1
2
3
4
5
6
7
8
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18
19#define SHRINK_NID_BATCH_SIZE 8
20
21#define DEF_RA_NID_PAGES 0
22
23
24#define MAX_RA_NODE 128
25
26
27#define DEF_RAM_THRESHOLD 1
28
29
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34
35#define NATVEC_SIZE 64
36#define SETVEC_SIZE 32
37
38
39#define LOCKED_PAGE 1
40
41
42#define FILE_NOT_ALIGNED 1
43
44
45enum {
46 IS_CHECKPOINTED,
47 HAS_FSYNCED_INODE,
48 HAS_LAST_FSYNC,
49 IS_DIRTY,
50 IS_PREALLOC,
51};
52
53
54
55
56struct node_info {
57 nid_t nid;
58 nid_t ino;
59 block_t blk_addr;
60 unsigned char version;
61 unsigned char flag;
62};
63
64struct nat_entry {
65 struct list_head list;
66 struct node_info ni;
67};
68
69#define nat_get_nid(nat) ((nat)->ni.nid)
70#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
71#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
72#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
73#define nat_get_ino(nat) ((nat)->ni.ino)
74#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
75#define nat_get_version(nat) ((nat)->ni.version)
76#define nat_set_version(nat, v) ((nat)->ni.version = (v))
77
78#define inc_node_version(version) (++(version))
79
80static inline void copy_node_info(struct node_info *dst,
81 struct node_info *src)
82{
83 dst->nid = src->nid;
84 dst->ino = src->ino;
85 dst->blk_addr = src->blk_addr;
86 dst->version = src->version;
87
88}
89
90static inline void set_nat_flag(struct nat_entry *ne,
91 unsigned int type, bool set)
92{
93 unsigned char mask = 0x01 << type;
94 if (set)
95 ne->ni.flag |= mask;
96 else
97 ne->ni.flag &= ~mask;
98}
99
100static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
101{
102 unsigned char mask = 0x01 << type;
103 return ne->ni.flag & mask;
104}
105
106static inline void nat_reset_flag(struct nat_entry *ne)
107{
108
109 set_nat_flag(ne, IS_CHECKPOINTED, true);
110 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111 set_nat_flag(ne, HAS_LAST_FSYNC, true);
112}
113
114static inline void node_info_from_raw_nat(struct node_info *ni,
115 struct f2fs_nat_entry *raw_ne)
116{
117 ni->ino = le32_to_cpu(raw_ne->ino);
118 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119 ni->version = raw_ne->version;
120}
121
122static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123 struct node_info *ni)
124{
125 raw_ne->ino = cpu_to_le32(ni->ino);
126 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127 raw_ne->version = ni->version;
128}
129
130static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131{
132 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133 NM_I(sbi)->dirty_nats_ratio / 100;
134}
135
136static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137{
138 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139}
140
141enum mem_type {
142 FREE_NIDS,
143 NAT_ENTRIES,
144 DIRTY_DENTS,
145 INO_ENTRIES,
146 EXTENT_CACHE,
147 INMEM_PAGES,
148 DISCARD_CACHE,
149 COMPRESS_PAGE,
150 BASE_CHECK,
151};
152
153struct nat_entry_set {
154 struct list_head set_list;
155 struct list_head entry_list;
156 nid_t set;
157 unsigned int entry_cnt;
158};
159
160struct free_nid {
161 struct list_head list;
162 nid_t nid;
163 int state;
164};
165
166static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
167{
168 struct f2fs_nm_info *nm_i = NM_I(sbi);
169 struct free_nid *fnid;
170
171 spin_lock(&nm_i->nid_list_lock);
172 if (nm_i->nid_cnt[FREE_NID] <= 0) {
173 spin_unlock(&nm_i->nid_list_lock);
174 return;
175 }
176 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
177 *nid = fnid->nid;
178 spin_unlock(&nm_i->nid_list_lock);
179}
180
181
182
183
184static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187
188#ifdef CONFIG_F2FS_CHECK_FS
189 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
190 nm_i->bitmap_size))
191 f2fs_bug_on(sbi, 1);
192#endif
193 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
194}
195
196static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
197{
198 struct f2fs_nm_info *nm_i = NM_I(sbi);
199 pgoff_t block_off;
200 pgoff_t block_addr;
201
202
203
204
205
206
207 block_off = NAT_BLOCK_OFFSET(start);
208
209 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
210 (block_off << 1) -
211 (block_off & (sbi->blocks_per_seg - 1)));
212
213 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
214 block_addr += sbi->blocks_per_seg;
215
216 return block_addr;
217}
218
219static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
220 pgoff_t block_addr)
221{
222 struct f2fs_nm_info *nm_i = NM_I(sbi);
223
224 block_addr -= nm_i->nat_blkaddr;
225 block_addr ^= 1 << sbi->log_blocks_per_seg;
226 return block_addr + nm_i->nat_blkaddr;
227}
228
229static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
230{
231 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
232
233 f2fs_change_bit(block_off, nm_i->nat_bitmap);
234#ifdef CONFIG_F2FS_CHECK_FS
235 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
236#endif
237}
238
239static inline nid_t ino_of_node(struct page *node_page)
240{
241 struct f2fs_node *rn = F2FS_NODE(node_page);
242 return le32_to_cpu(rn->footer.ino);
243}
244
245static inline nid_t nid_of_node(struct page *node_page)
246{
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 return le32_to_cpu(rn->footer.nid);
249}
250
251static inline unsigned int ofs_of_node(struct page *node_page)
252{
253 struct f2fs_node *rn = F2FS_NODE(node_page);
254 unsigned flag = le32_to_cpu(rn->footer.flag);
255 return flag >> OFFSET_BIT_SHIFT;
256}
257
258static inline __u64 cpver_of_node(struct page *node_page)
259{
260 struct f2fs_node *rn = F2FS_NODE(node_page);
261 return le64_to_cpu(rn->footer.cp_ver);
262}
263
264static inline block_t next_blkaddr_of_node(struct page *node_page)
265{
266 struct f2fs_node *rn = F2FS_NODE(node_page);
267 return le32_to_cpu(rn->footer.next_blkaddr);
268}
269
270static inline void fill_node_footer(struct page *page, nid_t nid,
271 nid_t ino, unsigned int ofs, bool reset)
272{
273 struct f2fs_node *rn = F2FS_NODE(page);
274 unsigned int old_flag = 0;
275
276 if (reset)
277 memset(rn, 0, sizeof(*rn));
278 else
279 old_flag = le32_to_cpu(rn->footer.flag);
280
281 rn->footer.nid = cpu_to_le32(nid);
282 rn->footer.ino = cpu_to_le32(ino);
283
284
285 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
286 (old_flag & OFFSET_BIT_MASK));
287}
288
289static inline void copy_node_footer(struct page *dst, struct page *src)
290{
291 struct f2fs_node *src_rn = F2FS_NODE(src);
292 struct f2fs_node *dst_rn = F2FS_NODE(dst);
293 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
294}
295
296static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
297{
298 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
299 struct f2fs_node *rn = F2FS_NODE(page);
300 __u64 cp_ver = cur_cp_version(ckpt);
301
302 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
303 cp_ver |= (cur_cp_crc(ckpt) << 32);
304
305 rn->footer.cp_ver = cpu_to_le64(cp_ver);
306 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
307}
308
309static inline bool is_recoverable_dnode(struct page *page)
310{
311 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
312 __u64 cp_ver = cur_cp_version(ckpt);
313
314
315 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
316 return (cp_ver << 32) == (cpver_of_node(page) << 32);
317
318 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
319 cp_ver |= (cur_cp_crc(ckpt) << 32);
320
321 return cp_ver == cpver_of_node(page);
322}
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345static inline bool IS_DNODE(struct page *node_page)
346{
347 unsigned int ofs = ofs_of_node(node_page);
348
349 if (f2fs_has_xattr_block(ofs))
350 return true;
351
352 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
353 ofs == 5 + 2 * NIDS_PER_BLOCK)
354 return false;
355 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
356 ofs -= 6 + 2 * NIDS_PER_BLOCK;
357 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
358 return false;
359 }
360 return true;
361}
362
363static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
364{
365 struct f2fs_node *rn = F2FS_NODE(p);
366
367 f2fs_wait_on_page_writeback(p, NODE, true, true);
368
369 if (i)
370 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
371 else
372 rn->in.nid[off] = cpu_to_le32(nid);
373 return set_page_dirty(p);
374}
375
376static inline nid_t get_nid(struct page *p, int off, bool i)
377{
378 struct f2fs_node *rn = F2FS_NODE(p);
379
380 if (i)
381 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
382 return le32_to_cpu(rn->in.nid[off]);
383}
384
385
386
387
388
389
390
391
392static inline int is_node(struct page *page, int type)
393{
394 struct f2fs_node *rn = F2FS_NODE(page);
395 return le32_to_cpu(rn->footer.flag) & (1 << type);
396}
397
398#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
399#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
400#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
401
402static inline void set_cold_node(struct page *page, bool is_dir)
403{
404 struct f2fs_node *rn = F2FS_NODE(page);
405 unsigned int flag = le32_to_cpu(rn->footer.flag);
406
407 if (is_dir)
408 flag &= ~(0x1 << COLD_BIT_SHIFT);
409 else
410 flag |= (0x1 << COLD_BIT_SHIFT);
411 rn->footer.flag = cpu_to_le32(flag);
412}
413
414static inline void set_mark(struct page *page, int mark, int type)
415{
416 struct f2fs_node *rn = F2FS_NODE(page);
417 unsigned int flag = le32_to_cpu(rn->footer.flag);
418 if (mark)
419 flag |= (0x1 << type);
420 else
421 flag &= ~(0x1 << type);
422 rn->footer.flag = cpu_to_le32(flag);
423
424#ifdef CONFIG_F2FS_CHECK_FS
425 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
426#endif
427}
428#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
429#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
430