linux/fs/btrfs/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include <linux/fsverity.h>
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "transaction.h"
  23#include "btrfs_inode.h"
  24#include "print-tree.h"
  25#include "tree-log.h"
  26#include "locking.h"
  27#include "volumes.h"
  28#include "qgroup.h"
  29#include "compression.h"
  30#include "delalloc-space.h"
  31#include "reflink.h"
  32#include "subpage.h"
  33
  34static struct kmem_cache *btrfs_inode_defrag_cachep;
  35/*
  36 * when auto defrag is enabled we
  37 * queue up these defrag structs to remember which
  38 * inodes need defragging passes
  39 */
  40struct inode_defrag {
  41        struct rb_node rb_node;
  42        /* objectid */
  43        u64 ino;
  44        /*
  45         * transid where the defrag was added, we search for
  46         * extents newer than this
  47         */
  48        u64 transid;
  49
  50        /* root objectid */
  51        u64 root;
  52
  53        /*
  54         * The extent size threshold for autodefrag.
  55         *
  56         * This value is different for compressed/non-compressed extents,
  57         * thus needs to be passed from higher layer.
  58         * (aka, inode_should_defrag())
  59         */
  60        u32 extent_thresh;
  61};
  62
  63static int __compare_inode_defrag(struct inode_defrag *defrag1,
  64                                  struct inode_defrag *defrag2)
  65{
  66        if (defrag1->root > defrag2->root)
  67                return 1;
  68        else if (defrag1->root < defrag2->root)
  69                return -1;
  70        else if (defrag1->ino > defrag2->ino)
  71                return 1;
  72        else if (defrag1->ino < defrag2->ino)
  73                return -1;
  74        else
  75                return 0;
  76}
  77
  78/* pop a record for an inode into the defrag tree.  The lock
  79 * must be held already
  80 *
  81 * If you're inserting a record for an older transid than an
  82 * existing record, the transid already in the tree is lowered
  83 *
  84 * If an existing record is found the defrag item you
  85 * pass in is freed
  86 */
  87static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  88                                    struct inode_defrag *defrag)
  89{
  90        struct btrfs_fs_info *fs_info = inode->root->fs_info;
  91        struct inode_defrag *entry;
  92        struct rb_node **p;
  93        struct rb_node *parent = NULL;
  94        int ret;
  95
  96        p = &fs_info->defrag_inodes.rb_node;
  97        while (*p) {
  98                parent = *p;
  99                entry = rb_entry(parent, struct inode_defrag, rb_node);
 100
 101                ret = __compare_inode_defrag(defrag, entry);
 102                if (ret < 0)
 103                        p = &parent->rb_left;
 104                else if (ret > 0)
 105                        p = &parent->rb_right;
 106                else {
 107                        /* if we're reinserting an entry for
 108                         * an old defrag run, make sure to
 109                         * lower the transid of our existing record
 110                         */
 111                        if (defrag->transid < entry->transid)
 112                                entry->transid = defrag->transid;
 113                        entry->extent_thresh = min(defrag->extent_thresh,
 114                                                   entry->extent_thresh);
 115                        return -EEXIST;
 116                }
 117        }
 118        set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 119        rb_link_node(&defrag->rb_node, parent, p);
 120        rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 121        return 0;
 122}
 123
 124static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 125{
 126        if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 127                return 0;
 128
 129        if (btrfs_fs_closing(fs_info))
 130                return 0;
 131
 132        return 1;
 133}
 134
 135/*
 136 * insert a defrag record for this inode if auto defrag is
 137 * enabled
 138 */
 139int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 140                           struct btrfs_inode *inode, u32 extent_thresh)
 141{
 142        struct btrfs_root *root = inode->root;
 143        struct btrfs_fs_info *fs_info = root->fs_info;
 144        struct inode_defrag *defrag;
 145        u64 transid;
 146        int ret;
 147
 148        if (!__need_auto_defrag(fs_info))
 149                return 0;
 150
 151        if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 152                return 0;
 153
 154        if (trans)
 155                transid = trans->transid;
 156        else
 157                transid = inode->root->last_trans;
 158
 159        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 160        if (!defrag)
 161                return -ENOMEM;
 162
 163        defrag->ino = btrfs_ino(inode);
 164        defrag->transid = transid;
 165        defrag->root = root->root_key.objectid;
 166        defrag->extent_thresh = extent_thresh;
 167
 168        spin_lock(&fs_info->defrag_inodes_lock);
 169        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 170                /*
 171                 * If we set IN_DEFRAG flag and evict the inode from memory,
 172                 * and then re-read this inode, this new inode doesn't have
 173                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 174                 */
 175                ret = __btrfs_add_inode_defrag(inode, defrag);
 176                if (ret)
 177                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 178        } else {
 179                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 180        }
 181        spin_unlock(&fs_info->defrag_inodes_lock);
 182        return 0;
 183}
 184
 185/*
 186 * pick the defragable inode that we want, if it doesn't exist, we will get
 187 * the next one.
 188 */
 189static struct inode_defrag *
 190btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 191{
 192        struct inode_defrag *entry = NULL;
 193        struct inode_defrag tmp;
 194        struct rb_node *p;
 195        struct rb_node *parent = NULL;
 196        int ret;
 197
 198        tmp.ino = ino;
 199        tmp.root = root;
 200
 201        spin_lock(&fs_info->defrag_inodes_lock);
 202        p = fs_info->defrag_inodes.rb_node;
 203        while (p) {
 204                parent = p;
 205                entry = rb_entry(parent, struct inode_defrag, rb_node);
 206
 207                ret = __compare_inode_defrag(&tmp, entry);
 208                if (ret < 0)
 209                        p = parent->rb_left;
 210                else if (ret > 0)
 211                        p = parent->rb_right;
 212                else
 213                        goto out;
 214        }
 215
 216        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 217                parent = rb_next(parent);
 218                if (parent)
 219                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 220                else
 221                        entry = NULL;
 222        }
 223out:
 224        if (entry)
 225                rb_erase(parent, &fs_info->defrag_inodes);
 226        spin_unlock(&fs_info->defrag_inodes_lock);
 227        return entry;
 228}
 229
 230void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 231{
 232        struct inode_defrag *defrag;
 233        struct rb_node *node;
 234
 235        spin_lock(&fs_info->defrag_inodes_lock);
 236        node = rb_first(&fs_info->defrag_inodes);
 237        while (node) {
 238                rb_erase(node, &fs_info->defrag_inodes);
 239                defrag = rb_entry(node, struct inode_defrag, rb_node);
 240                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 241
 242                cond_resched_lock(&fs_info->defrag_inodes_lock);
 243
 244                node = rb_first(&fs_info->defrag_inodes);
 245        }
 246        spin_unlock(&fs_info->defrag_inodes_lock);
 247}
 248
 249#define BTRFS_DEFRAG_BATCH      1024
 250
 251static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 252                                    struct inode_defrag *defrag)
 253{
 254        struct btrfs_root *inode_root;
 255        struct inode *inode;
 256        struct btrfs_ioctl_defrag_range_args range;
 257        int ret = 0;
 258        u64 cur = 0;
 259
 260again:
 261        if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
 262                goto cleanup;
 263        if (!__need_auto_defrag(fs_info))
 264                goto cleanup;
 265
 266        /* get the inode */
 267        inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 268        if (IS_ERR(inode_root)) {
 269                ret = PTR_ERR(inode_root);
 270                goto cleanup;
 271        }
 272
 273        inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
 274        btrfs_put_root(inode_root);
 275        if (IS_ERR(inode)) {
 276                ret = PTR_ERR(inode);
 277                goto cleanup;
 278        }
 279
 280        if (cur >= i_size_read(inode)) {
 281                iput(inode);
 282                goto cleanup;
 283        }
 284
 285        /* do a chunk of defrag */
 286        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 287        memset(&range, 0, sizeof(range));
 288        range.len = (u64)-1;
 289        range.start = cur;
 290        range.extent_thresh = defrag->extent_thresh;
 291
 292        sb_start_write(fs_info->sb);
 293        ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 294                                       BTRFS_DEFRAG_BATCH);
 295        sb_end_write(fs_info->sb);
 296        iput(inode);
 297
 298        if (ret < 0)
 299                goto cleanup;
 300
 301        cur = max(cur + fs_info->sectorsize, range.start);
 302        goto again;
 303
 304cleanup:
 305        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 306        return ret;
 307}
 308
 309/*
 310 * run through the list of inodes in the FS that need
 311 * defragging
 312 */
 313int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 314{
 315        struct inode_defrag *defrag;
 316        u64 first_ino = 0;
 317        u64 root_objectid = 0;
 318
 319        atomic_inc(&fs_info->defrag_running);
 320        while (1) {
 321                /* Pause the auto defragger. */
 322                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 323                             &fs_info->fs_state))
 324                        break;
 325
 326                if (!__need_auto_defrag(fs_info))
 327                        break;
 328
 329                /* find an inode to defrag */
 330                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 331                                                 first_ino);
 332                if (!defrag) {
 333                        if (root_objectid || first_ino) {
 334                                root_objectid = 0;
 335                                first_ino = 0;
 336                                continue;
 337                        } else {
 338                                break;
 339                        }
 340                }
 341
 342                first_ino = defrag->ino + 1;
 343                root_objectid = defrag->root;
 344
 345                __btrfs_run_defrag_inode(fs_info, defrag);
 346        }
 347        atomic_dec(&fs_info->defrag_running);
 348
 349        /*
 350         * during unmount, we use the transaction_wait queue to
 351         * wait for the defragger to stop
 352         */
 353        wake_up(&fs_info->transaction_wait);
 354        return 0;
 355}
 356
 357/* simple helper to fault in pages and copy.  This should go away
 358 * and be replaced with calls into generic code.
 359 */
 360static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 361                                         struct page **prepared_pages,
 362                                         struct iov_iter *i)
 363{
 364        size_t copied = 0;
 365        size_t total_copied = 0;
 366        int pg = 0;
 367        int offset = offset_in_page(pos);
 368
 369        while (write_bytes > 0) {
 370                size_t count = min_t(size_t,
 371                                     PAGE_SIZE - offset, write_bytes);
 372                struct page *page = prepared_pages[pg];
 373                /*
 374                 * Copy data from userspace to the current page
 375                 */
 376                copied = copy_page_from_iter_atomic(page, offset, count, i);
 377
 378                /* Flush processor's dcache for this page */
 379                flush_dcache_page(page);
 380
 381                /*
 382                 * if we get a partial write, we can end up with
 383                 * partially up to date pages.  These add
 384                 * a lot of complexity, so make sure they don't
 385                 * happen by forcing this copy to be retried.
 386                 *
 387                 * The rest of the btrfs_file_write code will fall
 388                 * back to page at a time copies after we return 0.
 389                 */
 390                if (unlikely(copied < count)) {
 391                        if (!PageUptodate(page)) {
 392                                iov_iter_revert(i, copied);
 393                                copied = 0;
 394                        }
 395                        if (!copied)
 396                                break;
 397                }
 398
 399                write_bytes -= copied;
 400                total_copied += copied;
 401                offset += copied;
 402                if (offset == PAGE_SIZE) {
 403                        pg++;
 404                        offset = 0;
 405                }
 406        }
 407        return total_copied;
 408}
 409
 410/*
 411 * unlocks pages after btrfs_file_write is done with them
 412 */
 413static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
 414                             struct page **pages, size_t num_pages,
 415                             u64 pos, u64 copied)
 416{
 417        size_t i;
 418        u64 block_start = round_down(pos, fs_info->sectorsize);
 419        u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
 420
 421        ASSERT(block_len <= U32_MAX);
 422        for (i = 0; i < num_pages; i++) {
 423                /* page checked is some magic around finding pages that
 424                 * have been modified without going through btrfs_set_page_dirty
 425                 * clear it here. There should be no need to mark the pages
 426                 * accessed as prepare_pages should have marked them accessed
 427                 * in prepare_pages via find_or_create_page()
 428                 */
 429                btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
 430                                               block_len);
 431                unlock_page(pages[i]);
 432                put_page(pages[i]);
 433        }
 434}
 435
 436/*
 437 * After btrfs_copy_from_user(), update the following things for delalloc:
 438 * - Mark newly dirtied pages as DELALLOC in the io tree.
 439 *   Used to advise which range is to be written back.
 440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
 441 * - Update inode size for past EOF write
 442 */
 443int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 444                      size_t num_pages, loff_t pos, size_t write_bytes,
 445                      struct extent_state **cached, bool noreserve)
 446{
 447        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 448        int err = 0;
 449        int i;
 450        u64 num_bytes;
 451        u64 start_pos;
 452        u64 end_of_last_block;
 453        u64 end_pos = pos + write_bytes;
 454        loff_t isize = i_size_read(&inode->vfs_inode);
 455        unsigned int extra_bits = 0;
 456
 457        if (write_bytes == 0)
 458                return 0;
 459
 460        if (noreserve)
 461                extra_bits |= EXTENT_NORESERVE;
 462
 463        start_pos = round_down(pos, fs_info->sectorsize);
 464        num_bytes = round_up(write_bytes + pos - start_pos,
 465                             fs_info->sectorsize);
 466        ASSERT(num_bytes <= U32_MAX);
 467
 468        end_of_last_block = start_pos + num_bytes - 1;
 469
 470        /*
 471         * The pages may have already been dirty, clear out old accounting so
 472         * we can set things up properly
 473         */
 474        clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 475                         EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 476                         0, 0, cached);
 477
 478        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 479                                        extra_bits, cached);
 480        if (err)
 481                return err;
 482
 483        for (i = 0; i < num_pages; i++) {
 484                struct page *p = pages[i];
 485
 486                btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
 487                btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
 488                btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
 489        }
 490
 491        /*
 492         * we've only changed i_size in ram, and we haven't updated
 493         * the disk i_size.  There is no need to log the inode
 494         * at this time.
 495         */
 496        if (end_pos > isize)
 497                i_size_write(&inode->vfs_inode, end_pos);
 498        return 0;
 499}
 500
 501/*
 502 * this drops all the extents in the cache that intersect the range
 503 * [start, end].  Existing extents are split as required.
 504 */
 505void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 506                             int skip_pinned)
 507{
 508        struct extent_map *em;
 509        struct extent_map *split = NULL;
 510        struct extent_map *split2 = NULL;
 511        struct extent_map_tree *em_tree = &inode->extent_tree;
 512        u64 len = end - start + 1;
 513        u64 gen;
 514        int ret;
 515        int testend = 1;
 516        unsigned long flags;
 517        int compressed = 0;
 518        bool modified;
 519
 520        WARN_ON(end < start);
 521        if (end == (u64)-1) {
 522                len = (u64)-1;
 523                testend = 0;
 524        }
 525        while (1) {
 526                int no_splits = 0;
 527
 528                modified = false;
 529                if (!split)
 530                        split = alloc_extent_map();
 531                if (!split2)
 532                        split2 = alloc_extent_map();
 533                if (!split || !split2)
 534                        no_splits = 1;
 535
 536                write_lock(&em_tree->lock);
 537                em = lookup_extent_mapping(em_tree, start, len);
 538                if (!em) {
 539                        write_unlock(&em_tree->lock);
 540                        break;
 541                }
 542                flags = em->flags;
 543                gen = em->generation;
 544                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 545                        if (testend && em->start + em->len >= start + len) {
 546                                free_extent_map(em);
 547                                write_unlock(&em_tree->lock);
 548                                break;
 549                        }
 550                        start = em->start + em->len;
 551                        if (testend)
 552                                len = start + len - (em->start + em->len);
 553                        free_extent_map(em);
 554                        write_unlock(&em_tree->lock);
 555                        continue;
 556                }
 557                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 558                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 559                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 560                modified = !list_empty(&em->list);
 561                if (no_splits)
 562                        goto next;
 563
 564                if (em->start < start) {
 565                        split->start = em->start;
 566                        split->len = start - em->start;
 567
 568                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 569                                split->orig_start = em->orig_start;
 570                                split->block_start = em->block_start;
 571
 572                                if (compressed)
 573                                        split->block_len = em->block_len;
 574                                else
 575                                        split->block_len = split->len;
 576                                split->orig_block_len = max(split->block_len,
 577                                                em->orig_block_len);
 578                                split->ram_bytes = em->ram_bytes;
 579                        } else {
 580                                split->orig_start = split->start;
 581                                split->block_len = 0;
 582                                split->block_start = em->block_start;
 583                                split->orig_block_len = 0;
 584                                split->ram_bytes = split->len;
 585                        }
 586
 587                        split->generation = gen;
 588                        split->flags = flags;
 589                        split->compress_type = em->compress_type;
 590                        replace_extent_mapping(em_tree, em, split, modified);
 591                        free_extent_map(split);
 592                        split = split2;
 593                        split2 = NULL;
 594                }
 595                if (testend && em->start + em->len > start + len) {
 596                        u64 diff = start + len - em->start;
 597
 598                        split->start = start + len;
 599                        split->len = em->start + em->len - (start + len);
 600                        split->flags = flags;
 601                        split->compress_type = em->compress_type;
 602                        split->generation = gen;
 603
 604                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 605                                split->orig_block_len = max(em->block_len,
 606                                                    em->orig_block_len);
 607
 608                                split->ram_bytes = em->ram_bytes;
 609                                if (compressed) {
 610                                        split->block_len = em->block_len;
 611                                        split->block_start = em->block_start;
 612                                        split->orig_start = em->orig_start;
 613                                } else {
 614                                        split->block_len = split->len;
 615                                        split->block_start = em->block_start
 616                                                + diff;
 617                                        split->orig_start = em->orig_start;
 618                                }
 619                        } else {
 620                                split->ram_bytes = split->len;
 621                                split->orig_start = split->start;
 622                                split->block_len = 0;
 623                                split->block_start = em->block_start;
 624                                split->orig_block_len = 0;
 625                        }
 626
 627                        if (extent_map_in_tree(em)) {
 628                                replace_extent_mapping(em_tree, em, split,
 629                                                       modified);
 630                        } else {
 631                                ret = add_extent_mapping(em_tree, split,
 632                                                         modified);
 633                                ASSERT(ret == 0); /* Logic error */
 634                        }
 635                        free_extent_map(split);
 636                        split = NULL;
 637                }
 638next:
 639                if (extent_map_in_tree(em))
 640                        remove_extent_mapping(em_tree, em);
 641                write_unlock(&em_tree->lock);
 642
 643                /* once for us */
 644                free_extent_map(em);
 645                /* once for the tree*/
 646                free_extent_map(em);
 647        }
 648        if (split)
 649                free_extent_map(split);
 650        if (split2)
 651                free_extent_map(split2);
 652}
 653
 654/*
 655 * this is very complex, but the basic idea is to drop all extents
 656 * in the range start - end.  hint_block is filled in with a block number
 657 * that would be a good hint to the block allocator for this file.
 658 *
 659 * If an extent intersects the range but is not entirely inside the range
 660 * it is either truncated or split.  Anything entirely inside the range
 661 * is deleted from the tree.
 662 *
 663 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 664 * to deal with that. We set the field 'bytes_found' of the arguments structure
 665 * with the number of allocated bytes found in the target range, so that the
 666 * caller can update the inode's number of bytes in an atomic way when
 667 * replacing extents in a range to avoid races with stat(2).
 668 */
 669int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 670                       struct btrfs_root *root, struct btrfs_inode *inode,
 671                       struct btrfs_drop_extents_args *args)
 672{
 673        struct btrfs_fs_info *fs_info = root->fs_info;
 674        struct extent_buffer *leaf;
 675        struct btrfs_file_extent_item *fi;
 676        struct btrfs_ref ref = { 0 };
 677        struct btrfs_key key;
 678        struct btrfs_key new_key;
 679        u64 ino = btrfs_ino(inode);
 680        u64 search_start = args->start;
 681        u64 disk_bytenr = 0;
 682        u64 num_bytes = 0;
 683        u64 extent_offset = 0;
 684        u64 extent_end = 0;
 685        u64 last_end = args->start;
 686        int del_nr = 0;
 687        int del_slot = 0;
 688        int extent_type;
 689        int recow;
 690        int ret;
 691        int modify_tree = -1;
 692        int update_refs;
 693        int found = 0;
 694        int leafs_visited = 0;
 695        struct btrfs_path *path = args->path;
 696
 697        args->bytes_found = 0;
 698        args->extent_inserted = false;
 699
 700        /* Must always have a path if ->replace_extent is true */
 701        ASSERT(!(args->replace_extent && !args->path));
 702
 703        if (!path) {
 704                path = btrfs_alloc_path();
 705                if (!path) {
 706                        ret = -ENOMEM;
 707                        goto out;
 708                }
 709        }
 710
 711        if (args->drop_cache)
 712                btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
 713
 714        if (args->start >= inode->disk_i_size && !args->replace_extent)
 715                modify_tree = 0;
 716
 717        update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 718        while (1) {
 719                recow = 0;
 720                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 721                                               search_start, modify_tree);
 722                if (ret < 0)
 723                        break;
 724                if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 725                        leaf = path->nodes[0];
 726                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 727                        if (key.objectid == ino &&
 728                            key.type == BTRFS_EXTENT_DATA_KEY)
 729                                path->slots[0]--;
 730                }
 731                ret = 0;
 732                leafs_visited++;
 733next_slot:
 734                leaf = path->nodes[0];
 735                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 736                        BUG_ON(del_nr > 0);
 737                        ret = btrfs_next_leaf(root, path);
 738                        if (ret < 0)
 739                                break;
 740                        if (ret > 0) {
 741                                ret = 0;
 742                                break;
 743                        }
 744                        leafs_visited++;
 745                        leaf = path->nodes[0];
 746                        recow = 1;
 747                }
 748
 749                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 750
 751                if (key.objectid > ino)
 752                        break;
 753                if (WARN_ON_ONCE(key.objectid < ino) ||
 754                    key.type < BTRFS_EXTENT_DATA_KEY) {
 755                        ASSERT(del_nr == 0);
 756                        path->slots[0]++;
 757                        goto next_slot;
 758                }
 759                if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 760                        break;
 761
 762                fi = btrfs_item_ptr(leaf, path->slots[0],
 763                                    struct btrfs_file_extent_item);
 764                extent_type = btrfs_file_extent_type(leaf, fi);
 765
 766                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 767                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 768                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 769                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 770                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 771                        extent_end = key.offset +
 772                                btrfs_file_extent_num_bytes(leaf, fi);
 773                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 774                        extent_end = key.offset +
 775                                btrfs_file_extent_ram_bytes(leaf, fi);
 776                } else {
 777                        /* can't happen */
 778                        BUG();
 779                }
 780
 781                /*
 782                 * Don't skip extent items representing 0 byte lengths. They
 783                 * used to be created (bug) if while punching holes we hit
 784                 * -ENOSPC condition. So if we find one here, just ensure we
 785                 * delete it, otherwise we would insert a new file extent item
 786                 * with the same key (offset) as that 0 bytes length file
 787                 * extent item in the call to setup_items_for_insert() later
 788                 * in this function.
 789                 */
 790                if (extent_end == key.offset && extent_end >= search_start) {
 791                        last_end = extent_end;
 792                        goto delete_extent_item;
 793                }
 794
 795                if (extent_end <= search_start) {
 796                        path->slots[0]++;
 797                        goto next_slot;
 798                }
 799
 800                found = 1;
 801                search_start = max(key.offset, args->start);
 802                if (recow || !modify_tree) {
 803                        modify_tree = -1;
 804                        btrfs_release_path(path);
 805                        continue;
 806                }
 807
 808                /*
 809                 *     | - range to drop - |
 810                 *  | -------- extent -------- |
 811                 */
 812                if (args->start > key.offset && args->end < extent_end) {
 813                        BUG_ON(del_nr > 0);
 814                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 815                                ret = -EOPNOTSUPP;
 816                                break;
 817                        }
 818
 819                        memcpy(&new_key, &key, sizeof(new_key));
 820                        new_key.offset = args->start;
 821                        ret = btrfs_duplicate_item(trans, root, path,
 822                                                   &new_key);
 823                        if (ret == -EAGAIN) {
 824                                btrfs_release_path(path);
 825                                continue;
 826                        }
 827                        if (ret < 0)
 828                                break;
 829
 830                        leaf = path->nodes[0];
 831                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 832                                            struct btrfs_file_extent_item);
 833                        btrfs_set_file_extent_num_bytes(leaf, fi,
 834                                                        args->start - key.offset);
 835
 836                        fi = btrfs_item_ptr(leaf, path->slots[0],
 837                                            struct btrfs_file_extent_item);
 838
 839                        extent_offset += args->start - key.offset;
 840                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 841                        btrfs_set_file_extent_num_bytes(leaf, fi,
 842                                                        extent_end - args->start);
 843                        btrfs_mark_buffer_dirty(leaf);
 844
 845                        if (update_refs && disk_bytenr > 0) {
 846                                btrfs_init_generic_ref(&ref,
 847                                                BTRFS_ADD_DELAYED_REF,
 848                                                disk_bytenr, num_bytes, 0);
 849                                btrfs_init_data_ref(&ref,
 850                                                root->root_key.objectid,
 851                                                new_key.objectid,
 852                                                args->start - extent_offset,
 853                                                0, false);
 854                                ret = btrfs_inc_extent_ref(trans, &ref);
 855                                BUG_ON(ret); /* -ENOMEM */
 856                        }
 857                        key.offset = args->start;
 858                }
 859                /*
 860                 * From here on out we will have actually dropped something, so
 861                 * last_end can be updated.
 862                 */
 863                last_end = extent_end;
 864
 865                /*
 866                 *  | ---- range to drop ----- |
 867                 *      | -------- extent -------- |
 868                 */
 869                if (args->start <= key.offset && args->end < extent_end) {
 870                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 871                                ret = -EOPNOTSUPP;
 872                                break;
 873                        }
 874
 875                        memcpy(&new_key, &key, sizeof(new_key));
 876                        new_key.offset = args->end;
 877                        btrfs_set_item_key_safe(fs_info, path, &new_key);
 878
 879                        extent_offset += args->end - key.offset;
 880                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 881                        btrfs_set_file_extent_num_bytes(leaf, fi,
 882                                                        extent_end - args->end);
 883                        btrfs_mark_buffer_dirty(leaf);
 884                        if (update_refs && disk_bytenr > 0)
 885                                args->bytes_found += args->end - key.offset;
 886                        break;
 887                }
 888
 889                search_start = extent_end;
 890                /*
 891                 *       | ---- range to drop ----- |
 892                 *  | -------- extent -------- |
 893                 */
 894                if (args->start > key.offset && args->end >= extent_end) {
 895                        BUG_ON(del_nr > 0);
 896                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 897                                ret = -EOPNOTSUPP;
 898                                break;
 899                        }
 900
 901                        btrfs_set_file_extent_num_bytes(leaf, fi,
 902                                                        args->start - key.offset);
 903                        btrfs_mark_buffer_dirty(leaf);
 904                        if (update_refs && disk_bytenr > 0)
 905                                args->bytes_found += extent_end - args->start;
 906                        if (args->end == extent_end)
 907                                break;
 908
 909                        path->slots[0]++;
 910                        goto next_slot;
 911                }
 912
 913                /*
 914                 *  | ---- range to drop ----- |
 915                 *    | ------ extent ------ |
 916                 */
 917                if (args->start <= key.offset && args->end >= extent_end) {
 918delete_extent_item:
 919                        if (del_nr == 0) {
 920                                del_slot = path->slots[0];
 921                                del_nr = 1;
 922                        } else {
 923                                BUG_ON(del_slot + del_nr != path->slots[0]);
 924                                del_nr++;
 925                        }
 926
 927                        if (update_refs &&
 928                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
 929                                args->bytes_found += extent_end - key.offset;
 930                                extent_end = ALIGN(extent_end,
 931                                                   fs_info->sectorsize);
 932                        } else if (update_refs && disk_bytenr > 0) {
 933                                btrfs_init_generic_ref(&ref,
 934                                                BTRFS_DROP_DELAYED_REF,
 935                                                disk_bytenr, num_bytes, 0);
 936                                btrfs_init_data_ref(&ref,
 937                                                root->root_key.objectid,
 938                                                key.objectid,
 939                                                key.offset - extent_offset, 0,
 940                                                false);
 941                                ret = btrfs_free_extent(trans, &ref);
 942                                BUG_ON(ret); /* -ENOMEM */
 943                                args->bytes_found += extent_end - key.offset;
 944                        }
 945
 946                        if (args->end == extent_end)
 947                                break;
 948
 949                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 950                                path->slots[0]++;
 951                                goto next_slot;
 952                        }
 953
 954                        ret = btrfs_del_items(trans, root, path, del_slot,
 955                                              del_nr);
 956                        if (ret) {
 957                                btrfs_abort_transaction(trans, ret);
 958                                break;
 959                        }
 960
 961                        del_nr = 0;
 962                        del_slot = 0;
 963
 964                        btrfs_release_path(path);
 965                        continue;
 966                }
 967
 968                BUG();
 969        }
 970
 971        if (!ret && del_nr > 0) {
 972                /*
 973                 * Set path->slots[0] to first slot, so that after the delete
 974                 * if items are move off from our leaf to its immediate left or
 975                 * right neighbor leafs, we end up with a correct and adjusted
 976                 * path->slots[0] for our insertion (if args->replace_extent).
 977                 */
 978                path->slots[0] = del_slot;
 979                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 980                if (ret)
 981                        btrfs_abort_transaction(trans, ret);
 982        }
 983
 984        leaf = path->nodes[0];
 985        /*
 986         * If btrfs_del_items() was called, it might have deleted a leaf, in
 987         * which case it unlocked our path, so check path->locks[0] matches a
 988         * write lock.
 989         */
 990        if (!ret && args->replace_extent && leafs_visited == 1 &&
 991            path->locks[0] == BTRFS_WRITE_LOCK &&
 992            btrfs_leaf_free_space(leaf) >=
 993            sizeof(struct btrfs_item) + args->extent_item_size) {
 994
 995                key.objectid = ino;
 996                key.type = BTRFS_EXTENT_DATA_KEY;
 997                key.offset = args->start;
 998                if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 999                        struct btrfs_key slot_key;
1000
1001                        btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1002                        if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1003                                path->slots[0]++;
1004                }
1005                btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
1006                args->extent_inserted = true;
1007        }
1008
1009        if (!args->path)
1010                btrfs_free_path(path);
1011        else if (!args->extent_inserted)
1012                btrfs_release_path(path);
1013out:
1014        args->drop_end = found ? min(args->end, last_end) : args->end;
1015
1016        return ret;
1017}
1018
1019static int extent_mergeable(struct extent_buffer *leaf, int slot,
1020                            u64 objectid, u64 bytenr, u64 orig_offset,
1021                            u64 *start, u64 *end)
1022{
1023        struct btrfs_file_extent_item *fi;
1024        struct btrfs_key key;
1025        u64 extent_end;
1026
1027        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1028                return 0;
1029
1030        btrfs_item_key_to_cpu(leaf, &key, slot);
1031        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1032                return 0;
1033
1034        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1035        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1036            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1037            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1038            btrfs_file_extent_compression(leaf, fi) ||
1039            btrfs_file_extent_encryption(leaf, fi) ||
1040            btrfs_file_extent_other_encoding(leaf, fi))
1041                return 0;
1042
1043        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1044        if ((*start && *start != key.offset) || (*end && *end != extent_end))
1045                return 0;
1046
1047        *start = key.offset;
1048        *end = extent_end;
1049        return 1;
1050}
1051
1052/*
1053 * Mark extent in the range start - end as written.
1054 *
1055 * This changes extent type from 'pre-allocated' to 'regular'. If only
1056 * part of extent is marked as written, the extent will be split into
1057 * two or three.
1058 */
1059int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1060                              struct btrfs_inode *inode, u64 start, u64 end)
1061{
1062        struct btrfs_fs_info *fs_info = trans->fs_info;
1063        struct btrfs_root *root = inode->root;
1064        struct extent_buffer *leaf;
1065        struct btrfs_path *path;
1066        struct btrfs_file_extent_item *fi;
1067        struct btrfs_ref ref = { 0 };
1068        struct btrfs_key key;
1069        struct btrfs_key new_key;
1070        u64 bytenr;
1071        u64 num_bytes;
1072        u64 extent_end;
1073        u64 orig_offset;
1074        u64 other_start;
1075        u64 other_end;
1076        u64 split;
1077        int del_nr = 0;
1078        int del_slot = 0;
1079        int recow;
1080        int ret = 0;
1081        u64 ino = btrfs_ino(inode);
1082
1083        path = btrfs_alloc_path();
1084        if (!path)
1085                return -ENOMEM;
1086again:
1087        recow = 0;
1088        split = start;
1089        key.objectid = ino;
1090        key.type = BTRFS_EXTENT_DATA_KEY;
1091        key.offset = split;
1092
1093        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1094        if (ret < 0)
1095                goto out;
1096        if (ret > 0 && path->slots[0] > 0)
1097                path->slots[0]--;
1098
1099        leaf = path->nodes[0];
1100        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1101        if (key.objectid != ino ||
1102            key.type != BTRFS_EXTENT_DATA_KEY) {
1103                ret = -EINVAL;
1104                btrfs_abort_transaction(trans, ret);
1105                goto out;
1106        }
1107        fi = btrfs_item_ptr(leaf, path->slots[0],
1108                            struct btrfs_file_extent_item);
1109        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1110                ret = -EINVAL;
1111                btrfs_abort_transaction(trans, ret);
1112                goto out;
1113        }
1114        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1115        if (key.offset > start || extent_end < end) {
1116                ret = -EINVAL;
1117                btrfs_abort_transaction(trans, ret);
1118                goto out;
1119        }
1120
1121        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124        memcpy(&new_key, &key, sizeof(new_key));
1125
1126        if (start == key.offset && end < extent_end) {
1127                other_start = 0;
1128                other_end = start;
1129                if (extent_mergeable(leaf, path->slots[0] - 1,
1130                                     ino, bytenr, orig_offset,
1131                                     &other_start, &other_end)) {
1132                        new_key.offset = end;
1133                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1134                        fi = btrfs_item_ptr(leaf, path->slots[0],
1135                                            struct btrfs_file_extent_item);
1136                        btrfs_set_file_extent_generation(leaf, fi,
1137                                                         trans->transid);
1138                        btrfs_set_file_extent_num_bytes(leaf, fi,
1139                                                        extent_end - end);
1140                        btrfs_set_file_extent_offset(leaf, fi,
1141                                                     end - orig_offset);
1142                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143                                            struct btrfs_file_extent_item);
1144                        btrfs_set_file_extent_generation(leaf, fi,
1145                                                         trans->transid);
1146                        btrfs_set_file_extent_num_bytes(leaf, fi,
1147                                                        end - other_start);
1148                        btrfs_mark_buffer_dirty(leaf);
1149                        goto out;
1150                }
1151        }
1152
1153        if (start > key.offset && end == extent_end) {
1154                other_start = end;
1155                other_end = 0;
1156                if (extent_mergeable(leaf, path->slots[0] + 1,
1157                                     ino, bytenr, orig_offset,
1158                                     &other_start, &other_end)) {
1159                        fi = btrfs_item_ptr(leaf, path->slots[0],
1160                                            struct btrfs_file_extent_item);
1161                        btrfs_set_file_extent_num_bytes(leaf, fi,
1162                                                        start - key.offset);
1163                        btrfs_set_file_extent_generation(leaf, fi,
1164                                                         trans->transid);
1165                        path->slots[0]++;
1166                        new_key.offset = start;
1167                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1168
1169                        fi = btrfs_item_ptr(leaf, path->slots[0],
1170                                            struct btrfs_file_extent_item);
1171                        btrfs_set_file_extent_generation(leaf, fi,
1172                                                         trans->transid);
1173                        btrfs_set_file_extent_num_bytes(leaf, fi,
1174                                                        other_end - start);
1175                        btrfs_set_file_extent_offset(leaf, fi,
1176                                                     start - orig_offset);
1177                        btrfs_mark_buffer_dirty(leaf);
1178                        goto out;
1179                }
1180        }
1181
1182        while (start > key.offset || end < extent_end) {
1183                if (key.offset == start)
1184                        split = end;
1185
1186                new_key.offset = split;
1187                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188                if (ret == -EAGAIN) {
1189                        btrfs_release_path(path);
1190                        goto again;
1191                }
1192                if (ret < 0) {
1193                        btrfs_abort_transaction(trans, ret);
1194                        goto out;
1195                }
1196
1197                leaf = path->nodes[0];
1198                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199                                    struct btrfs_file_extent_item);
1200                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201                btrfs_set_file_extent_num_bytes(leaf, fi,
1202                                                split - key.offset);
1203
1204                fi = btrfs_item_ptr(leaf, path->slots[0],
1205                                    struct btrfs_file_extent_item);
1206
1207                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209                btrfs_set_file_extent_num_bytes(leaf, fi,
1210                                                extent_end - split);
1211                btrfs_mark_buffer_dirty(leaf);
1212
1213                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1214                                       num_bytes, 0);
1215                btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1216                                    orig_offset, 0, false);
1217                ret = btrfs_inc_extent_ref(trans, &ref);
1218                if (ret) {
1219                        btrfs_abort_transaction(trans, ret);
1220                        goto out;
1221                }
1222
1223                if (split == start) {
1224                        key.offset = start;
1225                } else {
1226                        if (start != key.offset) {
1227                                ret = -EINVAL;
1228                                btrfs_abort_transaction(trans, ret);
1229                                goto out;
1230                        }
1231                        path->slots[0]--;
1232                        extent_end = end;
1233                }
1234                recow = 1;
1235        }
1236
1237        other_start = end;
1238        other_end = 0;
1239        btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1240                               num_bytes, 0);
1241        btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1242                            0, false);
1243        if (extent_mergeable(leaf, path->slots[0] + 1,
1244                             ino, bytenr, orig_offset,
1245                             &other_start, &other_end)) {
1246                if (recow) {
1247                        btrfs_release_path(path);
1248                        goto again;
1249                }
1250                extent_end = other_end;
1251                del_slot = path->slots[0] + 1;
1252                del_nr++;
1253                ret = btrfs_free_extent(trans, &ref);
1254                if (ret) {
1255                        btrfs_abort_transaction(trans, ret);
1256                        goto out;
1257                }
1258        }
1259        other_start = 0;
1260        other_end = start;
1261        if (extent_mergeable(leaf, path->slots[0] - 1,
1262                             ino, bytenr, orig_offset,
1263                             &other_start, &other_end)) {
1264                if (recow) {
1265                        btrfs_release_path(path);
1266                        goto again;
1267                }
1268                key.offset = other_start;
1269                del_slot = path->slots[0];
1270                del_nr++;
1271                ret = btrfs_free_extent(trans, &ref);
1272                if (ret) {
1273                        btrfs_abort_transaction(trans, ret);
1274                        goto out;
1275                }
1276        }
1277        if (del_nr == 0) {
1278                fi = btrfs_item_ptr(leaf, path->slots[0],
1279                           struct btrfs_file_extent_item);
1280                btrfs_set_file_extent_type(leaf, fi,
1281                                           BTRFS_FILE_EXTENT_REG);
1282                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1283                btrfs_mark_buffer_dirty(leaf);
1284        } else {
1285                fi = btrfs_item_ptr(leaf, del_slot - 1,
1286                           struct btrfs_file_extent_item);
1287                btrfs_set_file_extent_type(leaf, fi,
1288                                           BTRFS_FILE_EXTENT_REG);
1289                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1290                btrfs_set_file_extent_num_bytes(leaf, fi,
1291                                                extent_end - key.offset);
1292                btrfs_mark_buffer_dirty(leaf);
1293
1294                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1295                if (ret < 0) {
1296                        btrfs_abort_transaction(trans, ret);
1297                        goto out;
1298                }
1299        }
1300out:
1301        btrfs_free_path(path);
1302        return ret;
1303}
1304
1305/*
1306 * on error we return an unlocked page and the error value
1307 * on success we return a locked page and 0
1308 */
1309static int prepare_uptodate_page(struct inode *inode,
1310                                 struct page *page, u64 pos,
1311                                 bool force_uptodate)
1312{
1313        int ret = 0;
1314
1315        if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1316            !PageUptodate(page)) {
1317                ret = btrfs_readpage(NULL, page);
1318                if (ret)
1319                        return ret;
1320                lock_page(page);
1321                if (!PageUptodate(page)) {
1322                        unlock_page(page);
1323                        return -EIO;
1324                }
1325
1326                /*
1327                 * Since btrfs_readpage() will unlock the page before it
1328                 * returns, there is a window where btrfs_releasepage() can be
1329                 * called to release the page.  Here we check both inode
1330                 * mapping and PagePrivate() to make sure the page was not
1331                 * released.
1332                 *
1333                 * The private flag check is essential for subpage as we need
1334                 * to store extra bitmap using page->private.
1335                 */
1336                if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1337                        unlock_page(page);
1338                        return -EAGAIN;
1339                }
1340        }
1341        return 0;
1342}
1343
1344/*
1345 * this just gets pages into the page cache and locks them down.
1346 */
1347static noinline int prepare_pages(struct inode *inode, struct page **pages,
1348                                  size_t num_pages, loff_t pos,
1349                                  size_t write_bytes, bool force_uptodate)
1350{
1351        int i;
1352        unsigned long index = pos >> PAGE_SHIFT;
1353        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1354        int err = 0;
1355        int faili;
1356
1357        for (i = 0; i < num_pages; i++) {
1358again:
1359                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1360                                               mask | __GFP_WRITE);
1361                if (!pages[i]) {
1362                        faili = i - 1;
1363                        err = -ENOMEM;
1364                        goto fail;
1365                }
1366
1367                err = set_page_extent_mapped(pages[i]);
1368                if (err < 0) {
1369                        faili = i;
1370                        goto fail;
1371                }
1372
1373                if (i == 0)
1374                        err = prepare_uptodate_page(inode, pages[i], pos,
1375                                                    force_uptodate);
1376                if (!err && i == num_pages - 1)
1377                        err = prepare_uptodate_page(inode, pages[i],
1378                                                    pos + write_bytes, false);
1379                if (err) {
1380                        put_page(pages[i]);
1381                        if (err == -EAGAIN) {
1382                                err = 0;
1383                                goto again;
1384                        }
1385                        faili = i - 1;
1386                        goto fail;
1387                }
1388                wait_on_page_writeback(pages[i]);
1389        }
1390
1391        return 0;
1392fail:
1393        while (faili >= 0) {
1394                unlock_page(pages[faili]);
1395                put_page(pages[faili]);
1396                faili--;
1397        }
1398        return err;
1399
1400}
1401
1402/*
1403 * This function locks the extent and properly waits for data=ordered extents
1404 * to finish before allowing the pages to be modified if need.
1405 *
1406 * The return value:
1407 * 1 - the extent is locked
1408 * 0 - the extent is not locked, and everything is OK
1409 * -EAGAIN - need re-prepare the pages
1410 * the other < 0 number - Something wrong happens
1411 */
1412static noinline int
1413lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1414                                size_t num_pages, loff_t pos,
1415                                size_t write_bytes,
1416                                u64 *lockstart, u64 *lockend,
1417                                struct extent_state **cached_state)
1418{
1419        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1420        u64 start_pos;
1421        u64 last_pos;
1422        int i;
1423        int ret = 0;
1424
1425        start_pos = round_down(pos, fs_info->sectorsize);
1426        last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1427
1428        if (start_pos < inode->vfs_inode.i_size) {
1429                struct btrfs_ordered_extent *ordered;
1430
1431                lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1432                                cached_state);
1433                ordered = btrfs_lookup_ordered_range(inode, start_pos,
1434                                                     last_pos - start_pos + 1);
1435                if (ordered &&
1436                    ordered->file_offset + ordered->num_bytes > start_pos &&
1437                    ordered->file_offset <= last_pos) {
1438                        unlock_extent_cached(&inode->io_tree, start_pos,
1439                                        last_pos, cached_state);
1440                        for (i = 0; i < num_pages; i++) {
1441                                unlock_page(pages[i]);
1442                                put_page(pages[i]);
1443                        }
1444                        btrfs_start_ordered_extent(ordered, 1);
1445                        btrfs_put_ordered_extent(ordered);
1446                        return -EAGAIN;
1447                }
1448                if (ordered)
1449                        btrfs_put_ordered_extent(ordered);
1450
1451                *lockstart = start_pos;
1452                *lockend = last_pos;
1453                ret = 1;
1454        }
1455
1456        /*
1457         * We should be called after prepare_pages() which should have locked
1458         * all pages in the range.
1459         */
1460        for (i = 0; i < num_pages; i++)
1461                WARN_ON(!PageLocked(pages[i]));
1462
1463        return ret;
1464}
1465
1466static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1467                           size_t *write_bytes, bool nowait)
1468{
1469        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1470        struct btrfs_root *root = inode->root;
1471        u64 lockstart, lockend;
1472        u64 num_bytes;
1473        int ret;
1474
1475        if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1476                return 0;
1477
1478        if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1479                return -EAGAIN;
1480
1481        lockstart = round_down(pos, fs_info->sectorsize);
1482        lockend = round_up(pos + *write_bytes,
1483                           fs_info->sectorsize) - 1;
1484        num_bytes = lockend - lockstart + 1;
1485
1486        if (nowait) {
1487                struct btrfs_ordered_extent *ordered;
1488
1489                if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1490                        return -EAGAIN;
1491
1492                ordered = btrfs_lookup_ordered_range(inode, lockstart,
1493                                                     num_bytes);
1494                if (ordered) {
1495                        btrfs_put_ordered_extent(ordered);
1496                        ret = -EAGAIN;
1497                        goto out_unlock;
1498                }
1499        } else {
1500                btrfs_lock_and_flush_ordered_range(inode, lockstart,
1501                                                   lockend, NULL);
1502        }
1503
1504        ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1505                        NULL, NULL, NULL, false);
1506        if (ret <= 0) {
1507                ret = 0;
1508                if (!nowait)
1509                        btrfs_drew_write_unlock(&root->snapshot_lock);
1510        } else {
1511                *write_bytes = min_t(size_t, *write_bytes ,
1512                                     num_bytes - pos + lockstart);
1513        }
1514out_unlock:
1515        unlock_extent(&inode->io_tree, lockstart, lockend);
1516
1517        return ret;
1518}
1519
1520static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1521                              size_t *write_bytes)
1522{
1523        return check_can_nocow(inode, pos, write_bytes, true);
1524}
1525
1526/*
1527 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1528 *
1529 * @pos:         File offset
1530 * @write_bytes: The length to write, will be updated to the nocow writeable
1531 *               range
1532 *
1533 * This function will flush ordered extents in the range to ensure proper
1534 * nocow checks.
1535 *
1536 * Return:
1537 * >0           and update @write_bytes if we can do nocow write
1538 *  0           if we can't do nocow write
1539 * -EAGAIN      if we can't get the needed lock or there are ordered extents
1540 *              for * (nowait == true) case
1541 * <0           if other error happened
1542 *
1543 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1544 */
1545int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1546                           size_t *write_bytes)
1547{
1548        return check_can_nocow(inode, pos, write_bytes, false);
1549}
1550
1551void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1552{
1553        btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1554}
1555
1556static void update_time_for_write(struct inode *inode)
1557{
1558        struct timespec64 now;
1559
1560        if (IS_NOCMTIME(inode))
1561                return;
1562
1563        now = current_time(inode);
1564        if (!timespec64_equal(&inode->i_mtime, &now))
1565                inode->i_mtime = now;
1566
1567        if (!timespec64_equal(&inode->i_ctime, &now))
1568                inode->i_ctime = now;
1569
1570        if (IS_I_VERSION(inode))
1571                inode_inc_iversion(inode);
1572}
1573
1574static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1575                             size_t count)
1576{
1577        struct file *file = iocb->ki_filp;
1578        struct inode *inode = file_inode(file);
1579        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1580        loff_t pos = iocb->ki_pos;
1581        int ret;
1582        loff_t oldsize;
1583        loff_t start_pos;
1584
1585        if (iocb->ki_flags & IOCB_NOWAIT) {
1586                size_t nocow_bytes = count;
1587
1588                /* We will allocate space in case nodatacow is not set, so bail */
1589                if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1590                        return -EAGAIN;
1591                /*
1592                 * There are holes in the range or parts of the range that must
1593                 * be COWed (shared extents, RO block groups, etc), so just bail
1594                 * out.
1595                 */
1596                if (nocow_bytes < count)
1597                        return -EAGAIN;
1598        }
1599
1600        current->backing_dev_info = inode_to_bdi(inode);
1601        ret = file_remove_privs(file);
1602        if (ret)
1603                return ret;
1604
1605        /*
1606         * We reserve space for updating the inode when we reserve space for the
1607         * extent we are going to write, so we will enospc out there.  We don't
1608         * need to start yet another transaction to update the inode as we will
1609         * update the inode when we finish writing whatever data we write.
1610         */
1611        update_time_for_write(inode);
1612
1613        start_pos = round_down(pos, fs_info->sectorsize);
1614        oldsize = i_size_read(inode);
1615        if (start_pos > oldsize) {
1616                /* Expand hole size to cover write data, preventing empty gap */
1617                loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1618
1619                ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1620                if (ret) {
1621                        current->backing_dev_info = NULL;
1622                        return ret;
1623                }
1624        }
1625
1626        return 0;
1627}
1628
1629static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1630                                               struct iov_iter *i)
1631{
1632        struct file *file = iocb->ki_filp;
1633        loff_t pos;
1634        struct inode *inode = file_inode(file);
1635        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1636        struct page **pages = NULL;
1637        struct extent_changeset *data_reserved = NULL;
1638        u64 release_bytes = 0;
1639        u64 lockstart;
1640        u64 lockend;
1641        size_t num_written = 0;
1642        int nrptrs;
1643        ssize_t ret;
1644        bool only_release_metadata = false;
1645        bool force_page_uptodate = false;
1646        loff_t old_isize = i_size_read(inode);
1647        unsigned int ilock_flags = 0;
1648
1649        if (iocb->ki_flags & IOCB_NOWAIT)
1650                ilock_flags |= BTRFS_ILOCK_TRY;
1651
1652        ret = btrfs_inode_lock(inode, ilock_flags);
1653        if (ret < 0)
1654                return ret;
1655
1656        ret = generic_write_checks(iocb, i);
1657        if (ret <= 0)
1658                goto out;
1659
1660        ret = btrfs_write_check(iocb, i, ret);
1661        if (ret < 0)
1662                goto out;
1663
1664        pos = iocb->ki_pos;
1665        nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1666                        PAGE_SIZE / (sizeof(struct page *)));
1667        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1668        nrptrs = max(nrptrs, 8);
1669        pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1670        if (!pages) {
1671                ret = -ENOMEM;
1672                goto out;
1673        }
1674
1675        while (iov_iter_count(i) > 0) {
1676                struct extent_state *cached_state = NULL;
1677                size_t offset = offset_in_page(pos);
1678                size_t sector_offset;
1679                size_t write_bytes = min(iov_iter_count(i),
1680                                         nrptrs * (size_t)PAGE_SIZE -
1681                                         offset);
1682                size_t num_pages;
1683                size_t reserve_bytes;
1684                size_t dirty_pages;
1685                size_t copied;
1686                size_t dirty_sectors;
1687                size_t num_sectors;
1688                int extents_locked;
1689
1690                /*
1691                 * Fault pages before locking them in prepare_pages
1692                 * to avoid recursive lock
1693                 */
1694                if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1695                        ret = -EFAULT;
1696                        break;
1697                }
1698
1699                only_release_metadata = false;
1700                sector_offset = pos & (fs_info->sectorsize - 1);
1701
1702                extent_changeset_release(data_reserved);
1703                ret = btrfs_check_data_free_space(BTRFS_I(inode),
1704                                                  &data_reserved, pos,
1705                                                  write_bytes);
1706                if (ret < 0) {
1707                        /*
1708                         * If we don't have to COW at the offset, reserve
1709                         * metadata only. write_bytes may get smaller than
1710                         * requested here.
1711                         */
1712                        if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1713                                                   &write_bytes) > 0)
1714                                only_release_metadata = true;
1715                        else
1716                                break;
1717                }
1718
1719                num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1720                WARN_ON(num_pages > nrptrs);
1721                reserve_bytes = round_up(write_bytes + sector_offset,
1722                                         fs_info->sectorsize);
1723                WARN_ON(reserve_bytes == 0);
1724                ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1725                                reserve_bytes);
1726                if (ret) {
1727                        if (!only_release_metadata)
1728                                btrfs_free_reserved_data_space(BTRFS_I(inode),
1729                                                data_reserved, pos,
1730                                                write_bytes);
1731                        else
1732                                btrfs_check_nocow_unlock(BTRFS_I(inode));
1733                        break;
1734                }
1735
1736                release_bytes = reserve_bytes;
1737again:
1738                /*
1739                 * This is going to setup the pages array with the number of
1740                 * pages we want, so we don't really need to worry about the
1741                 * contents of pages from loop to loop
1742                 */
1743                ret = prepare_pages(inode, pages, num_pages,
1744                                    pos, write_bytes,
1745                                    force_page_uptodate);
1746                if (ret) {
1747                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1748                                                       reserve_bytes);
1749                        break;
1750                }
1751
1752                extents_locked = lock_and_cleanup_extent_if_need(
1753                                BTRFS_I(inode), pages,
1754                                num_pages, pos, write_bytes, &lockstart,
1755                                &lockend, &cached_state);
1756                if (extents_locked < 0) {
1757                        if (extents_locked == -EAGAIN)
1758                                goto again;
1759                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1760                                                       reserve_bytes);
1761                        ret = extents_locked;
1762                        break;
1763                }
1764
1765                copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1766
1767                num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1768                dirty_sectors = round_up(copied + sector_offset,
1769                                        fs_info->sectorsize);
1770                dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1771
1772                /*
1773                 * if we have trouble faulting in the pages, fall
1774                 * back to one page at a time
1775                 */
1776                if (copied < write_bytes)
1777                        nrptrs = 1;
1778
1779                if (copied == 0) {
1780                        force_page_uptodate = true;
1781                        dirty_sectors = 0;
1782                        dirty_pages = 0;
1783                } else {
1784                        force_page_uptodate = false;
1785                        dirty_pages = DIV_ROUND_UP(copied + offset,
1786                                                   PAGE_SIZE);
1787                }
1788
1789                if (num_sectors > dirty_sectors) {
1790                        /* release everything except the sectors we dirtied */
1791                        release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1792                        if (only_release_metadata) {
1793                                btrfs_delalloc_release_metadata(BTRFS_I(inode),
1794                                                        release_bytes, true);
1795                        } else {
1796                                u64 __pos;
1797
1798                                __pos = round_down(pos,
1799                                                   fs_info->sectorsize) +
1800                                        (dirty_pages << PAGE_SHIFT);
1801                                btrfs_delalloc_release_space(BTRFS_I(inode),
1802                                                data_reserved, __pos,
1803                                                release_bytes, true);
1804                        }
1805                }
1806
1807                release_bytes = round_up(copied + sector_offset,
1808                                        fs_info->sectorsize);
1809
1810                ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1811                                        dirty_pages, pos, copied,
1812                                        &cached_state, only_release_metadata);
1813
1814                /*
1815                 * If we have not locked the extent range, because the range's
1816                 * start offset is >= i_size, we might still have a non-NULL
1817                 * cached extent state, acquired while marking the extent range
1818                 * as delalloc through btrfs_dirty_pages(). Therefore free any
1819                 * possible cached extent state to avoid a memory leak.
1820                 */
1821                if (extents_locked)
1822                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1823                                             lockstart, lockend, &cached_state);
1824                else
1825                        free_extent_state(cached_state);
1826
1827                btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1828                if (ret) {
1829                        btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1830                        break;
1831                }
1832
1833                release_bytes = 0;
1834                if (only_release_metadata)
1835                        btrfs_check_nocow_unlock(BTRFS_I(inode));
1836
1837                btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1838
1839                cond_resched();
1840
1841                balance_dirty_pages_ratelimited(inode->i_mapping);
1842
1843                pos += copied;
1844                num_written += copied;
1845        }
1846
1847        kfree(pages);
1848
1849        if (release_bytes) {
1850                if (only_release_metadata) {
1851                        btrfs_check_nocow_unlock(BTRFS_I(inode));
1852                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
1853                                        release_bytes, true);
1854                } else {
1855                        btrfs_delalloc_release_space(BTRFS_I(inode),
1856                                        data_reserved,
1857                                        round_down(pos, fs_info->sectorsize),
1858                                        release_bytes, true);
1859                }
1860        }
1861
1862        extent_changeset_free(data_reserved);
1863        if (num_written > 0) {
1864                pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1865                iocb->ki_pos += num_written;
1866        }
1867out:
1868        btrfs_inode_unlock(inode, ilock_flags);
1869        return num_written ? num_written : ret;
1870}
1871
1872static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1873                               const struct iov_iter *iter, loff_t offset)
1874{
1875        const u32 blocksize_mask = fs_info->sectorsize - 1;
1876
1877        if (offset & blocksize_mask)
1878                return -EINVAL;
1879
1880        if (iov_iter_alignment(iter) & blocksize_mask)
1881                return -EINVAL;
1882
1883        return 0;
1884}
1885
1886static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1887{
1888        const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC);
1889        struct file *file = iocb->ki_filp;
1890        struct inode *inode = file_inode(file);
1891        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1892        loff_t pos;
1893        ssize_t written = 0;
1894        ssize_t written_buffered;
1895        size_t prev_left = 0;
1896        loff_t endbyte;
1897        ssize_t err;
1898        unsigned int ilock_flags = 0;
1899
1900        if (iocb->ki_flags & IOCB_NOWAIT)
1901                ilock_flags |= BTRFS_ILOCK_TRY;
1902
1903        /* If the write DIO is within EOF, use a shared lock */
1904        if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1905                ilock_flags |= BTRFS_ILOCK_SHARED;
1906
1907relock:
1908        err = btrfs_inode_lock(inode, ilock_flags);
1909        if (err < 0)
1910                return err;
1911
1912        err = generic_write_checks(iocb, from);
1913        if (err <= 0) {
1914                btrfs_inode_unlock(inode, ilock_flags);
1915                return err;
1916        }
1917
1918        err = btrfs_write_check(iocb, from, err);
1919        if (err < 0) {
1920                btrfs_inode_unlock(inode, ilock_flags);
1921                goto out;
1922        }
1923
1924        pos = iocb->ki_pos;
1925        /*
1926         * Re-check since file size may have changed just before taking the
1927         * lock or pos may have changed because of O_APPEND in generic_write_check()
1928         */
1929        if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1930            pos + iov_iter_count(from) > i_size_read(inode)) {
1931                btrfs_inode_unlock(inode, ilock_flags);
1932                ilock_flags &= ~BTRFS_ILOCK_SHARED;
1933                goto relock;
1934        }
1935
1936        if (check_direct_IO(fs_info, from, pos)) {
1937                btrfs_inode_unlock(inode, ilock_flags);
1938                goto buffered;
1939        }
1940
1941        /*
1942         * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw()
1943         * calls generic_write_sync() (through iomap_dio_complete()), because
1944         * that results in calling fsync (btrfs_sync_file()) which will try to
1945         * lock the inode in exclusive/write mode.
1946         */
1947        if (is_sync_write)
1948                iocb->ki_flags &= ~IOCB_DSYNC;
1949
1950        /*
1951         * The iov_iter can be mapped to the same file range we are writing to.
1952         * If that's the case, then we will deadlock in the iomap code, because
1953         * it first calls our callback btrfs_dio_iomap_begin(), which will create
1954         * an ordered extent, and after that it will fault in the pages that the
1955         * iov_iter refers to. During the fault in we end up in the readahead
1956         * pages code (starting at btrfs_readahead()), which will lock the range,
1957         * find that ordered extent and then wait for it to complete (at
1958         * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1959         * obviously the ordered extent can never complete as we didn't submit
1960         * yet the respective bio(s). This always happens when the buffer is
1961         * memory mapped to the same file range, since the iomap DIO code always
1962         * invalidates pages in the target file range (after starting and waiting
1963         * for any writeback).
1964         *
1965         * So here we disable page faults in the iov_iter and then retry if we
1966         * got -EFAULT, faulting in the pages before the retry.
1967         */
1968again:
1969        from->nofault = true;
1970        err = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1971                           IOMAP_DIO_PARTIAL, written);
1972        from->nofault = false;
1973
1974        /* No increment (+=) because iomap returns a cumulative value. */
1975        if (err > 0)
1976                written = err;
1977
1978        if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1979                const size_t left = iov_iter_count(from);
1980                /*
1981                 * We have more data left to write. Try to fault in as many as
1982                 * possible of the remainder pages and retry. We do this without
1983                 * releasing and locking again the inode, to prevent races with
1984                 * truncate.
1985                 *
1986                 * Also, in case the iov refers to pages in the file range of the
1987                 * file we want to write to (due to a mmap), we could enter an
1988                 * infinite loop if we retry after faulting the pages in, since
1989                 * iomap will invalidate any pages in the range early on, before
1990                 * it tries to fault in the pages of the iov. So we keep track of
1991                 * how much was left of iov in the previous EFAULT and fallback
1992                 * to buffered IO in case we haven't made any progress.
1993                 */
1994                if (left == prev_left) {
1995                        err = -ENOTBLK;
1996                } else {
1997                        fault_in_iov_iter_readable(from, left);
1998                        prev_left = left;
1999                        goto again;
2000                }
2001        }
2002
2003        btrfs_inode_unlock(inode, ilock_flags);
2004
2005        /*
2006         * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do
2007         * the fsync (call generic_write_sync()).
2008         */
2009        if (is_sync_write)
2010                iocb->ki_flags |= IOCB_DSYNC;
2011
2012        /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */
2013        if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
2014                goto out;
2015
2016buffered:
2017        pos = iocb->ki_pos;
2018        written_buffered = btrfs_buffered_write(iocb, from);
2019        if (written_buffered < 0) {
2020                err = written_buffered;
2021                goto out;
2022        }
2023        /*
2024         * Ensure all data is persisted. We want the next direct IO read to be
2025         * able to read what was just written.
2026         */
2027        endbyte = pos + written_buffered - 1;
2028        err = btrfs_fdatawrite_range(inode, pos, endbyte);
2029        if (err)
2030                goto out;
2031        err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
2032        if (err)
2033                goto out;
2034        written += written_buffered;
2035        iocb->ki_pos = pos + written_buffered;
2036        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
2037                                 endbyte >> PAGE_SHIFT);
2038out:
2039        return err < 0 ? err : written;
2040}
2041
2042static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2043                                    struct iov_iter *from)
2044{
2045        struct file *file = iocb->ki_filp;
2046        struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2047        ssize_t num_written = 0;
2048        const bool sync = iocb->ki_flags & IOCB_DSYNC;
2049
2050        /*
2051         * If the fs flips readonly due to some impossible error, although we
2052         * have opened a file as writable, we have to stop this write operation
2053         * to ensure consistency.
2054         */
2055        if (BTRFS_FS_ERROR(inode->root->fs_info))
2056                return -EROFS;
2057
2058        if (!(iocb->ki_flags & IOCB_DIRECT) &&
2059            (iocb->ki_flags & IOCB_NOWAIT))
2060                return -EOPNOTSUPP;
2061
2062        if (sync)
2063                atomic_inc(&inode->sync_writers);
2064
2065        if (iocb->ki_flags & IOCB_DIRECT)
2066                num_written = btrfs_direct_write(iocb, from);
2067        else
2068                num_written = btrfs_buffered_write(iocb, from);
2069
2070        btrfs_set_inode_last_sub_trans(inode);
2071
2072        if (num_written > 0)
2073                num_written = generic_write_sync(iocb, num_written);
2074
2075        if (sync)
2076                atomic_dec(&inode->sync_writers);
2077
2078        current->backing_dev_info = NULL;
2079        return num_written;
2080}
2081
2082int btrfs_release_file(struct inode *inode, struct file *filp)
2083{
2084        struct btrfs_file_private *private = filp->private_data;
2085
2086        if (private && private->filldir_buf)
2087                kfree(private->filldir_buf);
2088        kfree(private);
2089        filp->private_data = NULL;
2090
2091        /*
2092         * Set by setattr when we are about to truncate a file from a non-zero
2093         * size to a zero size.  This tries to flush down new bytes that may
2094         * have been written if the application were using truncate to replace
2095         * a file in place.
2096         */
2097        if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2098                               &BTRFS_I(inode)->runtime_flags))
2099                        filemap_flush(inode->i_mapping);
2100        return 0;
2101}
2102
2103static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2104{
2105        int ret;
2106        struct blk_plug plug;
2107
2108        /*
2109         * This is only called in fsync, which would do synchronous writes, so
2110         * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2111         * multiple disks using raid profile, a large IO can be split to
2112         * several segments of stripe length (currently 64K).
2113         */
2114        blk_start_plug(&plug);
2115        atomic_inc(&BTRFS_I(inode)->sync_writers);
2116        ret = btrfs_fdatawrite_range(inode, start, end);
2117        atomic_dec(&BTRFS_I(inode)->sync_writers);
2118        blk_finish_plug(&plug);
2119
2120        return ret;
2121}
2122
2123static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2124{
2125        struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2126        struct btrfs_fs_info *fs_info = inode->root->fs_info;
2127
2128        if (btrfs_inode_in_log(inode, fs_info->generation) &&
2129            list_empty(&ctx->ordered_extents))
2130                return true;
2131
2132        /*
2133         * If we are doing a fast fsync we can not bail out if the inode's
2134         * last_trans is <= then the last committed transaction, because we only
2135         * update the last_trans of the inode during ordered extent completion,
2136         * and for a fast fsync we don't wait for that, we only wait for the
2137         * writeback to complete.
2138         */
2139        if (inode->last_trans <= fs_info->last_trans_committed &&
2140            (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2141             list_empty(&ctx->ordered_extents)))
2142                return true;
2143
2144        return false;
2145}
2146
2147/*
2148 * fsync call for both files and directories.  This logs the inode into
2149 * the tree log instead of forcing full commits whenever possible.
2150 *
2151 * It needs to call filemap_fdatawait so that all ordered extent updates are
2152 * in the metadata btree are up to date for copying to the log.
2153 *
2154 * It drops the inode mutex before doing the tree log commit.  This is an
2155 * important optimization for directories because holding the mutex prevents
2156 * new operations on the dir while we write to disk.
2157 */
2158int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2159{
2160        struct dentry *dentry = file_dentry(file);
2161        struct inode *inode = d_inode(dentry);
2162        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2163        struct btrfs_root *root = BTRFS_I(inode)->root;
2164        struct btrfs_trans_handle *trans;
2165        struct btrfs_log_ctx ctx;
2166        int ret = 0, err;
2167        u64 len;
2168        bool full_sync;
2169
2170        trace_btrfs_sync_file(file, datasync);
2171
2172        btrfs_init_log_ctx(&ctx, inode);
2173
2174        /*
2175         * Always set the range to a full range, otherwise we can get into
2176         * several problems, from missing file extent items to represent holes
2177         * when not using the NO_HOLES feature, to log tree corruption due to
2178         * races between hole detection during logging and completion of ordered
2179         * extents outside the range, to missing checksums due to ordered extents
2180         * for which we flushed only a subset of their pages.
2181         */
2182        start = 0;
2183        end = LLONG_MAX;
2184        len = (u64)LLONG_MAX + 1;
2185
2186        /*
2187         * We write the dirty pages in the range and wait until they complete
2188         * out of the ->i_mutex. If so, we can flush the dirty pages by
2189         * multi-task, and make the performance up.  See
2190         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2191         */
2192        ret = start_ordered_ops(inode, start, end);
2193        if (ret)
2194                goto out;
2195
2196        btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2197
2198        atomic_inc(&root->log_batch);
2199
2200        /*
2201         * Always check for the full sync flag while holding the inode's lock,
2202         * to avoid races with other tasks. The flag must be either set all the
2203         * time during logging or always off all the time while logging.
2204         */
2205        full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2206                             &BTRFS_I(inode)->runtime_flags);
2207
2208        /*
2209         * Before we acquired the inode's lock and the mmap lock, someone may
2210         * have dirtied more pages in the target range. We need to make sure
2211         * that writeback for any such pages does not start while we are logging
2212         * the inode, because if it does, any of the following might happen when
2213         * we are not doing a full inode sync:
2214         *
2215         * 1) We log an extent after its writeback finishes but before its
2216         *    checksums are added to the csum tree, leading to -EIO errors
2217         *    when attempting to read the extent after a log replay.
2218         *
2219         * 2) We can end up logging an extent before its writeback finishes.
2220         *    Therefore after the log replay we will have a file extent item
2221         *    pointing to an unwritten extent (and no data checksums as well).
2222         *
2223         * So trigger writeback for any eventual new dirty pages and then we
2224         * wait for all ordered extents to complete below.
2225         */
2226        ret = start_ordered_ops(inode, start, end);
2227        if (ret) {
2228                btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2229                goto out;
2230        }
2231
2232        /*
2233         * We have to do this here to avoid the priority inversion of waiting on
2234         * IO of a lower priority task while holding a transaction open.
2235         *
2236         * For a full fsync we wait for the ordered extents to complete while
2237         * for a fast fsync we wait just for writeback to complete, and then
2238         * attach the ordered extents to the transaction so that a transaction
2239         * commit waits for their completion, to avoid data loss if we fsync,
2240         * the current transaction commits before the ordered extents complete
2241         * and a power failure happens right after that.
2242         *
2243         * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2244         * logical address recorded in the ordered extent may change. We need
2245         * to wait for the IO to stabilize the logical address.
2246         */
2247        if (full_sync || btrfs_is_zoned(fs_info)) {
2248                ret = btrfs_wait_ordered_range(inode, start, len);
2249        } else {
2250                /*
2251                 * Get our ordered extents as soon as possible to avoid doing
2252                 * checksum lookups in the csum tree, and use instead the
2253                 * checksums attached to the ordered extents.
2254                 */
2255                btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2256                                                      &ctx.ordered_extents);
2257                ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2258        }
2259
2260        if (ret)
2261                goto out_release_extents;
2262
2263        atomic_inc(&root->log_batch);
2264
2265        smp_mb();
2266        if (skip_inode_logging(&ctx)) {
2267                /*
2268                 * We've had everything committed since the last time we were
2269                 * modified so clear this flag in case it was set for whatever
2270                 * reason, it's no longer relevant.
2271                 */
2272                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2273                          &BTRFS_I(inode)->runtime_flags);
2274                /*
2275                 * An ordered extent might have started before and completed
2276                 * already with io errors, in which case the inode was not
2277                 * updated and we end up here. So check the inode's mapping
2278                 * for any errors that might have happened since we last
2279                 * checked called fsync.
2280                 */
2281                ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2282                goto out_release_extents;
2283        }
2284
2285        /*
2286         * We use start here because we will need to wait on the IO to complete
2287         * in btrfs_sync_log, which could require joining a transaction (for
2288         * example checking cross references in the nocow path).  If we use join
2289         * here we could get into a situation where we're waiting on IO to
2290         * happen that is blocked on a transaction trying to commit.  With start
2291         * we inc the extwriter counter, so we wait for all extwriters to exit
2292         * before we start blocking joiners.  This comment is to keep somebody
2293         * from thinking they are super smart and changing this to
2294         * btrfs_join_transaction *cough*Josef*cough*.
2295         */
2296        trans = btrfs_start_transaction(root, 0);
2297        if (IS_ERR(trans)) {
2298                ret = PTR_ERR(trans);
2299                goto out_release_extents;
2300        }
2301        trans->in_fsync = true;
2302
2303        ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2304        btrfs_release_log_ctx_extents(&ctx);
2305        if (ret < 0) {
2306                /* Fallthrough and commit/free transaction. */
2307                ret = 1;
2308        }
2309
2310        /* we've logged all the items and now have a consistent
2311         * version of the file in the log.  It is possible that
2312         * someone will come in and modify the file, but that's
2313         * fine because the log is consistent on disk, and we
2314         * have references to all of the file's extents
2315         *
2316         * It is possible that someone will come in and log the
2317         * file again, but that will end up using the synchronization
2318         * inside btrfs_sync_log to keep things safe.
2319         */
2320        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2321
2322        if (ret != BTRFS_NO_LOG_SYNC) {
2323                if (!ret) {
2324                        ret = btrfs_sync_log(trans, root, &ctx);
2325                        if (!ret) {
2326                                ret = btrfs_end_transaction(trans);
2327                                goto out;
2328                        }
2329                }
2330                if (!full_sync) {
2331                        ret = btrfs_wait_ordered_range(inode, start, len);
2332                        if (ret) {
2333                                btrfs_end_transaction(trans);
2334                                goto out;
2335                        }
2336                }
2337                ret = btrfs_commit_transaction(trans);
2338        } else {
2339                ret = btrfs_end_transaction(trans);
2340        }
2341out:
2342        ASSERT(list_empty(&ctx.list));
2343        err = file_check_and_advance_wb_err(file);
2344        if (!ret)
2345                ret = err;
2346        return ret > 0 ? -EIO : ret;
2347
2348out_release_extents:
2349        btrfs_release_log_ctx_extents(&ctx);
2350        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2351        goto out;
2352}
2353
2354static const struct vm_operations_struct btrfs_file_vm_ops = {
2355        .fault          = filemap_fault,
2356        .map_pages      = filemap_map_pages,
2357        .page_mkwrite   = btrfs_page_mkwrite,
2358};
2359
2360static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2361{
2362        struct address_space *mapping = filp->f_mapping;
2363
2364        if (!mapping->a_ops->readpage)
2365                return -ENOEXEC;
2366
2367        file_accessed(filp);
2368        vma->vm_ops = &btrfs_file_vm_ops;
2369
2370        return 0;
2371}
2372
2373static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2374                          int slot, u64 start, u64 end)
2375{
2376        struct btrfs_file_extent_item *fi;
2377        struct btrfs_key key;
2378
2379        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2380                return 0;
2381
2382        btrfs_item_key_to_cpu(leaf, &key, slot);
2383        if (key.objectid != btrfs_ino(inode) ||
2384            key.type != BTRFS_EXTENT_DATA_KEY)
2385                return 0;
2386
2387        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2388
2389        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2390                return 0;
2391
2392        if (btrfs_file_extent_disk_bytenr(leaf, fi))
2393                return 0;
2394
2395        if (key.offset == end)
2396                return 1;
2397        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2398                return 1;
2399        return 0;
2400}
2401
2402static int fill_holes(struct btrfs_trans_handle *trans,
2403                struct btrfs_inode *inode,
2404                struct btrfs_path *path, u64 offset, u64 end)
2405{
2406        struct btrfs_fs_info *fs_info = trans->fs_info;
2407        struct btrfs_root *root = inode->root;
2408        struct extent_buffer *leaf;
2409        struct btrfs_file_extent_item *fi;
2410        struct extent_map *hole_em;
2411        struct extent_map_tree *em_tree = &inode->extent_tree;
2412        struct btrfs_key key;
2413        int ret;
2414
2415        if (btrfs_fs_incompat(fs_info, NO_HOLES))
2416                goto out;
2417
2418        key.objectid = btrfs_ino(inode);
2419        key.type = BTRFS_EXTENT_DATA_KEY;
2420        key.offset = offset;
2421
2422        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2423        if (ret <= 0) {
2424                /*
2425                 * We should have dropped this offset, so if we find it then
2426                 * something has gone horribly wrong.
2427                 */
2428                if (ret == 0)
2429                        ret = -EINVAL;
2430                return ret;
2431        }
2432
2433        leaf = path->nodes[0];
2434        if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2435                u64 num_bytes;
2436
2437                path->slots[0]--;
2438                fi = btrfs_item_ptr(leaf, path->slots[0],
2439                                    struct btrfs_file_extent_item);
2440                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2441                        end - offset;
2442                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2443                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2444                btrfs_set_file_extent_offset(leaf, fi, 0);
2445                btrfs_mark_buffer_dirty(leaf);
2446                goto out;
2447        }
2448
2449        if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2450                u64 num_bytes;
2451
2452                key.offset = offset;
2453                btrfs_set_item_key_safe(fs_info, path, &key);
2454                fi = btrfs_item_ptr(leaf, path->slots[0],
2455                                    struct btrfs_file_extent_item);
2456                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2457                        offset;
2458                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2459                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2460                btrfs_set_file_extent_offset(leaf, fi, 0);
2461                btrfs_mark_buffer_dirty(leaf);
2462                goto out;
2463        }
2464        btrfs_release_path(path);
2465
2466        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2467                        offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2468        if (ret)
2469                return ret;
2470
2471out:
2472        btrfs_release_path(path);
2473
2474        hole_em = alloc_extent_map();
2475        if (!hole_em) {
2476                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2477                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2478        } else {
2479                hole_em->start = offset;
2480                hole_em->len = end - offset;
2481                hole_em->ram_bytes = hole_em->len;
2482                hole_em->orig_start = offset;
2483
2484                hole_em->block_start = EXTENT_MAP_HOLE;
2485                hole_em->block_len = 0;
2486                hole_em->orig_block_len = 0;
2487                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2488                hole_em->generation = trans->transid;
2489
2490                do {
2491                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2492                        write_lock(&em_tree->lock);
2493                        ret = add_extent_mapping(em_tree, hole_em, 1);
2494                        write_unlock(&em_tree->lock);
2495                } while (ret == -EEXIST);
2496                free_extent_map(hole_em);
2497                if (ret)
2498                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2499                                        &inode->runtime_flags);
2500        }
2501
2502        return 0;
2503}
2504
2505/*
2506 * Find a hole extent on given inode and change start/len to the end of hole
2507 * extent.(hole/vacuum extent whose em->start <= start &&
2508 *         em->start + em->len > start)
2509 * When a hole extent is found, return 1 and modify start/len.
2510 */
2511static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2512{
2513        struct btrfs_fs_info *fs_info = inode->root->fs_info;
2514        struct extent_map *em;
2515        int ret = 0;
2516
2517        em = btrfs_get_extent(inode, NULL, 0,
2518                              round_down(*start, fs_info->sectorsize),
2519                              round_up(*len, fs_info->sectorsize));
2520        if (IS_ERR(em))
2521                return PTR_ERR(em);
2522
2523        /* Hole or vacuum extent(only exists in no-hole mode) */
2524        if (em->block_start == EXTENT_MAP_HOLE) {
2525                ret = 1;
2526                *len = em->start + em->len > *start + *len ?
2527                       0 : *start + *len - em->start - em->len;
2528                *start = em->start + em->len;
2529        }
2530        free_extent_map(em);
2531        return ret;
2532}
2533
2534static int btrfs_punch_hole_lock_range(struct inode *inode,
2535                                       const u64 lockstart,
2536                                       const u64 lockend,
2537                                       struct extent_state **cached_state)
2538{
2539        /*
2540         * For subpage case, if the range is not at page boundary, we could
2541         * have pages at the leading/tailing part of the range.
2542         * This could lead to dead loop since filemap_range_has_page()
2543         * will always return true.
2544         * So here we need to do extra page alignment for
2545         * filemap_range_has_page().
2546         */
2547        const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2548        const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2549
2550        while (1) {
2551                struct btrfs_ordered_extent *ordered;
2552                int ret;
2553
2554                truncate_pagecache_range(inode, lockstart, lockend);
2555
2556                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2557                                 cached_state);
2558                ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2559                                                            lockend);
2560
2561                /*
2562                 * We need to make sure we have no ordered extents in this range
2563                 * and nobody raced in and read a page in this range, if we did
2564                 * we need to try again.
2565                 */
2566                if ((!ordered ||
2567                    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2568                     ordered->file_offset > lockend)) &&
2569                     !filemap_range_has_page(inode->i_mapping,
2570                                             page_lockstart, page_lockend)) {
2571                        if (ordered)
2572                                btrfs_put_ordered_extent(ordered);
2573                        break;
2574                }
2575                if (ordered)
2576                        btrfs_put_ordered_extent(ordered);
2577                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2578                                     lockend, cached_state);
2579                ret = btrfs_wait_ordered_range(inode, lockstart,
2580                                               lockend - lockstart + 1);
2581                if (ret)
2582                        return ret;
2583        }
2584        return 0;
2585}
2586
2587static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2588                                     struct btrfs_inode *inode,
2589                                     struct btrfs_path *path,
2590                                     struct btrfs_replace_extent_info *extent_info,
2591                                     const u64 replace_len,
2592                                     const u64 bytes_to_drop)
2593{
2594        struct btrfs_fs_info *fs_info = trans->fs_info;
2595        struct btrfs_root *root = inode->root;
2596        struct btrfs_file_extent_item *extent;
2597        struct extent_buffer *leaf;
2598        struct btrfs_key key;
2599        int slot;
2600        struct btrfs_ref ref = { 0 };
2601        int ret;
2602
2603        if (replace_len == 0)
2604                return 0;
2605
2606        if (extent_info->disk_offset == 0 &&
2607            btrfs_fs_incompat(fs_info, NO_HOLES)) {
2608                btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2609                return 0;
2610        }
2611
2612        key.objectid = btrfs_ino(inode);
2613        key.type = BTRFS_EXTENT_DATA_KEY;
2614        key.offset = extent_info->file_offset;
2615        ret = btrfs_insert_empty_item(trans, root, path, &key,
2616                                      sizeof(struct btrfs_file_extent_item));
2617        if (ret)
2618                return ret;
2619        leaf = path->nodes[0];
2620        slot = path->slots[0];
2621        write_extent_buffer(leaf, extent_info->extent_buf,
2622                            btrfs_item_ptr_offset(leaf, slot),
2623                            sizeof(struct btrfs_file_extent_item));
2624        extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2625        ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2626        btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2627        btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2628        if (extent_info->is_new_extent)
2629                btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2630        btrfs_mark_buffer_dirty(leaf);
2631        btrfs_release_path(path);
2632
2633        ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2634                                                replace_len);
2635        if (ret)
2636                return ret;
2637
2638        /* If it's a hole, nothing more needs to be done. */
2639        if (extent_info->disk_offset == 0) {
2640                btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2641                return 0;
2642        }
2643
2644        btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2645
2646        if (extent_info->is_new_extent && extent_info->insertions == 0) {
2647                key.objectid = extent_info->disk_offset;
2648                key.type = BTRFS_EXTENT_ITEM_KEY;
2649                key.offset = extent_info->disk_len;
2650                ret = btrfs_alloc_reserved_file_extent(trans, root,
2651                                                       btrfs_ino(inode),
2652                                                       extent_info->file_offset,
2653                                                       extent_info->qgroup_reserved,
2654                                                       &key);
2655        } else {
2656                u64 ref_offset;
2657
2658                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2659                                       extent_info->disk_offset,
2660                                       extent_info->disk_len, 0);
2661                ref_offset = extent_info->file_offset - extent_info->data_offset;
2662                btrfs_init_data_ref(&ref, root->root_key.objectid,
2663                                    btrfs_ino(inode), ref_offset, 0, false);
2664                ret = btrfs_inc_extent_ref(trans, &ref);
2665        }
2666
2667        extent_info->insertions++;
2668
2669        return ret;
2670}
2671
2672/*
2673 * The respective range must have been previously locked, as well as the inode.
2674 * The end offset is inclusive (last byte of the range).
2675 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2676 * the file range with an extent.
2677 * When not punching a hole, we don't want to end up in a state where we dropped
2678 * extents without inserting a new one, so we must abort the transaction to avoid
2679 * a corruption.
2680 */
2681int btrfs_replace_file_extents(struct btrfs_inode *inode,
2682                               struct btrfs_path *path, const u64 start,
2683                               const u64 end,
2684                               struct btrfs_replace_extent_info *extent_info,
2685                               struct btrfs_trans_handle **trans_out)
2686{
2687        struct btrfs_drop_extents_args drop_args = { 0 };
2688        struct btrfs_root *root = inode->root;
2689        struct btrfs_fs_info *fs_info = root->fs_info;
2690        u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2691        u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2692        struct btrfs_trans_handle *trans = NULL;
2693        struct btrfs_block_rsv *rsv;
2694        unsigned int rsv_count;
2695        u64 cur_offset;
2696        u64 len = end - start;
2697        int ret = 0;
2698
2699        if (end <= start)
2700                return -EINVAL;
2701
2702        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2703        if (!rsv) {
2704                ret = -ENOMEM;
2705                goto out;
2706        }
2707        rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2708        rsv->failfast = 1;
2709
2710        /*
2711         * 1 - update the inode
2712         * 1 - removing the extents in the range
2713         * 1 - adding the hole extent if no_holes isn't set or if we are
2714         *     replacing the range with a new extent
2715         */
2716        if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2717                rsv_count = 3;
2718        else
2719                rsv_count = 2;
2720
2721        trans = btrfs_start_transaction(root, rsv_count);
2722        if (IS_ERR(trans)) {
2723                ret = PTR_ERR(trans);
2724                trans = NULL;
2725                goto out_free;
2726        }
2727
2728        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2729                                      min_size, false);
2730        BUG_ON(ret);
2731        trans->block_rsv = rsv;
2732
2733        cur_offset = start;
2734        drop_args.path = path;
2735        drop_args.end = end + 1;
2736        drop_args.drop_cache = true;
2737        while (cur_offset < end) {
2738                drop_args.start = cur_offset;
2739                ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2740                /* If we are punching a hole decrement the inode's byte count */
2741                if (!extent_info)
2742                        btrfs_update_inode_bytes(inode, 0,
2743                                                 drop_args.bytes_found);
2744                if (ret != -ENOSPC) {
2745                        /*
2746                         * The only time we don't want to abort is if we are
2747                         * attempting to clone a partial inline extent, in which
2748                         * case we'll get EOPNOTSUPP.  However if we aren't
2749                         * clone we need to abort no matter what, because if we
2750                         * got EOPNOTSUPP via prealloc then we messed up and
2751                         * need to abort.
2752                         */
2753                        if (ret &&
2754                            (ret != -EOPNOTSUPP ||
2755                             (extent_info && extent_info->is_new_extent)))
2756                                btrfs_abort_transaction(trans, ret);
2757                        break;
2758                }
2759
2760                trans->block_rsv = &fs_info->trans_block_rsv;
2761
2762                if (!extent_info && cur_offset < drop_args.drop_end &&
2763                    cur_offset < ino_size) {
2764                        ret = fill_holes(trans, inode, path, cur_offset,
2765                                         drop_args.drop_end);
2766                        if (ret) {
2767                                /*
2768                                 * If we failed then we didn't insert our hole
2769                                 * entries for the area we dropped, so now the
2770                                 * fs is corrupted, so we must abort the
2771                                 * transaction.
2772                                 */
2773                                btrfs_abort_transaction(trans, ret);
2774                                break;
2775                        }
2776                } else if (!extent_info && cur_offset < drop_args.drop_end) {
2777                        /*
2778                         * We are past the i_size here, but since we didn't
2779                         * insert holes we need to clear the mapped area so we
2780                         * know to not set disk_i_size in this area until a new
2781                         * file extent is inserted here.
2782                         */
2783                        ret = btrfs_inode_clear_file_extent_range(inode,
2784                                        cur_offset,
2785                                        drop_args.drop_end - cur_offset);
2786                        if (ret) {
2787                                /*
2788                                 * We couldn't clear our area, so we could
2789                                 * presumably adjust up and corrupt the fs, so
2790                                 * we need to abort.
2791                                 */
2792                                btrfs_abort_transaction(trans, ret);
2793                                break;
2794                        }
2795                }
2796
2797                if (extent_info &&
2798                    drop_args.drop_end > extent_info->file_offset) {
2799                        u64 replace_len = drop_args.drop_end -
2800                                          extent_info->file_offset;
2801
2802                        ret = btrfs_insert_replace_extent(trans, inode, path,
2803                                        extent_info, replace_len,
2804                                        drop_args.bytes_found);
2805                        if (ret) {
2806                                btrfs_abort_transaction(trans, ret);
2807                                break;
2808                        }
2809                        extent_info->data_len -= replace_len;
2810                        extent_info->data_offset += replace_len;
2811                        extent_info->file_offset += replace_len;
2812                }
2813
2814                ret = btrfs_update_inode(trans, root, inode);
2815                if (ret)
2816                        break;
2817
2818                btrfs_end_transaction(trans);
2819                btrfs_btree_balance_dirty(fs_info);
2820
2821                trans = btrfs_start_transaction(root, rsv_count);
2822                if (IS_ERR(trans)) {
2823                        ret = PTR_ERR(trans);
2824                        trans = NULL;
2825                        break;
2826                }
2827
2828                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2829                                              rsv, min_size, false);
2830                BUG_ON(ret);    /* shouldn't happen */
2831                trans->block_rsv = rsv;
2832
2833                cur_offset = drop_args.drop_end;
2834                len = end - cur_offset;
2835                if (!extent_info && len) {
2836                        ret = find_first_non_hole(inode, &cur_offset, &len);
2837                        if (unlikely(ret < 0))
2838                                break;
2839                        if (ret && !len) {
2840                                ret = 0;
2841                                break;
2842                        }
2843                }
2844        }
2845
2846        /*
2847         * If we were cloning, force the next fsync to be a full one since we
2848         * we replaced (or just dropped in the case of cloning holes when
2849         * NO_HOLES is enabled) file extent items and did not setup new extent
2850         * maps for the replacement extents (or holes).
2851         */
2852        if (extent_info && !extent_info->is_new_extent)
2853                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2854
2855        if (ret)
2856                goto out_trans;
2857
2858        trans->block_rsv = &fs_info->trans_block_rsv;
2859        /*
2860         * If we are using the NO_HOLES feature we might have had already an
2861         * hole that overlaps a part of the region [lockstart, lockend] and
2862         * ends at (or beyond) lockend. Since we have no file extent items to
2863         * represent holes, drop_end can be less than lockend and so we must
2864         * make sure we have an extent map representing the existing hole (the
2865         * call to __btrfs_drop_extents() might have dropped the existing extent
2866         * map representing the existing hole), otherwise the fast fsync path
2867         * will not record the existence of the hole region
2868         * [existing_hole_start, lockend].
2869         */
2870        if (drop_args.drop_end <= end)
2871                drop_args.drop_end = end + 1;
2872        /*
2873         * Don't insert file hole extent item if it's for a range beyond eof
2874         * (because it's useless) or if it represents a 0 bytes range (when
2875         * cur_offset == drop_end).
2876         */
2877        if (!extent_info && cur_offset < ino_size &&
2878            cur_offset < drop_args.drop_end) {
2879                ret = fill_holes(trans, inode, path, cur_offset,
2880                                 drop_args.drop_end);
2881                if (ret) {
2882                        /* Same comment as above. */
2883                        btrfs_abort_transaction(trans, ret);
2884                        goto out_trans;
2885                }
2886        } else if (!extent_info && cur_offset < drop_args.drop_end) {
2887                /* See the comment in the loop above for the reasoning here. */
2888                ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2889                                        drop_args.drop_end - cur_offset);
2890                if (ret) {
2891                        btrfs_abort_transaction(trans, ret);
2892                        goto out_trans;
2893                }
2894
2895        }
2896        if (extent_info) {
2897                ret = btrfs_insert_replace_extent(trans, inode, path,
2898                                extent_info, extent_info->data_len,
2899                                drop_args.bytes_found);
2900                if (ret) {
2901                        btrfs_abort_transaction(trans, ret);
2902                        goto out_trans;
2903                }
2904        }
2905
2906out_trans:
2907        if (!trans)
2908                goto out_free;
2909
2910        trans->block_rsv = &fs_info->trans_block_rsv;
2911        if (ret)
2912                btrfs_end_transaction(trans);
2913        else
2914                *trans_out = trans;
2915out_free:
2916        btrfs_free_block_rsv(fs_info, rsv);
2917out:
2918        return ret;
2919}
2920
2921static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2922{
2923        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2924        struct btrfs_root *root = BTRFS_I(inode)->root;
2925        struct extent_state *cached_state = NULL;
2926        struct btrfs_path *path;
2927        struct btrfs_trans_handle *trans = NULL;
2928        u64 lockstart;
2929        u64 lockend;
2930        u64 tail_start;
2931        u64 tail_len;
2932        u64 orig_start = offset;
2933        int ret = 0;
2934        bool same_block;
2935        u64 ino_size;
2936        bool truncated_block = false;
2937        bool updated_inode = false;
2938
2939        ret = btrfs_wait_ordered_range(inode, offset, len);
2940        if (ret)
2941                return ret;
2942
2943        btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2944        ino_size = round_up(inode->i_size, fs_info->sectorsize);
2945        ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2946        if (ret < 0)
2947                goto out_only_mutex;
2948        if (ret && !len) {
2949                /* Already in a large hole */
2950                ret = 0;
2951                goto out_only_mutex;
2952        }
2953
2954        lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2955        lockend = round_down(offset + len,
2956                             btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2957        same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2958                == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2959        /*
2960         * We needn't truncate any block which is beyond the end of the file
2961         * because we are sure there is no data there.
2962         */
2963        /*
2964         * Only do this if we are in the same block and we aren't doing the
2965         * entire block.
2966         */
2967        if (same_block && len < fs_info->sectorsize) {
2968                if (offset < ino_size) {
2969                        truncated_block = true;
2970                        ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2971                                                   0);
2972                } else {
2973                        ret = 0;
2974                }
2975                goto out_only_mutex;
2976        }
2977
2978        /* zero back part of the first block */
2979        if (offset < ino_size) {
2980                truncated_block = true;
2981                ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2982                if (ret) {
2983                        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2984                        return ret;
2985                }
2986        }
2987
2988        /* Check the aligned pages after the first unaligned page,
2989         * if offset != orig_start, which means the first unaligned page
2990         * including several following pages are already in holes,
2991         * the extra check can be skipped */
2992        if (offset == orig_start) {
2993                /* after truncate page, check hole again */
2994                len = offset + len - lockstart;
2995                offset = lockstart;
2996                ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2997                if (ret < 0)
2998                        goto out_only_mutex;
2999                if (ret && !len) {
3000                        ret = 0;
3001                        goto out_only_mutex;
3002                }
3003                lockstart = offset;
3004        }
3005
3006        /* Check the tail unaligned part is in a hole */
3007        tail_start = lockend + 1;
3008        tail_len = offset + len - tail_start;
3009        if (tail_len) {
3010                ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
3011                if (unlikely(ret < 0))
3012                        goto out_only_mutex;
3013                if (!ret) {
3014                        /* zero the front end of the last page */
3015                        if (tail_start + tail_len < ino_size) {
3016                                truncated_block = true;
3017                                ret = btrfs_truncate_block(BTRFS_I(inode),
3018                                                        tail_start + tail_len,
3019                                                        0, 1);
3020                                if (ret)
3021                                        goto out_only_mutex;
3022                        }
3023                }
3024        }
3025
3026        if (lockend < lockstart) {
3027                ret = 0;
3028                goto out_only_mutex;
3029        }
3030
3031        ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3032                                          &cached_state);
3033        if (ret)
3034                goto out_only_mutex;
3035
3036        path = btrfs_alloc_path();
3037        if (!path) {
3038                ret = -ENOMEM;
3039                goto out;
3040        }
3041
3042        ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3043                                         lockend, NULL, &trans);
3044        btrfs_free_path(path);
3045        if (ret)
3046                goto out;
3047
3048        ASSERT(trans != NULL);
3049        inode_inc_iversion(inode);
3050        inode->i_mtime = inode->i_ctime = current_time(inode);
3051        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3052        updated_inode = true;
3053        btrfs_end_transaction(trans);
3054        btrfs_btree_balance_dirty(fs_info);
3055out:
3056        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3057                             &cached_state);
3058out_only_mutex:
3059        if (!updated_inode && truncated_block && !ret) {
3060                /*
3061                 * If we only end up zeroing part of a page, we still need to
3062                 * update the inode item, so that all the time fields are
3063                 * updated as well as the necessary btrfs inode in memory fields
3064                 * for detecting, at fsync time, if the inode isn't yet in the
3065                 * log tree or it's there but not up to date.
3066                 */
3067                struct timespec64 now = current_time(inode);
3068
3069                inode_inc_iversion(inode);
3070                inode->i_mtime = now;
3071                inode->i_ctime = now;
3072                trans = btrfs_start_transaction(root, 1);
3073                if (IS_ERR(trans)) {
3074                        ret = PTR_ERR(trans);
3075                } else {
3076                        int ret2;
3077
3078                        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3079                        ret2 = btrfs_end_transaction(trans);
3080                        if (!ret)
3081                                ret = ret2;
3082                }
3083        }
3084        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3085        return ret;
3086}
3087
3088/* Helper structure to record which range is already reserved */
3089struct falloc_range {
3090        struct list_head list;
3091        u64 start;
3092        u64 len;
3093};
3094
3095/*
3096 * Helper function to add falloc range
3097 *
3098 * Caller should have locked the larger range of extent containing
3099 * [start, len)
3100 */
3101static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3102{
3103        struct falloc_range *range = NULL;
3104
3105        if (!list_empty(head)) {
3106                /*
3107                 * As fallocate iterates by bytenr order, we only need to check
3108                 * the last range.
3109                 */
3110                range = list_last_entry(head, struct falloc_range, list);
3111                if (range->start + range->len == start) {
3112                        range->len += len;
3113                        return 0;
3114                }
3115        }
3116
3117        range = kmalloc(sizeof(*range), GFP_KERNEL);
3118        if (!range)
3119                return -ENOMEM;
3120        range->start = start;
3121        range->len = len;
3122        list_add_tail(&range->list, head);
3123        return 0;
3124}
3125
3126static int btrfs_fallocate_update_isize(struct inode *inode,
3127                                        const u64 end,
3128                                        const int mode)
3129{
3130        struct btrfs_trans_handle *trans;
3131        struct btrfs_root *root = BTRFS_I(inode)->root;
3132        int ret;
3133        int ret2;
3134
3135        if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3136                return 0;
3137
3138        trans = btrfs_start_transaction(root, 1);
3139        if (IS_ERR(trans))
3140                return PTR_ERR(trans);
3141
3142        inode->i_ctime = current_time(inode);
3143        i_size_write(inode, end);
3144        btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3145        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3146        ret2 = btrfs_end_transaction(trans);
3147
3148        return ret ? ret : ret2;
3149}
3150
3151enum {
3152        RANGE_BOUNDARY_WRITTEN_EXTENT,
3153        RANGE_BOUNDARY_PREALLOC_EXTENT,
3154        RANGE_BOUNDARY_HOLE,
3155};
3156
3157static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3158                                                 u64 offset)
3159{
3160        const u64 sectorsize = btrfs_inode_sectorsize(inode);
3161        struct extent_map *em;
3162        int ret;
3163
3164        offset = round_down(offset, sectorsize);
3165        em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3166        if (IS_ERR(em))
3167                return PTR_ERR(em);
3168
3169        if (em->block_start == EXTENT_MAP_HOLE)
3170                ret = RANGE_BOUNDARY_HOLE;
3171        else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3172                ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3173        else
3174                ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3175
3176        free_extent_map(em);
3177        return ret;
3178}
3179
3180static int btrfs_zero_range(struct inode *inode,
3181                            loff_t offset,
3182                            loff_t len,
3183                            const int mode)
3184{
3185        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3186        struct extent_map *em;
3187        struct extent_changeset *data_reserved = NULL;
3188        int ret;
3189        u64 alloc_hint = 0;
3190        const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3191        u64 alloc_start = round_down(offset, sectorsize);
3192        u64 alloc_end = round_up(offset + len, sectorsize);
3193        u64 bytes_to_reserve = 0;
3194        bool space_reserved = false;
3195
3196        inode_dio_wait(inode);
3197
3198        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3199                              alloc_end - alloc_start);
3200        if (IS_ERR(em)) {
3201                ret = PTR_ERR(em);
3202                goto out;
3203        }
3204
3205        /*
3206         * Avoid hole punching and extent allocation for some cases. More cases
3207         * could be considered, but these are unlikely common and we keep things
3208         * as simple as possible for now. Also, intentionally, if the target
3209         * range contains one or more prealloc extents together with regular
3210         * extents and holes, we drop all the existing extents and allocate a
3211         * new prealloc extent, so that we get a larger contiguous disk extent.
3212         */
3213        if (em->start <= alloc_start &&
3214            test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3215                const u64 em_end = em->start + em->len;
3216
3217                if (em_end >= offset + len) {
3218                        /*
3219                         * The whole range is already a prealloc extent,
3220                         * do nothing except updating the inode's i_size if
3221                         * needed.
3222                         */
3223                        free_extent_map(em);
3224                        ret = btrfs_fallocate_update_isize(inode, offset + len,
3225                                                           mode);
3226                        goto out;
3227                }
3228                /*
3229                 * Part of the range is already a prealloc extent, so operate
3230                 * only on the remaining part of the range.
3231                 */
3232                alloc_start = em_end;
3233                ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3234                len = offset + len - alloc_start;
3235                offset = alloc_start;
3236                alloc_hint = em->block_start + em->len;
3237        }
3238        free_extent_map(em);
3239
3240        if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3241            BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3242                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3243                                      sectorsize);
3244                if (IS_ERR(em)) {
3245                        ret = PTR_ERR(em);
3246                        goto out;
3247                }
3248
3249                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3250                        free_extent_map(em);
3251                        ret = btrfs_fallocate_update_isize(inode, offset + len,
3252                                                           mode);
3253                        goto out;
3254                }
3255                if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3256                        free_extent_map(em);
3257                        ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3258                                                   0);
3259                        if (!ret)
3260                                ret = btrfs_fallocate_update_isize(inode,
3261                                                                   offset + len,
3262                                                                   mode);
3263                        return ret;
3264                }
3265                free_extent_map(em);
3266                alloc_start = round_down(offset, sectorsize);
3267                alloc_end = alloc_start + sectorsize;
3268                goto reserve_space;
3269        }
3270
3271        alloc_start = round_up(offset, sectorsize);
3272        alloc_end = round_down(offset + len, sectorsize);
3273
3274        /*
3275         * For unaligned ranges, check the pages at the boundaries, they might
3276         * map to an extent, in which case we need to partially zero them, or
3277         * they might map to a hole, in which case we need our allocation range
3278         * to cover them.
3279         */
3280        if (!IS_ALIGNED(offset, sectorsize)) {
3281                ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3282                                                            offset);
3283                if (ret < 0)
3284                        goto out;
3285                if (ret == RANGE_BOUNDARY_HOLE) {
3286                        alloc_start = round_down(offset, sectorsize);
3287                        ret = 0;
3288                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3289                        ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3290                        if (ret)
3291                                goto out;
3292                } else {
3293                        ret = 0;
3294                }
3295        }
3296
3297        if (!IS_ALIGNED(offset + len, sectorsize)) {
3298                ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3299                                                            offset + len);
3300                if (ret < 0)
3301                        goto out;
3302                if (ret == RANGE_BOUNDARY_HOLE) {
3303                        alloc_end = round_up(offset + len, sectorsize);
3304                        ret = 0;
3305                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3306                        ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3307                                                   0, 1);
3308                        if (ret)
3309                                goto out;
3310                } else {
3311                        ret = 0;
3312                }
3313        }
3314
3315reserve_space:
3316        if (alloc_start < alloc_end) {
3317                struct extent_state *cached_state = NULL;
3318                const u64 lockstart = alloc_start;
3319                const u64 lockend = alloc_end - 1;
3320
3321                bytes_to_reserve = alloc_end - alloc_start;
3322                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3323                                                      bytes_to_reserve);
3324                if (ret < 0)
3325                        goto out;
3326                space_reserved = true;
3327                ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3328                                                  &cached_state);
3329                if (ret)
3330                        goto out;
3331                ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3332                                                alloc_start, bytes_to_reserve);
3333                if (ret) {
3334                        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3335                                             lockend, &cached_state);
3336                        goto out;
3337                }
3338                ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3339                                                alloc_end - alloc_start,
3340                                                i_blocksize(inode),
3341                                                offset + len, &alloc_hint);
3342                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3343                                     lockend, &cached_state);
3344                /* btrfs_prealloc_file_range releases reserved space on error */
3345                if (ret) {
3346                        space_reserved = false;
3347                        goto out;
3348                }
3349        }
3350        ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3351 out:
3352        if (ret && space_reserved)
3353                btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3354                                               alloc_start, bytes_to_reserve);
3355        extent_changeset_free(data_reserved);
3356
3357        return ret;
3358}
3359
3360static long btrfs_fallocate(struct file *file, int mode,
3361                            loff_t offset, loff_t len)
3362{
3363        struct inode *inode = file_inode(file);
3364        struct extent_state *cached_state = NULL;
3365        struct extent_changeset *data_reserved = NULL;
3366        struct falloc_range *range;
3367        struct falloc_range *tmp;
3368        struct list_head reserve_list;
3369        u64 cur_offset;
3370        u64 last_byte;
3371        u64 alloc_start;
3372        u64 alloc_end;
3373        u64 alloc_hint = 0;
3374        u64 locked_end;
3375        u64 actual_end = 0;
3376        struct extent_map *em;
3377        int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3378        int ret;
3379
3380        /* Do not allow fallocate in ZONED mode */
3381        if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3382                return -EOPNOTSUPP;
3383
3384        alloc_start = round_down(offset, blocksize);
3385        alloc_end = round_up(offset + len, blocksize);
3386        cur_offset = alloc_start;
3387
3388        /* Make sure we aren't being give some crap mode */
3389        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3390                     FALLOC_FL_ZERO_RANGE))
3391                return -EOPNOTSUPP;
3392
3393        if (mode & FALLOC_FL_PUNCH_HOLE)
3394                return btrfs_punch_hole(inode, offset, len);
3395
3396        /*
3397         * Only trigger disk allocation, don't trigger qgroup reserve
3398         *
3399         * For qgroup space, it will be checked later.
3400         */
3401        if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3402                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3403                                                      alloc_end - alloc_start);
3404                if (ret < 0)
3405                        return ret;
3406        }
3407
3408        btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3409
3410        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3411                ret = inode_newsize_ok(inode, offset + len);
3412                if (ret)
3413                        goto out;
3414        }
3415
3416        /*
3417         * TODO: Move these two operations after we have checked
3418         * accurate reserved space, or fallocate can still fail but
3419         * with page truncated or size expanded.
3420         *
3421         * But that's a minor problem and won't do much harm BTW.
3422         */
3423        if (alloc_start > inode->i_size) {
3424                ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3425                                        alloc_start);
3426                if (ret)
3427                        goto out;
3428        } else if (offset + len > inode->i_size) {
3429                /*
3430                 * If we are fallocating from the end of the file onward we
3431                 * need to zero out the end of the block if i_size lands in the
3432                 * middle of a block.
3433                 */
3434                ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3435                if (ret)
3436                        goto out;
3437        }
3438
3439        /*
3440         * wait for ordered IO before we have any locks.  We'll loop again
3441         * below with the locks held.
3442         */
3443        ret = btrfs_wait_ordered_range(inode, alloc_start,
3444                                       alloc_end - alloc_start);
3445        if (ret)
3446                goto out;
3447
3448        if (mode & FALLOC_FL_ZERO_RANGE) {
3449                ret = btrfs_zero_range(inode, offset, len, mode);
3450                btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3451                return ret;
3452        }
3453
3454        locked_end = alloc_end - 1;
3455        while (1) {
3456                struct btrfs_ordered_extent *ordered;
3457
3458                /* the extent lock is ordered inside the running
3459                 * transaction
3460                 */
3461                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3462                                 locked_end, &cached_state);
3463                ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3464                                                            locked_end);
3465
3466                if (ordered &&
3467                    ordered->file_offset + ordered->num_bytes > alloc_start &&
3468                    ordered->file_offset < alloc_end) {
3469                        btrfs_put_ordered_extent(ordered);
3470                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3471                                             alloc_start, locked_end,
3472                                             &cached_state);
3473                        /*
3474                         * we can't wait on the range with the transaction
3475                         * running or with the extent lock held
3476                         */
3477                        ret = btrfs_wait_ordered_range(inode, alloc_start,
3478                                                       alloc_end - alloc_start);
3479                        if (ret)
3480                                goto out;
3481                } else {
3482                        if (ordered)
3483                                btrfs_put_ordered_extent(ordered);
3484                        break;
3485                }
3486        }
3487
3488        /* First, check if we exceed the qgroup limit */
3489        INIT_LIST_HEAD(&reserve_list);
3490        while (cur_offset < alloc_end) {
3491                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3492                                      alloc_end - cur_offset);
3493                if (IS_ERR(em)) {
3494                        ret = PTR_ERR(em);
3495                        break;
3496                }
3497                last_byte = min(extent_map_end(em), alloc_end);
3498                actual_end = min_t(u64, extent_map_end(em), offset + len);
3499                last_byte = ALIGN(last_byte, blocksize);
3500                if (em->block_start == EXTENT_MAP_HOLE ||
3501                    (cur_offset >= inode->i_size &&
3502                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3503                        ret = add_falloc_range(&reserve_list, cur_offset,
3504                                               last_byte - cur_offset);
3505                        if (ret < 0) {
3506                                free_extent_map(em);
3507                                break;
3508                        }
3509                        ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3510                                        &data_reserved, cur_offset,
3511                                        last_byte - cur_offset);
3512                        if (ret < 0) {
3513                                cur_offset = last_byte;
3514                                free_extent_map(em);
3515                                break;
3516                        }
3517                } else {
3518                        /*
3519                         * Do not need to reserve unwritten extent for this
3520                         * range, free reserved data space first, otherwise
3521                         * it'll result in false ENOSPC error.
3522                         */
3523                        btrfs_free_reserved_data_space(BTRFS_I(inode),
3524                                data_reserved, cur_offset,
3525                                last_byte - cur_offset);
3526                }
3527                free_extent_map(em);
3528                cur_offset = last_byte;
3529        }
3530
3531        /*
3532         * If ret is still 0, means we're OK to fallocate.
3533         * Or just cleanup the list and exit.
3534         */
3535        list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3536                if (!ret)
3537                        ret = btrfs_prealloc_file_range(inode, mode,
3538                                        range->start,
3539                                        range->len, i_blocksize(inode),
3540                                        offset + len, &alloc_hint);
3541                else
3542                        btrfs_free_reserved_data_space(BTRFS_I(inode),
3543                                        data_reserved, range->start,
3544                                        range->len);
3545                list_del(&range->list);
3546                kfree(range);
3547        }
3548        if (ret < 0)
3549                goto out_unlock;
3550
3551        /*
3552         * We didn't need to allocate any more space, but we still extended the
3553         * size of the file so we need to update i_size and the inode item.
3554         */
3555        ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3556out_unlock:
3557        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3558                             &cached_state);
3559out:
3560        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3561        /* Let go of our reservation. */
3562        if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3563                btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3564                                cur_offset, alloc_end - cur_offset);
3565        extent_changeset_free(data_reserved);
3566        return ret;
3567}
3568
3569static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3570                                  int whence)
3571{
3572        struct btrfs_fs_info *fs_info = inode->root->fs_info;
3573        struct extent_map *em = NULL;
3574        struct extent_state *cached_state = NULL;
3575        loff_t i_size = inode->vfs_inode.i_size;
3576        u64 lockstart;
3577        u64 lockend;
3578        u64 start;
3579        u64 len;
3580        int ret = 0;
3581
3582        if (i_size == 0 || offset >= i_size)
3583                return -ENXIO;
3584
3585        /*
3586         * offset can be negative, in this case we start finding DATA/HOLE from
3587         * the very start of the file.
3588         */
3589        start = max_t(loff_t, 0, offset);
3590
3591        lockstart = round_down(start, fs_info->sectorsize);
3592        lockend = round_up(i_size, fs_info->sectorsize);
3593        if (lockend <= lockstart)
3594                lockend = lockstart + fs_info->sectorsize;
3595        lockend--;
3596        len = lockend - lockstart + 1;
3597
3598        lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3599
3600        while (start < i_size) {
3601                em = btrfs_get_extent_fiemap(inode, start, len);
3602                if (IS_ERR(em)) {
3603                        ret = PTR_ERR(em);
3604                        em = NULL;
3605                        break;
3606                }
3607
3608                if (whence == SEEK_HOLE &&
3609                    (em->block_start == EXTENT_MAP_HOLE ||
3610                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3611                        break;
3612                else if (whence == SEEK_DATA &&
3613                           (em->block_start != EXTENT_MAP_HOLE &&
3614                            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3615                        break;
3616
3617                start = em->start + em->len;
3618                free_extent_map(em);
3619                em = NULL;
3620                cond_resched();
3621        }
3622        free_extent_map(em);
3623        unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3624                             &cached_state);
3625        if (ret) {
3626                offset = ret;
3627        } else {
3628                if (whence == SEEK_DATA && start >= i_size)
3629                        offset = -ENXIO;
3630                else
3631                        offset = min_t(loff_t, start, i_size);
3632        }
3633
3634        return offset;
3635}
3636
3637static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3638{
3639        struct inode *inode = file->f_mapping->host;
3640
3641        switch (whence) {
3642        default:
3643                return generic_file_llseek(file, offset, whence);
3644        case SEEK_DATA:
3645        case SEEK_HOLE:
3646                btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3647                offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3648                btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3649                break;
3650        }
3651
3652        if (offset < 0)
3653                return offset;
3654
3655        return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3656}
3657
3658static int btrfs_file_open(struct inode *inode, struct file *filp)
3659{
3660        int ret;
3661
3662        filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3663
3664        ret = fsverity_file_open(inode, filp);
3665        if (ret)
3666                return ret;
3667        return generic_file_open(inode, filp);
3668}
3669
3670static int check_direct_read(struct btrfs_fs_info *fs_info,
3671                             const struct iov_iter *iter, loff_t offset)
3672{
3673        int ret;
3674        int i, seg;
3675
3676        ret = check_direct_IO(fs_info, iter, offset);
3677        if (ret < 0)
3678                return ret;
3679
3680        if (!iter_is_iovec(iter))
3681                return 0;
3682
3683        for (seg = 0; seg < iter->nr_segs; seg++)
3684                for (i = seg + 1; i < iter->nr_segs; i++)
3685                        if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3686                                return -EINVAL;
3687        return 0;
3688}
3689
3690static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3691{
3692        struct inode *inode = file_inode(iocb->ki_filp);
3693        size_t prev_left = 0;
3694        ssize_t read = 0;
3695        ssize_t ret;
3696
3697        if (fsverity_active(inode))
3698                return 0;
3699
3700        if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3701                return 0;
3702
3703        btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3704again:
3705        /*
3706         * This is similar to what we do for direct IO writes, see the comment
3707         * at btrfs_direct_write(), but we also disable page faults in addition
3708         * to disabling them only at the iov_iter level. This is because when
3709         * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3710         * which can still trigger page fault ins despite having set ->nofault
3711         * to true of our 'to' iov_iter.
3712         *
3713         * The difference to direct IO writes is that we deadlock when trying
3714         * to lock the extent range in the inode's tree during he page reads
3715         * triggered by the fault in (while for writes it is due to waiting for
3716         * our own ordered extent). This is because for direct IO reads,
3717         * btrfs_dio_iomap_begin() returns with the extent range locked, which
3718         * is only unlocked in the endio callback (end_bio_extent_readpage()).
3719         */
3720        pagefault_disable();
3721        to->nofault = true;
3722        ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
3723                           IOMAP_DIO_PARTIAL, read);
3724        to->nofault = false;
3725        pagefault_enable();
3726
3727        /* No increment (+=) because iomap returns a cumulative value. */
3728        if (ret > 0)
3729                read = ret;
3730
3731        if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3732                const size_t left = iov_iter_count(to);
3733
3734                if (left == prev_left) {
3735                        /*
3736                         * We didn't make any progress since the last attempt,
3737                         * fallback to a buffered read for the remainder of the
3738                         * range. This is just to avoid any possibility of looping
3739                         * for too long.
3740                         */
3741                        ret = read;
3742                } else {
3743                        /*
3744                         * We made some progress since the last retry or this is
3745                         * the first time we are retrying. Fault in as many pages
3746                         * as possible and retry.
3747                         */
3748                        fault_in_iov_iter_writeable(to, left);
3749                        prev_left = left;
3750                        goto again;
3751                }
3752        }
3753        btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3754        return ret < 0 ? ret : read;
3755}
3756
3757static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3758{
3759        ssize_t ret = 0;
3760
3761        if (iocb->ki_flags & IOCB_DIRECT) {
3762                ret = btrfs_direct_read(iocb, to);
3763                if (ret < 0 || !iov_iter_count(to) ||
3764                    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3765                        return ret;
3766        }
3767
3768        return filemap_read(iocb, to, ret);
3769}
3770
3771const struct file_operations btrfs_file_operations = {
3772        .llseek         = btrfs_file_llseek,
3773        .read_iter      = btrfs_file_read_iter,
3774        .splice_read    = generic_file_splice_read,
3775        .write_iter     = btrfs_file_write_iter,
3776        .splice_write   = iter_file_splice_write,
3777        .mmap           = btrfs_file_mmap,
3778        .open           = btrfs_file_open,
3779        .release        = btrfs_release_file,
3780        .fsync          = btrfs_sync_file,
3781        .fallocate      = btrfs_fallocate,
3782        .unlocked_ioctl = btrfs_ioctl,
3783#ifdef CONFIG_COMPAT
3784        .compat_ioctl   = btrfs_compat_ioctl,
3785#endif
3786        .remap_file_range = btrfs_remap_file_range,
3787};
3788
3789void __cold btrfs_auto_defrag_exit(void)
3790{
3791        kmem_cache_destroy(btrfs_inode_defrag_cachep);
3792}
3793
3794int __init btrfs_auto_defrag_init(void)
3795{
3796        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3797                                        sizeof(struct inode_defrag), 0,
3798                                        SLAB_MEM_SPREAD,
3799                                        NULL);
3800        if (!btrfs_inode_defrag_cachep)
3801                return -ENOMEM;
3802
3803        return 0;
3804}
3805
3806int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3807{
3808        int ret;
3809
3810        /*
3811         * So with compression we will find and lock a dirty page and clear the
3812         * first one as dirty, setup an async extent, and immediately return
3813         * with the entire range locked but with nobody actually marked with
3814         * writeback.  So we can't just filemap_write_and_wait_range() and
3815         * expect it to work since it will just kick off a thread to do the
3816         * actual work.  So we need to call filemap_fdatawrite_range _again_
3817         * since it will wait on the page lock, which won't be unlocked until
3818         * after the pages have been marked as writeback and so we're good to go
3819         * from there.  We have to do this otherwise we'll miss the ordered
3820         * extents and that results in badness.  Please Josef, do not think you
3821         * know better and pull this out at some point in the future, it is
3822         * right and you are wrong.
3823         */
3824        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3825        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3826                             &BTRFS_I(inode)->runtime_flags))
3827                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3828
3829        return ret;
3830}
3831