linux/fs/f2fs/node.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * fs/f2fs/node.h
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8/* start node id of a node block dedicated to the given node id */
   9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  10
  11/* node block offset on the NAT area dedicated to the given start node id */
  12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
  13
  14/* # of pages to perform synchronous readahead before building free nids */
  15#define FREE_NID_PAGES  8
  16#define MAX_FREE_NIDS   (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  17
  18/* size of free nid batch when shrinking */
  19#define SHRINK_NID_BATCH_SIZE   8
  20
  21#define DEF_RA_NID_PAGES        0       /* # of nid pages to be readaheaded */
  22
  23/* maximum readahead size for node during getting data blocks */
  24#define MAX_RA_NODE             128
  25
  26/* control the memory footprint threshold (10MB per 1GB ram) */
  27#define DEF_RAM_THRESHOLD       1
  28
  29/* control dirty nats ratio threshold (default: 10% over max nid count) */
  30#define DEF_DIRTY_NAT_RATIO_THRESHOLD           10
  31/* control total # of nats */
  32#define DEF_NAT_CACHE_THRESHOLD                 100000
  33
  34/* vector size for gang look-up from nat cache that consists of radix tree */
  35#define NATVEC_SIZE     64
  36#define SETVEC_SIZE     32
  37
  38/* return value for read_node_page */
  39#define LOCKED_PAGE     1
  40
  41/* check pinned file's alignment status of physical blocks */
  42#define FILE_NOT_ALIGNED        1
  43
  44/* For flag in struct node_info */
  45enum {
  46        IS_CHECKPOINTED,        /* is it checkpointed before? */
  47        HAS_FSYNCED_INODE,      /* is the inode fsynced before? */
  48        HAS_LAST_FSYNC,         /* has the latest node fsync mark? */
  49        IS_DIRTY,               /* this nat entry is dirty? */
  50        IS_PREALLOC,            /* nat entry is preallocated */
  51};
  52
  53/*
  54 * For node information
  55 */
  56struct node_info {
  57        nid_t nid;              /* node id */
  58        nid_t ino;              /* inode number of the node's owner */
  59        block_t blk_addr;       /* block address of the node */
  60        unsigned char version;  /* version of the node */
  61        unsigned char flag;     /* for node information bits */
  62};
  63
  64struct nat_entry {
  65        struct list_head list;  /* for clean or dirty nat list */
  66        struct node_info ni;    /* in-memory node information */
  67};
  68
  69#define nat_get_nid(nat)                ((nat)->ni.nid)
  70#define nat_set_nid(nat, n)             ((nat)->ni.nid = (n))
  71#define nat_get_blkaddr(nat)            ((nat)->ni.blk_addr)
  72#define nat_set_blkaddr(nat, b)         ((nat)->ni.blk_addr = (b))
  73#define nat_get_ino(nat)                ((nat)->ni.ino)
  74#define nat_set_ino(nat, i)             ((nat)->ni.ino = (i))
  75#define nat_get_version(nat)            ((nat)->ni.version)
  76#define nat_set_version(nat, v)         ((nat)->ni.version = (v))
  77
  78#define inc_node_version(version)       (++(version))
  79
  80static inline void copy_node_info(struct node_info *dst,
  81                                                struct node_info *src)
  82{
  83        dst->nid = src->nid;
  84        dst->ino = src->ino;
  85        dst->blk_addr = src->blk_addr;
  86        dst->version = src->version;
  87        /* should not copy flag here */
  88}
  89
  90static inline void set_nat_flag(struct nat_entry *ne,
  91                                unsigned int type, bool set)
  92{
  93        unsigned char mask = 0x01 << type;
  94        if (set)
  95                ne->ni.flag |= mask;
  96        else
  97                ne->ni.flag &= ~mask;
  98}
  99
 100static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 101{
 102        unsigned char mask = 0x01 << type;
 103        return ne->ni.flag & mask;
 104}
 105
 106static inline void nat_reset_flag(struct nat_entry *ne)
 107{
 108        /* these states can be set only after checkpoint was done */
 109        set_nat_flag(ne, IS_CHECKPOINTED, true);
 110        set_nat_flag(ne, HAS_FSYNCED_INODE, false);
 111        set_nat_flag(ne, HAS_LAST_FSYNC, true);
 112}
 113
 114static inline void node_info_from_raw_nat(struct node_info *ni,
 115                                                struct f2fs_nat_entry *raw_ne)
 116{
 117        ni->ino = le32_to_cpu(raw_ne->ino);
 118        ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
 119        ni->version = raw_ne->version;
 120}
 121
 122static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
 123                                                struct node_info *ni)
 124{
 125        raw_ne->ino = cpu_to_le32(ni->ino);
 126        raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
 127        raw_ne->version = ni->version;
 128}
 129
 130static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
 131{
 132        return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
 133                                        NM_I(sbi)->dirty_nats_ratio / 100;
 134}
 135
 136static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
 137{
 138        return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
 139}
 140
 141enum mem_type {
 142        FREE_NIDS,      /* indicates the free nid list */
 143        NAT_ENTRIES,    /* indicates the cached nat entry */
 144        DIRTY_DENTS,    /* indicates dirty dentry pages */
 145        INO_ENTRIES,    /* indicates inode entries */
 146        EXTENT_CACHE,   /* indicates extent cache */
 147        INMEM_PAGES,    /* indicates inmemory pages */
 148        DISCARD_CACHE,  /* indicates memory of cached discard cmds */
 149        COMPRESS_PAGE,  /* indicates memory of cached compressed pages */
 150        BASE_CHECK,     /* check kernel status */
 151};
 152
 153struct nat_entry_set {
 154        struct list_head set_list;      /* link with other nat sets */
 155        struct list_head entry_list;    /* link with dirty nat entries */
 156        nid_t set;                      /* set number*/
 157        unsigned int entry_cnt;         /* the # of nat entries in set */
 158};
 159
 160struct free_nid {
 161        struct list_head list;  /* for free node id list */
 162        nid_t nid;              /* node id */
 163        int state;              /* in use or not: FREE_NID or PREALLOC_NID */
 164};
 165
 166static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 167{
 168        struct f2fs_nm_info *nm_i = NM_I(sbi);
 169        struct free_nid *fnid;
 170
 171        spin_lock(&nm_i->nid_list_lock);
 172        if (nm_i->nid_cnt[FREE_NID] <= 0) {
 173                spin_unlock(&nm_i->nid_list_lock);
 174                return;
 175        }
 176        fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
 177        *nid = fnid->nid;
 178        spin_unlock(&nm_i->nid_list_lock);
 179}
 180
 181/*
 182 * inline functions
 183 */
 184static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
 185{
 186        struct f2fs_nm_info *nm_i = NM_I(sbi);
 187
 188#ifdef CONFIG_F2FS_CHECK_FS
 189        if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
 190                                                nm_i->bitmap_size))
 191                f2fs_bug_on(sbi, 1);
 192#endif
 193        memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
 194}
 195
 196static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
 197{
 198        struct f2fs_nm_info *nm_i = NM_I(sbi);
 199        pgoff_t block_off;
 200        pgoff_t block_addr;
 201
 202        /*
 203         * block_off = segment_off * 512 + off_in_segment
 204         * OLD = (segment_off * 512) * 2 + off_in_segment
 205         * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
 206         */
 207        block_off = NAT_BLOCK_OFFSET(start);
 208
 209        block_addr = (pgoff_t)(nm_i->nat_blkaddr +
 210                (block_off << 1) -
 211                (block_off & (sbi->blocks_per_seg - 1)));
 212
 213        if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
 214                block_addr += sbi->blocks_per_seg;
 215
 216        return block_addr;
 217}
 218
 219static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
 220                                                pgoff_t block_addr)
 221{
 222        struct f2fs_nm_info *nm_i = NM_I(sbi);
 223
 224        block_addr -= nm_i->nat_blkaddr;
 225        block_addr ^= 1 << sbi->log_blocks_per_seg;
 226        return block_addr + nm_i->nat_blkaddr;
 227}
 228
 229static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
 230{
 231        unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
 232
 233        f2fs_change_bit(block_off, nm_i->nat_bitmap);
 234#ifdef CONFIG_F2FS_CHECK_FS
 235        f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
 236#endif
 237}
 238
 239static inline nid_t ino_of_node(struct page *node_page)
 240{
 241        struct f2fs_node *rn = F2FS_NODE(node_page);
 242        return le32_to_cpu(rn->footer.ino);
 243}
 244
 245static inline nid_t nid_of_node(struct page *node_page)
 246{
 247        struct f2fs_node *rn = F2FS_NODE(node_page);
 248        return le32_to_cpu(rn->footer.nid);
 249}
 250
 251static inline unsigned int ofs_of_node(struct page *node_page)
 252{
 253        struct f2fs_node *rn = F2FS_NODE(node_page);
 254        unsigned flag = le32_to_cpu(rn->footer.flag);
 255        return flag >> OFFSET_BIT_SHIFT;
 256}
 257
 258static inline __u64 cpver_of_node(struct page *node_page)
 259{
 260        struct f2fs_node *rn = F2FS_NODE(node_page);
 261        return le64_to_cpu(rn->footer.cp_ver);
 262}
 263
 264static inline block_t next_blkaddr_of_node(struct page *node_page)
 265{
 266        struct f2fs_node *rn = F2FS_NODE(node_page);
 267        return le32_to_cpu(rn->footer.next_blkaddr);
 268}
 269
 270static inline void fill_node_footer(struct page *page, nid_t nid,
 271                                nid_t ino, unsigned int ofs, bool reset)
 272{
 273        struct f2fs_node *rn = F2FS_NODE(page);
 274        unsigned int old_flag = 0;
 275
 276        if (reset)
 277                memset(rn, 0, sizeof(*rn));
 278        else
 279                old_flag = le32_to_cpu(rn->footer.flag);
 280
 281        rn->footer.nid = cpu_to_le32(nid);
 282        rn->footer.ino = cpu_to_le32(ino);
 283
 284        /* should remain old flag bits such as COLD_BIT_SHIFT */
 285        rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
 286                                        (old_flag & OFFSET_BIT_MASK));
 287}
 288
 289static inline void copy_node_footer(struct page *dst, struct page *src)
 290{
 291        struct f2fs_node *src_rn = F2FS_NODE(src);
 292        struct f2fs_node *dst_rn = F2FS_NODE(dst);
 293        memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
 294}
 295
 296static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
 297{
 298        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 299        struct f2fs_node *rn = F2FS_NODE(page);
 300        __u64 cp_ver = cur_cp_version(ckpt);
 301
 302        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
 303                cp_ver |= (cur_cp_crc(ckpt) << 32);
 304
 305        rn->footer.cp_ver = cpu_to_le64(cp_ver);
 306        rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 307}
 308
 309static inline bool is_recoverable_dnode(struct page *page)
 310{
 311        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 312        __u64 cp_ver = cur_cp_version(ckpt);
 313
 314        /* Don't care crc part, if fsck.f2fs sets it. */
 315        if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
 316                return (cp_ver << 32) == (cpver_of_node(page) << 32);
 317
 318        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
 319                cp_ver |= (cur_cp_crc(ckpt) << 32);
 320
 321        return cp_ver == cpver_of_node(page);
 322}
 323
 324/*
 325 * f2fs assigns the following node offsets described as (num).
 326 * N = NIDS_PER_BLOCK
 327 *
 328 *  Inode block (0)
 329 *    |- direct node (1)
 330 *    |- direct node (2)
 331 *    |- indirect node (3)
 332 *    |            `- direct node (4 => 4 + N - 1)
 333 *    |- indirect node (4 + N)
 334 *    |            `- direct node (5 + N => 5 + 2N - 1)
 335 *    `- double indirect node (5 + 2N)
 336 *                 `- indirect node (6 + 2N)
 337 *                       `- direct node
 338 *                 ......
 339 *                 `- indirect node ((6 + 2N) + x(N + 1))
 340 *                       `- direct node
 341 *                 ......
 342 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 343 *                       `- direct node
 344 */
 345static inline bool IS_DNODE(struct page *node_page)
 346{
 347        unsigned int ofs = ofs_of_node(node_page);
 348
 349        if (f2fs_has_xattr_block(ofs))
 350                return true;
 351
 352        if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
 353                        ofs == 5 + 2 * NIDS_PER_BLOCK)
 354                return false;
 355        if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
 356                ofs -= 6 + 2 * NIDS_PER_BLOCK;
 357                if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
 358                        return false;
 359        }
 360        return true;
 361}
 362
 363static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
 364{
 365        struct f2fs_node *rn = F2FS_NODE(p);
 366
 367        f2fs_wait_on_page_writeback(p, NODE, true, true);
 368
 369        if (i)
 370                rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
 371        else
 372                rn->in.nid[off] = cpu_to_le32(nid);
 373        return set_page_dirty(p);
 374}
 375
 376static inline nid_t get_nid(struct page *p, int off, bool i)
 377{
 378        struct f2fs_node *rn = F2FS_NODE(p);
 379
 380        if (i)
 381                return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
 382        return le32_to_cpu(rn->in.nid[off]);
 383}
 384
 385/*
 386 * Coldness identification:
 387 *  - Mark cold files in f2fs_inode_info
 388 *  - Mark cold node blocks in their node footer
 389 *  - Mark cold data pages in page cache
 390 */
 391
 392static inline int is_node(struct page *page, int type)
 393{
 394        struct f2fs_node *rn = F2FS_NODE(page);
 395        return le32_to_cpu(rn->footer.flag) & (1 << type);
 396}
 397
 398#define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
 399#define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
 400#define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
 401
 402static inline void set_cold_node(struct page *page, bool is_dir)
 403{
 404        struct f2fs_node *rn = F2FS_NODE(page);
 405        unsigned int flag = le32_to_cpu(rn->footer.flag);
 406
 407        if (is_dir)
 408                flag &= ~(0x1 << COLD_BIT_SHIFT);
 409        else
 410                flag |= (0x1 << COLD_BIT_SHIFT);
 411        rn->footer.flag = cpu_to_le32(flag);
 412}
 413
 414static inline void set_mark(struct page *page, int mark, int type)
 415{
 416        struct f2fs_node *rn = F2FS_NODE(page);
 417        unsigned int flag = le32_to_cpu(rn->footer.flag);
 418        if (mark)
 419                flag |= (0x1 << type);
 420        else
 421                flag &= ~(0x1 << type);
 422        rn->footer.flag = cpu_to_le32(flag);
 423
 424#ifdef CONFIG_F2FS_CHECK_FS
 425        f2fs_inode_chksum_set(F2FS_P_SB(page), page);
 426#endif
 427}
 428#define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
 429#define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)
 430