node */
2527        if (max_push >= src_nritems)
2528                return 1;
2529
2530        if (max_push < push_items)
2531                push_items = max_push;
2532
2533        /* dst is the right eb, src is the middle eb */
2534        if (check_sibling_keys(src, dst)) {
2535                ret = -EUCLEAN;
2536                btrfs_abort_transaction(trans, ret);
2537                return ret;
2538        }
2539        ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2540        BUG_ON(ret < 0);
2541        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2542                                      btrfs_node_key_ptr_offset(0),
2543                                      (dst_nritems) *
2544                                      sizeof(struct btrfs_key_ptr));
2545
2546        ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2547                                         push_items);
2548        if (ret) {
2549                btrfs_abort_transaction(trans, ret);
2550                return ret;
2551        }
2552        copy_extent_buffer(dst, src,
2553                           btrfs_node_key_ptr_offset(0),
2554                           btrfs_node_key_ptr_offset(src_nritems - push_items),
2555                           push_items * sizeof(struct btrfs_key_ptr));
2556
2557        btrfs_set_header_nritems(src, src_nritems - push_items);
2558        btrfs_set_header_nritems(dst, dst_nritems + push_items);
2559
2560        btrfs_mark_buffer_dirty(src);
2561        btrfs_mark_buffer_dirty(dst);
2562
2563        return ret;
2564}
2565
2566/*
2567 * helper function to insert a new root level in the tree.
2568 * A new node is allocated, and a single item is inserted to
2569 * point to the existing root
2570 *
2571 * returns zero on success or < 0 on failure.
2572 */
2573static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2574                           struct btrfs_root *root,
2575                           struct btrfs_path *path, int level)
2576{
2577        struct btrfs_fs_info *fs_info = root->fs_info;
2578        u64 lower_gen;
2579        struct extent_buffer *lower;
2580        struct extent_buffer *c;
2581        struct extent_buffer *old;
2582        struct btrfs_disk_key lower_key;
2583        int ret;
2584
2585        BUG_ON(path->nodes[level]);
2586        BUG_ON(path->nodes[level-1] != root->node);
2587
2588        lower = path->nodes[level-1];
2589        if (level == 1)
2590                btrfs_item_key(lower, &lower_key, 0);
2591        else
2592                btrfs_node_key(lower, &lower_key, 0);
2593
2594        c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2595                                   &lower_key, level, root->node->start, 0,
2596                                   BTRFS_NESTING_NEW_ROOT);
2597        if (IS_ERR(c))
2598                return PTR_ERR(c);
2599
2600        root_add_used(root, fs_info->nodesize);
2601
2602        btrfs_set_header_nritems(c, 1);
2603        btrfs_set_node_key(c, &lower_key, 0);
2604        btrfs_set_node_blockptr(c, 0, lower->start);
2605        lower_gen = btrfs_header_generation(lower);
2606        WARN_ON(lower_gen != trans->transid);
2607
2608        btrfs_set_node_ptr_generation(c, 0, lower_gen);
2609
2610        btrfs_mark_buffer_dirty(c);
2611
2612        old = root->node;
2613        ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2614        BUG_ON(ret < 0);
2615        rcu_assign_pointer(root->node, c);
2616
2617        /* the super has an extra ref to root->node */
2618        free_extent_buffer(old);
2619
2620        add_root_to_dirty_list(root);
2621        atomic_inc(&c->refs);
2622        path->nodes[level] = c;
2623        path->locks[level] = BTRFS_WRITE_LOCK;
2624        path->slots[level] = 0;
2625        return 0;
2626}
2627
2628/*
2629 * worker function to insert a single pointer in a node.
2630 * the node should have enough room for the pointer already
2631 *
2632 * slot and level indicate where you want the key to go, and
2633 * blocknr is the block the key points to.
2634 */
2635static void insert_ptr(struct btrfs_trans_handle *trans,
2636                       struct btrfs_path *path,
2637                       struct btrfs_disk_key *key, u64 bytenr,
2638                       int slot, int level)
2639{
2640        struct extent_buffer *lower;
2641        int nritems;
2642        int ret;
2643
2644        BUG_ON(!path->nodes[level]);
2645        btrfs_assert_tree_write_locked(path->nodes[level]);
2646        lower = path->nodes[level];
2647        nritems = btrfs_header_nritems(lower);
2648        BUG_ON(slot > nritems);
2649        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2650        if (slot != nritems) {
2651                if (level) {
2652                        ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2653                                        slot, nritems - slot);
2654                        BUG_ON(ret < 0);
2655                }
2656                memmove_extent_buffer(lower,
2657                              btrfs_node_key_ptr_offset(slot + 1),
2658                              btrfs_node_key_ptr_offset(slot),
2659                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
2660        }
2661        if (level) {
2662                ret = btrfs_tree_mod_log_insert_key(lower, slot,
2663                                            BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2664                BUG_ON(ret < 0);
2665        }
2666        btrfs_set_node_key(lower, key, slot);
2667        btrfs_set_node_blockptr(lower, slot, bytenr);
2668        WARN_ON(trans->transid == 0);
2669        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2670        btrfs_set_header_nritems(lower, nritems + 1);
2671        btrfs_mark_buffer_dirty(lower);
2672}
2673
2674/*
2675 * split the node at the specified level in path in two.
2676 * The path is corrected to point to the appropriate node after the split
2677 *
2678 * Before splitting this tries to make some room in the node by pushing
2679 * left and right, if either one works, it returns right away.
2680 *
2681 * returns 0 on success and < 0 on failure
2682 */
2683static noinline int split_node(struct btrfs_trans_handle *trans,
2684                               struct btrfs_root *root,
2685                               struct btrfs_path *path, int level)
2686{
2687        struct btrfs_fs_info *fs_info = root->fs_info;
2688        struct extent_buffer *c;
2689        struct extent_buffer *split;
2690        struct btrfs_disk_key disk_key;
2691        int mid;
2692        int ret;
2693        u32 c_nritems;
2694
2695        c = path->nodes[level];
2696        WARN_ON(btrfs_header_generation(c) != trans->transid);
2697        if (c == root->node) {
2698                /*
2699                 * trying to split the root, lets make a new one
2700                 *
2701                 * tree mod log: We don't log_removal old root in
2702                 * insert_new_root, because that root buffer will be kept as a
2703                 * normal node. We are going to log removal of half of the
2704                 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2705                 * holding a tree lock on the buffer, which is why we cannot
2706                 * race with other tree_mod_log users.
2707                 */
2708                ret = insert_new_root(trans, root, path, level + 1);
2709                if (ret)
2710                        return ret;
2711        } else {
2712                ret = push_nodes_for_insert(trans, root, path, level);
2713                c = path->nodes[level];
2714                if (!ret && btrfs_header_nritems(c) <
2715                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2716                        return 0;
2717                if (ret < 0)
2718                        return ret;
2719        }
2720
2721        c_nritems = btrfs_header_nritems(c);
2722        mid = (c_nritems + 1) / 2;
2723        btrfs_node_key(c, &disk_key, mid);
2724
2725        split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2726                                       &disk_key, level, c->start, 0,
2727                                       BTRFS_NESTING_SPLIT);
2728        if (IS_ERR(split))
2729                return PTR_ERR(split);
2730
2731        root_add_used(root, fs_info->nodesize);
2732        ASSERT(btrfs_header_level(c) == level);
2733
2734        ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2735        if (ret) {
2736                btrfs_abort_transaction(trans, ret);
2737                return ret;
2738        }
2739        copy_extent_buffer(split, c,
2740                           btrfs_node_key_ptr_offset(0),
2741                           btrfs_node_key_ptr_offset(mid),
2742                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2743        btrfs_set_header_nritems(split, c_nritems - mid);
2744        btrfs_set_header_nritems(c, mid);
2745
2746        btrfs_mark_buffer_dirty(c);
2747        btrfs_mark_buffer_dirty(split);
2748
2749        insert_ptr(trans, path, &disk_key, split->start,
2750                   path->slots[level + 1] + 1, level + 1);
2751
2752        if (path->slots[level] >= mid) {
2753                path->slots[level] -= mid;
2754                btrfs_tree_unlock(c);
2755                free_extent_buffer(c);
2756                path->nodes[level] = split;
2757                path->slots[level + 1] += 1;
2758        } else {
2759                btrfs_tree_unlock(split);
2760                free_extent_buffer(split);
2761        }
2762        return 0;
2763}
2764
2765/*
2766 * how many bytes are required to store the items in a leaf.  start
2767 * and nr indicate which items in the leaf to check.  This totals up the
2768 * space used both by the item structs and the item data
2769 */
2770static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2771{
2772        int data_len;
2773        int nritems = btrfs_header_nritems(l);
2774        int end = min(nritems, start + nr) - 1;
2775
2776        if (!nr)
2777                return 0;
2778        data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2779        data_len = data_len - btrfs_item_offset(l, end);
2780        data_len += sizeof(struct btrfs_item) * nr;
2781        WARN_ON(data_len < 0);
2782        return data_len;
2783}
2784
2785/*
2786 * The space between the end of the leaf items and
2787 * the start of the leaf data.  IOW, how much room
2788 * the leaf has left for both items and data
2789 */
2790noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2791{
2792        struct btrfs_fs_info *fs_info = leaf->fs_info;
2793        int nritems = btrfs_header_nritems(leaf);
2794        int ret;
2795
2796        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2797        if (ret < 0) {
2798                btrfs_crit(fs_info,
2799                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2800                           ret,
2801                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2802                           leaf_space_used(leaf, 0, nritems), nritems);
2803        }
2804        return ret;
2805}
2806
2807/*
2808 * min slot controls the lowest index we're willing to push to the
2809 * right.  We'll push up to and including min_slot, but no lower
2810 */
2811static noinline int __push_leaf_right(struct btrfs_path *path,
2812                                      int data_size, int empty,
2813                                      struct extent_buffer *right,
2814                                      int free_space, u32 left_nritems,
2815                                      u32 min_slot)
2816{
2817        struct btrfs_fs_info *fs_info = right->fs_info;
2818        struct extent_buffer *left = path->nodes[0];
2819        struct extent_buffer *upper = path->nodes[1];
2820        struct btrfs_map_token token;
2821        struct btrfs_disk_key disk_key;
2822        int slot;
2823        u32 i;
2824        int push_space = 0;
2825        int push_items = 0;
2826        u32 nr;
2827        u32 right_nritems;
2828        u32 data_end;
2829        u32 this_item_size;
2830
2831        if (empty)
2832                nr = 0;
2833        else
2834                nr = max_t(u32, 1, min_slot);
2835
2836        if (path->slots[0] >= left_nritems)
2837                push_space += data_size;
2838
2839        slot = path->slots[1];
2840        i = left_nritems - 1;
2841        while (i >= nr) {
2842                if (!empty && push_items > 0) {
2843                        if (path->slots[0] > i)
2844                                break;
2845                        if (path->slots[0] == i) {
2846                                int space = btrfs_leaf_free_space(left);
2847
2848                                if (space + push_space * 2 > free_space)
2849                                        break;
2850                        }
2851                }
2852
2853                if (path->slots[0] == i)
2854                        push_space += data_size;
2855
2856                this_item_size = btrfs_item_size(left, i);
2857                if (this_item_size + sizeof(struct btrfs_item) +
2858                    push_space > free_space)
2859                        break;
2860
2861                push_items++;
2862                push_space += this_item_size + sizeof(struct btrfs_item);
2863                if (i == 0)
2864                        break;
2865                i--;
2866        }
2867
2868        if (push_items == 0)
2869                goto out_unlock;
2870
2871        WARN_ON(!empty && push_items == left_nritems);
2872
2873        /* push left to right */
2874        right_nritems = btrfs_header_nritems(right);
2875
2876        push_space = btrfs_item_data_end(left, left_nritems - push_items);
2877        push_space -= leaf_data_end(left);
2878
2879        /* make room in the right data area */
2880        data_end = leaf_data_end(right);
2881        memmove_extent_buffer(right,
2882                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2883                              BTRFS_LEAF_DATA_OFFSET + data_end,
2884                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2885
2886        /* copy from the left data area */
2887        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2888                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2889                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2890                     push_space);
2891
2892        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2893                              btrfs_item_nr_offset(0),
2894                              right_nritems * sizeof(struct btrfs_item));
2895
2896        /* copy the items from left to right */
2897        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2898                   btrfs_item_nr_offset(left_nritems - push_items),
2899                   push_items * sizeof(struct btrfs_item));
2900
2901        /* update the item pointers */
2902        btrfs_init_map_token(&token, right);
2903        right_nritems += push_items;
2904        btrfs_set_header_nritems(right, right_nritems);
2905        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2906        for (i = 0; i < right_nritems; i++) {
2907                push_space -= btrfs_token_item_size(&token, i);
2908                btrfs_set_token_item_offset(&token, i, push_space);
2909        }
2910
2911        left_nritems -= push_items;
2912        btrfs_set_header_nritems(left, left_nritems);
2913
2914        if (left_nritems)
2915                btrfs_mark_buffer_dirty(left);
2916        else
2917                btrfs_clean_tree_block(left);
2918
2919        btrfs_mark_buffer_dirty(right);
2920
2921        btrfs_item_key(right, &disk_key, 0);
2922        btrfs_set_node_key(upper, &disk_key, slot + 1);
2923        btrfs_mark_buffer_dirty(upper);
2924
2925        /* then fixup the leaf pointer in the path */
2926        if (path->slots[0] >= left_nritems) {
2927                path->slots[0] -= left_nritems;
2928                if (btrfs_header_nritems(path->nodes[0]) == 0)
2929                        btrfs_clean_tree_block(path->nodes[0]);
2930                btrfs_tree_unlock(path->nodes[0]);
2931                free_extent_buffer(path->nodes[0]);
2932                path->nodes[0] = right;
2933                path->slots[1] += 1;
2934        } else {
2935                btrfs_tree_unlock(right);
2936                free_extent_buffer(right);
2937        }
2938        return 0;
2939
2940out_unlock:
2941        btrfs_tree_unlock(right);
2942        free_extent_buffer(right);
2943        return 1;
2944}
2945
2946/*
2947 * push some data in the path leaf to the right, trying to free up at
2948 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2949 *
2950 * returns 1 if the push failed because the other node didn't have enough
2951 * room, 0 if everything worked out and < 0 if there were major errors.
2952 *
2953 * this will push starting from min_slot to the end of the leaf.  It won't
2954 * push any slot lower than min_slot
2955 */
2956static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2957                           *root, struct btrfs_path *path,
2958                           int min_data_size, int data_size,
2959                           int empty, u32 min_slot)
2960{
2961        struct extent_buffer *left = path->nodes[0];
2962        struct extent_buffer *right;
2963        struct extent_buffer *upper;
2964        int slot;
2965        int free_space;
2966        u32 left_nritems;
2967        int ret;
2968
2969        if (!path->nodes[1])
2970                return 1;
2971
2972        slot = path->slots[1];
2973        upper = path->nodes[1];
2974        if (slot >= btrfs_header_nritems(upper) - 1)
2975                return 1;
2976
2977        btrfs_assert_tree_write_locked(path->nodes[1]);
2978
2979        right = btrfs_read_node_slot(upper, slot + 1);
2980        /*
2981         * slot + 1 is not valid or we fail to read the right node,
2982         * no big deal, just return.
2983         */
2984        if (IS_ERR(right))
2985                return 1;
2986
2987        __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2988
2989        free_space = btrfs_leaf_free_space(right);
2990        if (free_space < data_size)
2991                goto out_unlock;
2992
2993        /* cow and double check */
2994        ret = btrfs_cow_block(trans, root, right, upper,
2995                              slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2996        if (ret)
2997                goto out_unlock;
2998
2999        free_space = btrfs_leaf_free_space(right);
3000        if (free_space < data_size)
3001                goto out_unlock;
3002
3003        left_nritems = btrfs_header_nritems(left);
3004        if (left_nritems == 0)
3005                goto out_unlock;
3006
3007        if (check_sibling_keys(left, right)) {
3008                ret = -EUCLEAN;
3009                btrfs_tree_unlock(right);
3010                free_extent_buffer(right);
3011                return ret;
3012        }
3013        if (path->slots[0] == left_nritems && !empty) {
3014                /* Key greater than all keys in the leaf, right neighbor has
3015                 * enough room for it and we're not emptying our leaf to delete
3016                 * it, therefore use right neighbor to insert the new item and
3017                 * no need to touch/dirty our left leaf. */
3018                btrfs_tree_unlock(left);
3019                free_extent_buffer(left);
3020                path->nodes[0] = right;
3021                path->slots[0] = 0;
3022                path->slots[1]++;
3023                return 0;
3024        }
3025
3026        return __push_leaf_right(path, min_data_size, empty,
3027                                right, free_space, left_nritems, min_slot);
3028out_unlock:
3029        btrfs_tree_unlock(right);
3030        free_extent_buffer(right);
3031        return 1;
3032}
3033
3034/*
3035 * push some data in the path leaf to the left, trying to free up at
3036 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3037 *
3038 * max_slot can put a limit on how far into the leaf we'll push items.  The
3039 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3040 * items
3041 */
3042static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3043                                     int empty, struct extent_buffer *left,
3044                                     int free_space, u32 right_nritems,
3045                                     u32 max_slot)
3046{
3047        struct btrfs_fs_info *fs_info = left->fs_info;
3048        struct btrfs_disk_key disk_key;
3049        struct extent_buffer *right = path->nodes[0];
3050        int i;
3051        int push_space = 0;
3052        int push_items = 0;
3053        u32 old_left_nritems;
3054        u32 nr;
3055        int ret = 0;
3056        u32 this_item_size;
3057        u32 old_left_item_size;
3058        struct btrfs_map_token token;
3059
3060        if (empty)
3061                nr = min(right_nritems, max_slot);
3062        else
3063                nr = min(right_nritems - 1, max_slot);
3064
3065        for (i = 0; i < nr; i++) {
3066                if (!empty && push_items > 0) {
3067                        if (path->slots[0] < i)
3068                                break;
3069                        if (path->slots[0] == i) {
3070                                int space = btrfs_leaf_free_space(right);
3071
3072                                if (space + push_space * 2 > free_space)
3073                                        break;
3074                        }
3075                }
3076
3077                if (path->slots[0] == i)
3078                        push_space += data_size;
3079
3080                this_item_size = btrfs_item_size(right, i);
3081                if (this_item_size + sizeof(struct btrfs_item) + push_space >
3082                    free_space)
3083                        break;
3084
3085                push_items++;
3086                push_space += this_item_size + sizeof(struct btrfs_item);
3087        }
3088
3089        if (push_items == 0) {
3090                ret = 1;
3091                goto out;
3092        }
3093        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3094
3095        /* push data from right to left */
3096        copy_extent_buffer(left, right,
3097                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3098                           btrfs_item_nr_offset(0),
3099                           push_items * sizeof(struct btrfs_item));
3100
3101        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3102                     btrfs_item_offset(right, push_items - 1);
3103
3104        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3105                     leaf_data_end(left) - push_space,
3106                     BTRFS_LEAF_DATA_OFFSET +
3107                     btrfs_item_offset(right, push_items - 1),
3108                     push_space);
3109        old_left_nritems = btrfs_header_nritems(left);
3110        BUG_ON(old_left_nritems <= 0);
3111
3112        btrfs_init_map_token(&token, left);
3113        old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3114        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3115                u32 ioff;
3116
3117                ioff = btrfs_token_item_offset(&token, i);
3118                btrfs_set_token_item_offset(&token, i,
3119                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3120        }
3121        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3122
3123        /* fixup right node */
3124        if (push_items > right_nritems)
3125                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3126                       right_nritems);
3127
3128        if (push_items < right_nritems) {
3129                push_space = btrfs_item_offset(right, push_items - 1) -
3130                                                  leaf_data_end(right);
3131                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3132                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3133                                      BTRFS_LEAF_DATA_OFFSET +
3134                                      leaf_data_end(right), push_space);
3135
3136                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3137                              btrfs_item_nr_offset(push_items),
3138                             (btrfs_header_nritems(right) - push_items) *
3139                             sizeof(struct btrfs_item));
3140        }
3141
3142        btrfs_init_map_token(&token, right);
3143        right_nritems -= push_items;
3144        btrfs_set_header_nritems(right, right_nritems);
3145        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3146        for (i = 0; i < right_nritems; i++) {
3147                push_space = push_space - btrfs_token_item_size(&token, i);
3148                btrfs_set_token_item_offset(&token, i, push_space);
3149        }
3150
3151        btrfs_mark_buffer_dirty(left);
3152        if (right_nritems)
3153                btrfs_mark_buffer_dirty(right);
3154        else
3155                btrfs_clean_tree_block(right);
3156
3157        btrfs_item_key(right, &disk_key, 0);
3158        fixup_low_keys(path, &disk_key, 1);
3159
3160        /* then fixup the leaf pointer in the path */
3161        if (path->slots[0] < push_items) {
3162                path->slots[0] += old_left_nritems;
3163                btrfs_tree_unlock(path->nodes[0]);
3164                free_extent_buffer(path->nodes[0]);
3165                path->nodes[0] = left;
3166                path->slots[1] -= 1;
3167        } else {
3168                btrfs_tree_unlock(left);
3169                free_extent_buffer(left);
3170                path->slots[0] -= push_items;
3171        }
3172        BUG_ON(path->slots[0] < 0);
3173        return ret;
3174out:
3175        btrfs_tree_unlock(left);
3176        free_extent_buffer(left);
3177        return ret;
3178}
3179
3180/*
3181 * push some data in the path leaf to the left, trying to free up at
3182 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3183 *
3184 * max_slot can put a limit on how far into the leaf we'll push items.  The
3185 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3186 * items
3187 */
3188static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3189                          *root, struct btrfs_path *path, int min_data_size,
3190                          int data_size, int empty, u32 max_slot)
3191{
3192        struct extent_buffer *right = path->nodes[0];
3193        struct extent_buffer *left;
3194        int slot;
3195        int free_space;
3196        u32 right_nritems;
3197        int ret = 0;
3198
3199        slot = path->slots[1];
3200        if (slot == 0)
3201                return 1;
3202        if (!path->nodes[1])
3203                return 1;
3204
3205        right_nritems = btrfs_header_nritems(right);
3206        if (right_nritems == 0)
3207                return 1;
3208
3209        btrfs_assert_tree_write_locked(path->nodes[1]);
3210
3211        left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3212        /*
3213         * slot - 1 is not valid or we fail to read the left node,
3214         * no big deal, just return.
3215         */
3216        if (IS_ERR(left))
3217                return 1;
3218
3219        __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3220
3221        free_space = btrfs_leaf_free_space(left);
3222        if (free_space < data_size) {
3223                ret = 1;
3224                goto out;
3225        }
3226
3227        /* cow and double check */
3228        ret = btrfs_cow_block(trans, root, left,
3229                              path->nodes[1], slot - 1, &left,
3230                              BTRFS_NESTING_LEFT_COW);
3231        if (ret) {
3232                /* we hit -ENOSPC, but it isn't fatal here */
3233                if (ret == -ENOSPC)
3234                        ret = 1;
3235                goto out;
3236        }
3237
3238        free_space = btrfs_leaf_free_space(left);
3239        if (free_space < data_size) {
3240                ret = 1;
3241                goto out;
3242        }
3243
3244        if (check_sibling_keys(left, right)) {
3245                ret = -EUCLEAN;
3246                goto out;
3247        }
3248        return __push_leaf_left(path, min_data_size,
3249                               empty, left, free_space, right_nritems,
3250                               max_slot);
3251out:
3252        btrfs_tree_unlock(left);
3253        free_extent_buffer(left);
3254        return ret;
3255}
3256
3257/*
3258 * split the path's leaf in two, making sure there is at least data_size
3259 * available for the resulting leaf level of the path.
3260 */
3261static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3262                                    struct btrfs_path *path,
3263                                    struct extent_buffer *l,
3264                                    struct extent_buffer *right,
3265                                    int slot, int mid, int nritems)
3266{
3267        struct btrfs_fs_info *fs_info = trans->fs_info;
3268        int data_copy_size;
3269        int rt_data_off;
3270        int i;
3271        struct btrfs_disk_key disk_key;
3272        struct btrfs_map_token token;
3273
3274        nritems = nritems - mid;
3275        btrfs_set_header_nritems(right, nritems);
3276        data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3277
3278        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3279                           btrfs_item_nr_offset(mid),
3280                           nritems * sizeof(struct btrfs_item));
3281
3282        copy_extent_buffer(right, l,
3283                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3284                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3285                     leaf_data_end(l), data_copy_size);
3286
3287        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3288
3289        btrfs_init_map_token(&token, right);
3290        for (i = 0; i < nritems; i++) {
3291                u32 ioff;
3292
3293                ioff = btrfs_token_item_offset(&token, i);
3294                btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3295        }
3296
3297        btrfs_set_header_nritems(l, mid);
3298        btrfs_item_key(right, &disk_key, 0);
3299        insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3300
3301        btrfs_mark_buffer_dirty(right);
3302        btrfs_mark_buffer_dirty(l);
3303        BUG_ON(path->slots[0] != slot);
3304
3305        if (mid <= slot) {
3306                btrfs_tree_unlock(path->nodes[0]);
3307                free_extent_buffer(path->nodes[0]);
3308                path->nodes[0] = right;
3309                path->slots[0] -= mid;
3310                path->slots[1] += 1;
3311        } else {
3312                btrfs_tree_unlock(right);
3313                free_extent_buffer(right);
3314        }
3315
3316        BUG_ON(path->slots[0] < 0);
3317}
3318
3319/*
3320 * double splits happen when we need to insert a big item in the middle
3321 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3322 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3323 *          A                 B                 C
3324 *
3325 * We avoid this by trying to push the items on either side of our target
3326 * into the adjacent leaves.  If all goes well we can avoid the double split
3327 * completely.
3328 */
3329static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3330                                          struct btrfs_root *root,
3331                                          struct btrfs_path *path,
3332                                          int data_size)
3333{
3334        int ret;
3335        int progress = 0;
3336        int slot;
3337        u32 nritems;
3338        int space_needed = data_size;
3339
3340        slot = path->slots[0];
3341        if (slot < btrfs_header_nritems(path->nodes[0]))
3342                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3343
3344        /*
3345         * try to push all the items after our slot into the
3346         * right leaf
3347         */
3348        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3349        if (ret < 0)
3350                return ret;
3351
3352        if (ret == 0)
3353                progress++;
3354
3355        nritems = btrfs_header_nritems(path->nodes[0]);
3356        /*
3357         * our goal is to get our slot at the start or end of a leaf.  If
3358         * we've done so we're done
3359         */
3360        if (path->slots[0] == 0 || path->slots[0] == nritems)
3361                return 0;
3362
3363        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3364                return 0;
3365
3366        /* try to push all the items before our slot into the next leaf */
3367        slot = path->slots[0];
3368        space_needed = data_size;
3369        if (slot > 0)
3370                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3371        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3372        if (ret < 0)
3373                return ret;
3374
3375        if (ret == 0)
3376                progress++;
3377
3378        if (progress)
3379                return 0;
3380        return 1;
3381}
3382
3383/*
3384 * split the path's leaf in two, making sure there is at least data_size
3385 * available for the resulting leaf level of the path.
3386 *
3387 * returns 0 if all went well and < 0 on failure.
3388 */
3389static noinline int split_leaf(struct btrfs_trans_handle *trans,
3390                               struct btrfs_root *root,
3391                               const struct btrfs_key *ins_key,
3392                               struct btrfs_path *path, int data_size,
3393                               int extend)
3394{
3395        struct btrfs_disk_key disk_key;
3396        struct extent_buffer *l;
3397        u32 nritems;
3398        int mid;
3399        int slot;
3400        struct extent_buffer *right;
3401        struct btrfs_fs_info *fs_info = root->fs_info;
3402        int ret = 0;
3403        int wret;
3404        int split;
3405        int num_doubles = 0;
3406        int tried_avoid_double = 0;
3407
3408        l = path->nodes[0];
3409        slot = path->slots[0];
3410        if (extend && data_size + btrfs_item_size(l, slot) +
3411            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3412                return -EOVERFLOW;
3413
3414        /* first try to make some room by pushing left and right */
3415        if (data_size && path->nodes[1]) {
3416                int space_needed = data_size;
3417
3418                if (slot < btrfs_header_nritems(l))
3419                        space_needed -= btrfs_leaf_free_space(l);
3420
3421                wret = push_leaf_right(trans, root, path, space_needed,
3422                                       space_needed, 0, 0);
3423                if (wret < 0)
3424                        return wret;
3425                if (wret) {
3426                        space_needed = data_size;
3427                        if (slot > 0)
3428                                space_needed -= btrfs_leaf_free_space(l);
3429                        wret = push_leaf_left(trans, root, path, space_needed,
3430                                              space_needed, 0, (u32)-1);
3431                        if (wret < 0)
3432                                return wret;
3433                }
3434                l = path->nodes[0];
3435
3436                /* did the pushes work? */
3437                if (btrfs_leaf_free_space(l) >= data_size)
3438                        return 0;
3439        }
3440
3441        if (!path->nodes[1]) {
3442                ret = insert_new_root(trans, root, path, 1);
3443                if (ret)
3444                        return ret;
3445        }
3446again:
3447        split = 1;
3448        l = path->nodes[0];
3449        slot = path->slots[0];
3450        nritems = btrfs_header_nritems(l);
3451        mid = (nritems + 1) / 2;
3452
3453        if (mid <= slot) {
3454                if (nritems == 1 ||
3455                    leaf_space_used(l, mid, nritems - mid) + data_size >
3456                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
3457                        if (slot >= nritems) {
3458                                split = 0;
3459                        } else {
3460                                mid = slot;
3461                                if (mid != nritems &&
3462                                    leaf_space_used(l, mid, nritems - mid) +
3463                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3464                                        if (data_size && !tried_avoid_double)
3465                                                goto push_for_double;
3466                                        split = 2;
3467                                }
3468                        }
3469                }
3470        } else {
3471                if (leaf_space_used(l, 0, mid) + data_size >
3472                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
3473                        if (!extend && data_size && slot == 0) {
3474                                split = 0;
3475                        } else if ((extend || !data_size) && slot == 0) {
3476                                mid = 1;
3477                        } else {
3478                                mid = slot;
3479                                if (mid != nritems &&
3480                                    leaf_space_used(l, mid, nritems - mid) +
3481                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3482                                        if (data_size && !tried_avoid_double)
3483                                                goto push_for_double;
3484                                        split = 2;
3485                                }
3486                        }
3487                }
3488        }
3489
3490        if (split == 0)
3491                btrfs_cpu_key_to_disk(&disk_key, ins_key);
3492        else
3493                btrfs_item_key(l, &disk_key, mid);
3494
3495        /*
3496         * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3497         * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3498         * subclasses, which is 8 at the time of this patch, and we've maxed it
3499         * out.  In the future we could add a
3500         * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3501         * use BTRFS_NESTING_NEW_ROOT.
3502         */
3503        right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3504                                       &disk_key, 0, l->start, 0,
3505                                       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3506                                       BTRFS_NESTING_SPLIT);
3507        if (IS_ERR(right))
3508                return PTR_ERR(right);
3509
3510        root_add_used(root, fs_info->nodesize);
3511
3512        if (split == 0) {
3513                if (mid <= slot) {
3514                        btrfs_set_header_nritems(right, 0);
3515                        insert_ptr(trans, path, &disk_key,
3516                                   right->start, path->slots[1] + 1, 1);
3517                        btrfs_tree_unlock(path->nodes[0]);
3518                        free_extent_buffer(path->nodes[0]);
3519                        path->nodes[0] = right;
3520                        path->slots[0] = 0;
3521                        path->slots[1] += 1;
3522                } else {
3523                        btrfs_set_header_nritems(right, 0);
3524                        insert_ptr(trans, path, &disk_key,
3525                                   right->start, path->slots[1], 1);
3526                        btrfs_tree_unlock(path->nodes[0]);
3527                        free_extent_buffer(path->nodes[0]);
3528                        path->nodes[0] = right;
3529                        path->slots[0] = 0;
3530                        if (path->slots[1] == 0)
3531                                fixup_low_keys(path, &disk_key, 1);
3532                }
3533                /*
3534                 * We create a new leaf 'right' for the required ins_len and
3535                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3536                 * the content of ins_len to 'right'.
3537                 */
3538                return ret;
3539        }
3540
3541        copy_for_split(trans, path, l, right, slot, mid, nritems);
3542
3543        if (split == 2) {
3544                BUG_ON(num_doubles != 0);
3545                num_doubles++;
3546                goto again;
3547        }
3548
3549        return 0;
3550
3551push_for_double:
3552        push_for_double_split(trans, root, path, data_size);
3553        tried_avoid_double = 1;
3554        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3555                return 0;
3556        goto again;
3557}
3558
3559static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3560                                         struct btrfs_root *root,
3561                                         struct btrfs_path *path, int ins_len)
3562{
3563        struct btrfs_key key;
3564        struct extent_buffer *leaf;
3565        struct btrfs_file_extent_item *fi;
3566        u64 extent_len = 0;
3567        u32 item_size;
3568        int ret;
3569
3570        leaf = path->nodes[0];
3571        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3572
3573        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3574               key.type != BTRFS_EXTENT_CSUM_KEY);
3575
3576        if (btrfs_leaf_free_space(leaf) >= ins_len)
3577                return 0;
3578
3579        item_size = btrfs_item_size(leaf, path->slots[0]);
3580        if (key.type == BTRFS_EXTENT_DATA_KEY) {
3581                fi = btrfs_item_ptr(leaf, path->slots[0],
3582                                    struct btrfs_file_extent_item);
3583                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3584        }
3585        btrfs_release_path(path);
3586
3587        path->keep_locks = 1;
3588        path->search_for_split = 1;
3589        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3590        path->search_for_split = 0;
3591        if (ret > 0)
3592                ret = -EAGAIN;
3593        if (ret < 0)
3594                goto err;
3595
3596        ret = -EAGAIN;
3597        leaf = path->nodes[0];
3598        /* if our item isn't there, return now */
3599        if (item_size != btrfs_item_size(leaf, path->slots[0]))
3600                goto err;
3601
3602        /* the leaf has  changed, it now has room.  return now */
3603        if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3604                goto err;
3605
3606        if (key.type == BTRFS_EXTENT_DATA_KEY) {
3607                fi = btrfs_item_ptr(leaf, path->slots[0],
3608                                    struct btrfs_file_extent_item);
3609                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3610                        goto err;
3611        }
3612
3613        ret = split_leaf(trans, root, &key, path, ins_len, 1);
3614        if (ret)
3615                goto err;
3616
3617        path->keep_locks = 0;
3618        btrfs_unlock_up_safe(path, 1);
3619        return 0;
3620err:
3621        path->keep_locks = 0;
3622        return ret;
3623}
3624
3625static noinline int split_item(struct btrfs_path *path,
3626                               const struct btrfs_key *new_key,
3627                               unsigned long split_offset)
3628{
3629        struct extent_buffer *leaf;
3630        int orig_slot, slot;
3631        char *buf;
3632        u32 nritems;
3633        u32 item_size;
3634        u32 orig_offset;
3635        struct btrfs_disk_key disk_key;
3636
3637        leaf = path->nodes[0];
3638        BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3639
3640        orig_slot = path->slots[0];
3641        orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3642        item_size = btrfs_item_size(leaf, path->slots[0]);
3643
3644        buf = kmalloc(item_size, GFP_NOFS);
3645        if (!buf)
3646                return -ENOMEM;
3647
3648        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3649                            path->slots[0]), item_size);
3650
3651        slot = path->slots[0] + 1;
3652        nritems = btrfs_header_nritems(leaf);
3653        if (slot != nritems) {
3654                /* shift the items */
3655                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3656                                btrfs_item_nr_offset(slot),
3657                                (nritems - slot) * sizeof(struct btrfs_item));
3658        }
3659
3660        btrfs_cpu_key_to_disk(&disk_key, new_key);
3661        btrfs_set_item_key(leaf, &disk_key, slot);
3662
3663        btrfs_set_item_offset(leaf, slot, orig_offset);
3664        btrfs_set_item_size(leaf, slot, item_size - split_offset);
3665
3666        btrfs_set_item_offset(leaf, orig_slot,
3667                                 orig_offset + item_size - split_offset);
3668        btrfs_set_item_size(leaf, orig_slot, split_offset);
3669
3670        btrfs_set_header_nritems(leaf, nritems + 1);
3671
3672        /* write the data for the start of the original item */
3673        write_extent_buffer(leaf, buf,
3674                            btrfs_item_ptr_offset(leaf, path->slots[0]),
3675                            split_offset);
3676
3677        /* write the data for the new item */
3678        write_extent_buffer(leaf, buf + split_offset,
3679                            btrfs_item_ptr_offset(leaf, slot),
3680                            item_size - split_offset);
3681        btrfs_mark_buffer_dirty(leaf);
3682
3683        BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3684        kfree(buf);
3685        return 0;
3686}
3687
3688/*
3689 * This function splits a single item into two items,
3690 * giving 'new_key' to the new item and splitting the
3691 * old one at split_offset (from the start of the item).
3692 *
3693 * The path may be released by this operation.  After
3694 * the split, the path is pointing to the old item.  The
3695 * new item is going to be in the same node as the old one.
3696 *
3697 * Note, the item being split must be smaller enough to live alone on
3698 * a tree block with room for one extra struct btrfs_item
3699 *
3700 * This allows us to split the item in place, keeping a lock on the
3701 * leaf the entire time.
3702 */
3703int btrfs_split_item(struct btrfs_trans_handle *trans,
3704                     struct btrfs_root *root,
3705                     struct btrfs_path *path,
3706                     const struct btrfs_key *new_key,
3707                     unsigned long split_offset)
3708{
3709        int ret;
3710        ret = setup_leaf_for_split(trans, root, path,
3711                                   sizeof(struct btrfs_item));
3712        if (ret)
3713                return ret;
3714
3715        ret = split_item(path, new_key, split_offset);
3716        return ret;
3717}
3718
3719/*
3720 * make the item pointed to by the path smaller.  new_size indicates
3721 * how small to make it, and from_end tells us if we just chop bytes
3722 * off the end of the item or if we shift the item to chop bytes off
3723 * the front.
3724 */
3725void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3726{
3727        int slot;
3728        struct extent_buffer *leaf;
3729        u32 nritems;
3730        unsigned int data_end;
3731        unsigned int old_data_start;
3732        unsigned int old_size;
3733        unsigned int size_diff;
3734        int i;
3735        struct btrfs_map_token token;
3736
3737        leaf = path->nodes[0];
3738        slot = path->slots[0];
3739
3740        old_size = btrfs_item_size(leaf, slot);
3741        if (old_size == new_size)
3742                return;
3743
3744        nritems = btrfs_header_nritems(leaf);
3745        data_end = leaf_data_end(leaf);
3746
3747        old_data_start = btrfs_item_offset(leaf, slot);
3748
3749        size_diff = old_size - new_size;
3750
3751        BUG_ON(slot < 0);
3752        BUG_ON(slot >= nritems);
3753
3754        /*
3755         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3756         */
3757        /* first correct the data pointers */
3758        btrfs_init_map_token(&token, leaf);
3759        for (i = slot; i < nritems; i++) {
3760                u32 ioff;
3761
3762                ioff = btrfs_token_item_offset(&token, i);
3763                btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3764        }
3765
3766        /* shift the data */
3767        if (from_end) {
3768                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3769                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3770                              data_end, old_data_start + new_size - data_end);
3771        } else {
3772                struct btrfs_disk_key disk_key;
3773                u64 offset;
3774
3775                btrfs_item_key(leaf, &disk_key, slot);
3776
3777                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3778                        unsigned long ptr;
3779                        struct btrfs_file_extent_item *fi;
3780
3781                        fi = btrfs_item_ptr(leaf, slot,
3782                                            struct btrfs_file_extent_item);
3783                        fi = (struct btrfs_file_extent_item *)(
3784                             (unsigned long)fi - size_diff);
3785
3786                        if (btrfs_file_extent_type(leaf, fi) ==
3787                            BTRFS_FILE_EXTENT_INLINE) {
3788                                ptr = btrfs_item_ptr_offset(leaf, slot);
3789                                memmove_extent_buffer(leaf, ptr,
3790                                      (unsigned long)fi,
3791                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3792                        }
3793                }
3794
3795                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3796                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3797                              data_end, old_data_start - data_end);
3798
3799                offset = btrfs_disk_key_offset(&disk_key);
3800                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3801                btrfs_set_item_key(leaf, &disk_key, slot);
3802                if (slot == 0)
3803                        fixup_low_keys(path, &disk_key, 1);
3804        }
3805
3806        btrfs_set_item_size(leaf, slot, new_size);
3807        btrfs_mark_buffer_dirty(leaf);
3808
3809        if (btrfs_leaf_free_space(leaf) < 0) {
3810                btrfs_print_leaf(leaf);
3811                BUG();
3812        }
3813}
3814
3815/*
3816 * make the item pointed to by the path bigger, data_size is the added size.
3817 */
3818void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3819{
3820        int slot;
3821        struct extent_buffer *leaf;
3822        u32 nritems;
3823        unsigned int data_end;
3824        unsigned int old_data;
3825        unsigned int old_size;
3826        int i;
3827        struct btrfs_map_token token;
3828
3829        leaf = path->nodes[0];
3830
3831        nritems = btrfs_header_nritems(leaf);
3832        data_end = leaf_data_end(leaf);
3833
3834        if (btrfs_leaf_free_space(leaf) < data_size) {
3835                btrfs_print_leaf(leaf);
3836                BUG();
3837        }
3838        slot = path->slots[0];
3839        old_data = btrfs_item_data_end(leaf, slot);
3840
3841        BUG_ON(slot < 0);
3842        if (slot >= nritems) {
3843                btrfs_print_leaf(leaf);
3844                btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3845                           slot, nritems);
3846                BUG();
3847        }
3848
3849        /*
3850         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3851         */
3852        /* first correct the data pointers */
3853        btrfs_init_map_token(&token, leaf);
3854        for (i = slot; i < nritems; i++) {
3855                u32 ioff;
3856
3857                ioff = btrfs_token_item_offset(&token, i);
3858                btrfs_set_token_item_offset(&token, i, ioff - data_size);
3859        }
3860
3861        /* shift the data */
3862        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3863                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3864                      data_end, old_data - data_end);
3865
3866        data_end = old_data;
3867        old_size = btrfs_item_size(leaf, slot);
3868        btrfs_set_item_size(leaf, slot, old_size + data_size);
3869        btrfs_mark_buffer_dirty(leaf);
3870
3871        if (btrfs_leaf_free_space(leaf) < 0) {
3872                btrfs_print_leaf(leaf);
3873                BUG();
3874        }
3875}
3876
3877/**
3878 * setup_items_for_insert - Helper called before inserting one or more items
3879 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3880 * in a function that doesn't call btrfs_search_slot
3881 *
3882 * @root:       root we are inserting items to
3883 * @path:       points to the leaf/slot where we are going to insert new items
3884 * @batch:      information about the batch of items to insert
3885 */
3886static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3887                                   const struct btrfs_item_batch *batch)
3888{
3889        struct btrfs_fs_info *fs_info = root->fs_info;
3890        int i;
3891        u32 nritems;
3892        unsigned int data_end;
3893        struct btrfs_disk_key disk_key;
3894        struct extent_buffer *leaf;
3895        int slot;
3896        struct btrfs_map_token token;
3897        u32 total_size;
3898
3899        /*
3900         * Before anything else, update keys in the parent and other ancestors
3901         * if needed, then release the write locks on them, so that other tasks
3902         * can use them while we modify the leaf.
3903         */
3904        if (path->slots[0] == 0) {
3905                btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3906                fixup_low_keys(path, &disk_key, 1);
3907        }
3908        btrfs_unlock_up_safe(path, 1);
3909
3910        leaf = path->nodes[0];
3911        slot = path->slots[0];
3912
3913        nritems = btrfs_header_nritems(leaf);
3914        data_end = leaf_data_end(leaf);
3915        total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3916
3917        if (btrfs_leaf_free_space(leaf) < total_size) {
3918                btrfs_print_leaf(leaf);
3919                btrfs_crit(fs_info, "not enough freespace need %u have %d",
3920                           total_size, btrfs_leaf_free_space(leaf));
3921                BUG();
3922        }
3923
3924        btrfs_init_map_token(&token, leaf);
3925        if (slot != nritems) {
3926                unsigned int old_data = btrfs_item_data_end(leaf, slot);
3927
3928                if (old_data < data_end) {
3929                        btrfs_print_leaf(leaf);
3930                        btrfs_crit(fs_info,
3931                "item at slot %d with data offset %u beyond data end of leaf %u",
3932                                   slot, old_data, data_end);
3933                        BUG();
3934                }
3935                /*
3936                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3937                 */
3938                /* first correct the data pointers */
3939                for (i = slot; i < nritems; i++) {
3940                        u32 ioff;
3941
3942                        ioff = btrfs_token_item_offset(&token, i);
3943                        btrfs_set_token_item_offset(&token, i,
3944                                                       ioff - batch->total_data_size);
3945                }
3946                /* shift the items */
3947                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3948                              btrfs_item_nr_offset(slot),
3949                              (nritems - slot) * sizeof(struct btrfs_item));
3950
3951                /* shift the data */
3952                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3953                                      data_end - batch->total_data_size,
3954                                      BTRFS_LEAF_DATA_OFFSET + data_end,
3955                                      old_data - data_end);
3956                data_end = old_data;
3957        }
3958
3959        /* setup the item for the new data */
3960        for (i = 0; i < batch->nr; i++) {
3961                btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3962                btrfs_set_item_key(leaf, &disk_key, slot + i);
3963                data_end -= batch->data_sizes[i];
3964                btrfs_set_token_item_offset(&token, slot + i, data_end);
3965                btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
3966        }
3967
3968        btrfs_set_header_nritems(leaf, nritems + batch->nr);
3969        btrfs_mark_buffer_dirty(leaf);
3970
3971        if (btrfs_leaf_free_space(leaf) < 0) {
3972                btrfs_print_leaf(leaf);
3973                BUG();
3974        }
3975}
3976
3977/*
3978 * Insert a new item into a leaf.
3979 *
3980 * @root:      The root of the btree.
3981 * @path:      A path pointing to the target leaf and slot.
3982 * @key:       The key of the new item.
3983 * @data_size: The size of the data associated with the new key.
3984 */
3985void btrfs_setup_item_for_insert(struct btrfs_root *root,
3986                                 struct btrfs_path *path,
3987                                 const struct btrfs_key *key,
3988                                 u32 data_size)
3989{
3990        struct btrfs_item_batch batch;
3991
3992        batch.keys = key;
3993        batch.data_sizes = &data_size;
3994        batch.total_data_size = data_size;
3995        batch.nr = 1;
3996
3997        setup_items_for_insert(root, path, &batch);
3998}
3999
4000/*
4001 * Given a key and some data, insert items into the tree.
4002 * This does all the path init required, making room in the tree if needed.
4003 */
4004int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4005                            struct btrfs_root *root,
4006                            struct btrfs_path *path,
4007                            const struct btrfs_item_batch *batch)
4008{
4009        int ret = 0;
4010        int slot;
4011        u32 total_size;
4012
4013        total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4014        ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4015        if (ret == 0)
4016                return -EEXIST;
4017        if (ret < 0)
4018                return ret;
4019
4020        slot = path->slots[0];
4021        BUG_ON(slot < 0);
4022
4023        setup_items_for_insert(root, path, batch);
4024        return 0;
4025}
4026
4027/*
4028 * Given a key and some data, insert an item into the tree.
4029 * This does all the path init required, making room in the tree if needed.
4030 */
4031int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4032                      const struct btrfs_key *cpu_key, void *data,
4033                      u32 data_size)
4034{
4035        int ret = 0;
4036        struct btrfs_path *path;
4037        struct extent_buffer *leaf;
4038        unsigned long ptr;
4039
4040        path = btrfs_alloc_path();
4041        if (!path)
4042                return -ENOMEM;
4043        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4044        if (!ret) {
4045                leaf = path->nodes[0];
4046                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4047                write_extent_buffer(leaf, data, ptr, data_size);
4048                btrfs_mark_buffer_dirty(leaf);
4049        }
4050        btrfs_free_path(path);
4051        return ret;
4052}
4053
4054/*
4055 * This function duplicates an item, giving 'new_key' to the new item.
4056 * It guarantees both items live in the same tree leaf and the new item is
4057 * contiguous with the original item.
4058 *
4059 * This allows us to split a file extent in place, keeping a lock on the leaf
4060 * the entire time.
4061 */
4062int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4063                         struct btrfs_root *root,
4064                         struct btrfs_path *path,
4065                         const struct btrfs_key *new_key)
4066{
4067        struct extent_buffer *leaf;
4068        int ret;
4069        u32 item_size;
4070
4071        leaf = path->nodes[0];
4072        item_size = btrfs_item_size(leaf, path->slots[0]);
4073        ret = setup_leaf_for_split(trans, root, path,
4074                                   item_size + sizeof(struct btrfs_item));
4075        if (ret)
4076                return ret;
4077
4078        path->slots[0]++;
4079        btrfs_setup_item_for_insert(root, path, new_key, item_size);
4080        leaf = path->nodes[0];
4081        memcpy_extent_buffer(leaf,
4082                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4083                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4084                             item_size);
4085        return 0;
4086}
4087
4088/*
4089 * delete the pointer from a given node.
4090 *
4091 * the tree should have been previously balanced so the deletion does not
4092 * empty a node.
4093 */
4094static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4095                    int level, int slot)
4096{
4097        struct extent_buffer *parent = path->nodes[level];
4098        u32 nritems;
4099        int ret;
4100
4101        nritems = btrfs_header_nritems(parent);
4102        if (slot != nritems - 1) {
4103                if (level) {
4104                        ret = btrfs_tree_mod_log_insert_move(parent, slot,
4105                                        slot + 1, nritems - slot - 1);
4106                        BUG_ON(ret < 0);
4107                }
4108                memmove_extent_buffer(parent,
4109                              btrfs_node_key_ptr_offset(slot),
4110                              btrfs_node_key_ptr_offset(slot + 1),
4111                              sizeof(struct btrfs_key_ptr) *
4112                              (nritems - slot - 1));
4113        } else if (level) {
4114                ret = btrfs_tree_mod_log_insert_key(parent, slot,
4115                                BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4116                BUG_ON(ret < 0);
4117        }
4118
4119        nritems--;
4120        btrfs_set_header_nritems(parent, nritems);
4121        if (nritems == 0 && parent == root->node) {
4122                BUG_ON(btrfs_header_level(root->node) != 1);
4123                /* just turn the root into a leaf and break */
4124                btrfs_set_header_level(root->node, 0);
4125        } else if (slot == 0) {
4126                struct btrfs_disk_key disk_key;
4127
4128                btrfs_node_key(parent, &disk_key, 0);
4129                fixup_low_keys(path, &disk_key, level + 1);
4130        }
4131        btrfs_mark_buffer_dirty(parent);
4132}
4133
4134/*
4135 * a helper function to delete the leaf pointed to by path->slots[1] and
4136 * path->nodes[1].
4137 *
4138 * This deletes the pointer in path->nodes[1] and frees the leaf
4139 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4140 *
4141 * The path must have already been setup for deleting the leaf, including
4142 * all the proper balancing.  path->nodes[1] must be locked.
4143 */
4144static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4145                                    struct btrfs_root *root,
4146                                    struct btrfs_path *path,
4147                                    struct extent_buffer *leaf)
4148{
4149        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4150        del_ptr(root, path, 1, path->slots[1]);
4151
4152        /*
4153         * btrfs_free_extent is expensive, we want to make sure we
4154         * aren't holding any locks when we call it
4155         */
4156        btrfs_unlock_up_safe(path, 0);
4157
4158        root_sub_used(root, leaf->len);
4159
4160        atomic_inc(&leaf->refs);
4161        btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4162        free_extent_buffer_stale(leaf);
4163}
4164/*
4165 * delete the item at the leaf level in path.  If that empties
4166 * the leaf, remove it from the tree
4167 */
4168int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4169                    struct btrfs_path *path, int slot, int nr)
4170{
4171        struct btrfs_fs_info *fs_info = root->fs_info;
4172        struct extent_buffer *leaf;
4173        u32 last_off;
4174        u32 dsize = 0;
4175        int ret = 0;
4176        int wret;
4177        int i;
4178        u32 nritems;
4179
4180        leaf = path->nodes[0];
4181        last_off = btrfs_item_offset(leaf, slot + nr - 1);
4182
4183        for (i = 0; i < nr; i++)
4184                dsize += btrfs_item_size(leaf, slot + i);
4185
4186        nritems = btrfs_header_nritems(leaf);
4187
4188        if (slot + nr != nritems) {
4189                int data_end = leaf_data_end(leaf);
4190                struct btrfs_map_token token;
4191
4192                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4193                              data_end + dsize,
4194                              BTRFS_LEAF_DATA_OFFSET + data_end,
4195                              last_off - data_end);
4196
4197                btrfs_init_map_token(&token, leaf);
4198                for (i = slot + nr; i < nritems; i++) {
4199                        u32 ioff;
4200
4201                        ioff = btrfs_token_item_offset(&token, i);
4202                        btrfs_set_token_item_offset(&token, i, ioff + dsize);
4203                }
4204
4205                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4206                              btrfs_item_nr_offset(slot + nr),
4207                              sizeof(struct btrfs_item) *
4208                              (nritems - slot - nr));
4209        }
4210        btrfs_set_header_nritems(leaf, nritems - nr);
4211        nritems -= nr;
4212
4213        /* delete the leaf if we've emptied it */
4214        if (nritems == 0) {
4215                if (leaf == root->node) {
4216                        btrfs_set_header_level(leaf, 0);
4217                } else {
4218                        btrfs_clean_tree_block(leaf);
4219                        btrfs_del_leaf(trans, root, path, leaf);
4220                }
4221        } else {
4222                int used = leaf_space_used(leaf, 0, nritems);
4223                if (slot == 0) {
4224                        struct btrfs_disk_key disk_key;
4225
4226                        btrfs_item_key(leaf, &disk_key, 0);
4227                        fixup_low_keys(path, &disk_key, 1);
4228                }
4229
4230                /* delete the leaf if it is mostly empty */
4231                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4232                        /* push_leaf_left fixes the path.
4233                         * make sure the path still points to our leaf
4234                         * for possible call to del_ptr below
4235                         */
4236                        slot = path->slots[1];
4237                        atomic_inc(&leaf->refs);
4238
4239                        wret = push_leaf_left(trans, root, path, 1, 1,
4240                                              1, (u32)-1);
4241                        if (wret < 0 && wret != -ENOSPC)
4242                                ret = wret;
4243
4244                        if (path->nodes[0] == leaf &&
4245                            btrfs_header_nritems(leaf)) {
4246                                wret = push_leaf_right(trans, root, path, 1,
4247                                                       1, 1, 0);
4248                                if (wret < 0 && wret != -ENOSPC)
4249                                        ret = wret;
4250                        }
4251
4252                        if (btrfs_header_nritems(leaf) == 0) {
4253                                path->slots[1] = slot;
4254                                btrfs_del_leaf(trans, root, path, leaf);
4255                                free_extent_buffer(leaf);
4256                                ret = 0;
4257                        } else {
4258                                /* if we're still in the path, make sure
4259                                 * we're dirty.  Otherwise, one of the
4260                                 * push_leaf functions must have already
4261                                 * dirtied this buffer
4262                                 */
4263                                if (path->nodes[0] == leaf)
4264                                        btrfs_mark_buffer_dirty(leaf);
4265                                free_extent_buffer(leaf);
4266                        }
4267                } else {
4268                        btrfs_mark_buffer_dirty(leaf);
4269                }
4270        }
4271        return ret;
4272}
4273
4274/*
4275 * search the tree again to find a leaf with lesser keys
4276 * returns 0 if it found something or 1 if there are no lesser leaves.
4277 * returns < 0 on io errors.
4278 *
4279 * This may release the path, and so you may lose any locks held at the
4280 * time you call it.
4281 */
4282int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4283{
4284        struct btrfs_key key;
4285        struct btrfs_disk_key found_key;
4286        int ret;
4287
4288        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4289
4290        if (key.offset > 0) {
4291                key.offset--;
4292        } else if (key.type > 0) {
4293                key.type--;
4294                key.offset = (u64)-1;
4295        } else if (key.objectid > 0) {
4296                key.objectid--;
4297                key.type = (u8)-1;
4298                key.offset = (u64)-1;
4299        } else {
4300                return 1;
4301        }
4302
4303        btrfs_release_path(path);
4304        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4305        if (ret < 0)
4306                return ret;
4307        btrfs_item_key(path->nodes[0], &found_key, 0);
4308        ret = comp_keys(&found_key, &key);
4309        /*
4310         * We might have had an item with the previous key in the tree right
4311         * before we released our path. And after we released our path, that
4312         * item might have been pushed to the first slot (0) of the leaf we
4313         * were holding due to a tree balance. Alternatively, an item with the
4314         * previous key can exist as the only element of a leaf (big fat item).
4315         * Therefore account for these 2 cases, so that our callers (like
4316         * btrfs_previous_item) don't miss an existing item with a key matching
4317         * the previous key we computed above.
4318         */
4319        if (ret <= 0)
4320                return 0;
4321        return 1;
4322}
4323
4324/*
4325 * A helper function to walk down the tree starting at min_key, and looking
4326 * for nodes or leaves that are have a minimum transaction id.
4327 * This is used by the btree defrag code, and tree logging
4328 *
4329 * This does not cow, but it does stuff the starting key it finds back
4330 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4331 * key and get a writable path.
4332 *
4333 * This honors path->lowest_level to prevent descent past a given level
4334 * of the tree.
4335 *
4336 * min_trans indicates the oldest transaction that you are interested
4337 * in walking through.  Any nodes or leaves older than min_trans are
4338 * skipped over (without reading them).
4339 *
4340 * returns zero if something useful was found, < 0 on error and 1 if there
4341 * was nothing in the tree that matched the search criteria.
4342 */
4343int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4344                         struct btrfs_path *path,
4345                         u64 min_trans)
4346{
4347        struct extent_buffer *cur;
4348        struct btrfs_key found_key;
4349        int slot;
4350        int sret;
4351        u32 nritems;
4352        int level;
4353        int ret = 1;
4354        int keep_locks = path->keep_locks;
4355
4356        path->keep_locks = 1;
4357again:
4358        cur = btrfs_read_lock_root_node(root);
4359        level = btrfs_header_level(cur);
4360        WARN_ON(path->nodes[level]);
4361        path->nodes[level] = cur;
4362        path->locks[level] = BTRFS_READ_LOCK;
4363
4364        if (btrfs_header_generation(cur) < min_trans) {
4365                ret = 1;
4366                goto out;
4367        }
4368        while (1) {
4369                nritems = btrfs_header_nritems(cur);
4370                level = btrfs_header_level(cur);
4371                sret = btrfs_bin_search(cur, min_key, &slot);
4372                if (sret < 0) {
4373                        ret = sret;
4374                        goto out;
4375                }
4376
4377                /* at the lowest level, we're done, setup the path and exit */
4378                if (level == path->lowest_level) {
4379                        if (slot >= nritems)
4380                                goto find_next_key;
4381                        ret = 0;
4382                        path->slots[level] = slot;
4383                        btrfs_item_key_to_cpu(cur, &found_key, slot);
4384                        goto out;
4385                }
4386                if (sret && slot > 0)
4387                        slot--;
4388                /*
4389                 * check this node pointer against the min_trans parameters.
4390                 * If it is too old, skip to the next one.
4391                 */
4392                while (slot < nritems) {
4393                        u64 gen;
4394
4395                        gen = btrfs_node_ptr_generation(cur, slot);
4396                        if (gen < min_trans) {
4397                                slot++;
4398                                continue;
4399                        }
4400                        break;
4401                }
4402find_next_key:
4403                /*
4404                 * we didn't find a candidate key in this node, walk forward
4405                 * and find another one
4406                 */
4407                if (slot >= nritems) {
4408                        path->slots[level] = slot;
4409                        sret = btrfs_find_next_key(root, path, min_key, level,
4410                                                  min_trans);
4411                        if (sret == 0) {
4412                                btrfs_release_path(path);
4413                                goto again;
4414                        } else {
4415                                goto out;
4416                        }
4417                }
4418                /* save our key for returning back */
4419                btrfs_node_key_to_cpu(cur, &found_key, slot);
4420                path->slots[level] = slot;
4421                if (level == path->lowest_level) {
4422                        ret = 0;
4423                        goto out;
4424                }
4425                cur = btrfs_read_node_slot(cur, slot);
4426                if (IS_ERR(cur)) {
4427                        ret = PTR_ERR(cur);
4428                        goto out;
4429                }
4430
4431                btrfs_tree_read_lock(cur);
4432
4433                path->locks[level - 1] = BTRFS_READ_LOCK;
4434                path->nodes[level - 1] = cur;
4435                unlock_up(path, level, 1, 0, NULL);
4436        }
4437out:
4438        path->keep_locks = keep_locks;
4439        if (ret == 0) {
4440                btrfs_unlock_up_safe(path, path->lowest_level + 1);
4441                memcpy(min_key, &found_key, sizeof(found_key));
4442        }
4443        return ret;
4444}
4445
4446/*
4447 * this is similar to btrfs_next_leaf, but does not try to preserve
4448 * and fixup the path.  It looks for and returns the next key in the
4449 * tree based on the current path and the min_trans parameters.
4450 *
4451 * 0 is returned if another key is found, < 0 if there are any errors
4452 * and 1 is returned if there are no higher keys in the tree
4453 *
4454 * path->keep_locks should be set to 1 on the search made before
4455 * calling this function.
4456 */
4457int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4458                        struct btrfs_key *key, int level, u64 min_trans)
4459{
4460        int slot;
4461        struct extent_buffer *c;
4462
4463        WARN_ON(!path->keep_locks && !path->skip_locking);
4464        while (level < BTRFS_MAX_LEVEL) {
4465                if (!path->nodes[level])
4466                        return 1;
4467
4468                slot = path->slots[level] + 1;
4469                c = path->nodes[level];
4470next:
4471                if (slot >= btrfs_header_nritems(c)) {
4472                        int ret;
4473                        int orig_lowest;
4474                        struct btrfs_key cur_key;
4475                        if (level + 1 >= BTRFS_MAX_LEVEL ||
4476                            !path->nodes[level + 1])
4477                                return 1;
4478
4479                        if (path->locks[level + 1] || path->skip_locking) {
4480                                level++;
4481                                continue;
4482                        }
4483
4484                        slot = btrfs_header_nritems(c) - 1;
4485                        if (level == 0)
4486                                btrfs_item_key_to_cpu(c, &cur_key, slot);
4487                        else
4488                                btrfs_node_key_to_cpu(c, &cur_key, slot);
4489
4490                        orig_lowest = path->lowest_level;
4491                        btrfs_release_path(path);
4492                        path->lowest_level = level;
4493                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
4494                                                0, 0);
4495                        path->lowest_level = orig_lowest;
4496                        if (ret < 0)
4497                                return ret;
4498
4499                        c = path->nodes[level];
4500                        slot = path->slots[level];
4501                        if (ret == 0)
4502                                slot++;
4503                        goto next;
4504                }
4505
4506                if (level == 0)
4507                        btrfs_item_key_to_cpu(c, key, slot);
4508                else {
4509                        u64 gen = btrfs_node_ptr_generation(c, slot);
4510
4511                        if (gen < min_trans) {
4512                                slot++;
4513                                goto next;
4514                        }
4515                        btrfs_node_key_to_cpu(c, key, slot);
4516                }
4517                return 0;
4518        }
4519        return 1;
4520}
4521
4522int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4523                        u64 time_seq)
4524{
4525        int slot;
4526        int level;
4527        struct extent_buffer *c;
4528        struct extent_buffer *next;
4529        struct btrfs_fs_info *fs_info = root->fs_info;
4530        struct btrfs_key key;
4531        bool need_commit_sem = false;
4532        u32 nritems;
4533        int ret;
4534        int i;
4535
4536        nritems = btrfs_header_nritems(path->nodes[0]);
4537        if (nritems == 0)
4538                return 1;
4539
4540        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4541again:
4542        level = 1;
4543        next = NULL;
4544        btrfs_release_path(path);
4545
4546        path->keep_locks = 1;
4547
4548        if (time_seq) {
4549                ret = btrfs_search_old_slot(root, &key, path, time_seq);
4550        } else {
4551                if (path->need_commit_sem) {
4552                        path->need_commit_sem = 0;
4553                        need_commit_sem = true;
4554                        down_read(&fs_info->commit_root_sem);
4555                }
4556                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4557        }
4558        path->keep_locks = 0;
4559
4560        if (ret < 0)
4561                goto done;
4562
4563        nritems = btrfs_header_nritems(path->nodes[0]);
4564        /*
4565         * by releasing the path above we dropped all our locks.  A balance
4566         * could have added more items next to the key that used to be
4567         * at the very end of the block.  So, check again here and
4568         * advance the path if there are now more items available.
4569         */
4570        if (nritems > 0 && path->slots[0] < nritems - 1) {
4571                if (ret == 0)
4572                        path->slots[0]++;
4573                ret = 0;
4574                goto done;
4575        }
4576        /*
4577         * So the above check misses one case:
4578         * - after releasing the path above, someone has removed the item that
4579         *   used to be at the very end of the block, and balance between leafs
4580         *   gets another one with bigger key.offset to replace it.
4581         *
4582         * This one should be returned as well, or we can get leaf corruption
4583         * later(esp. in __btrfs_drop_extents()).
4584         *
4585         * And a bit more explanation about this check,
4586         * with ret > 0, the key isn't found, the path points to the slot
4587         * where it should be inserted, so the path->slots[0] item must be the
4588         * bigger one.
4589         */
4590        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4591                ret = 0;
4592                goto done;
4593        }
4594
4595        while (level < BTRFS_MAX_LEVEL) {
4596                if (!path->nodes[level]) {
4597                        ret = 1;
4598                        goto done;
4599                }
4600
4601                slot = path->slots[level] + 1;
4602                c = path->nodes[level];
4603                if (slot >= btrfs_header_nritems(c)) {
4604                        level++;
4605                        if (level == BTRFS_MAX_LEVEL) {
4606                                ret = 1;
4607                                goto done;
4608                        }
4609                        continue;
4610                }
4611
4612
4613                /*
4614                 * Our current level is where we're going to start from, and to
4615                 * make sure lockdep doesn't complain we need to drop our locks
4616                 * and nodes from 0 to our current level.
4617                 */
4618                for (i = 0; i < level; i++) {
4619                        if (path->locks[level]) {
4620                                btrfs_tree_read_unlock(path->nodes[i]);
4621                                path->locks[i] = 0;
4622                        }
4623                        free_extent_buffer(path->nodes[i]);
4624                        path->nodes[i] = NULL;
4625                }
4626
4627                next = c;
4628                ret = read_block_for_search(root, path, &next, level,
4629                                            slot, &key);
4630                if (ret == -EAGAIN)
4631                        goto again;
4632
4633                if (ret < 0) {
4634                        btrfs_release_path(path);
4635                        goto done;
4636                }
4637
4638                if (!path->skip_locking) {
4639                        ret = btrfs_try_tree_read_lock(next);
4640                        if (!ret && time_seq) {
4641                                /*
4642                                 * If we don't get the lock, we may be racing
4643                                 * with push_leaf_left, holding that lock while
4644                                 * itself waiting for the leaf we've currently
4645                                 * locked. To solve this situation, we give up
4646                                 * on our lock and cycle.
4647                                 */
4648                                free_extent_buffer(next);
4649                                btrfs_release_path(path);
4650                                cond_resched();
4651                                goto again;
4652                        }
4653                        if (!ret)
4654                                btrfs_tree_read_lock(next);
4655                }
4656                break;
4657        }
4658        path->slots[level] = slot;
4659        while (1) {
4660                level--;
4661                path->nodes[level] = next;
4662                path->slots[level] = 0;
4663                if (!path->skip_locking)
4664                        path->locks[level] = BTRFS_READ_LOCK;
4665                if (!level)
4666                        break;
4667
4668                ret = read_block_for_search(root, path, &next, level,
4669                                            0, &key);
4670                if (ret == -EAGAIN)
4671                        goto again;
4672
4673                if (ret < 0) {
4674                        btrfs_release_path(path);
4675                        goto done;
4676                }
4677
4678                if (!path->skip_locking)
4679                        btrfs_tree_read_lock(next);
4680        }
4681        ret = 0;
4682done:
4683        unlock_up(path, 0, 1, 0, NULL);
4684        if (need_commit_sem) {
4685                int ret2;
4686
4687                path->need_commit_sem = 1;
4688                ret2 = finish_need_commit_sem_search(path);
4689                up_read(&fs_info->commit_root_sem);
4690                if (ret2)
4691                        ret = ret2;
4692        }
4693
4694        return ret;
4695}
4696
4697/*
4698 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4699 * searching until it gets past min_objectid or finds an item of 'type'
4700 *
4701 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4702 */
4703int btrfs_previous_item(struct btrfs_root *root,
4704                        struct btrfs_path *path, u64 min_objectid,
4705                        int type)
4706{
4707        struct btrfs_key found_key;
4708        struct extent_buffer *leaf;
4709        u32 nritems;
4710        int ret;
4711
4712        while (1) {
4713                if (path->slots[0] == 0) {
4714                        ret = btrfs_prev_leaf(root, path);
4715                        if (ret != 0)
4716                                return ret;
4717                } else {
4718                        path->slots[0]--;
4719                }
4720                leaf = path->nodes[0];
4721                nritems = btrfs_header_nritems(leaf);
4722                if (nritems == 0)
4723                        return 1;
4724                if (path->slots[0] == nritems)
4725                        path->slots[0]--;
4726
4727                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4728                if (found_key.objectid < min_objectid)
4729                        break;
4730                if (found_key.type == type)
4731                        return 0;
4732                if (found_key.objectid == min_objectid &&
4733                    found_key.type < type)
4734                        break;
4735        }
4736        return 1;
4737}
4738
4739/*
4740 * search in extent tree to find a previous Metadata/Data extent item with
4741 * min objecitd.
4742 *
4743 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4744 */
4745int btrfs_previous_extent_item(struct btrfs_root *root,
4746                        struct btrfs_path *path, u64 min_objectid)
4747{
4748        struct btrfs_key found_key;
4749        struct extent_buffer *leaf;
4750        u32 nritems;
4751        int ret;
4752
4753        while (1) {
4754                if (path->slots[0] == 0) {
4755                        ret = btrfs_prev_leaf(root, path);
4756                        if (ret != 0)
4757                                return ret;
4758                } else {
4759                        path->slots[0]--;
4760                }
4761                leaf = path->nodes[0];
4762                nritems = btrfs_header_nritems(leaf);
4763                if (nritems == 0)
4764                        return 1;
4765                if (path->slots[0] == nritems)
4766                        path->slots[0]--;
4767
4768                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4769                if (found_key.objectid < min_objectid)
4770                        break;
4771                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4772                    found_key.type == BTRFS_METADATA_ITEM_KEY)
4773                        return 0;
4774                if (found_key.objectid == min_objectid &&
4775                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4776                        break;
4777        }
4778        return 1;
4779}
4780