linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   4 */
   5#ifndef LINUX_DMAENGINE_H
   6#define LINUX_DMAENGINE_H
   7
   8#include <linux/device.h>
   9#include <linux/err.h>
  10#include <linux/uio.h>
  11#include <linux/bug.h>
  12#include <linux/scatterlist.h>
  13#include <linux/bitmap.h>
  14#include <linux/types.h>
  15#include <asm/page.h>
  16
  17/**
  18 * typedef dma_cookie_t - an opaque DMA cookie
  19 *
  20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  21 */
  22typedef s32 dma_cookie_t;
  23#define DMA_MIN_COOKIE  1
  24
  25static inline int dma_submit_error(dma_cookie_t cookie)
  26{
  27        return cookie < 0 ? cookie : 0;
  28}
  29
  30/**
  31 * enum dma_status - DMA transaction status
  32 * @DMA_COMPLETE: transaction completed
  33 * @DMA_IN_PROGRESS: transaction not yet processed
  34 * @DMA_PAUSED: transaction is paused
  35 * @DMA_ERROR: transaction failed
  36 */
  37enum dma_status {
  38        DMA_COMPLETE,
  39        DMA_IN_PROGRESS,
  40        DMA_PAUSED,
  41        DMA_ERROR,
  42        DMA_OUT_OF_ORDER,
  43};
  44
  45/**
  46 * enum dma_transaction_type - DMA transaction types/indexes
  47 *
  48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  49 * automatically set as dma devices are registered.
  50 */
  51enum dma_transaction_type {
  52        DMA_MEMCPY,
  53        DMA_MEMCPY_SG,
  54        DMA_XOR,
  55        DMA_PQ,
  56        DMA_XOR_VAL,
  57        DMA_PQ_VAL,
  58        DMA_MEMSET,
  59        DMA_MEMSET_SG,
  60        DMA_INTERRUPT,
  61        DMA_PRIVATE,
  62        DMA_ASYNC_TX,
  63        DMA_SLAVE,
  64        DMA_CYCLIC,
  65        DMA_INTERLEAVE,
  66        DMA_COMPLETION_NO_ORDER,
  67        DMA_REPEAT,
  68        DMA_LOAD_EOT,
  69/* last transaction type for creation of the capabilities mask */
  70        DMA_TX_TYPE_END,
  71};
  72
  73/**
  74 * enum dma_transfer_direction - dma transfer mode and direction indicator
  75 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  76 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  77 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  78 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  79 */
  80enum dma_transfer_direction {
  81        DMA_MEM_TO_MEM,
  82        DMA_MEM_TO_DEV,
  83        DMA_DEV_TO_MEM,
  84        DMA_DEV_TO_DEV,
  85        DMA_TRANS_NONE,
  86};
  87
  88/**
  89 * Interleaved Transfer Request
  90 * ----------------------------
  91 * A chunk is collection of contiguous bytes to be transferred.
  92 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  93 * ICGs may or may not change between chunks.
  94 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  95 *  that when repeated an integral number of times, specifies the transfer.
  96 * A transfer template is specification of a Frame, the number of times
  97 *  it is to be repeated and other per-transfer attributes.
  98 *
  99 * Practically, a client driver would have ready a template for each
 100 *  type of transfer it is going to need during its lifetime and
 101 *  set only 'src_start' and 'dst_start' before submitting the requests.
 102 *
 103 *
 104 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 105 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 106 *
 107 *    ==  Chunk size
 108 *    ... ICG
 109 */
 110
 111/**
 112 * struct data_chunk - Element of scatter-gather list that makes a frame.
 113 * @size: Number of bytes to read from source.
 114 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 115 * @icg: Number of bytes to jump after last src/dst address of this
 116 *       chunk and before first src/dst address for next chunk.
 117 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 118 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 119 * @dst_icg: Number of bytes to jump after last dst address of this
 120 *       chunk and before the first dst address for next chunk.
 121 *       Ignored if dst_inc is true and dst_sgl is false.
 122 * @src_icg: Number of bytes to jump after last src address of this
 123 *       chunk and before the first src address for next chunk.
 124 *       Ignored if src_inc is true and src_sgl is false.
 125 */
 126struct data_chunk {
 127        size_t size;
 128        size_t icg;
 129        size_t dst_icg;
 130        size_t src_icg;
 131};
 132
 133/**
 134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 135 *       and attributes.
 136 * @src_start: Bus address of source for the first chunk.
 137 * @dst_start: Bus address of destination for the first chunk.
 138 * @dir: Specifies the type of Source and Destination.
 139 * @src_inc: If the source address increments after reading from it.
 140 * @dst_inc: If the destination address increments after writing to it.
 141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 142 *              Otherwise, source is read contiguously (icg ignored).
 143 *              Ignored if src_inc is false.
 144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 145 *              Otherwise, destination is filled contiguously (icg ignored).
 146 *              Ignored if dst_inc is false.
 147 * @numf: Number of frames in this template.
 148 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 149 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 150 */
 151struct dma_interleaved_template {
 152        dma_addr_t src_start;
 153        dma_addr_t dst_start;
 154        enum dma_transfer_direction dir;
 155        bool src_inc;
 156        bool dst_inc;
 157        bool src_sgl;
 158        bool dst_sgl;
 159        size_t numf;
 160        size_t frame_size;
 161        struct data_chunk sgl[];
 162};
 163
 164/**
 165 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 166 *  control completion, and communicate status.
 167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 168 *  this transaction
 169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 170 *  acknowledges receipt, i.e. has a chance to establish any dependency
 171 *  chains
 172 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 173 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 174 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 175 *  sources that were the result of a previous operation, in the case of a PQ
 176 *  operation it continues the calculation with new sources
 177 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 178 *  on the result of this operation
 179 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
 180 *  cleared or freed
 181 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
 182 *  data and the descriptor should be in different format from normal
 183 *  data descriptors.
 184 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
 185 *  repeated when it ends until a transaction is issued on the same channel
 186 *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
 187 *  interleaved transactions and is ignored for all other transaction types.
 188 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
 189 *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
 190 *  repeated transaction ends. Not setting this flag when the previously queued
 191 *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
 192 *  to never be processed and stay in the issued queue forever. The flag is
 193 *  ignored if the previous transaction is not a repeated transaction.
 194 */
 195enum dma_ctrl_flags {
 196        DMA_PREP_INTERRUPT = (1 << 0),
 197        DMA_CTRL_ACK = (1 << 1),
 198        DMA_PREP_PQ_DISABLE_P = (1 << 2),
 199        DMA_PREP_PQ_DISABLE_Q = (1 << 3),
 200        DMA_PREP_CONTINUE = (1 << 4),
 201        DMA_PREP_FENCE = (1 << 5),
 202        DMA_CTRL_REUSE = (1 << 6),
 203        DMA_PREP_CMD = (1 << 7),
 204        DMA_PREP_REPEAT = (1 << 8),
 205        DMA_PREP_LOAD_EOT = (1 << 9),
 206};
 207
 208/**
 209 * enum sum_check_bits - bit position of pq_check_flags
 210 */
 211enum sum_check_bits {
 212        SUM_CHECK_P = 0,
 213        SUM_CHECK_Q = 1,
 214};
 215
 216/**
 217 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 218 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 219 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 220 */
 221enum sum_check_flags {
 222        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 223        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 224};
 225
 226
 227/**
 228 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 229 * See linux/cpumask.h
 230 */
 231typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 232
 233/**
 234 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
 235 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
 236 *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
 237 *  helper) to the descriptor.
 238 *
 239 * Client drivers interested to use this mode can follow:
 240 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
 241 *   1. prepare the descriptor (dmaengine_prep_*)
 242 *      construct the metadata in the client's buffer
 243 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
 244 *      descriptor
 245 *   3. submit the transfer
 246 * - DMA_DEV_TO_MEM:
 247 *   1. prepare the descriptor (dmaengine_prep_*)
 248 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
 249 *      descriptor
 250 *   3. submit the transfer
 251 *   4. when the transfer is completed, the metadata should be available in the
 252 *      attached buffer
 253 *
 254 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
 255 *  driver. The client driver can ask for the pointer, maximum size and the
 256 *  currently used size of the metadata and can directly update or read it.
 257 *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
 258 *  provided as helper functions.
 259 *
 260 *  Note: the metadata area for the descriptor is no longer valid after the
 261 *  transfer has been completed (valid up to the point when the completion
 262 *  callback returns if used).
 263 *
 264 * Client drivers interested to use this mode can follow:
 265 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
 266 *   1. prepare the descriptor (dmaengine_prep_*)
 267 *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
 268 *      metadata area
 269 *   3. update the metadata at the pointer
 270 *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
 271 *      of data the client has placed into the metadata buffer
 272 *   5. submit the transfer
 273 * - DMA_DEV_TO_MEM:
 274 *   1. prepare the descriptor (dmaengine_prep_*)
 275 *   2. submit the transfer
 276 *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
 277 *      pointer to the engine's metadata area
 278 *   4. Read out the metadata from the pointer
 279 *
 280 * Note: the two mode is not compatible and clients must use one mode for a
 281 * descriptor.
 282 */
 283enum dma_desc_metadata_mode {
 284        DESC_METADATA_NONE = 0,
 285        DESC_METADATA_CLIENT = BIT(0),
 286        DESC_METADATA_ENGINE = BIT(1),
 287};
 288
 289/**
 290 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 291 * @memcpy_count: transaction counter
 292 * @bytes_transferred: byte counter
 293 */
 294struct dma_chan_percpu {
 295        /* stats */
 296        unsigned long memcpy_count;
 297        unsigned long bytes_transferred;
 298};
 299
 300/**
 301 * struct dma_router - DMA router structure
 302 * @dev: pointer to the DMA router device
 303 * @route_free: function to be called when the route can be disconnected
 304 */
 305struct dma_router {
 306        struct device *dev;
 307        void (*route_free)(struct device *dev, void *route_data);
 308};
 309
 310/**
 311 * struct dma_chan - devices supply DMA channels, clients use them
 312 * @device: ptr to the dma device who supplies this channel, always !%NULL
 313 * @slave: ptr to the device using this channel
 314 * @cookie: last cookie value returned to client
 315 * @completed_cookie: last completed cookie for this channel
 316 * @chan_id: channel ID for sysfs
 317 * @dev: class device for sysfs
 318 * @name: backlink name for sysfs
 319 * @dbg_client_name: slave name for debugfs in format:
 320 *      dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
 321 * @device_node: used to add this to the device chan list
 322 * @local: per-cpu pointer to a struct dma_chan_percpu
 323 * @client_count: how many clients are using this channel
 324 * @table_count: number of appearances in the mem-to-mem allocation table
 325 * @router: pointer to the DMA router structure
 326 * @route_data: channel specific data for the router
 327 * @private: private data for certain client-channel associations
 328 */
 329struct dma_chan {
 330        struct dma_device *device;
 331        struct device *slave;
 332        dma_cookie_t cookie;
 333        dma_cookie_t completed_cookie;
 334
 335        /* sysfs */
 336        int chan_id;
 337        struct dma_chan_dev *dev;
 338        const char *name;
 339#ifdef CONFIG_DEBUG_FS
 340        char *dbg_client_name;
 341#endif
 342
 343        struct list_head device_node;
 344        struct dma_chan_percpu __percpu *local;
 345        int client_count;
 346        int table_count;
 347
 348        /* DMA router */
 349        struct dma_router *router;
 350        void *route_data;
 351
 352        void *private;
 353};
 354
 355/**
 356 * struct dma_chan_dev - relate sysfs device node to backing channel device
 357 * @chan: driver channel device
 358 * @device: sysfs device
 359 * @dev_id: parent dma_device dev_id
 360 * @chan_dma_dev: The channel is using custom/different dma-mapping
 361 * compared to the parent dma_device
 362 */
 363struct dma_chan_dev {
 364        struct dma_chan *chan;
 365        struct device device;
 366        int dev_id;
 367        bool chan_dma_dev;
 368};
 369
 370/**
 371 * enum dma_slave_buswidth - defines bus width of the DMA slave
 372 * device, source or target buses
 373 */
 374enum dma_slave_buswidth {
 375        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 376        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 377        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 378        DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
 379        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 380        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 381        DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
 382        DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
 383        DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
 384        DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
 385};
 386
 387/**
 388 * struct dma_slave_config - dma slave channel runtime config
 389 * @direction: whether the data shall go in or out on this slave
 390 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
 391 * legal values. DEPRECATED, drivers should use the direction argument
 392 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
 393 * the dir field in the dma_interleaved_template structure.
 394 * @src_addr: this is the physical address where DMA slave data
 395 * should be read (RX), if the source is memory this argument is
 396 * ignored.
 397 * @dst_addr: this is the physical address where DMA slave data
 398 * should be written (TX), if the source is memory this argument
 399 * is ignored.
 400 * @src_addr_width: this is the width in bytes of the source (RX)
 401 * register where DMA data shall be read. If the source
 402 * is memory this may be ignored depending on architecture.
 403 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
 404 * @dst_addr_width: same as src_addr_width but for destination
 405 * target (TX) mutatis mutandis.
 406 * @src_maxburst: the maximum number of words (note: words, as in
 407 * units of the src_addr_width member, not bytes) that can be sent
 408 * in one burst to the device. Typically something like half the
 409 * FIFO depth on I/O peripherals so you don't overflow it. This
 410 * may or may not be applicable on memory sources.
 411 * @dst_maxburst: same as src_maxburst but for destination target
 412 * mutatis mutandis.
 413 * @src_port_window_size: The length of the register area in words the data need
 414 * to be accessed on the device side. It is only used for devices which is using
 415 * an area instead of a single register to receive the data. Typically the DMA
 416 * loops in this area in order to transfer the data.
 417 * @dst_port_window_size: same as src_port_window_size but for the destination
 418 * port.
 419 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 420 * with 'true' if peripheral should be flow controller. Direction will be
 421 * selected at Runtime.
 422 * @peripheral_config: peripheral configuration for programming peripheral
 423 * for dmaengine transfer
 424 * @peripheral_size: peripheral configuration buffer size
 425 *
 426 * This struct is passed in as configuration data to a DMA engine
 427 * in order to set up a certain channel for DMA transport at runtime.
 428 * The DMA device/engine has to provide support for an additional
 429 * callback in the dma_device structure, device_config and this struct
 430 * will then be passed in as an argument to the function.
 431 *
 432 * The rationale for adding configuration information to this struct is as
 433 * follows: if it is likely that more than one DMA slave controllers in
 434 * the world will support the configuration option, then make it generic.
 435 * If not: if it is fixed so that it be sent in static from the platform
 436 * data, then prefer to do that.
 437 */
 438struct dma_slave_config {
 439        enum dma_transfer_direction direction;
 440        phys_addr_t src_addr;
 441        phys_addr_t dst_addr;
 442        enum dma_slave_buswidth src_addr_width;
 443        enum dma_slave_buswidth dst_addr_width;
 444        u32 src_maxburst;
 445        u32 dst_maxburst;
 446        u32 src_port_window_size;
 447        u32 dst_port_window_size;
 448        bool device_fc;
 449        void *peripheral_config;
 450        size_t peripheral_size;
 451};
 452
 453/**
 454 * enum dma_residue_granularity - Granularity of the reported transfer residue
 455 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 456 *  DMA channel is only able to tell whether a descriptor has been completed or
 457 *  not, which means residue reporting is not supported by this channel. The
 458 *  residue field of the dma_tx_state field will always be 0.
 459 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 460 *  completed segment of the transfer (For cyclic transfers this is after each
 461 *  period). This is typically implemented by having the hardware generate an
 462 *  interrupt after each transferred segment and then the drivers updates the
 463 *  outstanding residue by the size of the segment. Another possibility is if
 464 *  the hardware supports scatter-gather and the segment descriptor has a field
 465 *  which gets set after the segment has been completed. The driver then counts
 466 *  the number of segments without the flag set to compute the residue.
 467 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 468 *  burst. This is typically only supported if the hardware has a progress
 469 *  register of some sort (E.g. a register with the current read/write address
 470 *  or a register with the amount of bursts/beats/bytes that have been
 471 *  transferred or still need to be transferred).
 472 */
 473enum dma_residue_granularity {
 474        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 475        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 476        DMA_RESIDUE_GRANULARITY_BURST = 2,
 477};
 478
 479/**
 480 * struct dma_slave_caps - expose capabilities of a slave channel only
 481 * @src_addr_widths: bit mask of src addr widths the channel supports.
 482 *      Width is specified in bytes, e.g. for a channel supporting
 483 *      a width of 4 the mask should have BIT(4) set.
 484 * @dst_addr_widths: bit mask of dst addr widths the channel supports
 485 * @directions: bit mask of slave directions the channel supports.
 486 *      Since the enum dma_transfer_direction is not defined as bit flag for
 487 *      each type, the dma controller should set BIT(<TYPE>) and same
 488 *      should be checked by controller as well
 489 * @min_burst: min burst capability per-transfer
 490 * @max_burst: max burst capability per-transfer
 491 * @max_sg_burst: max number of SG list entries executed in a single burst
 492 *      DMA tansaction with no software intervention for reinitialization.
 493 *      Zero value means unlimited number of entries.
 494 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
 495 *             for resume later)
 496 * @cmd_resume: true, if resume is supported
 497 * @cmd_terminate: true, if terminate cmd is supported
 498 * @residue_granularity: granularity of the reported transfer residue
 499 * @descriptor_reuse: if a descriptor can be reused by client and
 500 * resubmitted multiple times
 501 */
 502struct dma_slave_caps {
 503        u32 src_addr_widths;
 504        u32 dst_addr_widths;
 505        u32 directions;
 506        u32 min_burst;
 507        u32 max_burst;
 508        u32 max_sg_burst;
 509        bool cmd_pause;
 510        bool cmd_resume;
 511        bool cmd_terminate;
 512        enum dma_residue_granularity residue_granularity;
 513        bool descriptor_reuse;
 514};
 515
 516static inline const char *dma_chan_name(struct dma_chan *chan)
 517{
 518        return dev_name(&chan->dev->device);
 519}
 520
 521void dma_chan_cleanup(struct kref *kref);
 522
 523/**
 524 * typedef dma_filter_fn - callback filter for dma_request_channel
 525 * @chan: channel to be reviewed
 526 * @filter_param: opaque parameter passed through dma_request_channel
 527 *
 528 * When this optional parameter is specified in a call to dma_request_channel a
 529 * suitable channel is passed to this routine for further dispositioning before
 530 * being returned.  Where 'suitable' indicates a non-busy channel that
 531 * satisfies the given capability mask.  It returns 'true' to indicate that the
 532 * channel is suitable.
 533 */
 534typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 535
 536typedef void (*dma_async_tx_callback)(void *dma_async_param);
 537
 538enum dmaengine_tx_result {
 539        DMA_TRANS_NOERROR = 0,          /* SUCCESS */
 540        DMA_TRANS_READ_FAILED,          /* Source DMA read failed */
 541        DMA_TRANS_WRITE_FAILED,         /* Destination DMA write failed */
 542        DMA_TRANS_ABORTED,              /* Op never submitted / aborted */
 543};
 544
 545struct dmaengine_result {
 546        enum dmaengine_tx_result result;
 547        u32 residue;
 548};
 549
 550typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
 551                                const struct dmaengine_result *result);
 552
 553struct dmaengine_unmap_data {
 554#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
 555        u16 map_cnt;
 556#else
 557        u8 map_cnt;
 558#endif
 559        u8 to_cnt;
 560        u8 from_cnt;
 561        u8 bidi_cnt;
 562        struct device *dev;
 563        struct kref kref;
 564        size_t len;
 565        dma_addr_t addr[];
 566};
 567
 568struct dma_async_tx_descriptor;
 569
 570struct dma_descriptor_metadata_ops {
 571        int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
 572                      size_t len);
 573
 574        void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
 575                         size_t *payload_len, size_t *max_len);
 576        int (*set_len)(struct dma_async_tx_descriptor *desc,
 577                       size_t payload_len);
 578};
 579
 580/**
 581 * struct dma_async_tx_descriptor - async transaction descriptor
 582 * ---dma generic offload fields---
 583 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 584 *      this tx is sitting on a dependency list
 585 * @flags: flags to augment operation preparation, control completion, and
 586 *      communicate status
 587 * @phys: physical address of the descriptor
 588 * @chan: target channel for this operation
 589 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
 590 * descriptor pending. To be pushed on .issue_pending() call
 591 * @callback: routine to call after this operation is complete
 592 * @callback_param: general parameter to pass to the callback routine
 593 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
 594 *      DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
 595 *      DESC_METADATA_NONE
 596 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
 597 *      DMA driver if metadata mode is supported with the descriptor
 598 * ---async_tx api specific fields---
 599 * @next: at completion submit this descriptor
 600 * @parent: pointer to the next level up in the dependency chain
 601 * @lock: protect the parent and next pointers
 602 */
 603struct dma_async_tx_descriptor {
 604        dma_cookie_t cookie;
 605        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 606        dma_addr_t phys;
 607        struct dma_chan *chan;
 608        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 609        int (*desc_free)(struct dma_async_tx_descriptor *tx);
 610        dma_async_tx_callback callback;
 611        dma_async_tx_callback_result callback_result;
 612        void *callback_param;
 613        struct dmaengine_unmap_data *unmap;
 614        enum dma_desc_metadata_mode desc_metadata_mode;
 615        struct dma_descriptor_metadata_ops *metadata_ops;
 616#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 617        struct dma_async_tx_descriptor *next;
 618        struct dma_async_tx_descriptor *parent;
 619        spinlock_t lock;
 620#endif
 621};
 622
 623#ifdef CONFIG_DMA_ENGINE
 624static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 625                                 struct dmaengine_unmap_data *unmap)
 626{
 627        kref_get(&unmap->kref);
 628        tx->unmap = unmap;
 629}
 630
 631struct dmaengine_unmap_data *
 632dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 633void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 634#else
 635static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 636                                 struct dmaengine_unmap_data *unmap)
 637{
 638}
 639static inline struct dmaengine_unmap_data *
 640dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 641{
 642        return NULL;
 643}
 644static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 645{
 646}
 647#endif
 648
 649static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 650{
 651        if (!tx->unmap)
 652                return;
 653
 654        dmaengine_unmap_put(tx->unmap);
 655        tx->unmap = NULL;
 656}
 657
 658#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 659static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 660{
 661}
 662static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 663{
 664}
 665static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 666{
 667        BUG();
 668}
 669static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 670{
 671}
 672static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 673{
 674}
 675static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 676{
 677        return NULL;
 678}
 679static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 680{
 681        return NULL;
 682}
 683
 684#else
 685static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 686{
 687        spin_lock_bh(&txd->lock);
 688}
 689static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 690{
 691        spin_unlock_bh(&txd->lock);
 692}
 693static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 694{
 695        txd->next = next;
 696        next->parent = txd;
 697}
 698static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 699{
 700        txd->parent = NULL;
 701}
 702static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 703{
 704        txd->next = NULL;
 705}
 706static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 707{
 708        return txd->parent;
 709}
 710static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 711{
 712        return txd->next;
 713}
 714#endif
 715
 716/**
 717 * struct dma_tx_state - filled in to report the status of
 718 * a transfer.
 719 * @last: last completed DMA cookie
 720 * @used: last issued DMA cookie (i.e. the one in progress)
 721 * @residue: the remaining number of bytes left to transmit
 722 *      on the selected transfer for states DMA_IN_PROGRESS and
 723 *      DMA_PAUSED if this is implemented in the driver, else 0
 724 * @in_flight_bytes: amount of data in bytes cached by the DMA.
 725 */
 726struct dma_tx_state {
 727        dma_cookie_t last;
 728        dma_cookie_t used;
 729        u32 residue;
 730        u32 in_flight_bytes;
 731};
 732
 733/**
 734 * enum dmaengine_alignment - defines alignment of the DMA async tx
 735 * buffers
 736 */
 737enum dmaengine_alignment {
 738        DMAENGINE_ALIGN_1_BYTE = 0,
 739        DMAENGINE_ALIGN_2_BYTES = 1,
 740        DMAENGINE_ALIGN_4_BYTES = 2,
 741        DMAENGINE_ALIGN_8_BYTES = 3,
 742        DMAENGINE_ALIGN_16_BYTES = 4,
 743        DMAENGINE_ALIGN_32_BYTES = 5,
 744        DMAENGINE_ALIGN_64_BYTES = 6,
 745        DMAENGINE_ALIGN_128_BYTES = 7,
 746        DMAENGINE_ALIGN_256_BYTES = 8,
 747};
 748
 749/**
 750 * struct dma_slave_map - associates slave device and it's slave channel with
 751 * parameter to be used by a filter function
 752 * @devname: name of the device
 753 * @slave: slave channel name
 754 * @param: opaque parameter to pass to struct dma_filter.fn
 755 */
 756struct dma_slave_map {
 757        const char *devname;
 758        const char *slave;
 759        void *param;
 760};
 761
 762/**
 763 * struct dma_filter - information for slave device/channel to filter_fn/param
 764 * mapping
 765 * @fn: filter function callback
 766 * @mapcnt: number of slave device/channel in the map
 767 * @map: array of channel to filter mapping data
 768 */
 769struct dma_filter {
 770        dma_filter_fn fn;
 771        int mapcnt;
 772        const struct dma_slave_map *map;
 773};
 774
 775/**
 776 * struct dma_device - info on the entity supplying DMA services
 777 * @chancnt: how many DMA channels are supported
 778 * @privatecnt: how many DMA channels are requested by dma_request_channel
 779 * @channels: the list of struct dma_chan
 780 * @global_node: list_head for global dma_device_list
 781 * @filter: information for device/slave to filter function/param mapping
 782 * @cap_mask: one or more dma_capability flags
 783 * @desc_metadata_modes: supported metadata modes by the DMA device
 784 * @max_xor: maximum number of xor sources, 0 if no capability
 785 * @max_pq: maximum number of PQ sources and PQ-continue capability
 786 * @copy_align: alignment shift for memcpy operations
 787 * @xor_align: alignment shift for xor operations
 788 * @pq_align: alignment shift for pq operations
 789 * @fill_align: alignment shift for memset operations
 790 * @dev_id: unique device ID
 791 * @dev: struct device reference for dma mapping api
 792 * @owner: owner module (automatically set based on the provided dev)
 793 * @src_addr_widths: bit mask of src addr widths the device supports
 794 *      Width is specified in bytes, e.g. for a device supporting
 795 *      a width of 4 the mask should have BIT(4) set.
 796 * @dst_addr_widths: bit mask of dst addr widths the device supports
 797 * @directions: bit mask of slave directions the device supports.
 798 *      Since the enum dma_transfer_direction is not defined as bit flag for
 799 *      each type, the dma controller should set BIT(<TYPE>) and same
 800 *      should be checked by controller as well
 801 * @min_burst: min burst capability per-transfer
 802 * @max_burst: max burst capability per-transfer
 803 * @max_sg_burst: max number of SG list entries executed in a single burst
 804 *      DMA tansaction with no software intervention for reinitialization.
 805 *      Zero value means unlimited number of entries.
 806 * @residue_granularity: granularity of the transfer residue reported
 807 *      by tx_status
 808 * @device_alloc_chan_resources: allocate resources and return the
 809 *      number of allocated descriptors
 810 * @device_router_config: optional callback for DMA router configuration
 811 * @device_free_chan_resources: release DMA channel's resources
 812 * @device_prep_dma_memcpy: prepares a memcpy operation
 813 * @device_prep_dma_xor: prepares a xor operation
 814 * @device_prep_dma_xor_val: prepares a xor validation operation
 815 * @device_prep_dma_pq: prepares a pq operation
 816 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 817 * @device_prep_dma_memset: prepares a memset operation
 818 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
 819 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 820 * @device_prep_slave_sg: prepares a slave dma operation
 821 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 822 *      The function takes a buffer of size buf_len. The callback function will
 823 *      be called after period_len bytes have been transferred.
 824 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 825 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
 826 * @device_caps: May be used to override the generic DMA slave capabilities
 827 *      with per-channel specific ones
 828 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 829 *      code
 830 * @device_pause: Pauses any transfer happening on a channel. Returns
 831 *      0 or an error code
 832 * @device_resume: Resumes any transfer on a channel previously
 833 *      paused. Returns 0 or an error code
 834 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 835 *      or an error code
 836 * @device_synchronize: Synchronizes the termination of a transfers to the
 837 *  current context.
 838 * @device_tx_status: poll for transaction completion, the optional
 839 *      txstate parameter can be supplied with a pointer to get a
 840 *      struct with auxiliary transfer status information, otherwise the call
 841 *      will just return a simple status code
 842 * @device_issue_pending: push pending transactions to hardware
 843 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
 844 * @device_release: called sometime atfer dma_async_device_unregister() is
 845 *     called and there are no further references to this structure. This
 846 *     must be implemented to free resources however many existing drivers
 847 *     do not and are therefore not safe to unbind while in use.
 848 * @dbg_summary_show: optional routine to show contents in debugfs; default code
 849 *     will be used when this is omitted, but custom code can show extra,
 850 *     controller specific information.
 851 */
 852struct dma_device {
 853        struct kref ref;
 854        unsigned int chancnt;
 855        unsigned int privatecnt;
 856        struct list_head channels;
 857        struct list_head global_node;
 858        struct dma_filter filter;
 859        dma_cap_mask_t  cap_mask;
 860        enum dma_desc_metadata_mode desc_metadata_modes;
 861        unsigned short max_xor;
 862        unsigned short max_pq;
 863        enum dmaengine_alignment copy_align;
 864        enum dmaengine_alignment xor_align;
 865        enum dmaengine_alignment pq_align;
 866        enum dmaengine_alignment fill_align;
 867        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 868
 869        int dev_id;
 870        struct device *dev;
 871        struct module *owner;
 872        struct ida chan_ida;
 873        struct mutex chan_mutex;        /* to protect chan_ida */
 874
 875        u32 src_addr_widths;
 876        u32 dst_addr_widths;
 877        u32 directions;
 878        u32 min_burst;
 879        u32 max_burst;
 880        u32 max_sg_burst;
 881        bool descriptor_reuse;
 882        enum dma_residue_granularity residue_granularity;
 883
 884        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 885        int (*device_router_config)(struct dma_chan *chan);
 886        void (*device_free_chan_resources)(struct dma_chan *chan);
 887
 888        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 889                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 890                size_t len, unsigned long flags);
 891        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy_sg)(
 892                struct dma_chan *chan,
 893                struct scatterlist *dst_sg, unsigned int dst_nents,
 894                struct scatterlist *src_sg, unsigned int src_nents,
 895                unsigned long flags);
 896        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 897                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 898                unsigned int src_cnt, size_t len, unsigned long flags);
 899        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 900                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 901                size_t len, enum sum_check_flags *result, unsigned long flags);
 902        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 903                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 904                unsigned int src_cnt, const unsigned char *scf,
 905                size_t len, unsigned long flags);
 906        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 907                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 908                unsigned int src_cnt, const unsigned char *scf, size_t len,
 909                enum sum_check_flags *pqres, unsigned long flags);
 910        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 911                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 912                unsigned long flags);
 913        struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
 914                struct dma_chan *chan, struct scatterlist *sg,
 915                unsigned int nents, int value, unsigned long flags);
 916        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 917                struct dma_chan *chan, unsigned long flags);
 918
 919        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 920                struct dma_chan *chan, struct scatterlist *sgl,
 921                unsigned int sg_len, enum dma_transfer_direction direction,
 922                unsigned long flags, void *context);
 923        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 924                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 925                size_t period_len, enum dma_transfer_direction direction,
 926                unsigned long flags);
 927        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 928                struct dma_chan *chan, struct dma_interleaved_template *xt,
 929                unsigned long flags);
 930        struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
 931                struct dma_chan *chan, dma_addr_t dst, u64 data,
 932                unsigned long flags);
 933
 934        void (*device_caps)(struct dma_chan *chan,
 935                            struct dma_slave_caps *caps);
 936        int (*device_config)(struct dma_chan *chan,
 937                             struct dma_slave_config *config);
 938        int (*device_pause)(struct dma_chan *chan);
 939        int (*device_resume)(struct dma_chan *chan);
 940        int (*device_terminate_all)(struct dma_chan *chan);
 941        void (*device_synchronize)(struct dma_chan *chan);
 942
 943        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 944                                            dma_cookie_t cookie,
 945                                            struct dma_tx_state *txstate);
 946        void (*device_issue_pending)(struct dma_chan *chan);
 947        void (*device_release)(struct dma_device *dev);
 948        /* debugfs support */
 949        void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
 950        struct dentry *dbg_dev_root;
 951};
 952
 953static inline int dmaengine_slave_config(struct dma_chan *chan,
 954                                          struct dma_slave_config *config)
 955{
 956        if (chan->device->device_config)
 957                return chan->device->device_config(chan, config);
 958
 959        return -ENOSYS;
 960}
 961
 962static inline bool is_slave_direction(enum dma_transfer_direction direction)
 963{
 964        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 965}
 966
 967static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 968        struct dma_chan *chan, dma_addr_t buf, size_t len,
 969        enum dma_transfer_direction dir, unsigned long flags)
 970{
 971        struct scatterlist sg;
 972        sg_init_table(&sg, 1);
 973        sg_dma_address(&sg) = buf;
 974        sg_dma_len(&sg) = len;
 975
 976        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 977                return NULL;
 978
 979        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 980                                                  dir, flags, NULL);
 981}
 982
 983static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 984        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 985        enum dma_transfer_direction dir, unsigned long flags)
 986{
 987        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 988                return NULL;
 989
 990        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 991                                                  dir, flags, NULL);
 992}
 993
 994#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 995struct rio_dma_ext;
 996static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 997        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 998        enum dma_transfer_direction dir, unsigned long flags,
 999        struct rio_dma_ext *rio_ext)
1000{
1001        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1002                return NULL;
1003
1004        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1005                                                  dir, flags, rio_ext);
1006}
1007#endif
1008
1009static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1010                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1011                size_t period_len, enum dma_transfer_direction dir,
1012                unsigned long flags)
1013{
1014        if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1015                return NULL;
1016
1017        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1018                                                period_len, dir, flags);
1019}
1020
1021static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1022                struct dma_chan *chan, struct dma_interleaved_template *xt,
1023                unsigned long flags)
1024{
1025        if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1026                return NULL;
1027        if (flags & DMA_PREP_REPEAT &&
1028            !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1029                return NULL;
1030
1031        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1032}
1033
1034static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1035                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1036                unsigned long flags)
1037{
1038        if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1039                return NULL;
1040
1041        return chan->device->device_prep_dma_memset(chan, dest, value,
1042                                                    len, flags);
1043}
1044
1045static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1046                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1047                size_t len, unsigned long flags)
1048{
1049        if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1050                return NULL;
1051
1052        return chan->device->device_prep_dma_memcpy(chan, dest, src,
1053                                                    len, flags);
1054}
1055
1056static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy_sg(
1057                struct dma_chan *chan,
1058                struct scatterlist *dst_sg, unsigned int dst_nents,
1059                struct scatterlist *src_sg, unsigned int src_nents,
1060                unsigned long flags)
1061{
1062        if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy_sg)
1063                return NULL;
1064
1065        return chan->device->device_prep_dma_memcpy_sg(chan, dst_sg, dst_nents,
1066                                                       src_sg, src_nents,
1067                                                       flags);
1068}
1069
1070static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1071                enum dma_desc_metadata_mode mode)
1072{
1073        if (!chan)
1074                return false;
1075
1076        return !!(chan->device->desc_metadata_modes & mode);
1077}
1078
1079#ifdef CONFIG_DMA_ENGINE
1080int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1081                                   void *data, size_t len);
1082void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1083                                      size_t *payload_len, size_t *max_len);
1084int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1085                                    size_t payload_len);
1086#else /* CONFIG_DMA_ENGINE */
1087static inline int dmaengine_desc_attach_metadata(
1088                struct dma_async_tx_descriptor *desc, void *data, size_t len)
1089{
1090        return -EINVAL;
1091}
1092static inline void *dmaengine_desc_get_metadata_ptr(
1093                struct dma_async_tx_descriptor *desc, size_t *payload_len,
1094                size_t *max_len)
1095{
1096        return NULL;
1097}
1098static inline int dmaengine_desc_set_metadata_len(
1099                struct dma_async_tx_descriptor *desc, size_t payload_len)
1100{
1101        return -EINVAL;
1102}
1103#endif /* CONFIG_DMA_ENGINE */
1104
1105/**
1106 * dmaengine_terminate_all() - Terminate all active DMA transfers
1107 * @chan: The channel for which to terminate the transfers
1108 *
1109 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1110 * dmaengine_terminate_async() instead.
1111 */
1112static inline int dmaengine_terminate_all(struct dma_chan *chan)
1113{
1114        if (chan->device->device_terminate_all)
1115                return chan->device->device_terminate_all(chan);
1116
1117        return -ENOSYS;
1118}
1119
1120/**
1121 * dmaengine_terminate_async() - Terminate all active DMA transfers
1122 * @chan: The channel for which to terminate the transfers
1123 *
1124 * Calling this function will terminate all active and pending descriptors
1125 * that have previously been submitted to the channel. It is not guaranteed
1126 * though that the transfer for the active descriptor has stopped when the
1127 * function returns. Furthermore it is possible the complete callback of a
1128 * submitted transfer is still running when this function returns.
1129 *
1130 * dmaengine_synchronize() needs to be called before it is safe to free
1131 * any memory that is accessed by previously submitted descriptors or before
1132 * freeing any resources accessed from within the completion callback of any
1133 * previously submitted descriptors.
1134 *
1135 * This function can be called from atomic context as well as from within a
1136 * complete callback of a descriptor submitted on the same channel.
1137 *
1138 * If none of the two conditions above apply consider using
1139 * dmaengine_terminate_sync() instead.
1140 */
1141static inline int dmaengine_terminate_async(struct dma_chan *chan)
1142{
1143        if (chan->device->device_terminate_all)
1144                return chan->device->device_terminate_all(chan);
1145
1146        return -EINVAL;
1147}
1148
1149/**
1150 * dmaengine_synchronize() - Synchronize DMA channel termination
1151 * @chan: The channel to synchronize
1152 *
1153 * Synchronizes to the DMA channel termination to the current context. When this
1154 * function returns it is guaranteed that all transfers for previously issued
1155 * descriptors have stopped and it is safe to free the memory associated
1156 * with them. Furthermore it is guaranteed that all complete callback functions
1157 * for a previously submitted descriptor have finished running and it is safe to
1158 * free resources accessed from within the complete callbacks.
1159 *
1160 * The behavior of this function is undefined if dma_async_issue_pending() has
1161 * been called between dmaengine_terminate_async() and this function.
1162 *
1163 * This function must only be called from non-atomic context and must not be
1164 * called from within a complete callback of a descriptor submitted on the same
1165 * channel.
1166 */
1167static inline void dmaengine_synchronize(struct dma_chan *chan)
1168{
1169        might_sleep();
1170
1171        if (chan->device->device_synchronize)
1172                chan->device->device_synchronize(chan);
1173}
1174
1175/**
1176 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1177 * @chan: The channel for which to terminate the transfers
1178 *
1179 * Calling this function will terminate all active and pending transfers
1180 * that have previously been submitted to the channel. It is similar to
1181 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1182 * stopped and that all complete callbacks have finished running when the
1183 * function returns.
1184 *
1185 * This function must only be called from non-atomic context and must not be
1186 * called from within a complete callback of a descriptor submitted on the same
1187 * channel.
1188 */
1189static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1190{
1191        int ret;
1192
1193        ret = dmaengine_terminate_async(chan);
1194        if (ret)
1195                return ret;
1196
1197        dmaengine_synchronize(chan);
1198
1199        return 0;
1200}
1201
1202static inline int dmaengine_pause(struct dma_chan *chan)
1203{
1204        if (chan->device->device_pause)
1205                return chan->device->device_pause(chan);
1206
1207        return -ENOSYS;
1208}
1209
1210static inline int dmaengine_resume(struct dma_chan *chan)
1211{
1212        if (chan->device->device_resume)
1213                return chan->device->device_resume(chan);
1214
1215        return -ENOSYS;
1216}
1217
1218static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1219        dma_cookie_t cookie, struct dma_tx_state *state)
1220{
1221        return chan->device->device_tx_status(chan, cookie, state);
1222}
1223
1224static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1225{
1226        return desc->tx_submit(desc);
1227}
1228
1229static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1230                                         size_t off1, size_t off2, size_t len)
1231{
1232        return !(((1 << align) - 1) & (off1 | off2 | len));
1233}
1234
1235static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1236                                       size_t off2, size_t len)
1237{
1238        return dmaengine_check_align(dev->copy_align, off1, off2, len);
1239}
1240
1241static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1242                                      size_t off2, size_t len)
1243{
1244        return dmaengine_check_align(dev->xor_align, off1, off2, len);
1245}
1246
1247static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1248                                     size_t off2, size_t len)
1249{
1250        return dmaengine_check_align(dev->pq_align, off1, off2, len);
1251}
1252
1253static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1254                                       size_t off2, size_t len)
1255{
1256        return dmaengine_check_align(dev->fill_align, off1, off2, len);
1257}
1258
1259static inline void
1260dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1261{
1262        dma->max_pq = maxpq;
1263        if (has_pq_continue)
1264                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1265}
1266
1267static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1268{
1269        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1270}
1271
1272static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1273{
1274        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1275
1276        return (flags & mask) == mask;
1277}
1278
1279static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1280{
1281        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1282}
1283
1284static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1285{
1286        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1287}
1288
1289/* dma_maxpq - reduce maxpq in the face of continued operations
1290 * @dma - dma device with PQ capability
1291 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1292 *
1293 * When an engine does not support native continuation we need 3 extra
1294 * source slots to reuse P and Q with the following coefficients:
1295 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1296 * 2/ {01} * Q : use Q to continue Q' calculation
1297 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1298 *
1299 * In the case where P is disabled we only need 1 extra source:
1300 * 1/ {01} * Q : use Q to continue Q' calculation
1301 */
1302static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1303{
1304        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1305                return dma_dev_to_maxpq(dma);
1306        if (dmaf_p_disabled_continue(flags))
1307                return dma_dev_to_maxpq(dma) - 1;
1308        if (dmaf_continue(flags))
1309                return dma_dev_to_maxpq(dma) - 3;
1310        BUG();
1311}
1312
1313static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1314                                      size_t dir_icg)
1315{
1316        if (inc) {
1317                if (dir_icg)
1318                        return dir_icg;
1319                if (sgl)
1320                        return icg;
1321        }
1322
1323        return 0;
1324}
1325
1326static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1327                                           struct data_chunk *chunk)
1328{
1329        return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1330                                 chunk->icg, chunk->dst_icg);
1331}
1332
1333static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1334                                           struct data_chunk *chunk)
1335{
1336        return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1337                                 chunk->icg, chunk->src_icg);
1338}
1339
1340/* --- public DMA engine API --- */
1341
1342#ifdef CONFIG_DMA_ENGINE
1343void dmaengine_get(void);
1344void dmaengine_put(void);
1345#else
1346static inline void dmaengine_get(void)
1347{
1348}
1349static inline void dmaengine_put(void)
1350{
1351}
1352#endif
1353
1354#ifdef CONFIG_ASYNC_TX_DMA
1355#define async_dmaengine_get()   dmaengine_get()
1356#define async_dmaengine_put()   dmaengine_put()
1357#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1358#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1359#else
1360#define async_dma_find_channel(type) dma_find_channel(type)
1361#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1362#else
1363static inline void async_dmaengine_get(void)
1364{
1365}
1366static inline void async_dmaengine_put(void)
1367{
1368}
1369static inline struct dma_chan *
1370async_dma_find_channel(enum dma_transaction_type type)
1371{
1372        return NULL;
1373}
1374#endif /* CONFIG_ASYNC_TX_DMA */
1375void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1376                                  struct dma_chan *chan);
1377
1378static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1379{
1380        tx->flags |= DMA_CTRL_ACK;
1381}
1382
1383static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1384{
1385        tx->flags &= ~DMA_CTRL_ACK;
1386}
1387
1388static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1389{
1390        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1391}
1392
1393#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1394static inline void
1395__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1396{
1397        set_bit(tx_type, dstp->bits);
1398}
1399
1400#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1401static inline void
1402__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1403{
1404        clear_bit(tx_type, dstp->bits);
1405}
1406
1407#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1408static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1409{
1410        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1411}
1412
1413#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1414static inline int
1415__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1416{
1417        return test_bit(tx_type, srcp->bits);
1418}
1419
1420#define for_each_dma_cap_mask(cap, mask) \
1421        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1422
1423/**
1424 * dma_async_issue_pending - flush pending transactions to HW
1425 * @chan: target DMA channel
1426 *
1427 * This allows drivers to push copies to HW in batches,
1428 * reducing MMIO writes where possible.
1429 */
1430static inline void dma_async_issue_pending(struct dma_chan *chan)
1431{
1432        chan->device->device_issue_pending(chan);
1433}
1434
1435/**
1436 * dma_async_is_tx_complete - poll for transaction completion
1437 * @chan: DMA channel
1438 * @cookie: transaction identifier to check status of
1439 * @last: returns last completed cookie, can be NULL
1440 * @used: returns last issued cookie, can be NULL
1441 *
1442 * If @last and @used are passed in, upon return they reflect the driver
1443 * internal state and can be used with dma_async_is_complete() to check
1444 * the status of multiple cookies without re-checking hardware state.
1445 */
1446static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1447        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1448{
1449        struct dma_tx_state state;
1450        enum dma_status status;
1451
1452        status = chan->device->device_tx_status(chan, cookie, &state);
1453        if (last)
1454                *last = state.last;
1455        if (used)
1456                *used = state.used;
1457        return status;
1458}
1459
1460/**
1461 * dma_async_is_complete - test a cookie against chan state
1462 * @cookie: transaction identifier to test status of
1463 * @last_complete: last know completed transaction
1464 * @last_used: last cookie value handed out
1465 *
1466 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1467 * the test logic is separated for lightweight testing of multiple cookies
1468 */
1469static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1470                        dma_cookie_t last_complete, dma_cookie_t last_used)
1471{
1472        if (last_complete <= last_used) {
1473                if ((cookie <= last_complete) || (cookie > last_used))
1474                        return DMA_COMPLETE;
1475        } else {
1476                if ((cookie <= last_complete) && (cookie > last_used))
1477                        return DMA_COMPLETE;
1478        }
1479        return DMA_IN_PROGRESS;
1480}
1481
1482static inline void
1483dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1484{
1485        if (!st)
1486                return;
1487
1488        st->last = last;
1489        st->used = used;
1490        st->residue = residue;
1491}
1492
1493#ifdef CONFIG_DMA_ENGINE
1494struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1495enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1496enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1497void dma_issue_pending_all(void);
1498struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1499                                       dma_filter_fn fn, void *fn_param,
1500                                       struct device_node *np);
1501
1502struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1503struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1504
1505void dma_release_channel(struct dma_chan *chan);
1506int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1507#else
1508static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1509{
1510        return NULL;
1511}
1512static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1513{
1514        return DMA_COMPLETE;
1515}
1516static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1517{
1518        return DMA_COMPLETE;
1519}
1520static inline void dma_issue_pending_all(void)
1521{
1522}
1523static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1524                                                     dma_filter_fn fn,
1525                                                     void *fn_param,
1526                                                     struct device_node *np)
1527{
1528        return NULL;
1529}
1530static inline struct dma_chan *dma_request_chan(struct device *dev,
1531                                                const char *name)
1532{
1533        return ERR_PTR(-ENODEV);
1534}
1535static inline struct dma_chan *dma_request_chan_by_mask(
1536                                                const dma_cap_mask_t *mask)
1537{
1538        return ERR_PTR(-ENODEV);
1539}
1540static inline void dma_release_channel(struct dma_chan *chan)
1541{
1542}
1543static inline int dma_get_slave_caps(struct dma_chan *chan,
1544                                     struct dma_slave_caps *caps)
1545{
1546        return -ENXIO;
1547}
1548#endif
1549
1550static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1551{
1552        struct dma_slave_caps caps;
1553        int ret;
1554
1555        ret = dma_get_slave_caps(tx->chan, &caps);
1556        if (ret)
1557                return ret;
1558
1559        if (!caps.descriptor_reuse)
1560                return -EPERM;
1561
1562        tx->flags |= DMA_CTRL_REUSE;
1563        return 0;
1564}
1565
1566static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1567{
1568        tx->flags &= ~DMA_CTRL_REUSE;
1569}
1570
1571static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1572{
1573        return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1574}
1575
1576static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1577{
1578        /* this is supported for reusable desc, so check that */
1579        if (!dmaengine_desc_test_reuse(desc))
1580                return -EPERM;
1581
1582        return desc->desc_free(desc);
1583}
1584
1585/* --- DMA device --- */
1586
1587int dma_async_device_register(struct dma_device *device);
1588int dmaenginem_async_device_register(struct dma_device *device);
1589void dma_async_device_unregister(struct dma_device *device);
1590int dma_async_device_channel_register(struct dma_device *device,
1591                                      struct dma_chan *chan);
1592void dma_async_device_channel_unregister(struct dma_device *device,
1593                                         struct dma_chan *chan);
1594void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1595#define dma_request_channel(mask, x, y) \
1596        __dma_request_channel(&(mask), x, y, NULL)
1597
1598/* Deprecated, please use dma_request_chan() directly */
1599static inline struct dma_chan * __deprecated
1600dma_request_slave_channel(struct device *dev, const char *name)
1601{
1602        struct dma_chan *ch = dma_request_chan(dev, name);
1603
1604        return IS_ERR(ch) ? NULL : ch;
1605}
1606
1607static inline struct dma_chan
1608*dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1609                                  dma_filter_fn fn, void *fn_param,
1610                                  struct device *dev, const char *name)
1611{
1612        struct dma_chan *chan;
1613
1614        chan = dma_request_slave_channel(dev, name);
1615        if (chan)
1616                return chan;
1617
1618        if (!fn || !fn_param)
1619                return NULL;
1620
1621        return __dma_request_channel(&mask, fn, fn_param, NULL);
1622}
1623
1624static inline char *
1625dmaengine_get_direction_text(enum dma_transfer_direction dir)
1626{
1627        switch (dir) {
1628        case DMA_DEV_TO_MEM:
1629                return "DEV_TO_MEM";
1630        case DMA_MEM_TO_DEV:
1631                return "MEM_TO_DEV";
1632        case DMA_MEM_TO_MEM:
1633                return "MEM_TO_MEM";
1634        case DMA_DEV_TO_DEV:
1635                return "DEV_TO_DEV";
1636        default:
1637                return "invalid";
1638        }
1639}
1640
1641static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1642{
1643        if (chan->dev->chan_dma_dev)
1644                return &chan->dev->device;
1645
1646        return chan->device->dev;
1647}
1648
1649#endif /* DMAENGINE_H */
1650