linux/fs/mpage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/mpage.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * Contains functions related to preparing and submitting BIOs which contain
   8 * multiple pagecache pages.
   9 *
  10 * 15May2002    Andrew Morton
  11 *              Initial version
  12 * 27Jun2002    axboe@suse.de
  13 *              use bio_add_page() to build bio's just the right size
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/mm.h>
  19#include <linux/kdev_t.h>
  20#include <linux/gfp.h>
  21#include <linux/bio.h>
  22#include <linux/fs.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/highmem.h>
  26#include <linux/prefetch.h>
  27#include <linux/mpage.h>
  28#include <linux/mm_inline.h>
  29#include <linux/writeback.h>
  30#include <linux/backing-dev.h>
  31#include <linux/pagevec.h>
  32#include "internal.h"
  33
  34/*
  35 * I/O completion handler for multipage BIOs.
  36 *
  37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
  38 * If a page does not map to a contiguous run of blocks then it simply falls
  39 * back to block_read_full_page().
  40 *
  41 * Why is this?  If a page's completion depends on a number of different BIOs
  42 * which can complete in any order (or at the same time) then determining the
  43 * status of that page is hard.  See end_buffer_async_read() for the details.
  44 * There is no point in duplicating all that complexity.
  45 */
  46static void mpage_end_io(struct bio *bio)
  47{
  48        struct bio_vec *bv;
  49        struct bvec_iter_all iter_all;
  50
  51        bio_for_each_segment_all(bv, bio, iter_all) {
  52                struct page *page = bv->bv_page;
  53                page_endio(page, bio_op(bio),
  54                           blk_status_to_errno(bio->bi_status));
  55        }
  56
  57        bio_put(bio);
  58}
  59
  60static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
  61{
  62        bio->bi_end_io = mpage_end_io;
  63        bio_set_op_attrs(bio, op, op_flags);
  64        guard_bio_eod(bio);
  65        submit_bio(bio);
  66        return NULL;
  67}
  68
  69static struct bio *
  70mpage_alloc(struct block_device *bdev,
  71                sector_t first_sector, int nr_vecs,
  72                gfp_t gfp_flags)
  73{
  74        struct bio *bio;
  75
  76        /* Restrict the given (page cache) mask for slab allocations */
  77        gfp_flags &= GFP_KERNEL;
  78        bio = bio_alloc(gfp_flags, nr_vecs);
  79
  80        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
  81                while (!bio && (nr_vecs /= 2))
  82                        bio = bio_alloc(gfp_flags, nr_vecs);
  83        }
  84
  85        if (bio) {
  86                bio_set_dev(bio, bdev);
  87                bio->bi_iter.bi_sector = first_sector;
  88        }
  89        return bio;
  90}
  91
  92/*
  93 * support function for mpage_readahead.  The fs supplied get_block might
  94 * return an up to date buffer.  This is used to map that buffer into
  95 * the page, which allows readpage to avoid triggering a duplicate call
  96 * to get_block.
  97 *
  98 * The idea is to avoid adding buffers to pages that don't already have
  99 * them.  So when the buffer is up to date and the page size == block size,
 100 * this marks the page up to date instead of adding new buffers.
 101 */
 102static void 
 103map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
 104{
 105        struct inode *inode = page->mapping->host;
 106        struct buffer_head *page_bh, *head;
 107        int block = 0;
 108
 109        if (!page_has_buffers(page)) {
 110                /*
 111                 * don't make any buffers if there is only one buffer on
 112                 * the page and the page just needs to be set up to date
 113                 */
 114                if (inode->i_blkbits == PAGE_SHIFT &&
 115                    buffer_uptodate(bh)) {
 116                        SetPageUptodate(page);    
 117                        return;
 118                }
 119                create_empty_buffers(page, i_blocksize(inode), 0);
 120        }
 121        head = page_buffers(page);
 122        page_bh = head;
 123        do {
 124                if (block == page_block) {
 125                        page_bh->b_state = bh->b_state;
 126                        page_bh->b_bdev = bh->b_bdev;
 127                        page_bh->b_blocknr = bh->b_blocknr;
 128                        break;
 129                }
 130                page_bh = page_bh->b_this_page;
 131                block++;
 132        } while (page_bh != head);
 133}
 134
 135struct mpage_readpage_args {
 136        struct bio *bio;
 137        struct page *page;
 138        unsigned int nr_pages;
 139        bool is_readahead;
 140        sector_t last_block_in_bio;
 141        struct buffer_head map_bh;
 142        unsigned long first_logical_block;
 143        get_block_t *get_block;
 144};
 145
 146/*
 147 * This is the worker routine which does all the work of mapping the disk
 148 * blocks and constructs largest possible bios, submits them for IO if the
 149 * blocks are not contiguous on the disk.
 150 *
 151 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
 152 * represent the validity of its disk mapping and to decide when to do the next
 153 * get_block() call.
 154 */
 155static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
 156{
 157        struct page *page = args->page;
 158        struct inode *inode = page->mapping->host;
 159        const unsigned blkbits = inode->i_blkbits;
 160        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 161        const unsigned blocksize = 1 << blkbits;
 162        struct buffer_head *map_bh = &args->map_bh;
 163        sector_t block_in_file;
 164        sector_t last_block;
 165        sector_t last_block_in_file;
 166        sector_t blocks[MAX_BUF_PER_PAGE];
 167        unsigned page_block;
 168        unsigned first_hole = blocks_per_page;
 169        struct block_device *bdev = NULL;
 170        int length;
 171        int fully_mapped = 1;
 172        int op_flags;
 173        unsigned nblocks;
 174        unsigned relative_block;
 175        gfp_t gfp;
 176
 177        if (args->is_readahead) {
 178                op_flags = REQ_RAHEAD;
 179                gfp = readahead_gfp_mask(page->mapping);
 180        } else {
 181                op_flags = 0;
 182                gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
 183        }
 184
 185        if (page_has_buffers(page))
 186                goto confused;
 187
 188        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 189        last_block = block_in_file + args->nr_pages * blocks_per_page;
 190        last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
 191        if (last_block > last_block_in_file)
 192                last_block = last_block_in_file;
 193        page_block = 0;
 194
 195        /*
 196         * Map blocks using the result from the previous get_blocks call first.
 197         */
 198        nblocks = map_bh->b_size >> blkbits;
 199        if (buffer_mapped(map_bh) &&
 200                        block_in_file > args->first_logical_block &&
 201                        block_in_file < (args->first_logical_block + nblocks)) {
 202                unsigned map_offset = block_in_file - args->first_logical_block;
 203                unsigned last = nblocks - map_offset;
 204
 205                for (relative_block = 0; ; relative_block++) {
 206                        if (relative_block == last) {
 207                                clear_buffer_mapped(map_bh);
 208                                break;
 209                        }
 210                        if (page_block == blocks_per_page)
 211                                break;
 212                        blocks[page_block] = map_bh->b_blocknr + map_offset +
 213                                                relative_block;
 214                        page_block++;
 215                        block_in_file++;
 216                }
 217                bdev = map_bh->b_bdev;
 218        }
 219
 220        /*
 221         * Then do more get_blocks calls until we are done with this page.
 222         */
 223        map_bh->b_page = page;
 224        while (page_block < blocks_per_page) {
 225                map_bh->b_state = 0;
 226                map_bh->b_size = 0;
 227
 228                if (block_in_file < last_block) {
 229                        map_bh->b_size = (last_block-block_in_file) << blkbits;
 230                        if (args->get_block(inode, block_in_file, map_bh, 0))
 231                                goto confused;
 232                        args->first_logical_block = block_in_file;
 233                }
 234
 235                if (!buffer_mapped(map_bh)) {
 236                        fully_mapped = 0;
 237                        if (first_hole == blocks_per_page)
 238                                first_hole = page_block;
 239                        page_block++;
 240                        block_in_file++;
 241                        continue;
 242                }
 243
 244                /* some filesystems will copy data into the page during
 245                 * the get_block call, in which case we don't want to
 246                 * read it again.  map_buffer_to_page copies the data
 247                 * we just collected from get_block into the page's buffers
 248                 * so readpage doesn't have to repeat the get_block call
 249                 */
 250                if (buffer_uptodate(map_bh)) {
 251                        map_buffer_to_page(page, map_bh, page_block);
 252                        goto confused;
 253                }
 254        
 255                if (first_hole != blocks_per_page)
 256                        goto confused;          /* hole -> non-hole */
 257
 258                /* Contiguous blocks? */
 259                if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
 260                        goto confused;
 261                nblocks = map_bh->b_size >> blkbits;
 262                for (relative_block = 0; ; relative_block++) {
 263                        if (relative_block == nblocks) {
 264                                clear_buffer_mapped(map_bh);
 265                                break;
 266                        } else if (page_block == blocks_per_page)
 267                                break;
 268                        blocks[page_block] = map_bh->b_blocknr+relative_block;
 269                        page_block++;
 270                        block_in_file++;
 271                }
 272                bdev = map_bh->b_bdev;
 273        }
 274
 275        if (first_hole != blocks_per_page) {
 276                zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
 277                if (first_hole == 0) {
 278                        SetPageUptodate(page);
 279                        unlock_page(page);
 280                        goto out;
 281                }
 282        } else if (fully_mapped) {
 283                SetPageMappedToDisk(page);
 284        }
 285
 286        /*
 287         * This page will go to BIO.  Do we need to send this BIO off first?
 288         */
 289        if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
 290                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 291
 292alloc_new:
 293        if (args->bio == NULL) {
 294                if (first_hole == blocks_per_page) {
 295                        if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
 296                                                                page))
 297                                goto out;
 298                }
 299                args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 300                                        bio_max_segs(args->nr_pages), gfp);
 301                if (args->bio == NULL)
 302                        goto confused;
 303        }
 304
 305        length = first_hole << blkbits;
 306        if (bio_add_page(args->bio, page, length, 0) < length) {
 307                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 308                goto alloc_new;
 309        }
 310
 311        relative_block = block_in_file - args->first_logical_block;
 312        nblocks = map_bh->b_size >> blkbits;
 313        if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
 314            (first_hole != blocks_per_page))
 315                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 316        else
 317                args->last_block_in_bio = blocks[blocks_per_page - 1];
 318out:
 319        return args->bio;
 320
 321confused:
 322        if (args->bio)
 323                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 324        if (!PageUptodate(page))
 325                block_read_full_page(page, args->get_block);
 326        else
 327                unlock_page(page);
 328        goto out;
 329}
 330
 331/**
 332 * mpage_readahead - start reads against pages
 333 * @rac: Describes which pages to read.
 334 * @get_block: The filesystem's block mapper function.
 335 *
 336 * This function walks the pages and the blocks within each page, building and
 337 * emitting large BIOs.
 338 *
 339 * If anything unusual happens, such as:
 340 *
 341 * - encountering a page which has buffers
 342 * - encountering a page which has a non-hole after a hole
 343 * - encountering a page with non-contiguous blocks
 344 *
 345 * then this code just gives up and calls the buffer_head-based read function.
 346 * It does handle a page which has holes at the end - that is a common case:
 347 * the end-of-file on blocksize < PAGE_SIZE setups.
 348 *
 349 * BH_Boundary explanation:
 350 *
 351 * There is a problem.  The mpage read code assembles several pages, gets all
 352 * their disk mappings, and then submits them all.  That's fine, but obtaining
 353 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
 354 *
 355 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
 356 * submitted in the following order:
 357 *
 358 *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
 359 *
 360 * because the indirect block has to be read to get the mappings of blocks
 361 * 13,14,15,16.  Obviously, this impacts performance.
 362 *
 363 * So what we do it to allow the filesystem's get_block() function to set
 364 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
 365 * after this one will require I/O against a block which is probably close to
 366 * this one.  So you should push what I/O you have currently accumulated.
 367 *
 368 * This all causes the disk requests to be issued in the correct order.
 369 */
 370void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
 371{
 372        struct page *page;
 373        struct mpage_readpage_args args = {
 374                .get_block = get_block,
 375                .is_readahead = true,
 376        };
 377
 378        while ((page = readahead_page(rac))) {
 379                prefetchw(&page->flags);
 380                args.page = page;
 381                args.nr_pages = readahead_count(rac);
 382                args.bio = do_mpage_readpage(&args);
 383                put_page(page);
 384        }
 385        if (args.bio)
 386                mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
 387}
 388EXPORT_SYMBOL(mpage_readahead);
 389
 390/*
 391 * This isn't called much at all
 392 */
 393int mpage_readpage(struct page *page, get_block_t get_block)
 394{
 395        struct mpage_readpage_args args = {
 396                .page = page,
 397                .nr_pages = 1,
 398                .get_block = get_block,
 399        };
 400
 401        args.bio = do_mpage_readpage(&args);
 402        if (args.bio)
 403                mpage_bio_submit(REQ_OP_READ, 0, args.bio);
 404        return 0;
 405}
 406EXPORT_SYMBOL(mpage_readpage);
 407
 408/*
 409 * Writing is not so simple.
 410 *
 411 * If the page has buffers then they will be used for obtaining the disk
 412 * mapping.  We only support pages which are fully mapped-and-dirty, with a
 413 * special case for pages which are unmapped at the end: end-of-file.
 414 *
 415 * If the page has no buffers (preferred) then the page is mapped here.
 416 *
 417 * If all blocks are found to be contiguous then the page can go into the
 418 * BIO.  Otherwise fall back to the mapping's writepage().
 419 * 
 420 * FIXME: This code wants an estimate of how many pages are still to be
 421 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
 422 * just allocate full-size (16-page) BIOs.
 423 */
 424
 425struct mpage_data {
 426        struct bio *bio;
 427        sector_t last_block_in_bio;
 428        get_block_t *get_block;
 429        unsigned use_writepage;
 430};
 431
 432/*
 433 * We have our BIO, so we can now mark the buffers clean.  Make
 434 * sure to only clean buffers which we know we'll be writing.
 435 */
 436static void clean_buffers(struct page *page, unsigned first_unmapped)
 437{
 438        unsigned buffer_counter = 0;
 439        struct buffer_head *bh, *head;
 440        if (!page_has_buffers(page))
 441                return;
 442        head = page_buffers(page);
 443        bh = head;
 444
 445        do {
 446                if (buffer_counter++ == first_unmapped)
 447                        break;
 448                clear_buffer_dirty(bh);
 449                bh = bh->b_this_page;
 450        } while (bh != head);
 451
 452        /*
 453         * we cannot drop the bh if the page is not uptodate or a concurrent
 454         * readpage would fail to serialize with the bh and it would read from
 455         * disk before we reach the platter.
 456         */
 457        if (buffer_heads_over_limit && PageUptodate(page))
 458                try_to_free_buffers(page);
 459}
 460
 461/*
 462 * For situations where we want to clean all buffers attached to a page.
 463 * We don't need to calculate how many buffers are attached to the page,
 464 * we just need to specify a number larger than the maximum number of buffers.
 465 */
 466void clean_page_buffers(struct page *page)
 467{
 468        clean_buffers(page, ~0U);
 469}
 470
 471static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
 472                      void *data)
 473{
 474        struct mpage_data *mpd = data;
 475        struct bio *bio = mpd->bio;
 476        struct address_space *mapping = page->mapping;
 477        struct inode *inode = page->mapping->host;
 478        const unsigned blkbits = inode->i_blkbits;
 479        unsigned long end_index;
 480        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 481        sector_t last_block;
 482        sector_t block_in_file;
 483        sector_t blocks[MAX_BUF_PER_PAGE];
 484        unsigned page_block;
 485        unsigned first_unmapped = blocks_per_page;
 486        struct block_device *bdev = NULL;
 487        int boundary = 0;
 488        sector_t boundary_block = 0;
 489        struct block_device *boundary_bdev = NULL;
 490        int length;
 491        struct buffer_head map_bh;
 492        loff_t i_size = i_size_read(inode);
 493        int ret = 0;
 494        int op_flags = wbc_to_write_flags(wbc);
 495
 496        if (page_has_buffers(page)) {
 497                struct buffer_head *head = page_buffers(page);
 498                struct buffer_head *bh = head;
 499
 500                /* If they're all mapped and dirty, do it */
 501                page_block = 0;
 502                do {
 503                        BUG_ON(buffer_locked(bh));
 504                        if (!buffer_mapped(bh)) {
 505                                /*
 506                                 * unmapped dirty buffers are created by
 507                                 * __set_page_dirty_buffers -> mmapped data
 508                                 */
 509                                if (buffer_dirty(bh))
 510                                        goto confused;
 511                                if (first_unmapped == blocks_per_page)
 512                                        first_unmapped = page_block;
 513                                continue;
 514                        }
 515
 516                        if (first_unmapped != blocks_per_page)
 517                                goto confused;  /* hole -> non-hole */
 518
 519                        if (!buffer_dirty(bh) || !buffer_uptodate(bh))
 520                                goto confused;
 521                        if (page_block) {
 522                                if (bh->b_blocknr != blocks[page_block-1] + 1)
 523                                        goto confused;
 524                        }
 525                        blocks[page_block++] = bh->b_blocknr;
 526                        boundary = buffer_boundary(bh);
 527                        if (boundary) {
 528                                boundary_block = bh->b_blocknr;
 529                                boundary_bdev = bh->b_bdev;
 530                        }
 531                        bdev = bh->b_bdev;
 532                } while ((bh = bh->b_this_page) != head);
 533
 534                if (first_unmapped)
 535                        goto page_is_mapped;
 536
 537                /*
 538                 * Page has buffers, but they are all unmapped. The page was
 539                 * created by pagein or read over a hole which was handled by
 540                 * block_read_full_page().  If this address_space is also
 541                 * using mpage_readahead then this can rarely happen.
 542                 */
 543                goto confused;
 544        }
 545
 546        /*
 547         * The page has no buffers: map it to disk
 548         */
 549        BUG_ON(!PageUptodate(page));
 550        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 551        last_block = (i_size - 1) >> blkbits;
 552        map_bh.b_page = page;
 553        for (page_block = 0; page_block < blocks_per_page; ) {
 554
 555                map_bh.b_state = 0;
 556                map_bh.b_size = 1 << blkbits;
 557                if (mpd->get_block(inode, block_in_file, &map_bh, 1))
 558                        goto confused;
 559                if (buffer_new(&map_bh))
 560                        clean_bdev_bh_alias(&map_bh);
 561                if (buffer_boundary(&map_bh)) {
 562                        boundary_block = map_bh.b_blocknr;
 563                        boundary_bdev = map_bh.b_bdev;
 564                }
 565                if (page_block) {
 566                        if (map_bh.b_blocknr != blocks[page_block-1] + 1)
 567                                goto confused;
 568                }
 569                blocks[page_block++] = map_bh.b_blocknr;
 570                boundary = buffer_boundary(&map_bh);
 571                bdev = map_bh.b_bdev;
 572                if (block_in_file == last_block)
 573                        break;
 574                block_in_file++;
 575        }
 576        BUG_ON(page_block == 0);
 577
 578        first_unmapped = page_block;
 579
 580page_is_mapped:
 581        end_index = i_size >> PAGE_SHIFT;
 582        if (page->index >= end_index) {
 583                /*
 584                 * The page straddles i_size.  It must be zeroed out on each
 585                 * and every writepage invocation because it may be mmapped.
 586                 * "A file is mapped in multiples of the page size.  For a file
 587                 * that is not a multiple of the page size, the remaining memory
 588                 * is zeroed when mapped, and writes to that region are not
 589                 * written out to the file."
 590                 */
 591                unsigned offset = i_size & (PAGE_SIZE - 1);
 592
 593                if (page->index > end_index || !offset)
 594                        goto confused;
 595                zero_user_segment(page, offset, PAGE_SIZE);
 596        }
 597
 598        /*
 599         * This page will go to BIO.  Do we need to send this BIO off first?
 600         */
 601        if (bio && mpd->last_block_in_bio != blocks[0] - 1)
 602                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 603
 604alloc_new:
 605        if (bio == NULL) {
 606                if (first_unmapped == blocks_per_page) {
 607                        if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
 608                                                                page, wbc))
 609                                goto out;
 610                }
 611                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 612                                BIO_MAX_VECS, GFP_NOFS|__GFP_HIGH);
 613                if (bio == NULL)
 614                        goto confused;
 615
 616                wbc_init_bio(wbc, bio);
 617                bio->bi_write_hint = inode->i_write_hint;
 618        }
 619
 620        /*
 621         * Must try to add the page before marking the buffer clean or
 622         * the confused fail path above (OOM) will be very confused when
 623         * it finds all bh marked clean (i.e. it will not write anything)
 624         */
 625        wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
 626        length = first_unmapped << blkbits;
 627        if (bio_add_page(bio, page, length, 0) < length) {
 628                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 629                goto alloc_new;
 630        }
 631
 632        clean_buffers(page, first_unmapped);
 633
 634        BUG_ON(PageWriteback(page));
 635        set_page_writeback(page);
 636        unlock_page(page);
 637        if (boundary || (first_unmapped != blocks_per_page)) {
 638                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 639                if (boundary_block) {
 640                        write_boundary_block(boundary_bdev,
 641                                        boundary_block, 1 << blkbits);
 642                }
 643        } else {
 644                mpd->last_block_in_bio = blocks[blocks_per_page - 1];
 645        }
 646        goto out;
 647
 648confused:
 649        if (bio)
 650                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 651
 652        if (mpd->use_writepage) {
 653                ret = mapping->a_ops->writepage(page, wbc);
 654        } else {
 655                ret = -EAGAIN;
 656                goto out;
 657        }
 658        /*
 659         * The caller has a ref on the inode, so *mapping is stable
 660         */
 661        mapping_set_error(mapping, ret);
 662out:
 663        mpd->bio = bio;
 664        return ret;
 665}
 666
 667/**
 668 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
 669 * @mapping: address space structure to write
 670 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 671 * @get_block: the filesystem's block mapper function.
 672 *             If this is NULL then use a_ops->writepage.  Otherwise, go
 673 *             direct-to-BIO.
 674 *
 675 * This is a library function, which implements the writepages()
 676 * address_space_operation.
 677 *
 678 * If a page is already under I/O, generic_writepages() skips it, even
 679 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 680 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 681 * and msync() need to guarantee that all the data which was dirty at the time
 682 * the call was made get new I/O started against them.  If wbc->sync_mode is
 683 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 684 * existing IO to complete.
 685 */
 686int
 687mpage_writepages(struct address_space *mapping,
 688                struct writeback_control *wbc, get_block_t get_block)
 689{
 690        struct blk_plug plug;
 691        int ret;
 692
 693        blk_start_plug(&plug);
 694
 695        if (!get_block)
 696                ret = generic_writepages(mapping, wbc);
 697        else {
 698                struct mpage_data mpd = {
 699                        .bio = NULL,
 700                        .last_block_in_bio = 0,
 701                        .get_block = get_block,
 702                        .use_writepage = 1,
 703                };
 704
 705                ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
 706                if (mpd.bio) {
 707                        int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 708                                  REQ_SYNC : 0);
 709                        mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 710                }
 711        }
 712        blk_finish_plug(&plug);
 713        return ret;
 714}
 715EXPORT_SYMBOL(mpage_writepages);
 716
 717int mpage_writepage(struct page *page, get_block_t get_block,
 718        struct writeback_control *wbc)
 719{
 720        struct mpage_data mpd = {
 721                .bio = NULL,
 722                .last_block_in_bio = 0,
 723                .get_block = get_block,
 724                .use_writepage = 0,
 725        };
 726        int ret = __mpage_writepage(page, wbc, &mpd);
 727        if (mpd.bio) {
 728                int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 729                          REQ_SYNC : 0);
 730                mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 731        }
 732        return ret;
 733}
 734EXPORT_SYMBOL(mpage_writepage);
 735