linux/fs/f2fs/segment.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/sched/mm.h>
  13#include <linux/prefetch.h>
  14#include <linux/kthread.h>
  15#include <linux/swap.h>
  16#include <linux/timer.h>
  17#include <linux/freezer.h>
  18#include <linux/sched/signal.h>
  19#include <linux/random.h>
  20
  21#include "f2fs.h"
  22#include "segment.h"
  23#include "node.h"
  24#include "gc.h"
  25#include "iostat.h"
  26#include <trace/events/f2fs.h>
  27
  28#define __reverse_ffz(x) __reverse_ffs(~(x))
  29
  30static struct kmem_cache *discard_entry_slab;
  31static struct kmem_cache *discard_cmd_slab;
  32static struct kmem_cache *sit_entry_set_slab;
  33static struct kmem_cache *inmem_entry_slab;
  34
  35static unsigned long __reverse_ulong(unsigned char *str)
  36{
  37        unsigned long tmp = 0;
  38        int shift = 24, idx = 0;
  39
  40#if BITS_PER_LONG == 64
  41        shift = 56;
  42#endif
  43        while (shift >= 0) {
  44                tmp |= (unsigned long)str[idx++] << shift;
  45                shift -= BITS_PER_BYTE;
  46        }
  47        return tmp;
  48}
  49
  50/*
  51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  53 */
  54static inline unsigned long __reverse_ffs(unsigned long word)
  55{
  56        int num = 0;
  57
  58#if BITS_PER_LONG == 64
  59        if ((word & 0xffffffff00000000UL) == 0)
  60                num += 32;
  61        else
  62                word >>= 32;
  63#endif
  64        if ((word & 0xffff0000) == 0)
  65                num += 16;
  66        else
  67                word >>= 16;
  68
  69        if ((word & 0xff00) == 0)
  70                num += 8;
  71        else
  72                word >>= 8;
  73
  74        if ((word & 0xf0) == 0)
  75                num += 4;
  76        else
  77                word >>= 4;
  78
  79        if ((word & 0xc) == 0)
  80                num += 2;
  81        else
  82                word >>= 2;
  83
  84        if ((word & 0x2) == 0)
  85                num += 1;
  86        return num;
  87}
  88
  89/*
  90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  92 * @size must be integral times of unsigned long.
  93 * Example:
  94 *                             MSB <--> LSB
  95 *   f2fs_set_bit(0, bitmap) => 1000 0000
  96 *   f2fs_set_bit(7, bitmap) => 0000 0001
  97 */
  98static unsigned long __find_rev_next_bit(const unsigned long *addr,
  99                        unsigned long size, unsigned long offset)
 100{
 101        const unsigned long *p = addr + BIT_WORD(offset);
 102        unsigned long result = size;
 103        unsigned long tmp;
 104
 105        if (offset >= size)
 106                return size;
 107
 108        size -= (offset & ~(BITS_PER_LONG - 1));
 109        offset %= BITS_PER_LONG;
 110
 111        while (1) {
 112                if (*p == 0)
 113                        goto pass;
 114
 115                tmp = __reverse_ulong((unsigned char *)p);
 116
 117                tmp &= ~0UL >> offset;
 118                if (size < BITS_PER_LONG)
 119                        tmp &= (~0UL << (BITS_PER_LONG - size));
 120                if (tmp)
 121                        goto found;
 122pass:
 123                if (size <= BITS_PER_LONG)
 124                        break;
 125                size -= BITS_PER_LONG;
 126                offset = 0;
 127                p++;
 128        }
 129        return result;
 130found:
 131        return result - size + __reverse_ffs(tmp);
 132}
 133
 134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 135                        unsigned long size, unsigned long offset)
 136{
 137        const unsigned long *p = addr + BIT_WORD(offset);
 138        unsigned long result = size;
 139        unsigned long tmp;
 140
 141        if (offset >= size)
 142                return size;
 143
 144        size -= (offset & ~(BITS_PER_LONG - 1));
 145        offset %= BITS_PER_LONG;
 146
 147        while (1) {
 148                if (*p == ~0UL)
 149                        goto pass;
 150
 151                tmp = __reverse_ulong((unsigned char *)p);
 152
 153                if (offset)
 154                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 155                if (size < BITS_PER_LONG)
 156                        tmp |= ~0UL >> size;
 157                if (tmp != ~0UL)
 158                        goto found;
 159pass:
 160                if (size <= BITS_PER_LONG)
 161                        break;
 162                size -= BITS_PER_LONG;
 163                offset = 0;
 164                p++;
 165        }
 166        return result;
 167found:
 168        return result - size + __reverse_ffz(tmp);
 169}
 170
 171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 172{
 173        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 174        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 175        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 176
 177        if (f2fs_lfs_mode(sbi))
 178                return false;
 179        if (sbi->gc_mode == GC_URGENT_HIGH)
 180                return true;
 181        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 182                return true;
 183
 184        return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 185                        SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 186}
 187
 188void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 189{
 190        struct inmem_pages *new;
 191
 192        set_page_private_atomic(page);
 193
 194        new = f2fs_kmem_cache_alloc(inmem_entry_slab,
 195                                        GFP_NOFS, true, NULL);
 196
 197        /* add atomic page indices to the list */
 198        new->page = page;
 199        INIT_LIST_HEAD(&new->list);
 200
 201        /* increase reference count with clean state */
 202        get_page(page);
 203        mutex_lock(&F2FS_I(inode)->inmem_lock);
 204        list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 205        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 206        mutex_unlock(&F2FS_I(inode)->inmem_lock);
 207
 208        trace_f2fs_register_inmem_page(page, INMEM);
 209}
 210
 211static int __revoke_inmem_pages(struct inode *inode,
 212                                struct list_head *head, bool drop, bool recover,
 213                                bool trylock)
 214{
 215        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 216        struct inmem_pages *cur, *tmp;
 217        int err = 0;
 218
 219        list_for_each_entry_safe(cur, tmp, head, list) {
 220                struct page *page = cur->page;
 221
 222                if (drop)
 223                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 224
 225                if (trylock) {
 226                        /*
 227                         * to avoid deadlock in between page lock and
 228                         * inmem_lock.
 229                         */
 230                        if (!trylock_page(page))
 231                                continue;
 232                } else {
 233                        lock_page(page);
 234                }
 235
 236                f2fs_wait_on_page_writeback(page, DATA, true, true);
 237
 238                if (recover) {
 239                        struct dnode_of_data dn;
 240                        struct node_info ni;
 241
 242                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 243retry:
 244                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 245                        err = f2fs_get_dnode_of_data(&dn, page->index,
 246                                                                LOOKUP_NODE);
 247                        if (err) {
 248                                if (err == -ENOMEM) {
 249                                        memalloc_retry_wait(GFP_NOFS);
 250                                        goto retry;
 251                                }
 252                                err = -EAGAIN;
 253                                goto next;
 254                        }
 255
 256                        err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
 257                        if (err) {
 258                                f2fs_put_dnode(&dn);
 259                                return err;
 260                        }
 261
 262                        if (cur->old_addr == NEW_ADDR) {
 263                                f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 264                                f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 265                        } else
 266                                f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 267                                        cur->old_addr, ni.version, true, true);
 268                        f2fs_put_dnode(&dn);
 269                }
 270next:
 271                /* we don't need to invalidate this in the sccessful status */
 272                if (drop || recover) {
 273                        ClearPageUptodate(page);
 274                        clear_page_private_gcing(page);
 275                }
 276                detach_page_private(page);
 277                set_page_private(page, 0);
 278                f2fs_put_page(page, 1);
 279
 280                list_del(&cur->list);
 281                kmem_cache_free(inmem_entry_slab, cur);
 282                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 283        }
 284        return err;
 285}
 286
 287void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 288{
 289        struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 290        struct inode *inode;
 291        struct f2fs_inode_info *fi;
 292        unsigned int count = sbi->atomic_files;
 293        unsigned int looped = 0;
 294next:
 295        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 296        if (list_empty(head)) {
 297                spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 298                return;
 299        }
 300        fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 301        inode = igrab(&fi->vfs_inode);
 302        if (inode)
 303                list_move_tail(&fi->inmem_ilist, head);
 304        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 305
 306        if (inode) {
 307                if (gc_failure) {
 308                        if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
 309                                goto skip;
 310                }
 311                set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 312                f2fs_drop_inmem_pages(inode);
 313skip:
 314                iput(inode);
 315        }
 316        congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 317        cond_resched();
 318        if (gc_failure) {
 319                if (++looped >= count)
 320                        return;
 321        }
 322        goto next;
 323}
 324
 325void f2fs_drop_inmem_pages(struct inode *inode)
 326{
 327        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 328        struct f2fs_inode_info *fi = F2FS_I(inode);
 329
 330        do {
 331                mutex_lock(&fi->inmem_lock);
 332                if (list_empty(&fi->inmem_pages)) {
 333                        fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 334
 335                        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 336                        if (!list_empty(&fi->inmem_ilist))
 337                                list_del_init(&fi->inmem_ilist);
 338                        if (f2fs_is_atomic_file(inode)) {
 339                                clear_inode_flag(inode, FI_ATOMIC_FILE);
 340                                sbi->atomic_files--;
 341                        }
 342                        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 343
 344                        mutex_unlock(&fi->inmem_lock);
 345                        break;
 346                }
 347                __revoke_inmem_pages(inode, &fi->inmem_pages,
 348                                                true, false, true);
 349                mutex_unlock(&fi->inmem_lock);
 350        } while (1);
 351}
 352
 353void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 354{
 355        struct f2fs_inode_info *fi = F2FS_I(inode);
 356        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 357        struct list_head *head = &fi->inmem_pages;
 358        struct inmem_pages *cur = NULL;
 359
 360        f2fs_bug_on(sbi, !page_private_atomic(page));
 361
 362        mutex_lock(&fi->inmem_lock);
 363        list_for_each_entry(cur, head, list) {
 364                if (cur->page == page)
 365                        break;
 366        }
 367
 368        f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 369        list_del(&cur->list);
 370        mutex_unlock(&fi->inmem_lock);
 371
 372        dec_page_count(sbi, F2FS_INMEM_PAGES);
 373        kmem_cache_free(inmem_entry_slab, cur);
 374
 375        ClearPageUptodate(page);
 376        clear_page_private_atomic(page);
 377        f2fs_put_page(page, 0);
 378
 379        detach_page_private(page);
 380        set_page_private(page, 0);
 381
 382        trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 383}
 384
 385static int __f2fs_commit_inmem_pages(struct inode *inode)
 386{
 387        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 388        struct f2fs_inode_info *fi = F2FS_I(inode);
 389        struct inmem_pages *cur, *tmp;
 390        struct f2fs_io_info fio = {
 391                .sbi = sbi,
 392                .ino = inode->i_ino,
 393                .type = DATA,
 394                .op = REQ_OP_WRITE,
 395                .op_flags = REQ_SYNC | REQ_PRIO,
 396                .io_type = FS_DATA_IO,
 397        };
 398        struct list_head revoke_list;
 399        bool submit_bio = false;
 400        int err = 0;
 401
 402        INIT_LIST_HEAD(&revoke_list);
 403
 404        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 405                struct page *page = cur->page;
 406
 407                lock_page(page);
 408                if (page->mapping == inode->i_mapping) {
 409                        trace_f2fs_commit_inmem_page(page, INMEM);
 410
 411                        f2fs_wait_on_page_writeback(page, DATA, true, true);
 412
 413                        set_page_dirty(page);
 414                        if (clear_page_dirty_for_io(page)) {
 415                                inode_dec_dirty_pages(inode);
 416                                f2fs_remove_dirty_inode(inode);
 417                        }
 418retry:
 419                        fio.page = page;
 420                        fio.old_blkaddr = NULL_ADDR;
 421                        fio.encrypted_page = NULL;
 422                        fio.need_lock = LOCK_DONE;
 423                        err = f2fs_do_write_data_page(&fio);
 424                        if (err) {
 425                                if (err == -ENOMEM) {
 426                                        memalloc_retry_wait(GFP_NOFS);
 427                                        goto retry;
 428                                }
 429                                unlock_page(page);
 430                                break;
 431                        }
 432                        /* record old blkaddr for revoking */
 433                        cur->old_addr = fio.old_blkaddr;
 434                        submit_bio = true;
 435                }
 436                unlock_page(page);
 437                list_move_tail(&cur->list, &revoke_list);
 438        }
 439
 440        if (submit_bio)
 441                f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 442
 443        if (err) {
 444                /*
 445                 * try to revoke all committed pages, but still we could fail
 446                 * due to no memory or other reason, if that happened, EAGAIN
 447                 * will be returned, which means in such case, transaction is
 448                 * already not integrity, caller should use journal to do the
 449                 * recovery or rewrite & commit last transaction. For other
 450                 * error number, revoking was done by filesystem itself.
 451                 */
 452                err = __revoke_inmem_pages(inode, &revoke_list,
 453                                                false, true, false);
 454
 455                /* drop all uncommitted pages */
 456                __revoke_inmem_pages(inode, &fi->inmem_pages,
 457                                                true, false, false);
 458        } else {
 459                __revoke_inmem_pages(inode, &revoke_list,
 460                                                false, false, false);
 461        }
 462
 463        return err;
 464}
 465
 466int f2fs_commit_inmem_pages(struct inode *inode)
 467{
 468        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 469        struct f2fs_inode_info *fi = F2FS_I(inode);
 470        int err;
 471
 472        f2fs_balance_fs(sbi, true);
 473
 474        down_write(&fi->i_gc_rwsem[WRITE]);
 475
 476        f2fs_lock_op(sbi);
 477        set_inode_flag(inode, FI_ATOMIC_COMMIT);
 478
 479        mutex_lock(&fi->inmem_lock);
 480        err = __f2fs_commit_inmem_pages(inode);
 481        mutex_unlock(&fi->inmem_lock);
 482
 483        clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 484
 485        f2fs_unlock_op(sbi);
 486        up_write(&fi->i_gc_rwsem[WRITE]);
 487
 488        return err;
 489}
 490
 491/*
 492 * This function balances dirty node and dentry pages.
 493 * In addition, it controls garbage collection.
 494 */
 495void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 496{
 497        if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 498                f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 499                f2fs_stop_checkpoint(sbi, false);
 500        }
 501
 502        /* balance_fs_bg is able to be pending */
 503        if (need && excess_cached_nats(sbi))
 504                f2fs_balance_fs_bg(sbi, false);
 505
 506        if (!f2fs_is_checkpoint_ready(sbi))
 507                return;
 508
 509        /*
 510         * We should do GC or end up with checkpoint, if there are so many dirty
 511         * dir/node pages without enough free segments.
 512         */
 513        if (has_not_enough_free_secs(sbi, 0, 0)) {
 514                if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 515                                        sbi->gc_thread->f2fs_gc_task) {
 516                        DEFINE_WAIT(wait);
 517
 518                        prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 519                                                TASK_UNINTERRUPTIBLE);
 520                        wake_up(&sbi->gc_thread->gc_wait_queue_head);
 521                        io_schedule();
 522                        finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 523                } else {
 524                        down_write(&sbi->gc_lock);
 525                        f2fs_gc(sbi, false, false, false, NULL_SEGNO);
 526                }
 527        }
 528}
 529
 530static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
 531{
 532        int factor = rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
 533        unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
 534        unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
 535        unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
 536        unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
 537        unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
 538        unsigned int threshold = sbi->blocks_per_seg * factor *
 539                                        DEFAULT_DIRTY_THRESHOLD;
 540        unsigned int global_threshold = threshold * 3 / 2;
 541
 542        if (dents >= threshold || qdata >= threshold ||
 543                nodes >= threshold || meta >= threshold ||
 544                imeta >= threshold)
 545                return true;
 546        return dents + qdata + nodes + meta + imeta >  global_threshold;
 547}
 548
 549void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 550{
 551        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 552                return;
 553
 554        /* try to shrink extent cache when there is no enough memory */
 555        if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 556                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 557
 558        /* check the # of cached NAT entries */
 559        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 560                f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 561
 562        if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 563                f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 564        else
 565                f2fs_build_free_nids(sbi, false, false);
 566
 567        if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
 568                excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
 569                goto do_sync;
 570
 571        /* there is background inflight IO or foreground operation recently */
 572        if (is_inflight_io(sbi, REQ_TIME) ||
 573                (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
 574                return;
 575
 576        /* exceed periodical checkpoint timeout threshold */
 577        if (f2fs_time_over(sbi, CP_TIME))
 578                goto do_sync;
 579
 580        /* checkpoint is the only way to shrink partial cached entries */
 581        if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
 582                f2fs_available_free_memory(sbi, INO_ENTRIES))
 583                return;
 584
 585do_sync:
 586        if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 587                struct blk_plug plug;
 588
 589                mutex_lock(&sbi->flush_lock);
 590
 591                blk_start_plug(&plug);
 592                f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 593                blk_finish_plug(&plug);
 594
 595                mutex_unlock(&sbi->flush_lock);
 596        }
 597        f2fs_sync_fs(sbi->sb, true);
 598        stat_inc_bg_cp_count(sbi->stat_info);
 599}
 600
 601static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 602                                struct block_device *bdev)
 603{
 604        int ret = blkdev_issue_flush(bdev);
 605
 606        trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 607                                test_opt(sbi, FLUSH_MERGE), ret);
 608        return ret;
 609}
 610
 611static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 612{
 613        int ret = 0;
 614        int i;
 615
 616        if (!f2fs_is_multi_device(sbi))
 617                return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 618
 619        for (i = 0; i < sbi->s_ndevs; i++) {
 620                if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 621                        continue;
 622                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 623                if (ret)
 624                        break;
 625        }
 626        return ret;
 627}
 628
 629static int issue_flush_thread(void *data)
 630{
 631        struct f2fs_sb_info *sbi = data;
 632        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 633        wait_queue_head_t *q = &fcc->flush_wait_queue;
 634repeat:
 635        if (kthread_should_stop())
 636                return 0;
 637
 638        if (!llist_empty(&fcc->issue_list)) {
 639                struct flush_cmd *cmd, *next;
 640                int ret;
 641
 642                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 643                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 644
 645                cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 646
 647                ret = submit_flush_wait(sbi, cmd->ino);
 648                atomic_inc(&fcc->issued_flush);
 649
 650                llist_for_each_entry_safe(cmd, next,
 651                                          fcc->dispatch_list, llnode) {
 652                        cmd->ret = ret;
 653                        complete(&cmd->wait);
 654                }
 655                fcc->dispatch_list = NULL;
 656        }
 657
 658        wait_event_interruptible(*q,
 659                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 660        goto repeat;
 661}
 662
 663int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 664{
 665        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 666        struct flush_cmd cmd;
 667        int ret;
 668
 669        if (test_opt(sbi, NOBARRIER))
 670                return 0;
 671
 672        if (!test_opt(sbi, FLUSH_MERGE)) {
 673                atomic_inc(&fcc->queued_flush);
 674                ret = submit_flush_wait(sbi, ino);
 675                atomic_dec(&fcc->queued_flush);
 676                atomic_inc(&fcc->issued_flush);
 677                return ret;
 678        }
 679
 680        if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 681            f2fs_is_multi_device(sbi)) {
 682                ret = submit_flush_wait(sbi, ino);
 683                atomic_dec(&fcc->queued_flush);
 684
 685                atomic_inc(&fcc->issued_flush);
 686                return ret;
 687        }
 688
 689        cmd.ino = ino;
 690        init_completion(&cmd.wait);
 691
 692        llist_add(&cmd.llnode, &fcc->issue_list);
 693
 694        /*
 695         * update issue_list before we wake up issue_flush thread, this
 696         * smp_mb() pairs with another barrier in ___wait_event(), see
 697         * more details in comments of waitqueue_active().
 698         */
 699        smp_mb();
 700
 701        if (waitqueue_active(&fcc->flush_wait_queue))
 702                wake_up(&fcc->flush_wait_queue);
 703
 704        if (fcc->f2fs_issue_flush) {
 705                wait_for_completion(&cmd.wait);
 706                atomic_dec(&fcc->queued_flush);
 707        } else {
 708                struct llist_node *list;
 709
 710                list = llist_del_all(&fcc->issue_list);
 711                if (!list) {
 712                        wait_for_completion(&cmd.wait);
 713                        atomic_dec(&fcc->queued_flush);
 714                } else {
 715                        struct flush_cmd *tmp, *next;
 716
 717                        ret = submit_flush_wait(sbi, ino);
 718
 719                        llist_for_each_entry_safe(tmp, next, list, llnode) {
 720                                if (tmp == &cmd) {
 721                                        cmd.ret = ret;
 722                                        atomic_dec(&fcc->queued_flush);
 723                                        continue;
 724                                }
 725                                tmp->ret = ret;
 726                                complete(&tmp->wait);
 727                        }
 728                }
 729        }
 730
 731        return cmd.ret;
 732}
 733
 734int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 735{
 736        dev_t dev = sbi->sb->s_bdev->bd_dev;
 737        struct flush_cmd_control *fcc;
 738        int err = 0;
 739
 740        if (SM_I(sbi)->fcc_info) {
 741                fcc = SM_I(sbi)->fcc_info;
 742                if (fcc->f2fs_issue_flush)
 743                        return err;
 744                goto init_thread;
 745        }
 746
 747        fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 748        if (!fcc)
 749                return -ENOMEM;
 750        atomic_set(&fcc->issued_flush, 0);
 751        atomic_set(&fcc->queued_flush, 0);
 752        init_waitqueue_head(&fcc->flush_wait_queue);
 753        init_llist_head(&fcc->issue_list);
 754        SM_I(sbi)->fcc_info = fcc;
 755        if (!test_opt(sbi, FLUSH_MERGE))
 756                return err;
 757
 758init_thread:
 759        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 760                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 761        if (IS_ERR(fcc->f2fs_issue_flush)) {
 762                err = PTR_ERR(fcc->f2fs_issue_flush);
 763                kfree(fcc);
 764                SM_I(sbi)->fcc_info = NULL;
 765                return err;
 766        }
 767
 768        return err;
 769}
 770
 771void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 772{
 773        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 774
 775        if (fcc && fcc->f2fs_issue_flush) {
 776                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 777
 778                fcc->f2fs_issue_flush = NULL;
 779                kthread_stop(flush_thread);
 780        }
 781        if (free) {
 782                kfree(fcc);
 783                SM_I(sbi)->fcc_info = NULL;
 784        }
 785}
 786
 787int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 788{
 789        int ret = 0, i;
 790
 791        if (!f2fs_is_multi_device(sbi))
 792                return 0;
 793
 794        if (test_opt(sbi, NOBARRIER))
 795                return 0;
 796
 797        for (i = 1; i < sbi->s_ndevs; i++) {
 798                int count = DEFAULT_RETRY_IO_COUNT;
 799
 800                if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 801                        continue;
 802
 803                do {
 804                        ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 805                        if (ret)
 806                                congestion_wait(BLK_RW_ASYNC,
 807                                                DEFAULT_IO_TIMEOUT);
 808                } while (ret && --count);
 809
 810                if (ret) {
 811                        f2fs_stop_checkpoint(sbi, false);
 812                        break;
 813                }
 814
 815                spin_lock(&sbi->dev_lock);
 816                f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 817                spin_unlock(&sbi->dev_lock);
 818        }
 819
 820        return ret;
 821}
 822
 823static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 824                enum dirty_type dirty_type)
 825{
 826        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 827
 828        /* need not be added */
 829        if (IS_CURSEG(sbi, segno))
 830                return;
 831
 832        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 833                dirty_i->nr_dirty[dirty_type]++;
 834
 835        if (dirty_type == DIRTY) {
 836                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 837                enum dirty_type t = sentry->type;
 838
 839                if (unlikely(t >= DIRTY)) {
 840                        f2fs_bug_on(sbi, 1);
 841                        return;
 842                }
 843                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 844                        dirty_i->nr_dirty[t]++;
 845
 846                if (__is_large_section(sbi)) {
 847                        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 848                        block_t valid_blocks =
 849                                get_valid_blocks(sbi, segno, true);
 850
 851                        f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 852                                        valid_blocks == BLKS_PER_SEC(sbi)));
 853
 854                        if (!IS_CURSEC(sbi, secno))
 855                                set_bit(secno, dirty_i->dirty_secmap);
 856                }
 857        }
 858}
 859
 860static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 861                enum dirty_type dirty_type)
 862{
 863        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 864        block_t valid_blocks;
 865
 866        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 867                dirty_i->nr_dirty[dirty_type]--;
 868
 869        if (dirty_type == DIRTY) {
 870                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 871                enum dirty_type t = sentry->type;
 872
 873                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 874                        dirty_i->nr_dirty[t]--;
 875
 876                valid_blocks = get_valid_blocks(sbi, segno, true);
 877                if (valid_blocks == 0) {
 878                        clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 879                                                dirty_i->victim_secmap);
 880#ifdef CONFIG_F2FS_CHECK_FS
 881                        clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 882#endif
 883                }
 884                if (__is_large_section(sbi)) {
 885                        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 886
 887                        if (!valid_blocks ||
 888                                        valid_blocks == BLKS_PER_SEC(sbi)) {
 889                                clear_bit(secno, dirty_i->dirty_secmap);
 890                                return;
 891                        }
 892
 893                        if (!IS_CURSEC(sbi, secno))
 894                                set_bit(secno, dirty_i->dirty_secmap);
 895                }
 896        }
 897}
 898
 899/*
 900 * Should not occur error such as -ENOMEM.
 901 * Adding dirty entry into seglist is not critical operation.
 902 * If a given segment is one of current working segments, it won't be added.
 903 */
 904static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 905{
 906        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 907        unsigned short valid_blocks, ckpt_valid_blocks;
 908        unsigned int usable_blocks;
 909
 910        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 911                return;
 912
 913        usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 914        mutex_lock(&dirty_i->seglist_lock);
 915
 916        valid_blocks = get_valid_blocks(sbi, segno, false);
 917        ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 918
 919        if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 920                ckpt_valid_blocks == usable_blocks)) {
 921                __locate_dirty_segment(sbi, segno, PRE);
 922                __remove_dirty_segment(sbi, segno, DIRTY);
 923        } else if (valid_blocks < usable_blocks) {
 924                __locate_dirty_segment(sbi, segno, DIRTY);
 925        } else {
 926                /* Recovery routine with SSR needs this */
 927                __remove_dirty_segment(sbi, segno, DIRTY);
 928        }
 929
 930        mutex_unlock(&dirty_i->seglist_lock);
 931}
 932
 933/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 934void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 935{
 936        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 937        unsigned int segno;
 938
 939        mutex_lock(&dirty_i->seglist_lock);
 940        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 941                if (get_valid_blocks(sbi, segno, false))
 942                        continue;
 943                if (IS_CURSEG(sbi, segno))
 944                        continue;
 945                __locate_dirty_segment(sbi, segno, PRE);
 946                __remove_dirty_segment(sbi, segno, DIRTY);
 947        }
 948        mutex_unlock(&dirty_i->seglist_lock);
 949}
 950
 951block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 952{
 953        int ovp_hole_segs =
 954                (overprovision_segments(sbi) - reserved_segments(sbi));
 955        block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 956        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 957        block_t holes[2] = {0, 0};      /* DATA and NODE */
 958        block_t unusable;
 959        struct seg_entry *se;
 960        unsigned int segno;
 961
 962        mutex_lock(&dirty_i->seglist_lock);
 963        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 964                se = get_seg_entry(sbi, segno);
 965                if (IS_NODESEG(se->type))
 966                        holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 967                                                        se->valid_blocks;
 968                else
 969                        holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 970                                                        se->valid_blocks;
 971        }
 972        mutex_unlock(&dirty_i->seglist_lock);
 973
 974        unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 975        if (unusable > ovp_holes)
 976                return unusable - ovp_holes;
 977        return 0;
 978}
 979
 980int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 981{
 982        int ovp_hole_segs =
 983                (overprovision_segments(sbi) - reserved_segments(sbi));
 984        if (unusable > F2FS_OPTION(sbi).unusable_cap)
 985                return -EAGAIN;
 986        if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 987                dirty_segments(sbi) > ovp_hole_segs)
 988                return -EAGAIN;
 989        return 0;
 990}
 991
 992/* This is only used by SBI_CP_DISABLED */
 993static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 994{
 995        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 996        unsigned int segno = 0;
 997
 998        mutex_lock(&dirty_i->seglist_lock);
 999        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1000                if (get_valid_blocks(sbi, segno, false))
1001                        continue;
1002                if (get_ckpt_valid_blocks(sbi, segno, false))
1003                        continue;
1004                mutex_unlock(&dirty_i->seglist_lock);
1005                return segno;
1006        }
1007        mutex_unlock(&dirty_i->seglist_lock);
1008        return NULL_SEGNO;
1009}
1010
1011static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1012                struct block_device *bdev, block_t lstart,
1013                block_t start, block_t len)
1014{
1015        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1016        struct list_head *pend_list;
1017        struct discard_cmd *dc;
1018
1019        f2fs_bug_on(sbi, !len);
1020
1021        pend_list = &dcc->pend_list[plist_idx(len)];
1022
1023        dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1024        INIT_LIST_HEAD(&dc->list);
1025        dc->bdev = bdev;
1026        dc->lstart = lstart;
1027        dc->start = start;
1028        dc->len = len;
1029        dc->ref = 0;
1030        dc->state = D_PREP;
1031        dc->queued = 0;
1032        dc->error = 0;
1033        init_completion(&dc->wait);
1034        list_add_tail(&dc->list, pend_list);
1035        spin_lock_init(&dc->lock);
1036        dc->bio_ref = 0;
1037        atomic_inc(&dcc->discard_cmd_cnt);
1038        dcc->undiscard_blks += len;
1039
1040        return dc;
1041}
1042
1043static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1044                                struct block_device *bdev, block_t lstart,
1045                                block_t start, block_t len,
1046                                struct rb_node *parent, struct rb_node **p,
1047                                bool leftmost)
1048{
1049        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1050        struct discard_cmd *dc;
1051
1052        dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1053
1054        rb_link_node(&dc->rb_node, parent, p);
1055        rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1056
1057        return dc;
1058}
1059
1060static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1061                                                        struct discard_cmd *dc)
1062{
1063        if (dc->state == D_DONE)
1064                atomic_sub(dc->queued, &dcc->queued_discard);
1065
1066        list_del(&dc->list);
1067        rb_erase_cached(&dc->rb_node, &dcc->root);
1068        dcc->undiscard_blks -= dc->len;
1069
1070        kmem_cache_free(discard_cmd_slab, dc);
1071
1072        atomic_dec(&dcc->discard_cmd_cnt);
1073}
1074
1075static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1076                                                        struct discard_cmd *dc)
1077{
1078        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1079        unsigned long flags;
1080
1081        trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1082
1083        spin_lock_irqsave(&dc->lock, flags);
1084        if (dc->bio_ref) {
1085                spin_unlock_irqrestore(&dc->lock, flags);
1086                return;
1087        }
1088        spin_unlock_irqrestore(&dc->lock, flags);
1089
1090        f2fs_bug_on(sbi, dc->ref);
1091
1092        if (dc->error == -EOPNOTSUPP)
1093                dc->error = 0;
1094
1095        if (dc->error)
1096                printk_ratelimited(
1097                        "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1098                        KERN_INFO, sbi->sb->s_id,
1099                        dc->lstart, dc->start, dc->len, dc->error);
1100        __detach_discard_cmd(dcc, dc);
1101}
1102
1103static void f2fs_submit_discard_endio(struct bio *bio)
1104{
1105        struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1106        unsigned long flags;
1107
1108        spin_lock_irqsave(&dc->lock, flags);
1109        if (!dc->error)
1110                dc->error = blk_status_to_errno(bio->bi_status);
1111        dc->bio_ref--;
1112        if (!dc->bio_ref && dc->state == D_SUBMIT) {
1113                dc->state = D_DONE;
1114                complete_all(&dc->wait);
1115        }
1116        spin_unlock_irqrestore(&dc->lock, flags);
1117        bio_put(bio);
1118}
1119
1120static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1121                                block_t start, block_t end)
1122{
1123#ifdef CONFIG_F2FS_CHECK_FS
1124        struct seg_entry *sentry;
1125        unsigned int segno;
1126        block_t blk = start;
1127        unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1128        unsigned long *map;
1129
1130        while (blk < end) {
1131                segno = GET_SEGNO(sbi, blk);
1132                sentry = get_seg_entry(sbi, segno);
1133                offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1134
1135                if (end < START_BLOCK(sbi, segno + 1))
1136                        size = GET_BLKOFF_FROM_SEG0(sbi, end);
1137                else
1138                        size = max_blocks;
1139                map = (unsigned long *)(sentry->cur_valid_map);
1140                offset = __find_rev_next_bit(map, size, offset);
1141                f2fs_bug_on(sbi, offset != size);
1142                blk = START_BLOCK(sbi, segno + 1);
1143        }
1144#endif
1145}
1146
1147static void __init_discard_policy(struct f2fs_sb_info *sbi,
1148                                struct discard_policy *dpolicy,
1149                                int discard_type, unsigned int granularity)
1150{
1151        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1152
1153        /* common policy */
1154        dpolicy->type = discard_type;
1155        dpolicy->sync = true;
1156        dpolicy->ordered = false;
1157        dpolicy->granularity = granularity;
1158
1159        dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1160        dpolicy->io_aware_gran = MAX_PLIST_NUM;
1161        dpolicy->timeout = false;
1162
1163        if (discard_type == DPOLICY_BG) {
1164                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1165                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1166                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1167                dpolicy->io_aware = true;
1168                dpolicy->sync = false;
1169                dpolicy->ordered = true;
1170                if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1171                        dpolicy->granularity = 1;
1172                        if (atomic_read(&dcc->discard_cmd_cnt))
1173                                dpolicy->max_interval =
1174                                        DEF_MIN_DISCARD_ISSUE_TIME;
1175                }
1176        } else if (discard_type == DPOLICY_FORCE) {
1177                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1178                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1179                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1180                dpolicy->io_aware = false;
1181        } else if (discard_type == DPOLICY_FSTRIM) {
1182                dpolicy->io_aware = false;
1183        } else if (discard_type == DPOLICY_UMOUNT) {
1184                dpolicy->io_aware = false;
1185                /* we need to issue all to keep CP_TRIMMED_FLAG */
1186                dpolicy->granularity = 1;
1187                dpolicy->timeout = true;
1188        }
1189}
1190
1191static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1192                                struct block_device *bdev, block_t lstart,
1193                                block_t start, block_t len);
1194/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1195static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1196                                                struct discard_policy *dpolicy,
1197                                                struct discard_cmd *dc,
1198                                                unsigned int *issued)
1199{
1200        struct block_device *bdev = dc->bdev;
1201        struct request_queue *q = bdev_get_queue(bdev);
1202        unsigned int max_discard_blocks =
1203                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1204        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1205        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1206                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1207        int flag = dpolicy->sync ? REQ_SYNC : 0;
1208        block_t lstart, start, len, total_len;
1209        int err = 0;
1210
1211        if (dc->state != D_PREP)
1212                return 0;
1213
1214        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1215                return 0;
1216
1217        trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1218
1219        lstart = dc->lstart;
1220        start = dc->start;
1221        len = dc->len;
1222        total_len = len;
1223
1224        dc->len = 0;
1225
1226        while (total_len && *issued < dpolicy->max_requests && !err) {
1227                struct bio *bio = NULL;
1228                unsigned long flags;
1229                bool last = true;
1230
1231                if (len > max_discard_blocks) {
1232                        len = max_discard_blocks;
1233                        last = false;
1234                }
1235
1236                (*issued)++;
1237                if (*issued == dpolicy->max_requests)
1238                        last = true;
1239
1240                dc->len += len;
1241
1242                if (time_to_inject(sbi, FAULT_DISCARD)) {
1243                        f2fs_show_injection_info(sbi, FAULT_DISCARD);
1244                        err = -EIO;
1245                        goto submit;
1246                }
1247                err = __blkdev_issue_discard(bdev,
1248                                        SECTOR_FROM_BLOCK(start),
1249                                        SECTOR_FROM_BLOCK(len),
1250                                        GFP_NOFS, 0, &bio);
1251submit:
1252                if (err) {
1253                        spin_lock_irqsave(&dc->lock, flags);
1254                        if (dc->state == D_PARTIAL)
1255                                dc->state = D_SUBMIT;
1256                        spin_unlock_irqrestore(&dc->lock, flags);
1257
1258                        break;
1259                }
1260
1261                f2fs_bug_on(sbi, !bio);
1262
1263                /*
1264                 * should keep before submission to avoid D_DONE
1265                 * right away
1266                 */
1267                spin_lock_irqsave(&dc->lock, flags);
1268                if (last)
1269                        dc->state = D_SUBMIT;
1270                else
1271                        dc->state = D_PARTIAL;
1272                dc->bio_ref++;
1273                spin_unlock_irqrestore(&dc->lock, flags);
1274
1275                atomic_inc(&dcc->queued_discard);
1276                dc->queued++;
1277                list_move_tail(&dc->list, wait_list);
1278
1279                /* sanity check on discard range */
1280                __check_sit_bitmap(sbi, lstart, lstart + len);
1281
1282                bio->bi_private = dc;
1283                bio->bi_end_io = f2fs_submit_discard_endio;
1284                bio->bi_opf |= flag;
1285                submit_bio(bio);
1286
1287                atomic_inc(&dcc->issued_discard);
1288
1289                f2fs_update_iostat(sbi, FS_DISCARD, 1);
1290
1291                lstart += len;
1292                start += len;
1293                total_len -= len;
1294                len = total_len;
1295        }
1296
1297        if (!err && len) {
1298                dcc->undiscard_blks -= len;
1299                __update_discard_tree_range(sbi, bdev, lstart, start, len);
1300        }
1301        return err;
1302}
1303
1304static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1305                                struct block_device *bdev, block_t lstart,
1306                                block_t start, block_t len,
1307                                struct rb_node **insert_p,
1308                                struct rb_node *insert_parent)
1309{
1310        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1311        struct rb_node **p;
1312        struct rb_node *parent = NULL;
1313        bool leftmost = true;
1314
1315        if (insert_p && insert_parent) {
1316                parent = insert_parent;
1317                p = insert_p;
1318                goto do_insert;
1319        }
1320
1321        p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1322                                                        lstart, &leftmost);
1323do_insert:
1324        __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1325                                                                p, leftmost);
1326}
1327
1328static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1329                                                struct discard_cmd *dc)
1330{
1331        list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1332}
1333
1334static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1335                                struct discard_cmd *dc, block_t blkaddr)
1336{
1337        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1338        struct discard_info di = dc->di;
1339        bool modified = false;
1340
1341        if (dc->state == D_DONE || dc->len == 1) {
1342                __remove_discard_cmd(sbi, dc);
1343                return;
1344        }
1345
1346        dcc->undiscard_blks -= di.len;
1347
1348        if (blkaddr > di.lstart) {
1349                dc->len = blkaddr - dc->lstart;
1350                dcc->undiscard_blks += dc->len;
1351                __relocate_discard_cmd(dcc, dc);
1352                modified = true;
1353        }
1354
1355        if (blkaddr < di.lstart + di.len - 1) {
1356                if (modified) {
1357                        __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1358                                        di.start + blkaddr + 1 - di.lstart,
1359                                        di.lstart + di.len - 1 - blkaddr,
1360                                        NULL, NULL);
1361                } else {
1362                        dc->lstart++;
1363                        dc->len--;
1364                        dc->start++;
1365                        dcc->undiscard_blks += dc->len;
1366                        __relocate_discard_cmd(dcc, dc);
1367                }
1368        }
1369}
1370
1371static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1372                                struct block_device *bdev, block_t lstart,
1373                                block_t start, block_t len)
1374{
1375        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1376        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1377        struct discard_cmd *dc;
1378        struct discard_info di = {0};
1379        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1380        struct request_queue *q = bdev_get_queue(bdev);
1381        unsigned int max_discard_blocks =
1382                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1383        block_t end = lstart + len;
1384
1385        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1386                                        NULL, lstart,
1387                                        (struct rb_entry **)&prev_dc,
1388                                        (struct rb_entry **)&next_dc,
1389                                        &insert_p, &insert_parent, true, NULL);
1390        if (dc)
1391                prev_dc = dc;
1392
1393        if (!prev_dc) {
1394                di.lstart = lstart;
1395                di.len = next_dc ? next_dc->lstart - lstart : len;
1396                di.len = min(di.len, len);
1397                di.start = start;
1398        }
1399
1400        while (1) {
1401                struct rb_node *node;
1402                bool merged = false;
1403                struct discard_cmd *tdc = NULL;
1404
1405                if (prev_dc) {
1406                        di.lstart = prev_dc->lstart + prev_dc->len;
1407                        if (di.lstart < lstart)
1408                                di.lstart = lstart;
1409                        if (di.lstart >= end)
1410                                break;
1411
1412                        if (!next_dc || next_dc->lstart > end)
1413                                di.len = end - di.lstart;
1414                        else
1415                                di.len = next_dc->lstart - di.lstart;
1416                        di.start = start + di.lstart - lstart;
1417                }
1418
1419                if (!di.len)
1420                        goto next;
1421
1422                if (prev_dc && prev_dc->state == D_PREP &&
1423                        prev_dc->bdev == bdev &&
1424                        __is_discard_back_mergeable(&di, &prev_dc->di,
1425                                                        max_discard_blocks)) {
1426                        prev_dc->di.len += di.len;
1427                        dcc->undiscard_blks += di.len;
1428                        __relocate_discard_cmd(dcc, prev_dc);
1429                        di = prev_dc->di;
1430                        tdc = prev_dc;
1431                        merged = true;
1432                }
1433
1434                if (next_dc && next_dc->state == D_PREP &&
1435                        next_dc->bdev == bdev &&
1436                        __is_discard_front_mergeable(&di, &next_dc->di,
1437                                                        max_discard_blocks)) {
1438                        next_dc->di.lstart = di.lstart;
1439                        next_dc->di.len += di.len;
1440                        next_dc->di.start = di.start;
1441                        dcc->undiscard_blks += di.len;
1442                        __relocate_discard_cmd(dcc, next_dc);
1443                        if (tdc)
1444                                __remove_discard_cmd(sbi, tdc);
1445                        merged = true;
1446                }
1447
1448                if (!merged) {
1449                        __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1450                                                        di.len, NULL, NULL);
1451                }
1452 next:
1453                prev_dc = next_dc;
1454                if (!prev_dc)
1455                        break;
1456
1457                node = rb_next(&prev_dc->rb_node);
1458                next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1459        }
1460}
1461
1462static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1463                struct block_device *bdev, block_t blkstart, block_t blklen)
1464{
1465        block_t lblkstart = blkstart;
1466
1467        if (!f2fs_bdev_support_discard(bdev))
1468                return 0;
1469
1470        trace_f2fs_queue_discard(bdev, blkstart, blklen);
1471
1472        if (f2fs_is_multi_device(sbi)) {
1473                int devi = f2fs_target_device_index(sbi, blkstart);
1474
1475                blkstart -= FDEV(devi).start_blk;
1476        }
1477        mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1478        __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1479        mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1480        return 0;
1481}
1482
1483static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1484                                        struct discard_policy *dpolicy)
1485{
1486        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1487        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1488        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1489        struct discard_cmd *dc;
1490        struct blk_plug plug;
1491        unsigned int pos = dcc->next_pos;
1492        unsigned int issued = 0;
1493        bool io_interrupted = false;
1494
1495        mutex_lock(&dcc->cmd_lock);
1496        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1497                                        NULL, pos,
1498                                        (struct rb_entry **)&prev_dc,
1499                                        (struct rb_entry **)&next_dc,
1500                                        &insert_p, &insert_parent, true, NULL);
1501        if (!dc)
1502                dc = next_dc;
1503
1504        blk_start_plug(&plug);
1505
1506        while (dc) {
1507                struct rb_node *node;
1508                int err = 0;
1509
1510                if (dc->state != D_PREP)
1511                        goto next;
1512
1513                if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1514                        io_interrupted = true;
1515                        break;
1516                }
1517
1518                dcc->next_pos = dc->lstart + dc->len;
1519                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1520
1521                if (issued >= dpolicy->max_requests)
1522                        break;
1523next:
1524                node = rb_next(&dc->rb_node);
1525                if (err)
1526                        __remove_discard_cmd(sbi, dc);
1527                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1528        }
1529
1530        blk_finish_plug(&plug);
1531
1532        if (!dc)
1533                dcc->next_pos = 0;
1534
1535        mutex_unlock(&dcc->cmd_lock);
1536
1537        if (!issued && io_interrupted)
1538                issued = -1;
1539
1540        return issued;
1541}
1542static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1543                                        struct discard_policy *dpolicy);
1544
1545static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1546                                        struct discard_policy *dpolicy)
1547{
1548        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1549        struct list_head *pend_list;
1550        struct discard_cmd *dc, *tmp;
1551        struct blk_plug plug;
1552        int i, issued;
1553        bool io_interrupted = false;
1554
1555        if (dpolicy->timeout)
1556                f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1557
1558retry:
1559        issued = 0;
1560        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1561                if (dpolicy->timeout &&
1562                                f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1563                        break;
1564
1565                if (i + 1 < dpolicy->granularity)
1566                        break;
1567
1568                if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1569                        return __issue_discard_cmd_orderly(sbi, dpolicy);
1570
1571                pend_list = &dcc->pend_list[i];
1572
1573                mutex_lock(&dcc->cmd_lock);
1574                if (list_empty(pend_list))
1575                        goto next;
1576                if (unlikely(dcc->rbtree_check))
1577                        f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1578                                                        &dcc->root, false));
1579                blk_start_plug(&plug);
1580                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1581                        f2fs_bug_on(sbi, dc->state != D_PREP);
1582
1583                        if (dpolicy->timeout &&
1584                                f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1585                                break;
1586
1587                        if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1588                                                !is_idle(sbi, DISCARD_TIME)) {
1589                                io_interrupted = true;
1590                                break;
1591                        }
1592
1593                        __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1594
1595                        if (issued >= dpolicy->max_requests)
1596                                break;
1597                }
1598                blk_finish_plug(&plug);
1599next:
1600                mutex_unlock(&dcc->cmd_lock);
1601
1602                if (issued >= dpolicy->max_requests || io_interrupted)
1603                        break;
1604        }
1605
1606        if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1607                __wait_all_discard_cmd(sbi, dpolicy);
1608                goto retry;
1609        }
1610
1611        if (!issued && io_interrupted)
1612                issued = -1;
1613
1614        return issued;
1615}
1616
1617static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1618{
1619        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1620        struct list_head *pend_list;
1621        struct discard_cmd *dc, *tmp;
1622        int i;
1623        bool dropped = false;
1624
1625        mutex_lock(&dcc->cmd_lock);
1626        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1627                pend_list = &dcc->pend_list[i];
1628                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1629                        f2fs_bug_on(sbi, dc->state != D_PREP);
1630                        __remove_discard_cmd(sbi, dc);
1631                        dropped = true;
1632                }
1633        }
1634        mutex_unlock(&dcc->cmd_lock);
1635
1636        return dropped;
1637}
1638
1639void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1640{
1641        __drop_discard_cmd(sbi);
1642}
1643
1644static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1645                                                        struct discard_cmd *dc)
1646{
1647        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1648        unsigned int len = 0;
1649
1650        wait_for_completion_io(&dc->wait);
1651        mutex_lock(&dcc->cmd_lock);
1652        f2fs_bug_on(sbi, dc->state != D_DONE);
1653        dc->ref--;
1654        if (!dc->ref) {
1655                if (!dc->error)
1656                        len = dc->len;
1657                __remove_discard_cmd(sbi, dc);
1658        }
1659        mutex_unlock(&dcc->cmd_lock);
1660
1661        return len;
1662}
1663
1664static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1665                                                struct discard_policy *dpolicy,
1666                                                block_t start, block_t end)
1667{
1668        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1669        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1670                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1671        struct discard_cmd *dc, *tmp;
1672        bool need_wait;
1673        unsigned int trimmed = 0;
1674
1675next:
1676        need_wait = false;
1677
1678        mutex_lock(&dcc->cmd_lock);
1679        list_for_each_entry_safe(dc, tmp, wait_list, list) {
1680                if (dc->lstart + dc->len <= start || end <= dc->lstart)
1681                        continue;
1682                if (dc->len < dpolicy->granularity)
1683                        continue;
1684                if (dc->state == D_DONE && !dc->ref) {
1685                        wait_for_completion_io(&dc->wait);
1686                        if (!dc->error)
1687                                trimmed += dc->len;
1688                        __remove_discard_cmd(sbi, dc);
1689                } else {
1690                        dc->ref++;
1691                        need_wait = true;
1692                        break;
1693                }
1694        }
1695        mutex_unlock(&dcc->cmd_lock);
1696
1697        if (need_wait) {
1698                trimmed += __wait_one_discard_bio(sbi, dc);
1699                goto next;
1700        }
1701
1702        return trimmed;
1703}
1704
1705static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1706                                                struct discard_policy *dpolicy)
1707{
1708        struct discard_policy dp;
1709        unsigned int discard_blks;
1710
1711        if (dpolicy)
1712                return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1713
1714        /* wait all */
1715        __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1716        discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1717        __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1718        discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1719
1720        return discard_blks;
1721}
1722
1723/* This should be covered by global mutex, &sit_i->sentry_lock */
1724static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1725{
1726        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1727        struct discard_cmd *dc;
1728        bool need_wait = false;
1729
1730        mutex_lock(&dcc->cmd_lock);
1731        dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1732                                                        NULL, blkaddr);
1733        if (dc) {
1734                if (dc->state == D_PREP) {
1735                        __punch_discard_cmd(sbi, dc, blkaddr);
1736                } else {
1737                        dc->ref++;
1738                        need_wait = true;
1739                }
1740        }
1741        mutex_unlock(&dcc->cmd_lock);
1742
1743        if (need_wait)
1744                __wait_one_discard_bio(sbi, dc);
1745}
1746
1747void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1748{
1749        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1750
1751        if (dcc && dcc->f2fs_issue_discard) {
1752                struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1753
1754                dcc->f2fs_issue_discard = NULL;
1755                kthread_stop(discard_thread);
1756        }
1757}
1758
1759/* This comes from f2fs_put_super */
1760bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1761{
1762        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1763        struct discard_policy dpolicy;
1764        bool dropped;
1765
1766        __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1767                                        dcc->discard_granularity);
1768        __issue_discard_cmd(sbi, &dpolicy);
1769        dropped = __drop_discard_cmd(sbi);
1770
1771        /* just to make sure there is no pending discard commands */
1772        __wait_all_discard_cmd(sbi, NULL);
1773
1774        f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1775        return dropped;
1776}
1777
1778static int issue_discard_thread(void *data)
1779{
1780        struct f2fs_sb_info *sbi = data;
1781        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1782        wait_queue_head_t *q = &dcc->discard_wait_queue;
1783        struct discard_policy dpolicy;
1784        unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1785        int issued;
1786
1787        set_freezable();
1788
1789        do {
1790                if (sbi->gc_mode == GC_URGENT_HIGH ||
1791                        !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1792                        __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1793                else
1794                        __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1795                                                dcc->discard_granularity);
1796
1797                if (!atomic_read(&dcc->discard_cmd_cnt))
1798                       wait_ms = dpolicy.max_interval;
1799
1800                wait_event_interruptible_timeout(*q,
1801                                kthread_should_stop() || freezing(current) ||
1802                                dcc->discard_wake,
1803                                msecs_to_jiffies(wait_ms));
1804
1805                if (dcc->discard_wake)
1806                        dcc->discard_wake = 0;
1807
1808                /* clean up pending candidates before going to sleep */
1809                if (atomic_read(&dcc->queued_discard))
1810                        __wait_all_discard_cmd(sbi, NULL);
1811
1812                if (try_to_freeze())
1813                        continue;
1814                if (f2fs_readonly(sbi->sb))
1815                        continue;
1816                if (kthread_should_stop())
1817                        return 0;
1818                if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1819                        wait_ms = dpolicy.max_interval;
1820                        continue;
1821                }
1822                if (!atomic_read(&dcc->discard_cmd_cnt))
1823                        continue;
1824
1825                sb_start_intwrite(sbi->sb);
1826
1827                issued = __issue_discard_cmd(sbi, &dpolicy);
1828                if (issued > 0) {
1829                        __wait_all_discard_cmd(sbi, &dpolicy);
1830                        wait_ms = dpolicy.min_interval;
1831                } else if (issued == -1) {
1832                        wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1833                        if (!wait_ms)
1834                                wait_ms = dpolicy.mid_interval;
1835                } else {
1836                        wait_ms = dpolicy.max_interval;
1837                }
1838
1839                sb_end_intwrite(sbi->sb);
1840
1841        } while (!kthread_should_stop());
1842        return 0;
1843}
1844
1845#ifdef CONFIG_BLK_DEV_ZONED
1846static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1847                struct block_device *bdev, block_t blkstart, block_t blklen)
1848{
1849        sector_t sector, nr_sects;
1850        block_t lblkstart = blkstart;
1851        int devi = 0;
1852
1853        if (f2fs_is_multi_device(sbi)) {
1854                devi = f2fs_target_device_index(sbi, blkstart);
1855                if (blkstart < FDEV(devi).start_blk ||
1856                    blkstart > FDEV(devi).end_blk) {
1857                        f2fs_err(sbi, "Invalid block %x", blkstart);
1858                        return -EIO;
1859                }
1860                blkstart -= FDEV(devi).start_blk;
1861        }
1862
1863        /* For sequential zones, reset the zone write pointer */
1864        if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1865                sector = SECTOR_FROM_BLOCK(blkstart);
1866                nr_sects = SECTOR_FROM_BLOCK(blklen);
1867
1868                if (sector & (bdev_zone_sectors(bdev) - 1) ||
1869                                nr_sects != bdev_zone_sectors(bdev)) {
1870                        f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1871                                 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1872                                 blkstart, blklen);
1873                        return -EIO;
1874                }
1875                trace_f2fs_issue_reset_zone(bdev, blkstart);
1876                return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1877                                        sector, nr_sects, GFP_NOFS);
1878        }
1879
1880        /* For conventional zones, use regular discard if supported */
1881        return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1882}
1883#endif
1884
1885static int __issue_discard_async(struct f2fs_sb_info *sbi,
1886                struct block_device *bdev, block_t blkstart, block_t blklen)
1887{
1888#ifdef CONFIG_BLK_DEV_ZONED
1889        if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1890                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1891#endif
1892        return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1893}
1894
1895static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1896                                block_t blkstart, block_t blklen)
1897{
1898        sector_t start = blkstart, len = 0;
1899        struct block_device *bdev;
1900        struct seg_entry *se;
1901        unsigned int offset;
1902        block_t i;
1903        int err = 0;
1904
1905        bdev = f2fs_target_device(sbi, blkstart, NULL);
1906
1907        for (i = blkstart; i < blkstart + blklen; i++, len++) {
1908                if (i != start) {
1909                        struct block_device *bdev2 =
1910                                f2fs_target_device(sbi, i, NULL);
1911
1912                        if (bdev2 != bdev) {
1913                                err = __issue_discard_async(sbi, bdev,
1914                                                start, len);
1915                                if (err)
1916                                        return err;
1917                                bdev = bdev2;
1918                                start = i;
1919                                len = 0;
1920                        }
1921                }
1922
1923                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1924                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1925
1926                if (f2fs_block_unit_discard(sbi) &&
1927                                !f2fs_test_and_set_bit(offset, se->discard_map))
1928                        sbi->discard_blks--;
1929        }
1930
1931        if (len)
1932                err = __issue_discard_async(sbi, bdev, start, len);
1933        return err;
1934}
1935
1936static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1937                                                        bool check_only)
1938{
1939        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1940        int max_blocks = sbi->blocks_per_seg;
1941        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1942        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1943        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1944        unsigned long *discard_map = (unsigned long *)se->discard_map;
1945        unsigned long *dmap = SIT_I(sbi)->tmp_map;
1946        unsigned int start = 0, end = -1;
1947        bool force = (cpc->reason & CP_DISCARD);
1948        struct discard_entry *de = NULL;
1949        struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1950        int i;
1951
1952        if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1953                        !f2fs_block_unit_discard(sbi))
1954                return false;
1955
1956        if (!force) {
1957                if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1958                        SM_I(sbi)->dcc_info->nr_discards >=
1959                                SM_I(sbi)->dcc_info->max_discards)
1960                        return false;
1961        }
1962
1963        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1964        for (i = 0; i < entries; i++)
1965                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1966                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1967
1968        while (force || SM_I(sbi)->dcc_info->nr_discards <=
1969                                SM_I(sbi)->dcc_info->max_discards) {
1970                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1971                if (start >= max_blocks)
1972                        break;
1973
1974                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1975                if (force && start && end != max_blocks
1976                                        && (end - start) < cpc->trim_minlen)
1977                        continue;
1978
1979                if (check_only)
1980                        return true;
1981
1982                if (!de) {
1983                        de = f2fs_kmem_cache_alloc(discard_entry_slab,
1984                                                GFP_F2FS_ZERO, true, NULL);
1985                        de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1986                        list_add_tail(&de->list, head);
1987                }
1988
1989                for (i = start; i < end; i++)
1990                        __set_bit_le(i, (void *)de->discard_map);
1991
1992                SM_I(sbi)->dcc_info->nr_discards += end - start;
1993        }
1994        return false;
1995}
1996
1997static void release_discard_addr(struct discard_entry *entry)
1998{
1999        list_del(&entry->list);
2000        kmem_cache_free(discard_entry_slab, entry);
2001}
2002
2003void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2004{
2005        struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2006        struct discard_entry *entry, *this;
2007
2008        /* drop caches */
2009        list_for_each_entry_safe(entry, this, head, list)
2010                release_discard_addr(entry);
2011}
2012
2013/*
2014 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2015 */
2016static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2017{
2018        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2019        unsigned int segno;
2020
2021        mutex_lock(&dirty_i->seglist_lock);
2022        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2023                __set_test_and_free(sbi, segno, false);
2024        mutex_unlock(&dirty_i->seglist_lock);
2025}
2026
2027void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2028                                                struct cp_control *cpc)
2029{
2030        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2031        struct list_head *head = &dcc->entry_list;
2032        struct discard_entry *entry, *this;
2033        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2034        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2035        unsigned int start = 0, end = -1;
2036        unsigned int secno, start_segno;
2037        bool force = (cpc->reason & CP_DISCARD);
2038        bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2039                                                DISCARD_UNIT_SECTION;
2040
2041        if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2042                section_alignment = true;
2043
2044        mutex_lock(&dirty_i->seglist_lock);
2045
2046        while (1) {
2047                int i;
2048
2049                if (section_alignment && end != -1)
2050                        end--;
2051                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2052                if (start >= MAIN_SEGS(sbi))
2053                        break;
2054                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2055                                                                start + 1);
2056
2057                if (section_alignment) {
2058                        start = rounddown(start, sbi->segs_per_sec);
2059                        end = roundup(end, sbi->segs_per_sec);
2060                }
2061
2062                for (i = start; i < end; i++) {
2063                        if (test_and_clear_bit(i, prefree_map))
2064                                dirty_i->nr_dirty[PRE]--;
2065                }
2066
2067                if (!f2fs_realtime_discard_enable(sbi))
2068                        continue;
2069
2070                if (force && start >= cpc->trim_start &&
2071                                        (end - 1) <= cpc->trim_end)
2072                                continue;
2073
2074                if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2075                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2076                                (end - start) << sbi->log_blocks_per_seg);
2077                        continue;
2078                }
2079next:
2080                secno = GET_SEC_FROM_SEG(sbi, start);
2081                start_segno = GET_SEG_FROM_SEC(sbi, secno);
2082                if (!IS_CURSEC(sbi, secno) &&
2083                        !get_valid_blocks(sbi, start, true))
2084                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2085                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
2086
2087                start = start_segno + sbi->segs_per_sec;
2088                if (start < end)
2089                        goto next;
2090                else
2091                        end = start - 1;
2092        }
2093        mutex_unlock(&dirty_i->seglist_lock);
2094
2095        if (!f2fs_block_unit_discard(sbi))
2096                goto wakeup;
2097
2098        /* send small discards */
2099        list_for_each_entry_safe(entry, this, head, list) {
2100                unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2101                bool is_valid = test_bit_le(0, entry->discard_map);
2102
2103find_next:
2104                if (is_valid) {
2105                        next_pos = find_next_zero_bit_le(entry->discard_map,
2106                                        sbi->blocks_per_seg, cur_pos);
2107                        len = next_pos - cur_pos;
2108
2109                        if (f2fs_sb_has_blkzoned(sbi) ||
2110                            (force && len < cpc->trim_minlen))
2111                                goto skip;
2112
2113                        f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2114                                                                        len);
2115                        total_len += len;
2116                } else {
2117                        next_pos = find_next_bit_le(entry->discard_map,
2118                                        sbi->blocks_per_seg, cur_pos);
2119                }
2120skip:
2121                cur_pos = next_pos;
2122                is_valid = !is_valid;
2123
2124                if (cur_pos < sbi->blocks_per_seg)
2125                        goto find_next;
2126
2127                release_discard_addr(entry);
2128                dcc->nr_discards -= total_len;
2129        }
2130
2131wakeup:
2132        wake_up_discard_thread(sbi, false);
2133}
2134
2135int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2136{
2137        dev_t dev = sbi->sb->s_bdev->bd_dev;
2138        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2139        int err = 0;
2140
2141        if (!f2fs_realtime_discard_enable(sbi))
2142                return 0;
2143
2144        dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2145                                "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2146        if (IS_ERR(dcc->f2fs_issue_discard))
2147                err = PTR_ERR(dcc->f2fs_issue_discard);
2148
2149        return err;
2150}
2151
2152static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2153{
2154        struct discard_cmd_control *dcc;
2155        int err = 0, i;
2156
2157        if (SM_I(sbi)->dcc_info) {
2158                dcc = SM_I(sbi)->dcc_info;
2159                goto init_thread;
2160        }
2161
2162        dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2163        if (!dcc)
2164                return -ENOMEM;
2165
2166        dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2167        if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2168                dcc->discard_granularity = sbi->blocks_per_seg;
2169        else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2170                dcc->discard_granularity = BLKS_PER_SEC(sbi);
2171
2172        INIT_LIST_HEAD(&dcc->entry_list);
2173        for (i = 0; i < MAX_PLIST_NUM; i++)
2174                INIT_LIST_HEAD(&dcc->pend_list[i]);
2175        INIT_LIST_HEAD(&dcc->wait_list);
2176        INIT_LIST_HEAD(&dcc->fstrim_list);
2177        mutex_init(&dcc->cmd_lock);
2178        atomic_set(&dcc->issued_discard, 0);
2179        atomic_set(&dcc->queued_discard, 0);
2180        atomic_set(&dcc->discard_cmd_cnt, 0);
2181        dcc->nr_discards = 0;
2182        dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2183        dcc->undiscard_blks = 0;
2184        dcc->next_pos = 0;
2185        dcc->root = RB_ROOT_CACHED;
2186        dcc->rbtree_check = false;
2187
2188        init_waitqueue_head(&dcc->discard_wait_queue);
2189        SM_I(sbi)->dcc_info = dcc;
2190init_thread:
2191        err = f2fs_start_discard_thread(sbi);
2192        if (err) {
2193                kfree(dcc);
2194                SM_I(sbi)->dcc_info = NULL;
2195        }
2196
2197        return err;
2198}
2199
2200static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2201{
2202        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2203
2204        if (!dcc)
2205                return;
2206
2207        f2fs_stop_discard_thread(sbi);
2208
2209        /*
2210         * Recovery can cache discard commands, so in error path of
2211         * fill_super(), it needs to give a chance to handle them.
2212         */
2213        if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2214                f2fs_issue_discard_timeout(sbi);
2215
2216        kfree(dcc);
2217        SM_I(sbi)->dcc_info = NULL;
2218}
2219
2220static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2221{
2222        struct sit_info *sit_i = SIT_I(sbi);
2223
2224        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2225                sit_i->dirty_sentries++;
2226                return false;
2227        }
2228
2229        return true;
2230}
2231
2232static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2233                                        unsigned int segno, int modified)
2234{
2235        struct seg_entry *se = get_seg_entry(sbi, segno);
2236
2237        se->type = type;
2238        if (modified)
2239                __mark_sit_entry_dirty(sbi, segno);
2240}
2241
2242static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2243                                                                block_t blkaddr)
2244{
2245        unsigned int segno = GET_SEGNO(sbi, blkaddr);
2246
2247        if (segno == NULL_SEGNO)
2248                return 0;
2249        return get_seg_entry(sbi, segno)->mtime;
2250}
2251
2252static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2253                                                unsigned long long old_mtime)
2254{
2255        struct seg_entry *se;
2256        unsigned int segno = GET_SEGNO(sbi, blkaddr);
2257        unsigned long long ctime = get_mtime(sbi, false);
2258        unsigned long long mtime = old_mtime ? old_mtime : ctime;
2259
2260        if (segno == NULL_SEGNO)
2261                return;
2262
2263        se = get_seg_entry(sbi, segno);
2264
2265        if (!se->mtime)
2266                se->mtime = mtime;
2267        else
2268                se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2269                                                se->valid_blocks + 1);
2270
2271        if (ctime > SIT_I(sbi)->max_mtime)
2272                SIT_I(sbi)->max_mtime = ctime;
2273}
2274
2275static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2276{
2277        struct seg_entry *se;
2278        unsigned int segno, offset;
2279        long int new_vblocks;
2280        bool exist;
2281#ifdef CONFIG_F2FS_CHECK_FS
2282        bool mir_exist;
2283#endif
2284
2285        segno = GET_SEGNO(sbi, blkaddr);
2286
2287        se = get_seg_entry(sbi, segno);
2288        new_vblocks = se->valid_blocks + del;
2289        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2290
2291        f2fs_bug_on(sbi, (new_vblocks < 0 ||
2292                        (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2293
2294        se->valid_blocks = new_vblocks;
2295
2296        /* Update valid block bitmap */
2297        if (del > 0) {
2298                exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2299#ifdef CONFIG_F2FS_CHECK_FS
2300                mir_exist = f2fs_test_and_set_bit(offset,
2301                                                se->cur_valid_map_mir);
2302                if (unlikely(exist != mir_exist)) {
2303                        f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2304                                 blkaddr, exist);
2305                        f2fs_bug_on(sbi, 1);
2306                }
2307#endif
2308                if (unlikely(exist)) {
2309                        f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2310                                 blkaddr);
2311                        f2fs_bug_on(sbi, 1);
2312                        se->valid_blocks--;
2313                        del = 0;
2314                }
2315
2316                if (f2fs_block_unit_discard(sbi) &&
2317                                !f2fs_test_and_set_bit(offset, se->discard_map))
2318                        sbi->discard_blks--;
2319
2320                /*
2321                 * SSR should never reuse block which is checkpointed
2322                 * or newly invalidated.
2323                 */
2324                if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2325                        if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2326                                se->ckpt_valid_blocks++;
2327                }
2328        } else {
2329                exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2330#ifdef CONFIG_F2FS_CHECK_FS
2331                mir_exist = f2fs_test_and_clear_bit(offset,
2332                                                se->cur_valid_map_mir);
2333                if (unlikely(exist != mir_exist)) {
2334                        f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2335                                 blkaddr, exist);
2336                        f2fs_bug_on(sbi, 1);
2337                }
2338#endif
2339                if (unlikely(!exist)) {
2340                        f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2341                                 blkaddr);
2342                        f2fs_bug_on(sbi, 1);
2343                        se->valid_blocks++;
2344                        del = 0;
2345                } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2346                        /*
2347                         * If checkpoints are off, we must not reuse data that
2348                         * was used in the previous checkpoint. If it was used
2349                         * before, we must track that to know how much space we
2350                         * really have.
2351                         */
2352                        if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2353                                spin_lock(&sbi->stat_lock);
2354                                sbi->unusable_block_count++;
2355                                spin_unlock(&sbi->stat_lock);
2356                        }
2357                }
2358
2359                if (f2fs_block_unit_discard(sbi) &&
2360                        f2fs_test_and_clear_bit(offset, se->discard_map))
2361                        sbi->discard_blks++;
2362        }
2363        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2364                se->ckpt_valid_blocks += del;
2365
2366        __mark_sit_entry_dirty(sbi, segno);
2367
2368        /* update total number of valid blocks to be written in ckpt area */
2369        SIT_I(sbi)->written_valid_blocks += del;
2370
2371        if (__is_large_section(sbi))
2372                get_sec_entry(sbi, segno)->valid_blocks += del;
2373}
2374
2375void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2376{
2377        unsigned int segno = GET_SEGNO(sbi, addr);
2378        struct sit_info *sit_i = SIT_I(sbi);
2379
2380        f2fs_bug_on(sbi, addr == NULL_ADDR);
2381        if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2382                return;
2383
2384        invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2385        f2fs_invalidate_compress_page(sbi, addr);
2386
2387        /* add it into sit main buffer */
2388        down_write(&sit_i->sentry_lock);
2389
2390        update_segment_mtime(sbi, addr, 0);
2391        update_sit_entry(sbi, addr, -1);
2392
2393        /* add it into dirty seglist */
2394        locate_dirty_segment(sbi, segno);
2395
2396        up_write(&sit_i->sentry_lock);
2397}
2398
2399bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2400{
2401        struct sit_info *sit_i = SIT_I(sbi);
2402        unsigned int segno, offset;
2403        struct seg_entry *se;
2404        bool is_cp = false;
2405
2406        if (!__is_valid_data_blkaddr(blkaddr))
2407                return true;
2408
2409        down_read(&sit_i->sentry_lock);
2410
2411        segno = GET_SEGNO(sbi, blkaddr);
2412        se = get_seg_entry(sbi, segno);
2413        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2414
2415        if (f2fs_test_bit(offset, se->ckpt_valid_map))
2416                is_cp = true;
2417
2418        up_read(&sit_i->sentry_lock);
2419
2420        return is_cp;
2421}
2422
2423/*
2424 * This function should be resided under the curseg_mutex lock
2425 */
2426static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2427                                        struct f2fs_summary *sum)
2428{
2429        struct curseg_info *curseg = CURSEG_I(sbi, type);
2430        void *addr = curseg->sum_blk;
2431
2432        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2433        memcpy(addr, sum, sizeof(struct f2fs_summary));
2434}
2435
2436/*
2437 * Calculate the number of current summary pages for writing
2438 */
2439int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2440{
2441        int valid_sum_count = 0;
2442        int i, sum_in_page;
2443
2444        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2445                if (sbi->ckpt->alloc_type[i] == SSR)
2446                        valid_sum_count += sbi->blocks_per_seg;
2447                else {
2448                        if (for_ra)
2449                                valid_sum_count += le16_to_cpu(
2450                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2451                        else
2452                                valid_sum_count += curseg_blkoff(sbi, i);
2453                }
2454        }
2455
2456        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2457                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2458        if (valid_sum_count <= sum_in_page)
2459                return 1;
2460        else if ((valid_sum_count - sum_in_page) <=
2461                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2462                return 2;
2463        return 3;
2464}
2465
2466/*
2467 * Caller should put this summary page
2468 */
2469struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2470{
2471        if (unlikely(f2fs_cp_error(sbi)))
2472                return ERR_PTR(-EIO);
2473        return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2474}
2475
2476void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2477                                        void *src, block_t blk_addr)
2478{
2479        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2480
2481        memcpy(page_address(page), src, PAGE_SIZE);
2482        set_page_dirty(page);
2483        f2fs_put_page(page, 1);
2484}
2485
2486static void write_sum_page(struct f2fs_sb_info *sbi,
2487                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
2488{
2489        f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2490}
2491
2492static void write_current_sum_page(struct f2fs_sb_info *sbi,
2493                                                int type, block_t blk_addr)
2494{
2495        struct curseg_info *curseg = CURSEG_I(sbi, type);
2496        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2497        struct f2fs_summary_block *src = curseg->sum_blk;
2498        struct f2fs_summary_block *dst;
2499
2500        dst = (struct f2fs_summary_block *)page_address(page);
2501        memset(dst, 0, PAGE_SIZE);
2502
2503        mutex_lock(&curseg->curseg_mutex);
2504
2505        down_read(&curseg->journal_rwsem);
2506        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2507        up_read(&curseg->journal_rwsem);
2508
2509        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2510        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2511
2512        mutex_unlock(&curseg->curseg_mutex);
2513
2514        set_page_dirty(page);
2515        f2fs_put_page(page, 1);
2516}
2517
2518static int is_next_segment_free(struct f2fs_sb_info *sbi,
2519                                struct curseg_info *curseg, int type)
2520{
2521        unsigned int segno = curseg->segno + 1;
2522        struct free_segmap_info *free_i = FREE_I(sbi);
2523
2524        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2525                return !test_bit(segno, free_i->free_segmap);
2526        return 0;
2527}
2528
2529/*
2530 * Find a new segment from the free segments bitmap to right order
2531 * This function should be returned with success, otherwise BUG
2532 */
2533static void get_new_segment(struct f2fs_sb_info *sbi,
2534                        unsigned int *newseg, bool new_sec, int dir)
2535{
2536        struct free_segmap_info *free_i = FREE_I(sbi);
2537        unsigned int segno, secno, zoneno;
2538        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2539        unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2540        unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2541        unsigned int left_start = hint;
2542        bool init = true;
2543        int go_left = 0;
2544        int i;
2545
2546        spin_lock(&free_i->segmap_lock);
2547
2548        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2549                segno = find_next_zero_bit(free_i->free_segmap,
2550                        GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2551                if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2552                        goto got_it;
2553        }
2554find_other_zone:
2555        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2556        if (secno >= MAIN_SECS(sbi)) {
2557                if (dir == ALLOC_RIGHT) {
2558                        secno = find_first_zero_bit(free_i->free_secmap,
2559                                                        MAIN_SECS(sbi));
2560                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2561                } else {
2562                        go_left = 1;
2563                        left_start = hint - 1;
2564                }
2565        }
2566        if (go_left == 0)
2567                goto skip_left;
2568
2569        while (test_bit(left_start, free_i->free_secmap)) {
2570                if (left_start > 0) {
2571                        left_start--;
2572                        continue;
2573                }
2574                left_start = find_first_zero_bit(free_i->free_secmap,
2575                                                        MAIN_SECS(sbi));
2576                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2577                break;
2578        }
2579        secno = left_start;
2580skip_left:
2581        segno = GET_SEG_FROM_SEC(sbi, secno);
2582        zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2583
2584        /* give up on finding another zone */
2585        if (!init)
2586                goto got_it;
2587        if (sbi->secs_per_zone == 1)
2588                goto got_it;
2589        if (zoneno == old_zoneno)
2590                goto got_it;
2591        if (dir == ALLOC_LEFT) {
2592                if (!go_left && zoneno + 1 >= total_zones)
2593                        goto got_it;
2594                if (go_left && zoneno == 0)
2595                        goto got_it;
2596        }
2597        for (i = 0; i < NR_CURSEG_TYPE; i++)
2598                if (CURSEG_I(sbi, i)->zone == zoneno)
2599                        break;
2600
2601        if (i < NR_CURSEG_TYPE) {
2602                /* zone is in user, try another */
2603                if (go_left)
2604                        hint = zoneno * sbi->secs_per_zone - 1;
2605                else if (zoneno + 1 >= total_zones)
2606                        hint = 0;
2607                else
2608                        hint = (zoneno + 1) * sbi->secs_per_zone;
2609                init = false;
2610                goto find_other_zone;
2611        }
2612got_it:
2613        /* set it as dirty segment in free segmap */
2614        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2615        __set_inuse(sbi, segno);
2616        *newseg = segno;
2617        spin_unlock(&free_i->segmap_lock);
2618}
2619
2620static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2621{
2622        struct curseg_info *curseg = CURSEG_I(sbi, type);
2623        struct summary_footer *sum_footer;
2624        unsigned short seg_type = curseg->seg_type;
2625
2626        curseg->inited = true;
2627        curseg->segno = curseg->next_segno;
2628        curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2629        curseg->next_blkoff = 0;
2630        curseg->next_segno = NULL_SEGNO;
2631
2632        sum_footer = &(curseg->sum_blk->footer);
2633        memset(sum_footer, 0, sizeof(struct summary_footer));
2634
2635        sanity_check_seg_type(sbi, seg_type);
2636
2637        if (IS_DATASEG(seg_type))
2638                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2639        if (IS_NODESEG(seg_type))
2640                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2641        __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2642}
2643
2644static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2645{
2646        struct curseg_info *curseg = CURSEG_I(sbi, type);
2647        unsigned short seg_type = curseg->seg_type;
2648
2649        sanity_check_seg_type(sbi, seg_type);
2650        if (f2fs_need_rand_seg(sbi))
2651                return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2652
2653        /* if segs_per_sec is large than 1, we need to keep original policy. */
2654        if (__is_large_section(sbi))
2655                return curseg->segno;
2656
2657        /* inmem log may not locate on any segment after mount */
2658        if (!curseg->inited)
2659                return 0;
2660
2661        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2662                return 0;
2663
2664        if (test_opt(sbi, NOHEAP) &&
2665                (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2666                return 0;
2667
2668        if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2669                return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2670
2671        /* find segments from 0 to reuse freed segments */
2672        if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2673                return 0;
2674
2675        return curseg->segno;
2676}
2677
2678/*
2679 * Allocate a current working segment.
2680 * This function always allocates a free segment in LFS manner.
2681 */
2682static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2683{
2684        struct curseg_info *curseg = CURSEG_I(sbi, type);
2685        unsigned short seg_type = curseg->seg_type;
2686        unsigned int segno = curseg->segno;
2687        int dir = ALLOC_LEFT;
2688
2689        if (curseg->inited)
2690                write_sum_page(sbi, curseg->sum_blk,
2691                                GET_SUM_BLOCK(sbi, segno));
2692        if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2693                dir = ALLOC_RIGHT;
2694
2695        if (test_opt(sbi, NOHEAP))
2696                dir = ALLOC_RIGHT;
2697
2698        segno = __get_next_segno(sbi, type);
2699        get_new_segment(sbi, &segno, new_sec, dir);
2700        curseg->next_segno = segno;
2701        reset_curseg(sbi, type, 1);
2702        curseg->alloc_type = LFS;
2703        if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2704                curseg->fragment_remained_chunk =
2705                                prandom_u32() % sbi->max_fragment_chunk + 1;
2706}
2707
2708static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2709                                        int segno, block_t start)
2710{
2711        struct seg_entry *se = get_seg_entry(sbi, segno);
2712        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2713        unsigned long *target_map = SIT_I(sbi)->tmp_map;
2714        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2715        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2716        int i;
2717
2718        for (i = 0; i < entries; i++)
2719                target_map[i] = ckpt_map[i] | cur_map[i];
2720
2721        return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2722}
2723
2724/*
2725 * If a segment is written by LFS manner, next block offset is just obtained
2726 * by increasing the current block offset. However, if a segment is written by
2727 * SSR manner, next block offset obtained by calling __next_free_blkoff
2728 */
2729static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2730                                struct curseg_info *seg)
2731{
2732        if (seg->alloc_type == SSR) {
2733                seg->next_blkoff =
2734                        __next_free_blkoff(sbi, seg->segno,
2735                                                seg->next_blkoff + 1);
2736        } else {
2737                seg->next_blkoff++;
2738                if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2739                        /* To allocate block chunks in different sizes, use random number */
2740                        if (--seg->fragment_remained_chunk <= 0) {
2741                                seg->fragment_remained_chunk =
2742                                   prandom_u32() % sbi->max_fragment_chunk + 1;
2743                                seg->next_blkoff +=
2744                                   prandom_u32() % sbi->max_fragment_hole + 1;
2745                        }
2746                }
2747        }
2748}
2749
2750bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2751{
2752        return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2753}
2754
2755/*
2756 * This function always allocates a used segment(from dirty seglist) by SSR
2757 * manner, so it should recover the existing segment information of valid blocks
2758 */
2759static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2760{
2761        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2762        struct curseg_info *curseg = CURSEG_I(sbi, type);
2763        unsigned int new_segno = curseg->next_segno;
2764        struct f2fs_summary_block *sum_node;
2765        struct page *sum_page;
2766
2767        if (flush)
2768                write_sum_page(sbi, curseg->sum_blk,
2769                                        GET_SUM_BLOCK(sbi, curseg->segno));
2770
2771        __set_test_and_inuse(sbi, new_segno);
2772
2773        mutex_lock(&dirty_i->seglist_lock);
2774        __remove_dirty_segment(sbi, new_segno, PRE);
2775        __remove_dirty_segment(sbi, new_segno, DIRTY);
2776        mutex_unlock(&dirty_i->seglist_lock);
2777
2778        reset_curseg(sbi, type, 1);
2779        curseg->alloc_type = SSR;
2780        curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2781
2782        sum_page = f2fs_get_sum_page(sbi, new_segno);
2783        if (IS_ERR(sum_page)) {
2784                /* GC won't be able to use stale summary pages by cp_error */
2785                memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2786                return;
2787        }
2788        sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2789        memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2790        f2fs_put_page(sum_page, 1);
2791}
2792
2793static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2794                                int alloc_mode, unsigned long long age);
2795
2796static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2797                                        int target_type, int alloc_mode,
2798                                        unsigned long long age)
2799{
2800        struct curseg_info *curseg = CURSEG_I(sbi, type);
2801
2802        curseg->seg_type = target_type;
2803
2804        if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2805                struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2806
2807                curseg->seg_type = se->type;
2808                change_curseg(sbi, type, true);
2809        } else {
2810                /* allocate cold segment by default */
2811                curseg->seg_type = CURSEG_COLD_DATA;
2812                new_curseg(sbi, type, true);
2813        }
2814        stat_inc_seg_type(sbi, curseg);
2815}
2816
2817static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2818{
2819        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2820
2821        if (!sbi->am.atgc_enabled)
2822                return;
2823
2824        down_read(&SM_I(sbi)->curseg_lock);
2825
2826        mutex_lock(&curseg->curseg_mutex);
2827        down_write(&SIT_I(sbi)->sentry_lock);
2828
2829        get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2830
2831        up_write(&SIT_I(sbi)->sentry_lock);
2832        mutex_unlock(&curseg->curseg_mutex);
2833
2834        up_read(&SM_I(sbi)->curseg_lock);
2835
2836}
2837void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2838{
2839        __f2fs_init_atgc_curseg(sbi);
2840}
2841
2842static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2843{
2844        struct curseg_info *curseg = CURSEG_I(sbi, type);
2845
2846        mutex_lock(&curseg->curseg_mutex);
2847        if (!curseg->inited)
2848                goto out;
2849
2850        if (get_valid_blocks(sbi, curseg->segno, false)) {
2851                write_sum_page(sbi, curseg->sum_blk,
2852                                GET_SUM_BLOCK(sbi, curseg->segno));
2853        } else {
2854                mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2855                __set_test_and_free(sbi, curseg->segno, true);
2856                mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2857        }
2858out:
2859        mutex_unlock(&curseg->curseg_mutex);
2860}
2861
2862void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2863{
2864        __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2865
2866        if (sbi->am.atgc_enabled)
2867                __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2868}
2869
2870static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2871{
2872        struct curseg_info *curseg = CURSEG_I(sbi, type);
2873
2874        mutex_lock(&curseg->curseg_mutex);
2875        if (!curseg->inited)
2876                goto out;
2877        if (get_valid_blocks(sbi, curseg->segno, false))
2878                goto out;
2879
2880        mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2881        __set_test_and_inuse(sbi, curseg->segno);
2882        mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2883out:
2884        mutex_unlock(&curseg->curseg_mutex);
2885}
2886
2887void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2888{
2889        __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2890
2891        if (sbi->am.atgc_enabled)
2892                __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2893}
2894
2895static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2896                                int alloc_mode, unsigned long long age)
2897{
2898        struct curseg_info *curseg = CURSEG_I(sbi, type);
2899        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2900        unsigned segno = NULL_SEGNO;
2901        unsigned short seg_type = curseg->seg_type;
2902        int i, cnt;
2903        bool reversed = false;
2904
2905        sanity_check_seg_type(sbi, seg_type);
2906
2907        /* f2fs_need_SSR() already forces to do this */
2908        if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2909                curseg->next_segno = segno;
2910                return 1;
2911        }
2912
2913        /* For node segments, let's do SSR more intensively */
2914        if (IS_NODESEG(seg_type)) {
2915                if (seg_type >= CURSEG_WARM_NODE) {
2916                        reversed = true;
2917                        i = CURSEG_COLD_NODE;
2918                } else {
2919                        i = CURSEG_HOT_NODE;
2920                }
2921                cnt = NR_CURSEG_NODE_TYPE;
2922        } else {
2923                if (seg_type >= CURSEG_WARM_DATA) {
2924                        reversed = true;
2925                        i = CURSEG_COLD_DATA;
2926                } else {
2927                        i = CURSEG_HOT_DATA;
2928                }
2929                cnt = NR_CURSEG_DATA_TYPE;
2930        }
2931
2932        for (; cnt-- > 0; reversed ? i-- : i++) {
2933                if (i == seg_type)
2934                        continue;
2935                if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2936                        curseg->next_segno = segno;
2937                        return 1;
2938                }
2939        }
2940
2941        /* find valid_blocks=0 in dirty list */
2942        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2943                segno = get_free_segment(sbi);
2944                if (segno != NULL_SEGNO) {
2945                        curseg->next_segno = segno;
2946                        return 1;
2947                }
2948        }
2949        return 0;
2950}
2951
2952/*
2953 * flush out current segment and replace it with new segment
2954 * This function should be returned with success, otherwise BUG
2955 */
2956static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2957                                                int type, bool force)
2958{
2959        struct curseg_info *curseg = CURSEG_I(sbi, type);
2960
2961        if (force)
2962                new_curseg(sbi, type, true);
2963        else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2964                                        curseg->seg_type == CURSEG_WARM_NODE)
2965                new_curseg(sbi, type, false);
2966        else if (curseg->alloc_type == LFS &&
2967                        is_next_segment_free(sbi, curseg, type) &&
2968                        likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2969                new_curseg(sbi, type, false);
2970        else if (f2fs_need_SSR(sbi) &&
2971                        get_ssr_segment(sbi, type, SSR, 0))
2972                change_curseg(sbi, type, true);
2973        else
2974                new_curseg(sbi, type, false);
2975
2976        stat_inc_seg_type(sbi, curseg);
2977}
2978
2979void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2980                                        unsigned int start, unsigned int end)
2981{
2982        struct curseg_info *curseg = CURSEG_I(sbi, type);
2983        unsigned int segno;
2984
2985        down_read(&SM_I(sbi)->curseg_lock);
2986        mutex_lock(&curseg->curseg_mutex);
2987        down_write(&SIT_I(sbi)->sentry_lock);
2988
2989        segno = CURSEG_I(sbi, type)->segno;
2990        if (segno < start || segno > end)
2991                goto unlock;
2992
2993        if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2994                change_curseg(sbi, type, true);
2995        else
2996                new_curseg(sbi, type, true);
2997
2998        stat_inc_seg_type(sbi, curseg);
2999
3000        locate_dirty_segment(sbi, segno);
3001unlock:
3002        up_write(&SIT_I(sbi)->sentry_lock);
3003
3004        if (segno != curseg->segno)
3005                f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3006                            type, segno, curseg->segno);
3007
3008        mutex_unlock(&curseg->curseg_mutex);
3009        up_read(&SM_I(sbi)->curseg_lock);
3010}
3011
3012static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3013                                                bool new_sec, bool force)
3014{
3015        struct curseg_info *curseg = CURSEG_I(sbi, type);
3016        unsigned int old_segno;
3017
3018        if (!curseg->inited)
3019                goto alloc;
3020
3021        if (force || curseg->next_blkoff ||
3022                get_valid_blocks(sbi, curseg->segno, new_sec))
3023                goto alloc;
3024
3025        if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3026                return;
3027alloc:
3028        old_segno = curseg->segno;
3029        SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
3030        locate_dirty_segment(sbi, old_segno);
3031}
3032
3033static void __allocate_new_section(struct f2fs_sb_info *sbi,
3034                                                int type, bool force)
3035{
3036        __allocate_new_segment(sbi, type, true, force);
3037}
3038
3039void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3040{
3041        down_read(&SM_I(sbi)->curseg_lock);
3042        down_write(&SIT_I(sbi)->sentry_lock);
3043        __allocate_new_section(sbi, type, force);
3044        up_write(&SIT_I(sbi)->sentry_lock);
3045        up_read(&SM_I(sbi)->curseg_lock);
3046}
3047
3048void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3049{
3050        int i;
3051
3052        down_read(&SM_I(sbi)->curseg_lock);
3053        down_write(&SIT_I(sbi)->sentry_lock);
3054        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3055                __allocate_new_segment(sbi, i, false, false);
3056        up_write(&SIT_I(sbi)->sentry_lock);
3057        up_read(&SM_I(sbi)->curseg_lock);
3058}
3059
3060static const struct segment_allocation default_salloc_ops = {
3061        .allocate_segment = allocate_segment_by_default,
3062};
3063
3064bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3065                                                struct cp_control *cpc)
3066{
3067        __u64 trim_start = cpc->trim_start;
3068        bool has_candidate = false;
3069
3070        down_write(&SIT_I(sbi)->sentry_lock);
3071        for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3072                if (add_discard_addrs(sbi, cpc, true)) {
3073                        has_candidate = true;
3074                        break;
3075                }
3076        }
3077        up_write(&SIT_I(sbi)->sentry_lock);
3078
3079        cpc->trim_start = trim_start;
3080        return has_candidate;
3081}
3082
3083static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3084                                        struct discard_policy *dpolicy,
3085                                        unsigned int start, unsigned int end)
3086{
3087        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3088        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3089        struct rb_node **insert_p = NULL, *insert_parent = NULL;
3090        struct discard_cmd *dc;
3091        struct blk_plug plug;
3092        int issued;
3093        unsigned int trimmed = 0;
3094
3095next:
3096        issued = 0;
3097
3098        mutex_lock(&dcc->cmd_lock);
3099        if (unlikely(dcc->rbtree_check))
3100                f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3101                                                        &dcc->root, false));
3102
3103        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3104                                        NULL, start,
3105                                        (struct rb_entry **)&prev_dc,
3106                                        (struct rb_entry **)&next_dc,
3107                                        &insert_p, &insert_parent, true, NULL);
3108        if (!dc)
3109                dc = next_dc;
3110
3111        blk_start_plug(&plug);
3112
3113        while (dc && dc->lstart <= end) {
3114                struct rb_node *node;
3115                int err = 0;
3116
3117                if (dc->len < dpolicy->granularity)
3118                        goto skip;
3119
3120                if (dc->state != D_PREP) {
3121                        list_move_tail(&dc->list, &dcc->fstrim_list);
3122                        goto skip;
3123                }
3124
3125                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3126
3127                if (issued >= dpolicy->max_requests) {
3128                        start = dc->lstart + dc->len;
3129
3130                        if (err)
3131                                __remove_discard_cmd(sbi, dc);
3132
3133                        blk_finish_plug(&plug);
3134                        mutex_unlock(&dcc->cmd_lock);
3135                        trimmed += __wait_all_discard_cmd(sbi, NULL);
3136                        congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3137                        goto next;
3138                }
3139skip:
3140                node = rb_next(&dc->rb_node);
3141                if (err)
3142                        __remove_discard_cmd(sbi, dc);
3143                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3144
3145                if (fatal_signal_pending(current))
3146                        break;
3147        }
3148
3149        blk_finish_plug(&plug);
3150        mutex_unlock(&dcc->cmd_lock);
3151
3152        return trimmed;
3153}
3154
3155int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3156{
3157        __u64 start = F2FS_BYTES_TO_BLK(range->start);
3158        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3159        unsigned int start_segno, end_segno;
3160        block_t start_block, end_block;
3161        struct cp_control cpc;
3162        struct discard_policy dpolicy;
3163        unsigned long long trimmed = 0;
3164        int err = 0;
3165        bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3166
3167        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3168                return -EINVAL;
3169
3170        if (end < MAIN_BLKADDR(sbi))
3171                goto out;
3172
3173        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3174                f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3175                return -EFSCORRUPTED;
3176        }
3177
3178        /* start/end segment number in main_area */
3179        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3180        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3181                                                GET_SEGNO(sbi, end);
3182        if (need_align) {
3183                start_segno = rounddown(start_segno, sbi->segs_per_sec);
3184                end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3185        }
3186
3187        cpc.reason = CP_DISCARD;
3188        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3189        cpc.trim_start = start_segno;
3190        cpc.trim_end = end_segno;
3191
3192        if (sbi->discard_blks == 0)
3193                goto out;
3194
3195        down_write(&sbi->gc_lock);
3196        err = f2fs_write_checkpoint(sbi, &cpc);
3197        up_write(&sbi->gc_lock);
3198        if (err)
3199                goto out;
3200
3201        /*
3202         * We filed discard candidates, but actually we don't need to wait for
3203         * all of them, since they'll be issued in idle time along with runtime
3204         * discard option. User configuration looks like using runtime discard
3205         * or periodic fstrim instead of it.
3206         */
3207        if (f2fs_realtime_discard_enable(sbi))
3208                goto out;
3209
3210        start_block = START_BLOCK(sbi, start_segno);
3211        end_block = START_BLOCK(sbi, end_segno + 1);
3212
3213        __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3214        trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3215                                        start_block, end_block);
3216
3217        trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3218                                        start_block, end_block);
3219out:
3220        if (!err)
3221                range->len = F2FS_BLK_TO_BYTES(trimmed);
3222        return err;
3223}
3224
3225static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3226                                        struct curseg_info *curseg)
3227{
3228        return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3229                                                        curseg->segno);
3230}
3231
3232int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3233{
3234        switch (hint) {
3235        case WRITE_LIFE_SHORT:
3236                return CURSEG_HOT_DATA;
3237        case WRITE_LIFE_EXTREME:
3238                return CURSEG_COLD_DATA;
3239        default:
3240                return CURSEG_WARM_DATA;
3241        }
3242}
3243
3244/* This returns write hints for each segment type. This hints will be
3245 * passed down to block layer. There are mapping tables which depend on
3246 * the mount option 'whint_mode'.
3247 *
3248 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3249 *
3250 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3251 *
3252 * User                  F2FS                     Block
3253 * ----                  ----                     -----
3254 *                       META                     WRITE_LIFE_NOT_SET
3255 *                       HOT_NODE                 "
3256 *                       WARM_NODE                "
3257 *                       COLD_NODE                "
3258 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3259 * extension list        "                        "
3260 *
3261 * -- buffered io
3262 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3263 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3264 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3265 * WRITE_LIFE_NONE       "                        "
3266 * WRITE_LIFE_MEDIUM     "                        "
3267 * WRITE_LIFE_LONG       "                        "
3268 *
3269 * -- direct io
3270 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3271 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3272 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3273 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3274 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3275 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3276 *
3277 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3278 *
3279 * User                  F2FS                     Block
3280 * ----                  ----                     -----
3281 *                       META                     WRITE_LIFE_MEDIUM;
3282 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3283 *                       WARM_NODE                "
3284 *                       COLD_NODE                WRITE_LIFE_NONE
3285 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3286 * extension list        "                        "
3287 *
3288 * -- buffered io
3289 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3290 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3291 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3292 * WRITE_LIFE_NONE       "                        "
3293 * WRITE_LIFE_MEDIUM     "                        "
3294 * WRITE_LIFE_LONG       "                        "
3295 *
3296 * -- direct io
3297 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3298 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3299 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3300 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3301 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3302 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3303 */
3304
3305enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3306                                enum page_type type, enum temp_type temp)
3307{
3308        if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3309                if (type == DATA) {
3310                        if (temp == WARM)
3311                                return WRITE_LIFE_NOT_SET;
3312                        else if (temp == HOT)
3313                                return WRITE_LIFE_SHORT;
3314                        else if (temp == COLD)
3315                                return WRITE_LIFE_EXTREME;
3316                } else {
3317                        return WRITE_LIFE_NOT_SET;
3318                }
3319        } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3320                if (type == DATA) {
3321                        if (temp == WARM)
3322                                return WRITE_LIFE_LONG;
3323                        else if (temp == HOT)
3324                                return WRITE_LIFE_SHORT;
3325                        else if (temp == COLD)
3326                                return WRITE_LIFE_EXTREME;
3327                } else if (type == NODE) {
3328                        if (temp == WARM || temp == HOT)
3329                                return WRITE_LIFE_NOT_SET;
3330                        else if (temp == COLD)
3331                                return WRITE_LIFE_NONE;
3332                } else if (type == META) {
3333                        return WRITE_LIFE_MEDIUM;
3334                }
3335        }
3336        return WRITE_LIFE_NOT_SET;
3337}
3338
3339static int __get_segment_type_2(struct f2fs_io_info *fio)
3340{
3341        if (fio->type == DATA)
3342                return CURSEG_HOT_DATA;
3343        else
3344                return CURSEG_HOT_NODE;
3345}
3346
3347static int __get_segment_type_4(struct f2fs_io_info *fio)
3348{
3349        if (fio->type == DATA) {
3350                struct inode *inode = fio->page->mapping->host;
3351
3352                if (S_ISDIR(inode->i_mode))
3353                        return CURSEG_HOT_DATA;
3354                else
3355                        return CURSEG_COLD_DATA;
3356        } else {
3357                if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3358                        return CURSEG_WARM_NODE;
3359                else
3360                        return CURSEG_COLD_NODE;
3361        }
3362}
3363
3364static int __get_segment_type_6(struct f2fs_io_info *fio)
3365{
3366        if (fio->type == DATA) {
3367                struct inode *inode = fio->page->mapping->host;
3368
3369                if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3370                        return CURSEG_COLD_DATA_PINNED;
3371
3372                if (page_private_gcing(fio->page)) {
3373                        if (fio->sbi->am.atgc_enabled &&
3374                                (fio->io_type == FS_DATA_IO) &&
3375                                (fio->sbi->gc_mode != GC_URGENT_HIGH))
3376                                return CURSEG_ALL_DATA_ATGC;
3377                        else
3378                                return CURSEG_COLD_DATA;
3379                }
3380                if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3381                        return CURSEG_COLD_DATA;
3382                if (file_is_hot(inode) ||
3383                                is_inode_flag_set(inode, FI_HOT_DATA) ||
3384                                f2fs_is_atomic_file(inode) ||
3385                                f2fs_is_volatile_file(inode))
3386                        return CURSEG_HOT_DATA;
3387                return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3388        } else {
3389                if (IS_DNODE(fio->page))
3390                        return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3391                                                CURSEG_HOT_NODE;
3392                return CURSEG_COLD_NODE;
3393        }
3394}
3395
3396static int __get_segment_type(struct f2fs_io_info *fio)
3397{
3398        int type = 0;
3399
3400        switch (F2FS_OPTION(fio->sbi).active_logs) {
3401        case 2:
3402                type = __get_segment_type_2(fio);
3403                break;
3404        case 4:
3405                type = __get_segment_type_4(fio);
3406                break;
3407        case 6:
3408                type = __get_segment_type_6(fio);
3409                break;
3410        default:
3411                f2fs_bug_on(fio->sbi, true);
3412        }
3413
3414        if (IS_HOT(type))
3415                fio->temp = HOT;
3416        else if (IS_WARM(type))
3417                fio->temp = WARM;
3418        else
3419                fio->temp = COLD;
3420        return type;
3421}
3422
3423void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3424                block_t old_blkaddr, block_t *new_blkaddr,
3425                struct f2fs_summary *sum, int type,
3426                struct f2fs_io_info *fio)
3427{
3428        struct sit_info *sit_i = SIT_I(sbi);
3429        struct curseg_info *curseg = CURSEG_I(sbi, type);
3430        unsigned long long old_mtime;
3431        bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3432        struct seg_entry *se = NULL;
3433
3434        down_read(&SM_I(sbi)->curseg_lock);
3435
3436        mutex_lock(&curseg->curseg_mutex);
3437        down_write(&sit_i->sentry_lock);
3438
3439        if (from_gc) {
3440                f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3441                se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3442                sanity_check_seg_type(sbi, se->type);
3443                f2fs_bug_on(sbi, IS_NODESEG(se->type));
3444        }
3445        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3446
3447        f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3448
3449        f2fs_wait_discard_bio(sbi, *new_blkaddr);
3450
3451        /*
3452         * __add_sum_entry should be resided under the curseg_mutex
3453         * because, this function updates a summary entry in the
3454         * current summary block.
3455         */
3456        __add_sum_entry(sbi, type, sum);
3457
3458        __refresh_next_blkoff(sbi, curseg);
3459
3460        stat_inc_block_count(sbi, curseg);
3461
3462        if (from_gc) {
3463                old_mtime = get_segment_mtime(sbi, old_blkaddr);
3464        } else {
3465                update_segment_mtime(sbi, old_blkaddr, 0);
3466                old_mtime = 0;
3467        }
3468        update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3469
3470        /*
3471         * SIT information should be updated before segment allocation,
3472         * since SSR needs latest valid block information.
3473         */
3474        update_sit_entry(sbi, *new_blkaddr, 1);
3475        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3476                update_sit_entry(sbi, old_blkaddr, -1);
3477
3478        if (!__has_curseg_space(sbi, curseg)) {
3479                if (from_gc)
3480                        get_atssr_segment(sbi, type, se->type,
3481                                                AT_SSR, se->mtime);
3482                else
3483                        sit_i->s_ops->allocate_segment(sbi, type, false);
3484        }
3485        /*
3486         * segment dirty status should be updated after segment allocation,
3487         * so we just need to update status only one time after previous
3488         * segment being closed.
3489         */
3490        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3491        locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3492
3493        up_write(&sit_i->sentry_lock);
3494
3495        if (page && IS_NODESEG(type)) {
3496                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3497
3498                f2fs_inode_chksum_set(sbi, page);
3499        }
3500
3501        if (fio) {
3502                struct f2fs_bio_info *io;
3503
3504                if (F2FS_IO_ALIGNED(sbi))
3505                        fio->retry = false;
3506
3507                INIT_LIST_HEAD(&fio->list);
3508                fio->in_list = true;
3509                io = sbi->write_io[fio->type] + fio->temp;
3510                spin_lock(&io->io_lock);
3511                list_add_tail(&fio->list, &io->io_list);
3512                spin_unlock(&io->io_lock);
3513        }
3514
3515        mutex_unlock(&curseg->curseg_mutex);
3516
3517        up_read(&SM_I(sbi)->curseg_lock);
3518}
3519
3520void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3521                                        block_t blkaddr, unsigned int blkcnt)
3522{
3523        if (!f2fs_is_multi_device(sbi))
3524                return;
3525
3526        while (1) {
3527                unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3528                unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3529
3530                /* update device state for fsync */
3531                f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3532
3533                /* update device state for checkpoint */
3534                if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3535                        spin_lock(&sbi->dev_lock);
3536                        f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3537                        spin_unlock(&sbi->dev_lock);
3538                }
3539
3540                if (blkcnt <= blks)
3541                        break;
3542                blkcnt -= blks;
3543                blkaddr += blks;
3544        }
3545}
3546
3547static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3548{
3549        int type = __get_segment_type(fio);
3550        bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3551
3552        if (keep_order)
3553                down_read(&fio->sbi->io_order_lock);
3554reallocate:
3555        f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3556                        &fio->new_blkaddr, sum, type, fio);
3557        if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3558                invalidate_mapping_pages(META_MAPPING(fio->sbi),
3559                                        fio->old_blkaddr, fio->old_blkaddr);
3560                f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3561        }
3562
3563        /* writeout dirty page into bdev */
3564        f2fs_submit_page_write(fio);
3565        if (fio->retry) {
3566                fio->old_blkaddr = fio->new_blkaddr;
3567                goto reallocate;
3568        }
3569
3570        f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3571
3572        if (keep_order)
3573                up_read(&fio->sbi->io_order_lock);
3574}
3575
3576void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3577                                        enum iostat_type io_type)
3578{
3579        struct f2fs_io_info fio = {
3580                .sbi = sbi,
3581                .type = META,
3582                .temp = HOT,
3583                .op = REQ_OP_WRITE,
3584                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3585                .old_blkaddr = page->index,
3586                .new_blkaddr = page->index,
3587                .page = page,
3588                .encrypted_page = NULL,
3589                .in_list = false,
3590        };
3591
3592        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3593                fio.op_flags &= ~REQ_META;
3594
3595        set_page_writeback(page);
3596        ClearPageError(page);
3597        f2fs_submit_page_write(&fio);
3598
3599        stat_inc_meta_count(sbi, page->index);
3600        f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3601}
3602
3603void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3604{
3605        struct f2fs_summary sum;
3606
3607        set_summary(&sum, nid, 0, 0);
3608        do_write_page(&sum, fio);
3609
3610        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3611}
3612
3613void f2fs_outplace_write_data(struct dnode_of_data *dn,
3614                                        struct f2fs_io_info *fio)
3615{
3616        struct f2fs_sb_info *sbi = fio->sbi;
3617        struct f2fs_summary sum;
3618
3619        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3620        set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3621        do_write_page(&sum, fio);
3622        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3623
3624        f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3625}
3626
3627int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3628{
3629        int err;
3630        struct f2fs_sb_info *sbi = fio->sbi;
3631        unsigned int segno;
3632
3633        fio->new_blkaddr = fio->old_blkaddr;
3634        /* i/o temperature is needed for passing down write hints */
3635        __get_segment_type(fio);
3636
3637        segno = GET_SEGNO(sbi, fio->new_blkaddr);
3638
3639        if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3640                set_sbi_flag(sbi, SBI_NEED_FSCK);
3641                f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3642                          __func__, segno);
3643                err = -EFSCORRUPTED;
3644                goto drop_bio;
3645        }
3646
3647        if (f2fs_cp_error(sbi)) {
3648                err = -EIO;
3649                goto drop_bio;
3650        }
3651
3652        invalidate_mapping_pages(META_MAPPING(sbi),
3653                                fio->new_blkaddr, fio->new_blkaddr);
3654
3655        stat_inc_inplace_blocks(fio->sbi);
3656
3657        if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3658                err = f2fs_merge_page_bio(fio);
3659        else
3660                err = f2fs_submit_page_bio(fio);
3661        if (!err) {
3662                f2fs_update_device_state(fio->sbi, fio->ino,
3663                                                fio->new_blkaddr, 1);
3664                f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3665        }
3666
3667        return err;
3668drop_bio:
3669        if (fio->bio && *(fio->bio)) {
3670                struct bio *bio = *(fio->bio);
3671
3672                bio->bi_status = BLK_STS_IOERR;
3673                bio_endio(bio);
3674                *(fio->bio) = NULL;
3675        }
3676        return err;
3677}
3678
3679static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3680                                                unsigned int segno)
3681{
3682        int i;
3683
3684        for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3685                if (CURSEG_I(sbi, i)->segno == segno)
3686                        break;
3687        }
3688        return i;
3689}
3690
3691void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3692                                block_t old_blkaddr, block_t new_blkaddr,
3693                                bool recover_curseg, bool recover_newaddr,
3694                                bool from_gc)
3695{
3696        struct sit_info *sit_i = SIT_I(sbi);
3697        struct curseg_info *curseg;
3698        unsigned int segno, old_cursegno;
3699        struct seg_entry *se;
3700        int type;
3701        unsigned short old_blkoff;
3702        unsigned char old_alloc_type;
3703
3704        segno = GET_SEGNO(sbi, new_blkaddr);
3705        se = get_seg_entry(sbi, segno);
3706        type = se->type;
3707
3708        down_write(&SM_I(sbi)->curseg_lock);
3709
3710        if (!recover_curseg) {
3711                /* for recovery flow */
3712                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3713                        if (old_blkaddr == NULL_ADDR)
3714                                type = CURSEG_COLD_DATA;
3715                        else
3716                                type = CURSEG_WARM_DATA;
3717                }
3718        } else {
3719                if (IS_CURSEG(sbi, segno)) {
3720                        /* se->type is volatile as SSR allocation */
3721                        type = __f2fs_get_curseg(sbi, segno);
3722                        f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3723                } else {
3724                        type = CURSEG_WARM_DATA;
3725                }
3726        }
3727
3728        f2fs_bug_on(sbi, !IS_DATASEG(type));
3729        curseg = CURSEG_I(sbi, type);
3730
3731        mutex_lock(&curseg->curseg_mutex);
3732        down_write(&sit_i->sentry_lock);
3733
3734        old_cursegno = curseg->segno;
3735        old_blkoff = curseg->next_blkoff;
3736        old_alloc_type = curseg->alloc_type;
3737
3738        /* change the current segment */
3739        if (segno != curseg->segno) {
3740                curseg->next_segno = segno;
3741                change_curseg(sbi, type, true);
3742        }
3743
3744        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3745        __add_sum_entry(sbi, type, sum);
3746
3747        if (!recover_curseg || recover_newaddr) {
3748                if (!from_gc)
3749                        update_segment_mtime(sbi, new_blkaddr, 0);
3750                update_sit_entry(sbi, new_blkaddr, 1);
3751        }
3752        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3753                invalidate_mapping_pages(META_MAPPING(sbi),
3754                                        old_blkaddr, old_blkaddr);
3755                f2fs_invalidate_compress_page(sbi, old_blkaddr);
3756                if (!from_gc)
3757                        update_segment_mtime(sbi, old_blkaddr, 0);
3758                update_sit_entry(sbi, old_blkaddr, -1);
3759        }
3760
3761        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3762        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3763
3764        locate_dirty_segment(sbi, old_cursegno);
3765
3766        if (recover_curseg) {
3767                if (old_cursegno != curseg->segno) {
3768                        curseg->next_segno = old_cursegno;
3769                        change_curseg(sbi, type, true);
3770                }
3771                curseg->next_blkoff = old_blkoff;
3772                curseg->alloc_type = old_alloc_type;
3773        }
3774
3775        up_write(&sit_i->sentry_lock);
3776        mutex_unlock(&curseg->curseg_mutex);
3777        up_write(&SM_I(sbi)->curseg_lock);
3778}
3779
3780void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3781                                block_t old_addr, block_t new_addr,
3782                                unsigned char version, bool recover_curseg,
3783                                bool recover_newaddr)
3784{
3785        struct f2fs_summary sum;
3786
3787        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3788
3789        f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3790                                        recover_curseg, recover_newaddr, false);
3791
3792        f2fs_update_data_blkaddr(dn, new_addr);
3793}
3794
3795void f2fs_wait_on_page_writeback(struct page *page,
3796                                enum page_type type, bool ordered, bool locked)
3797{
3798        if (PageWriteback(page)) {
3799                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3800
3801                /* submit cached LFS IO */
3802                f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3803                /* sbumit cached IPU IO */
3804                f2fs_submit_merged_ipu_write(sbi, NULL, page);
3805                if (ordered) {
3806                        wait_on_page_writeback(page);
3807                        f2fs_bug_on(sbi, locked && PageWriteback(page));
3808                } else {
3809                        wait_for_stable_page(page);
3810                }
3811        }
3812}
3813
3814void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3815{
3816        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3817        struct page *cpage;
3818
3819        if (!f2fs_post_read_required(inode))
3820                return;
3821
3822        if (!__is_valid_data_blkaddr(blkaddr))
3823                return;
3824
3825        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3826        if (cpage) {
3827                f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3828                f2fs_put_page(cpage, 1);
3829        }
3830}
3831
3832void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3833                                                                block_t len)
3834{
3835        block_t i;
3836
3837        for (i = 0; i < len; i++)
3838                f2fs_wait_on_block_writeback(inode, blkaddr + i);
3839}
3840
3841static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3842{
3843        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3844        struct curseg_info *seg_i;
3845        unsigned char *kaddr;
3846        struct page *page;
3847        block_t start;
3848        int i, j, offset;
3849
3850        start = start_sum_block(sbi);
3851
3852        page = f2fs_get_meta_page(sbi, start++);
3853        if (IS_ERR(page))
3854                return PTR_ERR(page);
3855        kaddr = (unsigned char *)page_address(page);
3856
3857        /* Step 1: restore nat cache */
3858        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3859        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3860
3861        /* Step 2: restore sit cache */
3862        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3863        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3864        offset = 2 * SUM_JOURNAL_SIZE;
3865
3866        /* Step 3: restore summary entries */
3867        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3868                unsigned short blk_off;
3869                unsigned int segno;
3870
3871                seg_i = CURSEG_I(sbi, i);
3872                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3873                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3874                seg_i->next_segno = segno;
3875                reset_curseg(sbi, i, 0);
3876                seg_i->alloc_type = ckpt->alloc_type[i];
3877                seg_i->next_blkoff = blk_off;
3878
3879                if (seg_i->alloc_type == SSR)
3880                        blk_off = sbi->blocks_per_seg;
3881
3882                for (j = 0; j < blk_off; j++) {
3883                        struct f2fs_summary *s;
3884
3885                        s = (struct f2fs_summary *)(kaddr + offset);
3886                        seg_i->sum_blk->entries[j] = *s;
3887                        offset += SUMMARY_SIZE;
3888                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3889                                                SUM_FOOTER_SIZE)
3890                                continue;
3891
3892                        f2fs_put_page(page, 1);
3893                        page = NULL;
3894
3895                        page = f2fs_get_meta_page(sbi, start++);
3896                        if (IS_ERR(page))
3897                                return PTR_ERR(page);
3898                        kaddr = (unsigned char *)page_address(page);
3899                        offset = 0;
3900                }
3901        }
3902        f2fs_put_page(page, 1);
3903        return 0;
3904}
3905
3906static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3907{
3908        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3909        struct f2fs_summary_block *sum;
3910        struct curseg_info *curseg;
3911        struct page *new;
3912        unsigned short blk_off;
3913        unsigned int segno = 0;
3914        block_t blk_addr = 0;
3915        int err = 0;
3916
3917        /* get segment number and block addr */
3918        if (IS_DATASEG(type)) {
3919                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3920                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3921                                                        CURSEG_HOT_DATA]);
3922                if (__exist_node_summaries(sbi))
3923                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3924                else
3925                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3926        } else {
3927                segno = le32_to_cpu(ckpt->cur_node_segno[type -
3928                                                        CURSEG_HOT_NODE]);
3929                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3930                                                        CURSEG_HOT_NODE]);
3931                if (__exist_node_summaries(sbi))
3932                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3933                                                        type - CURSEG_HOT_NODE);
3934                else
3935                        blk_addr = GET_SUM_BLOCK(sbi, segno);
3936        }
3937
3938        new = f2fs_get_meta_page(sbi, blk_addr);
3939        if (IS_ERR(new))
3940                return PTR_ERR(new);
3941        sum = (struct f2fs_summary_block *)page_address(new);
3942
3943        if (IS_NODESEG(type)) {
3944                if (__exist_node_summaries(sbi)) {
3945                        struct f2fs_summary *ns = &sum->entries[0];
3946                        int i;
3947
3948                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3949                                ns->version = 0;
3950                                ns->ofs_in_node = 0;
3951                        }
3952                } else {
3953                        err = f2fs_restore_node_summary(sbi, segno, sum);
3954                        if (err)
3955                                goto out;
3956                }
3957        }
3958
3959        /* set uncompleted segment to curseg */
3960        curseg = CURSEG_I(sbi, type);
3961        mutex_lock(&curseg->curseg_mutex);
3962
3963        /* update journal info */
3964        down_write(&curseg->journal_rwsem);
3965        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3966        up_write(&curseg->journal_rwsem);
3967
3968        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3969        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3970        curseg->next_segno = segno;
3971        reset_curseg(sbi, type, 0);
3972        curseg->alloc_type = ckpt->alloc_type[type];
3973        curseg->next_blkoff = blk_off;
3974        mutex_unlock(&curseg->curseg_mutex);
3975out:
3976        f2fs_put_page(new, 1);
3977        return err;
3978}
3979
3980static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3981{
3982        struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3983        struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3984        int type = CURSEG_HOT_DATA;
3985        int err;
3986
3987        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3988                int npages = f2fs_npages_for_summary_flush(sbi, true);
3989
3990                if (npages >= 2)
3991                        f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3992                                                        META_CP, true);
3993
3994                /* restore for compacted data summary */
3995                err = read_compacted_summaries(sbi);
3996                if (err)
3997                        return err;
3998                type = CURSEG_HOT_NODE;
3999        }
4000
4001        if (__exist_node_summaries(sbi))
4002                f2fs_ra_meta_pages(sbi,
4003                                sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4004                                NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4005
4006        for (; type <= CURSEG_COLD_NODE; type++) {
4007                err = read_normal_summaries(sbi, type);
4008                if (err)
4009                        return err;
4010        }
4011
4012        /* sanity check for summary blocks */
4013        if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4014                        sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4015                f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4016                         nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4017                return -EINVAL;
4018        }
4019
4020        return 0;
4021}
4022
4023static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4024{
4025        struct page *page;
4026        unsigned char *kaddr;
4027        struct f2fs_summary *summary;
4028        struct curseg_info *seg_i;
4029        int written_size = 0;
4030        int i, j;
4031
4032        page = f2fs_grab_meta_page(sbi, blkaddr++);
4033        kaddr = (unsigned char *)page_address(page);
4034        memset(kaddr, 0, PAGE_SIZE);
4035
4036        /* Step 1: write nat cache */
4037        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4038        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4039        written_size += SUM_JOURNAL_SIZE;
4040
4041        /* Step 2: write sit cache */
4042        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4043        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4044        written_size += SUM_JOURNAL_SIZE;
4045
4046        /* Step 3: write summary entries */
4047        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4048                unsigned short blkoff;
4049
4050                seg_i = CURSEG_I(sbi, i);
4051                if (sbi->ckpt->alloc_type[i] == SSR)
4052                        blkoff = sbi->blocks_per_seg;
4053                else
4054                        blkoff = curseg_blkoff(sbi, i);
4055
4056                for (j = 0; j < blkoff; j++) {
4057                        if (!page) {
4058                                page = f2fs_grab_meta_page(sbi, blkaddr++);
4059                                kaddr = (unsigned char *)page_address(page);
4060                                memset(kaddr, 0, PAGE_SIZE);
4061                                written_size = 0;
4062                        }
4063                        summary = (struct f2fs_summary *)(kaddr + written_size);
4064                        *summary = seg_i->sum_blk->entries[j];
4065                        written_size += SUMMARY_SIZE;
4066
4067                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4068                                                        SUM_FOOTER_SIZE)
4069                                continue;
4070
4071                        set_page_dirty(page);
4072                        f2fs_put_page(page, 1);
4073                        page = NULL;
4074                }
4075        }
4076        if (page) {
4077                set_page_dirty(page);
4078                f2fs_put_page(page, 1);
4079        }
4080}
4081
4082static void write_normal_summaries(struct f2fs_sb_info *sbi,
4083                                        block_t blkaddr, int type)
4084{
4085        int i, end;
4086
4087        if (IS_DATASEG(type))
4088                end = type + NR_CURSEG_DATA_TYPE;
4089        else
4090                end = type + NR_CURSEG_NODE_TYPE;
4091
4092        for (i = type; i < end; i++)
4093                write_current_sum_page(sbi, i, blkaddr + (i - type));
4094}
4095
4096void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4097{
4098        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4099                write_compacted_summaries(sbi, start_blk);
4100        else
4101                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4102}
4103
4104void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4105{
4106        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4107}
4108
4109int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4110                                        unsigned int val, int alloc)
4111{
4112        int i;
4113
4114        if (type == NAT_JOURNAL) {
4115                for (i = 0; i < nats_in_cursum(journal); i++) {
4116                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4117                                return i;
4118                }
4119                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4120                        return update_nats_in_cursum(journal, 1);
4121        } else if (type == SIT_JOURNAL) {
4122                for (i = 0; i < sits_in_cursum(journal); i++)
4123                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4124                                return i;
4125                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4126                        return update_sits_in_cursum(journal, 1);
4127        }
4128        return -1;
4129}
4130
4131static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4132                                        unsigned int segno)
4133{
4134        return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4135}
4136
4137static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4138                                        unsigned int start)
4139{
4140        struct sit_info *sit_i = SIT_I(sbi);
4141        struct page *page;
4142        pgoff_t src_off, dst_off;
4143
4144        src_off = current_sit_addr(sbi, start);
4145        dst_off = next_sit_addr(sbi, src_off);
4146
4147        page = f2fs_grab_meta_page(sbi, dst_off);
4148        seg_info_to_sit_page(sbi, page, start);
4149
4150        set_page_dirty(page);
4151        set_to_next_sit(sit_i, start);
4152
4153        return page;
4154}
4155
4156static struct sit_entry_set *grab_sit_entry_set(void)
4157{
4158        struct sit_entry_set *ses =
4159                        f2fs_kmem_cache_alloc(sit_entry_set_slab,
4160                                                GFP_NOFS, true, NULL);
4161
4162        ses->entry_cnt = 0;
4163        INIT_LIST_HEAD(&ses->set_list);
4164        return ses;
4165}
4166
4167static void release_sit_entry_set(struct sit_entry_set *ses)
4168{
4169        list_del(&ses->set_list);
4170        kmem_cache_free(sit_entry_set_slab, ses);
4171}
4172
4173static void adjust_sit_entry_set(struct sit_entry_set *ses,
4174                                                struct list_head *head)
4175{
4176        struct sit_entry_set *next = ses;
4177
4178        if (list_is_last(&ses->set_list, head))
4179                return;
4180
4181        list_for_each_entry_continue(next, head, set_list)
4182                if (ses->entry_cnt <= next->entry_cnt)
4183                        break;
4184
4185        list_move_tail(&ses->set_list, &next->set_list);
4186}
4187
4188static void add_sit_entry(unsigned int segno, struct list_head *head)
4189{
4190        struct sit_entry_set *ses;
4191        unsigned int start_segno = START_SEGNO(segno);
4192
4193        list_for_each_entry(ses, head, set_list) {
4194                if (ses->start_segno == start_segno) {
4195                        ses->entry_cnt++;
4196                        adjust_sit_entry_set(ses, head);
4197                        return;
4198                }
4199        }
4200
4201        ses = grab_sit_entry_set();
4202
4203        ses->start_segno = start_segno;
4204        ses->entry_cnt++;
4205        list_add(&ses->set_list, head);
4206}
4207
4208static void add_sits_in_set(struct f2fs_sb_info *sbi)
4209{
4210        struct f2fs_sm_info *sm_info = SM_I(sbi);
4211        struct list_head *set_list = &sm_info->sit_entry_set;
4212        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4213        unsigned int segno;
4214
4215        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4216                add_sit_entry(segno, set_list);
4217}
4218
4219static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4220{
4221        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4222        struct f2fs_journal *journal = curseg->journal;
4223        int i;
4224
4225        down_write(&curseg->journal_rwsem);
4226        for (i = 0; i < sits_in_cursum(journal); i++) {
4227                unsigned int segno;
4228                bool dirtied;
4229
4230                segno = le32_to_cpu(segno_in_journal(journal, i));
4231                dirtied = __mark_sit_entry_dirty(sbi, segno);
4232
4233                if (!dirtied)
4234                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4235        }
4236        update_sits_in_cursum(journal, -i);
4237        up_write(&curseg->journal_rwsem);
4238}
4239
4240/*
4241 * CP calls this function, which flushes SIT entries including sit_journal,
4242 * and moves prefree segs to free segs.
4243 */
4244void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4245{
4246        struct sit_info *sit_i = SIT_I(sbi);
4247        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4248        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4249        struct f2fs_journal *journal = curseg->journal;
4250        struct sit_entry_set *ses, *tmp;
4251        struct list_head *head = &SM_I(sbi)->sit_entry_set;
4252        bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4253        struct seg_entry *se;
4254
4255        down_write(&sit_i->sentry_lock);
4256
4257        if (!sit_i->dirty_sentries)
4258                goto out;
4259
4260        /*
4261         * add and account sit entries of dirty bitmap in sit entry
4262         * set temporarily
4263         */
4264        add_sits_in_set(sbi);
4265
4266        /*
4267         * if there are no enough space in journal to store dirty sit
4268         * entries, remove all entries from journal and add and account
4269         * them in sit entry set.
4270         */
4271        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4272                                                                !to_journal)
4273                remove_sits_in_journal(sbi);
4274
4275        /*
4276         * there are two steps to flush sit entries:
4277         * #1, flush sit entries to journal in current cold data summary block.
4278         * #2, flush sit entries to sit page.
4279         */
4280        list_for_each_entry_safe(ses, tmp, head, set_list) {
4281                struct page *page = NULL;
4282                struct f2fs_sit_block *raw_sit = NULL;
4283                unsigned int start_segno = ses->start_segno;
4284                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4285                                                (unsigned long)MAIN_SEGS(sbi));
4286                unsigned int segno = start_segno;
4287
4288                if (to_journal &&
4289                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4290                        to_journal = false;
4291
4292                if (to_journal) {
4293                        down_write(&curseg->journal_rwsem);
4294                } else {
4295                        page = get_next_sit_page(sbi, start_segno);
4296                        raw_sit = page_address(page);
4297                }
4298
4299                /* flush dirty sit entries in region of current sit set */
4300                for_each_set_bit_from(segno, bitmap, end) {
4301                        int offset, sit_offset;
4302
4303                        se = get_seg_entry(sbi, segno);
4304#ifdef CONFIG_F2FS_CHECK_FS
4305                        if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4306                                                SIT_VBLOCK_MAP_SIZE))
4307                                f2fs_bug_on(sbi, 1);
4308#endif
4309
4310                        /* add discard candidates */
4311                        if (!(cpc->reason & CP_DISCARD)) {
4312                                cpc->trim_start = segno;
4313                                add_discard_addrs(sbi, cpc, false);
4314                        }
4315
4316                        if (to_journal) {
4317                                offset = f2fs_lookup_journal_in_cursum(journal,
4318                                                        SIT_JOURNAL, segno, 1);
4319                                f2fs_bug_on(sbi, offset < 0);
4320                                segno_in_journal(journal, offset) =
4321                                                        cpu_to_le32(segno);
4322                                seg_info_to_raw_sit(se,
4323                                        &sit_in_journal(journal, offset));
4324                                check_block_count(sbi, segno,
4325                                        &sit_in_journal(journal, offset));
4326                        } else {
4327                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4328                                seg_info_to_raw_sit(se,
4329                                                &raw_sit->entries[sit_offset]);
4330                                check_block_count(sbi, segno,
4331                                                &raw_sit->entries[sit_offset]);
4332                        }
4333
4334                        __clear_bit(segno, bitmap);
4335                        sit_i->dirty_sentries--;
4336                        ses->entry_cnt--;
4337                }
4338
4339                if (to_journal)
4340                        up_write(&curseg->journal_rwsem);
4341                else
4342                        f2fs_put_page(page, 1);
4343
4344                f2fs_bug_on(sbi, ses->entry_cnt);
4345                release_sit_entry_set(ses);
4346        }
4347
4348        f2fs_bug_on(sbi, !list_empty(head));
4349        f2fs_bug_on(sbi, sit_i->dirty_sentries);
4350out:
4351        if (cpc->reason & CP_DISCARD) {
4352                __u64 trim_start = cpc->trim_start;
4353
4354                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4355                        add_discard_addrs(sbi, cpc, false);
4356
4357                cpc->trim_start = trim_start;
4358        }
4359        up_write(&sit_i->sentry_lock);
4360
4361        set_prefree_as_free_segments(sbi);
4362}
4363
4364static int build_sit_info(struct f2fs_sb_info *sbi)
4365{
4366        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4367        struct sit_info *sit_i;
4368        unsigned int sit_segs, start;
4369        char *src_bitmap, *bitmap;
4370        unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4371        unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4372
4373        /* allocate memory for SIT information */
4374        sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4375        if (!sit_i)
4376                return -ENOMEM;
4377
4378        SM_I(sbi)->sit_info = sit_i;
4379
4380        sit_i->sentries =
4381                f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4382                                              MAIN_SEGS(sbi)),
4383                              GFP_KERNEL);
4384        if (!sit_i->sentries)
4385                return -ENOMEM;
4386
4387        main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4388        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4389                                                                GFP_KERNEL);
4390        if (!sit_i->dirty_sentries_bitmap)
4391                return -ENOMEM;
4392
4393#ifdef CONFIG_F2FS_CHECK_FS
4394        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4395#else
4396        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4397#endif
4398        sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4399        if (!sit_i->bitmap)
4400                return -ENOMEM;
4401
4402        bitmap = sit_i->bitmap;
4403
4404        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4405                sit_i->sentries[start].cur_valid_map = bitmap;
4406                bitmap += SIT_VBLOCK_MAP_SIZE;
4407
4408                sit_i->sentries[start].ckpt_valid_map = bitmap;
4409                bitmap += SIT_VBLOCK_MAP_SIZE;
4410
4411#ifdef CONFIG_F2FS_CHECK_FS
4412                sit_i->sentries[start].cur_valid_map_mir = bitmap;
4413                bitmap += SIT_VBLOCK_MAP_SIZE;
4414#endif
4415
4416                if (discard_map) {
4417                        sit_i->sentries[start].discard_map = bitmap;
4418                        bitmap += SIT_VBLOCK_MAP_SIZE;
4419                }
4420        }
4421
4422        sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4423        if (!sit_i->tmp_map)
4424                return -ENOMEM;
4425
4426        if (__is_large_section(sbi)) {
4427                sit_i->sec_entries =
4428                        f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4429                                                      MAIN_SECS(sbi)),
4430                                      GFP_KERNEL);
4431                if (!sit_i->sec_entries)
4432                        return -ENOMEM;
4433        }
4434
4435        /* get information related with SIT */
4436        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4437
4438        /* setup SIT bitmap from ckeckpoint pack */
4439        sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4440        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4441
4442        sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4443        if (!sit_i->sit_bitmap)
4444                return -ENOMEM;
4445
4446#ifdef CONFIG_F2FS_CHECK_FS
4447        sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4448                                        sit_bitmap_size, GFP_KERNEL);
4449        if (!sit_i->sit_bitmap_mir)
4450                return -ENOMEM;
4451
4452        sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4453                                        main_bitmap_size, GFP_KERNEL);
4454        if (!sit_i->invalid_segmap)
4455                return -ENOMEM;
4456#endif
4457
4458        /* init SIT information */
4459        sit_i->s_ops = &default_salloc_ops;
4460
4461        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4462        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4463        sit_i->written_valid_blocks = 0;
4464        sit_i->bitmap_size = sit_bitmap_size;
4465        sit_i->dirty_sentries = 0;
4466        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4467        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4468        sit_i->mounted_time = ktime_get_boottime_seconds();
4469        init_rwsem(&sit_i->sentry_lock);
4470        return 0;
4471}
4472
4473static int build_free_segmap(struct f2fs_sb_info *sbi)
4474{
4475        struct free_segmap_info *free_i;
4476        unsigned int bitmap_size, sec_bitmap_size;
4477
4478        /* allocate memory for free segmap information */
4479        free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4480        if (!free_i)
4481                return -ENOMEM;
4482
4483        SM_I(sbi)->free_info = free_i;
4484
4485        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4486        free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4487        if (!free_i->free_segmap)
4488                return -ENOMEM;
4489
4490        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4491        free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4492        if (!free_i->free_secmap)
4493                return -ENOMEM;
4494
4495        /* set all segments as dirty temporarily */
4496        memset(free_i->free_segmap, 0xff, bitmap_size);
4497        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4498
4499        /* init free segmap information */
4500        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4501        free_i->free_segments = 0;
4502        free_i->free_sections = 0;
4503        spin_lock_init(&free_i->segmap_lock);
4504        return 0;
4505}
4506
4507static int build_curseg(struct f2fs_sb_info *sbi)
4508{
4509        struct curseg_info *array;
4510        int i;
4511
4512        array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4513                                        sizeof(*array)), GFP_KERNEL);
4514        if (!array)
4515                return -ENOMEM;
4516
4517        SM_I(sbi)->curseg_array = array;
4518
4519        for (i = 0; i < NO_CHECK_TYPE; i++) {
4520                mutex_init(&array[i].curseg_mutex);
4521                array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4522                if (!array[i].sum_blk)
4523                        return -ENOMEM;
4524                init_rwsem(&array[i].journal_rwsem);
4525                array[i].journal = f2fs_kzalloc(sbi,
4526                                sizeof(struct f2fs_journal), GFP_KERNEL);
4527                if (!array[i].journal)
4528                        return -ENOMEM;
4529                if (i < NR_PERSISTENT_LOG)
4530                        array[i].seg_type = CURSEG_HOT_DATA + i;
4531                else if (i == CURSEG_COLD_DATA_PINNED)
4532                        array[i].seg_type = CURSEG_COLD_DATA;
4533                else if (i == CURSEG_ALL_DATA_ATGC)
4534                        array[i].seg_type = CURSEG_COLD_DATA;
4535                array[i].segno = NULL_SEGNO;
4536                array[i].next_blkoff = 0;
4537                array[i].inited = false;
4538        }
4539        return restore_curseg_summaries(sbi);
4540}
4541
4542static int build_sit_entries(struct f2fs_sb_info *sbi)
4543{
4544        struct sit_info *sit_i = SIT_I(sbi);
4545        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4546        struct f2fs_journal *journal = curseg->journal;
4547        struct seg_entry *se;
4548        struct f2fs_sit_entry sit;
4549        int sit_blk_cnt = SIT_BLK_CNT(sbi);
4550        unsigned int i, start, end;
4551        unsigned int readed, start_blk = 0;
4552        int err = 0;
4553        block_t total_node_blocks = 0;
4554
4555        do {
4556                readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4557                                                        META_SIT, true);
4558
4559                start = start_blk * sit_i->sents_per_block;
4560                end = (start_blk + readed) * sit_i->sents_per_block;
4561
4562                for (; start < end && start < MAIN_SEGS(sbi); start++) {
4563                        struct f2fs_sit_block *sit_blk;
4564                        struct page *page;
4565
4566                        se = &sit_i->sentries[start];
4567                        page = get_current_sit_page(sbi, start);
4568                        if (IS_ERR(page))
4569                                return PTR_ERR(page);
4570                        sit_blk = (struct f2fs_sit_block *)page_address(page);
4571                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4572                        f2fs_put_page(page, 1);
4573
4574                        err = check_block_count(sbi, start, &sit);
4575                        if (err)
4576                                return err;
4577                        seg_info_from_raw_sit(se, &sit);
4578                        if (IS_NODESEG(se->type))
4579                                total_node_blocks += se->valid_blocks;
4580
4581                        if (f2fs_block_unit_discard(sbi)) {
4582                                /* build discard map only one time */
4583                                if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4584                                        memset(se->discard_map, 0xff,
4585                                                SIT_VBLOCK_MAP_SIZE);
4586                                } else {
4587                                        memcpy(se->discard_map,
4588                                                se->cur_valid_map,
4589                                                SIT_VBLOCK_MAP_SIZE);
4590                                        sbi->discard_blks +=
4591                                                sbi->blocks_per_seg -
4592                                                se->valid_blocks;
4593                                }
4594                        }
4595
4596                        if (__is_large_section(sbi))
4597                                get_sec_entry(sbi, start)->valid_blocks +=
4598                                                        se->valid_blocks;
4599                }
4600                start_blk += readed;
4601        } while (start_blk < sit_blk_cnt);
4602
4603        down_read(&curseg->journal_rwsem);
4604        for (i = 0; i < sits_in_cursum(journal); i++) {
4605                unsigned int old_valid_blocks;
4606
4607                start = le32_to_cpu(segno_in_journal(journal, i));
4608                if (start >= MAIN_SEGS(sbi)) {
4609                        f2fs_err(sbi, "Wrong journal entry on segno %u",
4610                                 start);
4611                        err = -EFSCORRUPTED;
4612                        break;
4613                }
4614
4615                se = &sit_i->sentries[start];
4616                sit = sit_in_journal(journal, i);
4617
4618                old_valid_blocks = se->valid_blocks;
4619                if (IS_NODESEG(se->type))
4620                        total_node_blocks -= old_valid_blocks;
4621
4622                err = check_block_count(sbi, start, &sit);
4623                if (err)
4624                        break;
4625                seg_info_from_raw_sit(se, &sit);
4626                if (IS_NODESEG(se->type))
4627                        total_node_blocks += se->valid_blocks;
4628
4629                if (f2fs_block_unit_discard(sbi)) {
4630                        if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4631                                memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4632                        } else {
4633                                memcpy(se->discard_map, se->cur_valid_map,
4634                                                        SIT_VBLOCK_MAP_SIZE);
4635                                sbi->discard_blks += old_valid_blocks;
4636                                sbi->discard_blks -= se->valid_blocks;
4637                        }
4638                }
4639
4640                if (__is_large_section(sbi)) {
4641                        get_sec_entry(sbi, start)->valid_blocks +=
4642                                                        se->valid_blocks;
4643                        get_sec_entry(sbi, start)->valid_blocks -=
4644                                                        old_valid_blocks;
4645                }
4646        }
4647        up_read(&curseg->journal_rwsem);
4648
4649        if (!err && total_node_blocks != valid_node_count(sbi)) {
4650                f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4651                         total_node_blocks, valid_node_count(sbi));
4652                err = -EFSCORRUPTED;
4653        }
4654
4655        return err;
4656}
4657
4658static void init_free_segmap(struct f2fs_sb_info *sbi)
4659{
4660        unsigned int start;
4661        int type;
4662        struct seg_entry *sentry;
4663
4664        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4665                if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4666                        continue;
4667                sentry = get_seg_entry(sbi, start);
4668                if (!sentry->valid_blocks)
4669                        __set_free(sbi, start);
4670                else
4671                        SIT_I(sbi)->written_valid_blocks +=
4672                                                sentry->valid_blocks;
4673        }
4674
4675        /* set use the current segments */
4676        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4677                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4678
4679                __set_test_and_inuse(sbi, curseg_t->segno);
4680        }
4681}
4682
4683static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4684{
4685        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4686        struct free_segmap_info *free_i = FREE_I(sbi);
4687        unsigned int segno = 0, offset = 0, secno;
4688        block_t valid_blocks, usable_blks_in_seg;
4689        block_t blks_per_sec = BLKS_PER_SEC(sbi);
4690
4691        while (1) {
4692                /* find dirty segment based on free segmap */
4693                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4694                if (segno >= MAIN_SEGS(sbi))
4695                        break;
4696                offset = segno + 1;
4697                valid_blocks = get_valid_blocks(sbi, segno, false);
4698                usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4699                if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4700                        continue;
4701                if (valid_blocks > usable_blks_in_seg) {
4702                        f2fs_bug_on(sbi, 1);
4703                        continue;
4704                }
4705                mutex_lock(&dirty_i->seglist_lock);
4706                __locate_dirty_segment(sbi, segno, DIRTY);
4707                mutex_unlock(&dirty_i->seglist_lock);
4708        }
4709
4710        if (!__is_large_section(sbi))
4711                return;
4712
4713        mutex_lock(&dirty_i->seglist_lock);
4714        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4715                valid_blocks = get_valid_blocks(sbi, segno, true);
4716                secno = GET_SEC_FROM_SEG(sbi, segno);
4717
4718                if (!valid_blocks || valid_blocks == blks_per_sec)
4719                        continue;
4720                if (IS_CURSEC(sbi, secno))
4721                        continue;
4722                set_bit(secno, dirty_i->dirty_secmap);
4723        }
4724        mutex_unlock(&dirty_i->seglist_lock);
4725}
4726
4727static int init_victim_secmap(struct f2fs_sb_info *sbi)
4728{
4729        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4730        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4731
4732        dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4733        if (!dirty_i->victim_secmap)
4734                return -ENOMEM;
4735        return 0;
4736}
4737
4738static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4739{
4740        struct dirty_seglist_info *dirty_i;
4741        unsigned int bitmap_size, i;
4742
4743        /* allocate memory for dirty segments list information */
4744        dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4745                                                                GFP_KERNEL);
4746        if (!dirty_i)
4747                return -ENOMEM;
4748
4749        SM_I(sbi)->dirty_info = dirty_i;
4750        mutex_init(&dirty_i->seglist_lock);
4751
4752        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4753
4754        for (i = 0; i < NR_DIRTY_TYPE; i++) {
4755                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4756                                                                GFP_KERNEL);
4757                if (!dirty_i->dirty_segmap[i])
4758                        return -ENOMEM;
4759        }
4760
4761        if (__is_large_section(sbi)) {
4762                bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4763                dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4764                                                bitmap_size, GFP_KERNEL);
4765                if (!dirty_i->dirty_secmap)
4766                        return -ENOMEM;
4767        }
4768
4769        init_dirty_segmap(sbi);
4770        return init_victim_secmap(sbi);
4771}
4772
4773static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4774{
4775        int i;
4776
4777        /*
4778         * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4779         * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4780         */
4781        for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4782                struct curseg_info *curseg = CURSEG_I(sbi, i);
4783                struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4784                unsigned int blkofs = curseg->next_blkoff;
4785
4786                if (f2fs_sb_has_readonly(sbi) &&
4787                        i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4788                        continue;
4789
4790                sanity_check_seg_type(sbi, curseg->seg_type);
4791
4792                if (f2fs_test_bit(blkofs, se->cur_valid_map))
4793                        goto out;
4794
4795                if (curseg->alloc_type == SSR)
4796                        continue;
4797
4798                for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4799                        if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4800                                continue;
4801out:
4802                        f2fs_err(sbi,
4803                                 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4804                                 i, curseg->segno, curseg->alloc_type,
4805                                 curseg->next_blkoff, blkofs);
4806                        return -EFSCORRUPTED;
4807                }
4808        }
4809        return 0;
4810}
4811
4812#ifdef CONFIG_BLK_DEV_ZONED
4813
4814static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4815                                    struct f2fs_dev_info *fdev,
4816                                    struct blk_zone *zone)
4817{
4818        unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4819        block_t zone_block, wp_block, last_valid_block;
4820        unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4821        int i, s, b, ret;
4822        struct seg_entry *se;
4823
4824        if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4825                return 0;
4826
4827        wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4828        wp_segno = GET_SEGNO(sbi, wp_block);
4829        wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4830        zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4831        zone_segno = GET_SEGNO(sbi, zone_block);
4832        zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4833
4834        if (zone_segno >= MAIN_SEGS(sbi))
4835                return 0;
4836
4837        /*
4838         * Skip check of zones cursegs point to, since
4839         * fix_curseg_write_pointer() checks them.
4840         */
4841        for (i = 0; i < NO_CHECK_TYPE; i++)
4842                if (zone_secno == GET_SEC_FROM_SEG(sbi,
4843                                                   CURSEG_I(sbi, i)->segno))
4844                        return 0;
4845
4846        /*
4847         * Get last valid block of the zone.
4848         */
4849        last_valid_block = zone_block - 1;
4850        for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4851                segno = zone_segno + s;
4852                se = get_seg_entry(sbi, segno);
4853                for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4854                        if (f2fs_test_bit(b, se->cur_valid_map)) {
4855                                last_valid_block = START_BLOCK(sbi, segno) + b;
4856                                break;
4857                        }
4858                if (last_valid_block >= zone_block)
4859                        break;
4860        }
4861
4862        /*
4863         * If last valid block is beyond the write pointer, report the
4864         * inconsistency. This inconsistency does not cause write error
4865         * because the zone will not be selected for write operation until
4866         * it get discarded. Just report it.
4867         */
4868        if (last_valid_block >= wp_block) {
4869                f2fs_notice(sbi, "Valid block beyond write pointer: "
4870                            "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4871                            GET_SEGNO(sbi, last_valid_block),
4872                            GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4873                            wp_segno, wp_blkoff);
4874                return 0;
4875        }
4876
4877        /*
4878         * If there is no valid block in the zone and if write pointer is
4879         * not at zone start, reset the write pointer.
4880         */
4881        if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4882                f2fs_notice(sbi,
4883                            "Zone without valid block has non-zero write "
4884                            "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4885                            wp_segno, wp_blkoff);
4886                ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4887                                        zone->len >> log_sectors_per_block);
4888                if (ret) {
4889                        f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4890                                 fdev->path, ret);
4891                        return ret;
4892                }
4893        }
4894
4895        return 0;
4896}
4897
4898static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4899                                                  block_t zone_blkaddr)
4900{
4901        int i;
4902
4903        for (i = 0; i < sbi->s_ndevs; i++) {
4904                if (!bdev_is_zoned(FDEV(i).bdev))
4905                        continue;
4906                if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4907                                zone_blkaddr <= FDEV(i).end_blk))
4908                        return &FDEV(i);
4909        }
4910
4911        return NULL;
4912}
4913
4914static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4915                              void *data)
4916{
4917        memcpy(data, zone, sizeof(struct blk_zone));
4918        return 0;
4919}
4920
4921static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4922{
4923        struct curseg_info *cs = CURSEG_I(sbi, type);
4924        struct f2fs_dev_info *zbd;
4925        struct blk_zone zone;
4926        unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4927        block_t cs_zone_block, wp_block;
4928        unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4929        sector_t zone_sector;
4930        int err;
4931
4932        cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4933        cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4934
4935        zbd = get_target_zoned_dev(sbi, cs_zone_block);
4936        if (!zbd)
4937                return 0;
4938
4939        /* report zone for the sector the curseg points to */
4940        zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4941                << log_sectors_per_block;
4942        err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4943                                  report_one_zone_cb, &zone);
4944        if (err != 1) {
4945                f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4946                         zbd->path, err);
4947                return err;
4948        }
4949
4950        if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4951                return 0;
4952
4953        wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4954        wp_segno = GET_SEGNO(sbi, wp_block);
4955        wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4956        wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4957
4958        if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4959                wp_sector_off == 0)
4960                return 0;
4961
4962        f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4963                    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4964                    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4965
4966        f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4967                    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4968
4969        f2fs_allocate_new_section(sbi, type, true);
4970
4971        /* check consistency of the zone curseg pointed to */
4972        if (check_zone_write_pointer(sbi, zbd, &zone))
4973                return -EIO;
4974
4975        /* check newly assigned zone */
4976        cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4977        cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4978
4979        zbd = get_target_zoned_dev(sbi, cs_zone_block);
4980        if (!zbd)
4981                return 0;
4982
4983        zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4984                << log_sectors_per_block;
4985        err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4986                                  report_one_zone_cb, &zone);
4987        if (err != 1) {
4988                f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4989                         zbd->path, err);
4990                return err;
4991        }
4992
4993        if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4994                return 0;
4995
4996        if (zone.wp != zone.start) {
4997                f2fs_notice(sbi,
4998                            "New zone for curseg[%d] is not yet discarded. "
4999                            "Reset the zone: curseg[0x%x,0x%x]",
5000                            type, cs->segno, cs->next_blkoff);
5001                err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5002                                zone_sector >> log_sectors_per_block,
5003                                zone.len >> log_sectors_per_block);
5004                if (err) {
5005                        f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5006                                 zbd->path, err);
5007                        return err;
5008                }
5009        }
5010
5011        return 0;
5012}
5013
5014int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5015{
5016        int i, ret;
5017
5018        for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5019                ret = fix_curseg_write_pointer(sbi, i);
5020                if (ret)
5021                        return ret;
5022        }
5023
5024        return 0;
5025}
5026
5027struct check_zone_write_pointer_args {
5028        struct f2fs_sb_info *sbi;
5029        struct f2fs_dev_info *fdev;
5030};
5031
5032static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5033                                      void *data)
5034{
5035        struct check_zone_write_pointer_args *args;
5036
5037        args = (struct check_zone_write_pointer_args *)data;
5038
5039        return check_zone_write_pointer(args->sbi, args->fdev, zone);
5040}
5041
5042int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5043{
5044        int i, ret;
5045        struct check_zone_write_pointer_args args;
5046
5047        for (i = 0; i < sbi->s_ndevs; i++) {
5048                if (!bdev_is_zoned(FDEV(i).bdev))
5049                        continue;
5050
5051                args.sbi = sbi;
5052                args.fdev = &FDEV(i);
5053                ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5054                                          check_zone_write_pointer_cb, &args);
5055                if (ret < 0)
5056                        return ret;
5057        }
5058
5059        return 0;
5060}
5061
5062static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5063                                                unsigned int dev_idx)
5064{
5065        if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5066                return true;
5067        return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5068}
5069
5070/* Return the zone index in the given device */
5071static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5072                                        int dev_idx)
5073{
5074        block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5075
5076        return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5077                                                sbi->log_blocks_per_blkz;
5078}
5079
5080/*
5081 * Return the usable segments in a section based on the zone's
5082 * corresponding zone capacity. Zone is equal to a section.
5083 */
5084static inline unsigned int f2fs_usable_zone_segs_in_sec(
5085                struct f2fs_sb_info *sbi, unsigned int segno)
5086{
5087        unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5088
5089        dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5090        zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5091
5092        /* Conventional zone's capacity is always equal to zone size */
5093        if (is_conv_zone(sbi, zone_idx, dev_idx))
5094                return sbi->segs_per_sec;
5095
5096        /*
5097         * If the zone_capacity_blocks array is NULL, then zone capacity
5098         * is equal to the zone size for all zones
5099         */
5100        if (!FDEV(dev_idx).zone_capacity_blocks)
5101                return sbi->segs_per_sec;
5102
5103        /* Get the segment count beyond zone capacity block */
5104        unusable_segs_in_sec = (sbi->blocks_per_blkz -
5105                                FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5106                                sbi->log_blocks_per_seg;
5107        return sbi->segs_per_sec - unusable_segs_in_sec;
5108}
5109
5110/*
5111 * Return the number of usable blocks in a segment. The number of blocks
5112 * returned is always equal to the number of blocks in a segment for
5113 * segments fully contained within a sequential zone capacity or a
5114 * conventional zone. For segments partially contained in a sequential
5115 * zone capacity, the number of usable blocks up to the zone capacity
5116 * is returned. 0 is returned in all other cases.
5117 */
5118static inline unsigned int f2fs_usable_zone_blks_in_seg(
5119                        struct f2fs_sb_info *sbi, unsigned int segno)
5120{
5121        block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5122        unsigned int zone_idx, dev_idx, secno;
5123
5124        secno = GET_SEC_FROM_SEG(sbi, segno);
5125        seg_start = START_BLOCK(sbi, segno);
5126        dev_idx = f2fs_target_device_index(sbi, seg_start);
5127        zone_idx = get_zone_idx(sbi, secno, dev_idx);
5128
5129        /*
5130         * Conventional zone's capacity is always equal to zone size,
5131         * so, blocks per segment is unchanged.
5132         */
5133        if (is_conv_zone(sbi, zone_idx, dev_idx))
5134                return sbi->blocks_per_seg;
5135
5136        if (!FDEV(dev_idx).zone_capacity_blocks)
5137                return sbi->blocks_per_seg;
5138
5139        sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5140        sec_cap_blkaddr = sec_start_blkaddr +
5141                                FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5142
5143        /*
5144         * If segment starts before zone capacity and spans beyond
5145         * zone capacity, then usable blocks are from seg start to
5146         * zone capacity. If the segment starts after the zone capacity,
5147         * then there are no usable blocks.
5148         */
5149        if (seg_start >= sec_cap_blkaddr)
5150                return 0;
5151        if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5152                return sec_cap_blkaddr - seg_start;
5153
5154        return sbi->blocks_per_seg;
5155}
5156#else
5157int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5158{
5159        return 0;
5160}
5161
5162int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5163{
5164        return 0;
5165}
5166
5167static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5168                                                        unsigned int segno)
5169{
5170        return 0;
5171}
5172
5173static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5174                                                        unsigned int segno)
5175{
5176        return 0;
5177}
5178#endif
5179unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5180                                        unsigned int segno)
5181{
5182        if (f2fs_sb_has_blkzoned(sbi))
5183                return f2fs_usable_zone_blks_in_seg(sbi, segno);
5184
5185        return sbi->blocks_per_seg;
5186}
5187
5188unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5189                                        unsigned int segno)
5190{
5191        if (f2fs_sb_has_blkzoned(sbi))
5192                return f2fs_usable_zone_segs_in_sec(sbi, segno);
5193
5194        return sbi->segs_per_sec;
5195}
5196
5197/*
5198 * Update min, max modified time for cost-benefit GC algorithm
5199 */
5200static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5201{
5202        struct sit_info *sit_i = SIT_I(sbi);
5203        unsigned int segno;
5204
5205        down_write(&sit_i->sentry_lock);
5206
5207        sit_i->min_mtime = ULLONG_MAX;
5208
5209        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5210                unsigned int i;
5211                unsigned long long mtime = 0;
5212
5213                for (i = 0; i < sbi->segs_per_sec; i++)
5214                        mtime += get_seg_entry(sbi, segno + i)->mtime;
5215
5216                mtime = div_u64(mtime, sbi->segs_per_sec);
5217
5218                if (sit_i->min_mtime > mtime)
5219                        sit_i->min_mtime = mtime;
5220        }
5221        sit_i->max_mtime = get_mtime(sbi, false);
5222        sit_i->dirty_max_mtime = 0;
5223        up_write(&sit_i->sentry_lock);
5224}
5225
5226int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5227{
5228        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5229        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5230        struct f2fs_sm_info *sm_info;
5231        int err;
5232
5233        sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5234        if (!sm_info)
5235                return -ENOMEM;
5236
5237        /* init sm info */
5238        sbi->sm_info = sm_info;
5239        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5240        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5241        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5242        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5243        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5244        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5245        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5246        sm_info->rec_prefree_segments = sm_info->main_segments *
5247                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5248        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5249                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5250
5251        if (!f2fs_lfs_mode(sbi))
5252                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5253        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5254        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5255        sm_info->min_seq_blocks = sbi->blocks_per_seg;
5256        sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5257        sm_info->min_ssr_sections = reserved_sections(sbi);
5258
5259        INIT_LIST_HEAD(&sm_info->sit_entry_set);
5260
5261        init_rwsem(&sm_info->curseg_lock);
5262
5263        if (!f2fs_readonly(sbi->sb)) {
5264                err = f2fs_create_flush_cmd_control(sbi);
5265                if (err)
5266                        return err;
5267        }
5268
5269        err = create_discard_cmd_control(sbi);
5270        if (err)
5271                return err;
5272
5273        err = build_sit_info(sbi);
5274        if (err)
5275                return err;
5276        err = build_free_segmap(sbi);
5277        if (err)
5278                return err;
5279        err = build_curseg(sbi);
5280        if (err)
5281                return err;
5282
5283        /* reinit free segmap based on SIT */
5284        err = build_sit_entries(sbi);
5285        if (err)
5286                return err;
5287
5288        init_free_segmap(sbi);
5289        err = build_dirty_segmap(sbi);
5290        if (err)
5291                return err;
5292
5293        err = sanity_check_curseg(sbi);
5294        if (err)
5295                return err;
5296
5297        init_min_max_mtime(sbi);
5298        return 0;
5299}
5300
5301static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5302                enum dirty_type dirty_type)
5303{
5304        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5305
5306        mutex_lock(&dirty_i->seglist_lock);
5307        kvfree(dirty_i->dirty_segmap[dirty_type]);
5308        dirty_i->nr_dirty[dirty_type] = 0;
5309        mutex_unlock(&dirty_i->seglist_lock);
5310}
5311
5312static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5313{
5314        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5315
5316        kvfree(dirty_i->victim_secmap);
5317}
5318
5319static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5320{
5321        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5322        int i;
5323
5324        if (!dirty_i)
5325                return;
5326
5327        /* discard pre-free/dirty segments list */
5328        for (i = 0; i < NR_DIRTY_TYPE; i++)
5329                discard_dirty_segmap(sbi, i);
5330
5331        if (__is_large_section(sbi)) {
5332                mutex_lock(&dirty_i->seglist_lock);
5333                kvfree(dirty_i->dirty_secmap);
5334                mutex_unlock(&dirty_i->seglist_lock);
5335        }
5336
5337        destroy_victim_secmap(sbi);
5338        SM_I(sbi)->dirty_info = NULL;
5339        kfree(dirty_i);
5340}
5341
5342static void destroy_curseg(struct f2fs_sb_info *sbi)
5343{
5344        struct curseg_info *array = SM_I(sbi)->curseg_array;
5345        int i;
5346
5347        if (!array)
5348                return;
5349        SM_I(sbi)->curseg_array = NULL;
5350        for (i = 0; i < NR_CURSEG_TYPE; i++) {
5351                kfree(array[i].sum_blk);
5352                kfree(array[i].journal);
5353        }
5354        kfree(array);
5355}
5356
5357static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5358{
5359        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5360
5361        if (!free_i)
5362                return;
5363        SM_I(sbi)->free_info = NULL;
5364        kvfree(free_i->free_segmap);
5365        kvfree(free_i->free_secmap);
5366        kfree(free_i);
5367}
5368
5369static void destroy_sit_info(struct f2fs_sb_info *sbi)
5370{
5371        struct sit_info *sit_i = SIT_I(sbi);
5372
5373        if (!sit_i)
5374                return;
5375
5376        if (sit_i->sentries)
5377                kvfree(sit_i->bitmap);
5378        kfree(sit_i->tmp_map);
5379
5380        kvfree(sit_i->sentries);
5381        kvfree(sit_i->sec_entries);
5382        kvfree(sit_i->dirty_sentries_bitmap);
5383
5384        SM_I(sbi)->sit_info = NULL;
5385        kvfree(sit_i->sit_bitmap);
5386#ifdef CONFIG_F2FS_CHECK_FS
5387        kvfree(sit_i->sit_bitmap_mir);
5388        kvfree(sit_i->invalid_segmap);
5389#endif
5390        kfree(sit_i);
5391}
5392
5393void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5394{
5395        struct f2fs_sm_info *sm_info = SM_I(sbi);
5396
5397        if (!sm_info)
5398                return;
5399        f2fs_destroy_flush_cmd_control(sbi, true);
5400        destroy_discard_cmd_control(sbi);
5401        destroy_dirty_segmap(sbi);
5402        destroy_curseg(sbi);
5403        destroy_free_segmap(sbi);
5404        destroy_sit_info(sbi);
5405        sbi->sm_info = NULL;
5406        kfree(sm_info);
5407}
5408
5409int __init f2fs_create_segment_manager_caches(void)
5410{
5411        discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5412                        sizeof(struct discard_entry));
5413        if (!discard_entry_slab)
5414                goto fail;
5415
5416        discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5417                        sizeof(struct discard_cmd));
5418        if (!discard_cmd_slab)
5419                goto destroy_discard_entry;
5420
5421        sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5422                        sizeof(struct sit_entry_set));
5423        if (!sit_entry_set_slab)
5424                goto destroy_discard_cmd;
5425
5426        inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5427                        sizeof(struct inmem_pages));
5428        if (!inmem_entry_slab)
5429                goto destroy_sit_entry_set;
5430        return 0;
5431
5432destroy_sit_entry_set:
5433        kmem_cache_destroy(sit_entry_set_slab);
5434destroy_discard_cmd:
5435        kmem_cache_destroy(discard_cmd_slab);
5436destroy_discard_entry:
5437        kmem_cache_destroy(discard_entry_slab);
5438fail:
5439        return -ENOMEM;
5440}
5441
5442void f2fs_destroy_segment_manager_caches(void)
5443{
5444        kmem_cache_destroy(sit_entry_set_slab);
5445        kmem_cache_destroy(discard_cmd_slab);
5446        kmem_cache_destroy(discard_entry_slab);
5447        kmem_cache_destroy(inmem_entry_slab);
5448}
5449