linux/include/linux/list.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_LIST_H
   3#define _LINUX_LIST_H
   4
   5#include <linux/container_of.h>
   6#include <linux/types.h>
   7#include <linux/stddef.h>
   8#include <linux/poison.h>
   9#include <linux/const.h>
  10
  11#include <asm/barrier.h>
  12
  13/*
  14 * Circular doubly linked list implementation.
  15 *
  16 * Some of the internal functions ("__xxx") are useful when
  17 * manipulating whole lists rather than single entries, as
  18 * sometimes we already know the next/prev entries and we can
  19 * generate better code by using them directly rather than
  20 * using the generic single-entry routines.
  21 */
  22
  23#define LIST_HEAD_INIT(name) { &(name), &(name) }
  24
  25#define LIST_HEAD(name) \
  26        struct list_head name = LIST_HEAD_INIT(name)
  27
  28/**
  29 * INIT_LIST_HEAD - Initialize a list_head structure
  30 * @list: list_head structure to be initialized.
  31 *
  32 * Initializes the list_head to point to itself.  If it is a list header,
  33 * the result is an empty list.
  34 */
  35static inline void INIT_LIST_HEAD(struct list_head *list)
  36{
  37        WRITE_ONCE(list->next, list);
  38        list->prev = list;
  39}
  40
  41#ifdef CONFIG_DEBUG_LIST
  42extern bool __list_add_valid(struct list_head *new,
  43                              struct list_head *prev,
  44                              struct list_head *next);
  45extern bool __list_del_entry_valid(struct list_head *entry);
  46#else
  47static inline bool __list_add_valid(struct list_head *new,
  48                                struct list_head *prev,
  49                                struct list_head *next)
  50{
  51        return true;
  52}
  53static inline bool __list_del_entry_valid(struct list_head *entry)
  54{
  55        return true;
  56}
  57#endif
  58
  59/*
  60 * Insert a new entry between two known consecutive entries.
  61 *
  62 * This is only for internal list manipulation where we know
  63 * the prev/next entries already!
  64 */
  65static inline void __list_add(struct list_head *new,
  66                              struct list_head *prev,
  67                              struct list_head *next)
  68{
  69        if (!__list_add_valid(new, prev, next))
  70                return;
  71
  72        next->prev = new;
  73        new->next = next;
  74        new->prev = prev;
  75        WRITE_ONCE(prev->next, new);
  76}
  77
  78/**
  79 * list_add - add a new entry
  80 * @new: new entry to be added
  81 * @head: list head to add it after
  82 *
  83 * Insert a new entry after the specified head.
  84 * This is good for implementing stacks.
  85 */
  86static inline void list_add(struct list_head *new, struct list_head *head)
  87{
  88        __list_add(new, head, head->next);
  89}
  90
  91
  92/**
  93 * list_add_tail - add a new entry
  94 * @new: new entry to be added
  95 * @head: list head to add it before
  96 *
  97 * Insert a new entry before the specified head.
  98 * This is useful for implementing queues.
  99 */
 100static inline void list_add_tail(struct list_head *new, struct list_head *head)
 101{
 102        __list_add(new, head->prev, head);
 103}
 104
 105/*
 106 * Delete a list entry by making the prev/next entries
 107 * point to each other.
 108 *
 109 * This is only for internal list manipulation where we know
 110 * the prev/next entries already!
 111 */
 112static inline void __list_del(struct list_head * prev, struct list_head * next)
 113{
 114        next->prev = prev;
 115        WRITE_ONCE(prev->next, next);
 116}
 117
 118/*
 119 * Delete a list entry and clear the 'prev' pointer.
 120 *
 121 * This is a special-purpose list clearing method used in the networking code
 122 * for lists allocated as per-cpu, where we don't want to incur the extra
 123 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
 124 * needs to check the node 'prev' pointer instead of calling list_empty().
 125 */
 126static inline void __list_del_clearprev(struct list_head *entry)
 127{
 128        __list_del(entry->prev, entry->next);
 129        entry->prev = NULL;
 130}
 131
 132static inline void __list_del_entry(struct list_head *entry)
 133{
 134        if (!__list_del_entry_valid(entry))
 135                return;
 136
 137        __list_del(entry->prev, entry->next);
 138}
 139
 140/**
 141 * list_del - deletes entry from list.
 142 * @entry: the element to delete from the list.
 143 * Note: list_empty() on entry does not return true after this, the entry is
 144 * in an undefined state.
 145 */
 146static inline void list_del(struct list_head *entry)
 147{
 148        __list_del_entry(entry);
 149        entry->next = LIST_POISON1;
 150        entry->prev = LIST_POISON2;
 151}
 152
 153/**
 154 * list_replace - replace old entry by new one
 155 * @old : the element to be replaced
 156 * @new : the new element to insert
 157 *
 158 * If @old was empty, it will be overwritten.
 159 */
 160static inline void list_replace(struct list_head *old,
 161                                struct list_head *new)
 162{
 163        new->next = old->next;
 164        new->next->prev = new;
 165        new->prev = old->prev;
 166        new->prev->next = new;
 167}
 168
 169/**
 170 * list_replace_init - replace old entry by new one and initialize the old one
 171 * @old : the element to be replaced
 172 * @new : the new element to insert
 173 *
 174 * If @old was empty, it will be overwritten.
 175 */
 176static inline void list_replace_init(struct list_head *old,
 177                                     struct list_head *new)
 178{
 179        list_replace(old, new);
 180        INIT_LIST_HEAD(old);
 181}
 182
 183/**
 184 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
 185 * @entry1: the location to place entry2
 186 * @entry2: the location to place entry1
 187 */
 188static inline void list_swap(struct list_head *entry1,
 189                             struct list_head *entry2)
 190{
 191        struct list_head *pos = entry2->prev;
 192
 193        list_del(entry2);
 194        list_replace(entry1, entry2);
 195        if (pos == entry1)
 196                pos = entry2;
 197        list_add(entry1, pos);
 198}
 199
 200/**
 201 * list_del_init - deletes entry from list and reinitialize it.
 202 * @entry: the element to delete from the list.
 203 */
 204static inline void list_del_init(struct list_head *entry)
 205{
 206        __list_del_entry(entry);
 207        INIT_LIST_HEAD(entry);
 208}
 209
 210/**
 211 * list_move - delete from one list and add as another's head
 212 * @list: the entry to move
 213 * @head: the head that will precede our entry
 214 */
 215static inline void list_move(struct list_head *list, struct list_head *head)
 216{
 217        __list_del_entry(list);
 218        list_add(list, head);
 219}
 220
 221/**
 222 * list_move_tail - delete from one list and add as another's tail
 223 * @list: the entry to move
 224 * @head: the head that will follow our entry
 225 */
 226static inline void list_move_tail(struct list_head *list,
 227                                  struct list_head *head)
 228{
 229        __list_del_entry(list);
 230        list_add_tail(list, head);
 231}
 232
 233/**
 234 * list_bulk_move_tail - move a subsection of a list to its tail
 235 * @head: the head that will follow our entry
 236 * @first: first entry to move
 237 * @last: last entry to move, can be the same as first
 238 *
 239 * Move all entries between @first and including @last before @head.
 240 * All three entries must belong to the same linked list.
 241 */
 242static inline void list_bulk_move_tail(struct list_head *head,
 243                                       struct list_head *first,
 244                                       struct list_head *last)
 245{
 246        first->prev->next = last->next;
 247        last->next->prev = first->prev;
 248
 249        head->prev->next = first;
 250        first->prev = head->prev;
 251
 252        last->next = head;
 253        head->prev = last;
 254}
 255
 256/**
 257 * list_is_first -- tests whether @list is the first entry in list @head
 258 * @list: the entry to test
 259 * @head: the head of the list
 260 */
 261static inline int list_is_first(const struct list_head *list, const struct list_head *head)
 262{
 263        return list->prev == head;
 264}
 265
 266/**
 267 * list_is_last - tests whether @list is the last entry in list @head
 268 * @list: the entry to test
 269 * @head: the head of the list
 270 */
 271static inline int list_is_last(const struct list_head *list, const struct list_head *head)
 272{
 273        return list->next == head;
 274}
 275
 276/**
 277 * list_is_head - tests whether @list is the list @head
 278 * @list: the entry to test
 279 * @head: the head of the list
 280 */
 281static inline int list_is_head(const struct list_head *list, const struct list_head *head)
 282{
 283        return list == head;
 284}
 285
 286/**
 287 * list_empty - tests whether a list is empty
 288 * @head: the list to test.
 289 */
 290static inline int list_empty(const struct list_head *head)
 291{
 292        return READ_ONCE(head->next) == head;
 293}
 294
 295/**
 296 * list_del_init_careful - deletes entry from list and reinitialize it.
 297 * @entry: the element to delete from the list.
 298 *
 299 * This is the same as list_del_init(), except designed to be used
 300 * together with list_empty_careful() in a way to guarantee ordering
 301 * of other memory operations.
 302 *
 303 * Any memory operations done before a list_del_init_careful() are
 304 * guaranteed to be visible after a list_empty_careful() test.
 305 */
 306static inline void list_del_init_careful(struct list_head *entry)
 307{
 308        __list_del_entry(entry);
 309        entry->prev = entry;
 310        smp_store_release(&entry->next, entry);
 311}
 312
 313/**
 314 * list_empty_careful - tests whether a list is empty and not being modified
 315 * @head: the list to test
 316 *
 317 * Description:
 318 * tests whether a list is empty _and_ checks that no other CPU might be
 319 * in the process of modifying either member (next or prev)
 320 *
 321 * NOTE: using list_empty_careful() without synchronization
 322 * can only be safe if the only activity that can happen
 323 * to the list entry is list_del_init(). Eg. it cannot be used
 324 * if another CPU could re-list_add() it.
 325 */
 326static inline int list_empty_careful(const struct list_head *head)
 327{
 328        struct list_head *next = smp_load_acquire(&head->next);
 329        return list_is_head(next, head) && (next == head->prev);
 330}
 331
 332/**
 333 * list_rotate_left - rotate the list to the left
 334 * @head: the head of the list
 335 */
 336static inline void list_rotate_left(struct list_head *head)
 337{
 338        struct list_head *first;
 339
 340        if (!list_empty(head)) {
 341                first = head->next;
 342                list_move_tail(first, head);
 343        }
 344}
 345
 346/**
 347 * list_rotate_to_front() - Rotate list to specific item.
 348 * @list: The desired new front of the list.
 349 * @head: The head of the list.
 350 *
 351 * Rotates list so that @list becomes the new front of the list.
 352 */
 353static inline void list_rotate_to_front(struct list_head *list,
 354                                        struct list_head *head)
 355{
 356        /*
 357         * Deletes the list head from the list denoted by @head and
 358         * places it as the tail of @list, this effectively rotates the
 359         * list so that @list is at the front.
 360         */
 361        list_move_tail(head, list);
 362}
 363
 364/**
 365 * list_is_singular - tests whether a list has just one entry.
 366 * @head: the list to test.
 367 */
 368static inline int list_is_singular(const struct list_head *head)
 369{
 370        return !list_empty(head) && (head->next == head->prev);
 371}
 372
 373static inline void __list_cut_position(struct list_head *list,
 374                struct list_head *head, struct list_head *entry)
 375{
 376        struct list_head *new_first = entry->next;
 377        list->next = head->next;
 378        list->next->prev = list;
 379        list->prev = entry;
 380        entry->next = list;
 381        head->next = new_first;
 382        new_first->prev = head;
 383}
 384
 385/**
 386 * list_cut_position - cut a list into two
 387 * @list: a new list to add all removed entries
 388 * @head: a list with entries
 389 * @entry: an entry within head, could be the head itself
 390 *      and if so we won't cut the list
 391 *
 392 * This helper moves the initial part of @head, up to and
 393 * including @entry, from @head to @list. You should
 394 * pass on @entry an element you know is on @head. @list
 395 * should be an empty list or a list you do not care about
 396 * losing its data.
 397 *
 398 */
 399static inline void list_cut_position(struct list_head *list,
 400                struct list_head *head, struct list_head *entry)
 401{
 402        if (list_empty(head))
 403                return;
 404        if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
 405                return;
 406        if (list_is_head(entry, head))
 407                INIT_LIST_HEAD(list);
 408        else
 409                __list_cut_position(list, head, entry);
 410}
 411
 412/**
 413 * list_cut_before - cut a list into two, before given entry
 414 * @list: a new list to add all removed entries
 415 * @head: a list with entries
 416 * @entry: an entry within head, could be the head itself
 417 *
 418 * This helper moves the initial part of @head, up to but
 419 * excluding @entry, from @head to @list.  You should pass
 420 * in @entry an element you know is on @head.  @list should
 421 * be an empty list or a list you do not care about losing
 422 * its data.
 423 * If @entry == @head, all entries on @head are moved to
 424 * @list.
 425 */
 426static inline void list_cut_before(struct list_head *list,
 427                                   struct list_head *head,
 428                                   struct list_head *entry)
 429{
 430        if (head->next == entry) {
 431                INIT_LIST_HEAD(list);
 432                return;
 433        }
 434        list->next = head->next;
 435        list->next->prev = list;
 436        list->prev = entry->prev;
 437        list->prev->next = list;
 438        head->next = entry;
 439        entry->prev = head;
 440}
 441
 442static inline void __list_splice(const struct list_head *list,
 443                                 struct list_head *prev,
 444                                 struct list_head *next)
 445{
 446        struct list_head *first = list->next;
 447        struct list_head *last = list->prev;
 448
 449        first->prev = prev;
 450        prev->next = first;
 451
 452        last->next = next;
 453        next->prev = last;
 454}
 455
 456/**
 457 * list_splice - join two lists, this is designed for stacks
 458 * @list: the new list to add.
 459 * @head: the place to add it in the first list.
 460 */
 461static inline void list_splice(const struct list_head *list,
 462                                struct list_head *head)
 463{
 464        if (!list_empty(list))
 465                __list_splice(list, head, head->next);
 466}
 467
 468/**
 469 * list_splice_tail - join two lists, each list being a queue
 470 * @list: the new list to add.
 471 * @head: the place to add it in the first list.
 472 */
 473static inline void list_splice_tail(struct list_head *list,
 474                                struct list_head *head)
 475{
 476        if (!list_empty(list))
 477                __list_splice(list, head->prev, head);
 478}
 479
 480/**
 481 * list_splice_init - join two lists and reinitialise the emptied list.
 482 * @list: the new list to add.
 483 * @head: the place to add it in the first list.
 484 *
 485 * The list at @list is reinitialised
 486 */
 487static inline void list_splice_init(struct list_head *list,
 488                                    struct list_head *head)
 489{
 490        if (!list_empty(list)) {
 491                __list_splice(list, head, head->next);
 492                INIT_LIST_HEAD(list);
 493        }
 494}
 495
 496/**
 497 * list_splice_tail_init - join two lists and reinitialise the emptied list
 498 * @list: the new list to add.
 499 * @head: the place to add it in the first list.
 500 *
 501 * Each of the lists is a queue.
 502 * The list at @list is reinitialised
 503 */
 504static inline void list_splice_tail_init(struct list_head *list,
 505                                         struct list_head *head)
 506{
 507        if (!list_empty(list)) {
 508                __list_splice(list, head->prev, head);
 509                INIT_LIST_HEAD(list);
 510        }
 511}
 512
 513/**
 514 * list_entry - get the struct for this entry
 515 * @ptr:        the &struct list_head pointer.
 516 * @type:       the type of the struct this is embedded in.
 517 * @member:     the name of the list_head within the struct.
 518 */
 519#define list_entry(ptr, type, member) \
 520        container_of(ptr, type, member)
 521
 522/**
 523 * list_first_entry - get the first element from a list
 524 * @ptr:        the list head to take the element from.
 525 * @type:       the type of the struct this is embedded in.
 526 * @member:     the name of the list_head within the struct.
 527 *
 528 * Note, that list is expected to be not empty.
 529 */
 530#define list_first_entry(ptr, type, member) \
 531        list_entry((ptr)->next, type, member)
 532
 533/**
 534 * list_last_entry - get the last element from a list
 535 * @ptr:        the list head to take the element from.
 536 * @type:       the type of the struct this is embedded in.
 537 * @member:     the name of the list_head within the struct.
 538 *
 539 * Note, that list is expected to be not empty.
 540 */
 541#define list_last_entry(ptr, type, member) \
 542        list_entry((ptr)->prev, type, member)
 543
 544/**
 545 * list_first_entry_or_null - get the first element from a list
 546 * @ptr:        the list head to take the element from.
 547 * @type:       the type of the struct this is embedded in.
 548 * @member:     the name of the list_head within the struct.
 549 *
 550 * Note that if the list is empty, it returns NULL.
 551 */
 552#define list_first_entry_or_null(ptr, type, member) ({ \
 553        struct list_head *head__ = (ptr); \
 554        struct list_head *pos__ = READ_ONCE(head__->next); \
 555        pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
 556})
 557
 558/**
 559 * list_next_entry - get the next element in list
 560 * @pos:        the type * to cursor
 561 * @member:     the name of the list_head within the struct.
 562 */
 563#define list_next_entry(pos, member) \
 564        list_entry((pos)->member.next, typeof(*(pos)), member)
 565
 566/**
 567 * list_prev_entry - get the prev element in list
 568 * @pos:        the type * to cursor
 569 * @member:     the name of the list_head within the struct.
 570 */
 571#define list_prev_entry(pos, member) \
 572        list_entry((pos)->member.prev, typeof(*(pos)), member)
 573
 574/**
 575 * list_for_each        -       iterate over a list
 576 * @pos:        the &struct list_head to use as a loop cursor.
 577 * @head:       the head for your list.
 578 */
 579#define list_for_each(pos, head) \
 580        for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
 581
 582/**
 583 * list_for_each_continue - continue iteration over a list
 584 * @pos:        the &struct list_head to use as a loop cursor.
 585 * @head:       the head for your list.
 586 *
 587 * Continue to iterate over a list, continuing after the current position.
 588 */
 589#define list_for_each_continue(pos, head) \
 590        for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
 591
 592/**
 593 * list_for_each_prev   -       iterate over a list backwards
 594 * @pos:        the &struct list_head to use as a loop cursor.
 595 * @head:       the head for your list.
 596 */
 597#define list_for_each_prev(pos, head) \
 598        for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
 599
 600/**
 601 * list_for_each_safe - iterate over a list safe against removal of list entry
 602 * @pos:        the &struct list_head to use as a loop cursor.
 603 * @n:          another &struct list_head to use as temporary storage
 604 * @head:       the head for your list.
 605 */
 606#define list_for_each_safe(pos, n, head) \
 607        for (pos = (head)->next, n = pos->next; \
 608             !list_is_head(pos, (head)); \
 609             pos = n, n = pos->next)
 610
 611/**
 612 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 613 * @pos:        the &struct list_head to use as a loop cursor.
 614 * @n:          another &struct list_head to use as temporary storage
 615 * @head:       the head for your list.
 616 */
 617#define list_for_each_prev_safe(pos, n, head) \
 618        for (pos = (head)->prev, n = pos->prev; \
 619             !list_is_head(pos, (head)); \
 620             pos = n, n = pos->prev)
 621
 622/**
 623 * list_entry_is_head - test if the entry points to the head of the list
 624 * @pos:        the type * to cursor
 625 * @head:       the head for your list.
 626 * @member:     the name of the list_head within the struct.
 627 */
 628#define list_entry_is_head(pos, head, member)                           \
 629        (&pos->member == (head))
 630
 631/**
 632 * list_for_each_entry  -       iterate over list of given type
 633 * @pos:        the type * to use as a loop cursor.
 634 * @head:       the head for your list.
 635 * @member:     the name of the list_head within the struct.
 636 */
 637#define list_for_each_entry(pos, head, member)                          \
 638        for (pos = list_first_entry(head, typeof(*pos), member);        \
 639             !list_entry_is_head(pos, head, member);                    \
 640             pos = list_next_entry(pos, member))
 641
 642/**
 643 * list_for_each_entry_reverse - iterate backwards over list of given type.
 644 * @pos:        the type * to use as a loop cursor.
 645 * @head:       the head for your list.
 646 * @member:     the name of the list_head within the struct.
 647 */
 648#define list_for_each_entry_reverse(pos, head, member)                  \
 649        for (pos = list_last_entry(head, typeof(*pos), member);         \
 650             !list_entry_is_head(pos, head, member);                    \
 651             pos = list_prev_entry(pos, member))
 652
 653/**
 654 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 655 * @pos:        the type * to use as a start point
 656 * @head:       the head of the list
 657 * @member:     the name of the list_head within the struct.
 658 *
 659 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 660 */
 661#define list_prepare_entry(pos, head, member) \
 662        ((pos) ? : list_entry(head, typeof(*pos), member))
 663
 664/**
 665 * list_for_each_entry_continue - continue iteration over list of given type
 666 * @pos:        the type * to use as a loop cursor.
 667 * @head:       the head for your list.
 668 * @member:     the name of the list_head within the struct.
 669 *
 670 * Continue to iterate over list of given type, continuing after
 671 * the current position.
 672 */
 673#define list_for_each_entry_continue(pos, head, member)                 \
 674        for (pos = list_next_entry(pos, member);                        \
 675             !list_entry_is_head(pos, head, member);                    \
 676             pos = list_next_entry(pos, member))
 677
 678/**
 679 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 680 * @pos:        the type * to use as a loop cursor.
 681 * @head:       the head for your list.
 682 * @member:     the name of the list_head within the struct.
 683 *
 684 * Start to iterate over list of given type backwards, continuing after
 685 * the current position.
 686 */
 687#define list_for_each_entry_continue_reverse(pos, head, member)         \
 688        for (pos = list_prev_entry(pos, member);                        \
 689             !list_entry_is_head(pos, head, member);                    \
 690             pos = list_prev_entry(pos, member))
 691
 692/**
 693 * list_for_each_entry_from - iterate over list of given type from the current point
 694 * @pos:        the type * to use as a loop cursor.
 695 * @head:       the head for your list.
 696 * @member:     the name of the list_head within the struct.
 697 *
 698 * Iterate over list of given type, continuing from current position.
 699 */
 700#define list_for_each_entry_from(pos, head, member)                     \
 701        for (; !list_entry_is_head(pos, head, member);                  \
 702             pos = list_next_entry(pos, member))
 703
 704/**
 705 * list_for_each_entry_from_reverse - iterate backwards over list of given type
 706 *                                    from the current point
 707 * @pos:        the type * to use as a loop cursor.
 708 * @head:       the head for your list.
 709 * @member:     the name of the list_head within the struct.
 710 *
 711 * Iterate backwards over list of given type, continuing from current position.
 712 */
 713#define list_for_each_entry_from_reverse(pos, head, member)             \
 714        for (; !list_entry_is_head(pos, head, member);                  \
 715             pos = list_prev_entry(pos, member))
 716
 717/**
 718 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 719 * @pos:        the type * to use as a loop cursor.
 720 * @n:          another type * to use as temporary storage
 721 * @head:       the head for your list.
 722 * @member:     the name of the list_head within the struct.
 723 */
 724#define list_for_each_entry_safe(pos, n, head, member)                  \
 725        for (pos = list_first_entry(head, typeof(*pos), member),        \
 726                n = list_next_entry(pos, member);                       \
 727             !list_entry_is_head(pos, head, member);                    \
 728             pos = n, n = list_next_entry(n, member))
 729
 730/**
 731 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 732 * @pos:        the type * to use as a loop cursor.
 733 * @n:          another type * to use as temporary storage
 734 * @head:       the head for your list.
 735 * @member:     the name of the list_head within the struct.
 736 *
 737 * Iterate over list of given type, continuing after current point,
 738 * safe against removal of list entry.
 739 */
 740#define list_for_each_entry_safe_continue(pos, n, head, member)                 \
 741        for (pos = list_next_entry(pos, member),                                \
 742                n = list_next_entry(pos, member);                               \
 743             !list_entry_is_head(pos, head, member);                            \
 744             pos = n, n = list_next_entry(n, member))
 745
 746/**
 747 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 748 * @pos:        the type * to use as a loop cursor.
 749 * @n:          another type * to use as temporary storage
 750 * @head:       the head for your list.
 751 * @member:     the name of the list_head within the struct.
 752 *
 753 * Iterate over list of given type from current point, safe against
 754 * removal of list entry.
 755 */
 756#define list_for_each_entry_safe_from(pos, n, head, member)                     \
 757        for (n = list_next_entry(pos, member);                                  \
 758             !list_entry_is_head(pos, head, member);                            \
 759             pos = n, n = list_next_entry(n, member))
 760
 761/**
 762 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 763 * @pos:        the type * to use as a loop cursor.
 764 * @n:          another type * to use as temporary storage
 765 * @head:       the head for your list.
 766 * @member:     the name of the list_head within the struct.
 767 *
 768 * Iterate backwards over list of given type, safe against removal
 769 * of list entry.
 770 */
 771#define list_for_each_entry_safe_reverse(pos, n, head, member)          \
 772        for (pos = list_last_entry(head, typeof(*pos), member),         \
 773                n = list_prev_entry(pos, member);                       \
 774             !list_entry_is_head(pos, head, member);                    \
 775             pos = n, n = list_prev_entry(n, member))
 776
 777/**
 778 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 779 * @pos:        the loop cursor used in the list_for_each_entry_safe loop
 780 * @n:          temporary storage used in list_for_each_entry_safe
 781 * @member:     the name of the list_head within the struct.
 782 *
 783 * list_safe_reset_next is not safe to use in general if the list may be
 784 * modified concurrently (eg. the lock is dropped in the loop body). An
 785 * exception to this is if the cursor element (pos) is pinned in the list,
 786 * and list_safe_reset_next is called after re-taking the lock and before
 787 * completing the current iteration of the loop body.
 788 */
 789#define list_safe_reset_next(pos, n, member)                            \
 790        n = list_next_entry(pos, member)
 791
 792/*
 793 * Double linked lists with a single pointer list head.
 794 * Mostly useful for hash tables where the two pointer list head is
 795 * too wasteful.
 796 * You lose the ability to access the tail in O(1).
 797 */
 798
 799#define HLIST_HEAD_INIT { .first = NULL }
 800#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
 801#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
 802static inline void INIT_HLIST_NODE(struct hlist_node *h)
 803{
 804        h->next = NULL;
 805        h->pprev = NULL;
 806}
 807
 808/**
 809 * hlist_unhashed - Has node been removed from list and reinitialized?
 810 * @h: Node to be checked
 811 *
 812 * Not that not all removal functions will leave a node in unhashed
 813 * state.  For example, hlist_nulls_del_init_rcu() does leave the
 814 * node in unhashed state, but hlist_nulls_del() does not.
 815 */
 816static inline int hlist_unhashed(const struct hlist_node *h)
 817{
 818        return !h->pprev;
 819}
 820
 821/**
 822 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
 823 * @h: Node to be checked
 824 *
 825 * This variant of hlist_unhashed() must be used in lockless contexts
 826 * to avoid potential load-tearing.  The READ_ONCE() is paired with the
 827 * various WRITE_ONCE() in hlist helpers that are defined below.
 828 */
 829static inline int hlist_unhashed_lockless(const struct hlist_node *h)
 830{
 831        return !READ_ONCE(h->pprev);
 832}
 833
 834/**
 835 * hlist_empty - Is the specified hlist_head structure an empty hlist?
 836 * @h: Structure to check.
 837 */
 838static inline int hlist_empty(const struct hlist_head *h)
 839{
 840        return !READ_ONCE(h->first);
 841}
 842
 843static inline void __hlist_del(struct hlist_node *n)
 844{
 845        struct hlist_node *next = n->next;
 846        struct hlist_node **pprev = n->pprev;
 847
 848        WRITE_ONCE(*pprev, next);
 849        if (next)
 850                WRITE_ONCE(next->pprev, pprev);
 851}
 852
 853/**
 854 * hlist_del - Delete the specified hlist_node from its list
 855 * @n: Node to delete.
 856 *
 857 * Note that this function leaves the node in hashed state.  Use
 858 * hlist_del_init() or similar instead to unhash @n.
 859 */
 860static inline void hlist_del(struct hlist_node *n)
 861{
 862        __hlist_del(n);
 863        n->next = LIST_POISON1;
 864        n->pprev = LIST_POISON2;
 865}
 866
 867/**
 868 * hlist_del_init - Delete the specified hlist_node from its list and initialize
 869 * @n: Node to delete.
 870 *
 871 * Note that this function leaves the node in unhashed state.
 872 */
 873static inline void hlist_del_init(struct hlist_node *n)
 874{
 875        if (!hlist_unhashed(n)) {
 876                __hlist_del(n);
 877                INIT_HLIST_NODE(n);
 878        }
 879}
 880
 881/**
 882 * hlist_add_head - add a new entry at the beginning of the hlist
 883 * @n: new entry to be added
 884 * @h: hlist head to add it after
 885 *
 886 * Insert a new entry after the specified head.
 887 * This is good for implementing stacks.
 888 */
 889static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
 890{
 891        struct hlist_node *first = h->first;
 892        WRITE_ONCE(n->next, first);
 893        if (first)
 894                WRITE_ONCE(first->pprev, &n->next);
 895        WRITE_ONCE(h->first, n);
 896        WRITE_ONCE(n->pprev, &h->first);
 897}
 898
 899/**
 900 * hlist_add_before - add a new entry before the one specified
 901 * @n: new entry to be added
 902 * @next: hlist node to add it before, which must be non-NULL
 903 */
 904static inline void hlist_add_before(struct hlist_node *n,
 905                                    struct hlist_node *next)
 906{
 907        WRITE_ONCE(n->pprev, next->pprev);
 908        WRITE_ONCE(n->next, next);
 909        WRITE_ONCE(next->pprev, &n->next);
 910        WRITE_ONCE(*(n->pprev), n);
 911}
 912
 913/**
 914 * hlist_add_behind - add a new entry after the one specified
 915 * @n: new entry to be added
 916 * @prev: hlist node to add it after, which must be non-NULL
 917 */
 918static inline void hlist_add_behind(struct hlist_node *n,
 919                                    struct hlist_node *prev)
 920{
 921        WRITE_ONCE(n->next, prev->next);
 922        WRITE_ONCE(prev->next, n);
 923        WRITE_ONCE(n->pprev, &prev->next);
 924
 925        if (n->next)
 926                WRITE_ONCE(n->next->pprev, &n->next);
 927}
 928
 929/**
 930 * hlist_add_fake - create a fake hlist consisting of a single headless node
 931 * @n: Node to make a fake list out of
 932 *
 933 * This makes @n appear to be its own predecessor on a headless hlist.
 934 * The point of this is to allow things like hlist_del() to work correctly
 935 * in cases where there is no list.
 936 */
 937static inline void hlist_add_fake(struct hlist_node *n)
 938{
 939        n->pprev = &n->next;
 940}
 941
 942/**
 943 * hlist_fake: Is this node a fake hlist?
 944 * @h: Node to check for being a self-referential fake hlist.
 945 */
 946static inline bool hlist_fake(struct hlist_node *h)
 947{
 948        return h->pprev == &h->next;
 949}
 950
 951/**
 952 * hlist_is_singular_node - is node the only element of the specified hlist?
 953 * @n: Node to check for singularity.
 954 * @h: Header for potentially singular list.
 955 *
 956 * Check whether the node is the only node of the head without
 957 * accessing head, thus avoiding unnecessary cache misses.
 958 */
 959static inline bool
 960hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
 961{
 962        return !n->next && n->pprev == &h->first;
 963}
 964
 965/**
 966 * hlist_move_list - Move an hlist
 967 * @old: hlist_head for old list.
 968 * @new: hlist_head for new list.
 969 *
 970 * Move a list from one list head to another. Fixup the pprev
 971 * reference of the first entry if it exists.
 972 */
 973static inline void hlist_move_list(struct hlist_head *old,
 974                                   struct hlist_head *new)
 975{
 976        new->first = old->first;
 977        if (new->first)
 978                new->first->pprev = &new->first;
 979        old->first = NULL;
 980}
 981
 982#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
 983
 984#define hlist_for_each(pos, head) \
 985        for (pos = (head)->first; pos ; pos = pos->next)
 986
 987#define hlist_for_each_safe(pos, n, head) \
 988        for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
 989             pos = n)
 990
 991#define hlist_entry_safe(ptr, type, member) \
 992        ({ typeof(ptr) ____ptr = (ptr); \
 993           ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
 994        })
 995
 996/**
 997 * hlist_for_each_entry - iterate over list of given type
 998 * @pos:        the type * to use as a loop cursor.
 999 * @head:       the head for your list.
1000 * @member:     the name of the hlist_node within the struct.
1001 */
1002#define hlist_for_each_entry(pos, head, member)                         \
1003        for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1004             pos;                                                       \
1005             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1006
1007/**
1008 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1009 * @pos:        the type * to use as a loop cursor.
1010 * @member:     the name of the hlist_node within the struct.
1011 */
1012#define hlist_for_each_entry_continue(pos, member)                      \
1013        for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1014             pos;                                                       \
1015             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1016
1017/**
1018 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1019 * @pos:        the type * to use as a loop cursor.
1020 * @member:     the name of the hlist_node within the struct.
1021 */
1022#define hlist_for_each_entry_from(pos, member)                          \
1023        for (; pos;                                                     \
1024             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1025
1026/**
1027 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1028 * @pos:        the type * to use as a loop cursor.
1029 * @n:          a &struct hlist_node to use as temporary storage
1030 * @head:       the head for your list.
1031 * @member:     the name of the hlist_node within the struct.
1032 */
1033#define hlist_for_each_entry_safe(pos, n, head, member)                 \
1034        for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1035             pos && ({ n = pos->member.next; 1; });                     \
1036             pos = hlist_entry_safe(n, typeof(*pos), member))
1037
1038#endif
1039