linux/include/linux/perf_event.h
<<
>>
Prefs
   1/*
   2 * Performance events:
   3 *
   4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Data type definitions, declarations, prototypes.
   9 *
  10 *    Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 * For licencing details see kernel-base/COPYING
  13 */
  14#ifndef _LINUX_PERF_EVENT_H
  15#define _LINUX_PERF_EVENT_H
  16
  17#include <uapi/linux/perf_event.h>
  18#include <uapi/linux/bpf_perf_event.h>
  19
  20/*
  21 * Kernel-internal data types and definitions:
  22 */
  23
  24#ifdef CONFIG_PERF_EVENTS
  25# include <asm/perf_event.h>
  26# include <asm/local64.h>
  27#endif
  28
  29#define PERF_GUEST_ACTIVE       0x01
  30#define PERF_GUEST_USER 0x02
  31
  32struct perf_guest_info_callbacks {
  33        unsigned int                    (*state)(void);
  34        unsigned long                   (*get_ip)(void);
  35        unsigned int                    (*handle_intel_pt_intr)(void);
  36};
  37
  38#ifdef CONFIG_HAVE_HW_BREAKPOINT
  39#include <asm/hw_breakpoint.h>
  40#endif
  41
  42#include <linux/list.h>
  43#include <linux/mutex.h>
  44#include <linux/rculist.h>
  45#include <linux/rcupdate.h>
  46#include <linux/spinlock.h>
  47#include <linux/hrtimer.h>
  48#include <linux/fs.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/workqueue.h>
  51#include <linux/ftrace.h>
  52#include <linux/cpu.h>
  53#include <linux/irq_work.h>
  54#include <linux/static_key.h>
  55#include <linux/jump_label_ratelimit.h>
  56#include <linux/atomic.h>
  57#include <linux/sysfs.h>
  58#include <linux/perf_regs.h>
  59#include <linux/cgroup.h>
  60#include <linux/refcount.h>
  61#include <linux/security.h>
  62#include <linux/static_call.h>
  63#include <asm/local.h>
  64
  65struct perf_callchain_entry {
  66        __u64                           nr;
  67        __u64                           ip[]; /* /proc/sys/kernel/perf_event_max_stack */
  68};
  69
  70struct perf_callchain_entry_ctx {
  71        struct perf_callchain_entry *entry;
  72        u32                         max_stack;
  73        u32                         nr;
  74        short                       contexts;
  75        bool                        contexts_maxed;
  76};
  77
  78typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
  79                                     unsigned long off, unsigned long len);
  80
  81struct perf_raw_frag {
  82        union {
  83                struct perf_raw_frag    *next;
  84                unsigned long           pad;
  85        };
  86        perf_copy_f                     copy;
  87        void                            *data;
  88        u32                             size;
  89} __packed;
  90
  91struct perf_raw_record {
  92        struct perf_raw_frag            frag;
  93        u32                             size;
  94};
  95
  96/*
  97 * branch stack layout:
  98 *  nr: number of taken branches stored in entries[]
  99 *  hw_idx: The low level index of raw branch records
 100 *          for the most recent branch.
 101 *          -1ULL means invalid/unknown.
 102 *
 103 * Note that nr can vary from sample to sample
 104 * branches (to, from) are stored from most recent
 105 * to least recent, i.e., entries[0] contains the most
 106 * recent branch.
 107 * The entries[] is an abstraction of raw branch records,
 108 * which may not be stored in age order in HW, e.g. Intel LBR.
 109 * The hw_idx is to expose the low level index of raw
 110 * branch record for the most recent branch aka entries[0].
 111 * The hw_idx index is between -1 (unknown) and max depth,
 112 * which can be retrieved in /sys/devices/cpu/caps/branches.
 113 * For the architectures whose raw branch records are
 114 * already stored in age order, the hw_idx should be 0.
 115 */
 116struct perf_branch_stack {
 117        __u64                           nr;
 118        __u64                           hw_idx;
 119        struct perf_branch_entry        entries[];
 120};
 121
 122struct task_struct;
 123
 124/*
 125 * extra PMU register associated with an event
 126 */
 127struct hw_perf_event_extra {
 128        u64             config; /* register value */
 129        unsigned int    reg;    /* register address or index */
 130        int             alloc;  /* extra register already allocated */
 131        int             idx;    /* index in shared_regs->regs[] */
 132};
 133
 134/**
 135 * hw_perf_event::flag values
 136 *
 137 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
 138 * usage.
 139 */
 140#define PERF_EVENT_FLAG_ARCH                    0x0000ffff
 141#define PERF_EVENT_FLAG_USER_READ_CNT           0x80000000
 142
 143/**
 144 * struct hw_perf_event - performance event hardware details:
 145 */
 146struct hw_perf_event {
 147#ifdef CONFIG_PERF_EVENTS
 148        union {
 149                struct { /* hardware */
 150                        u64             config;
 151                        u64             last_tag;
 152                        unsigned long   config_base;
 153                        unsigned long   event_base;
 154                        int             event_base_rdpmc;
 155                        int             idx;
 156                        int             last_cpu;
 157                        int             flags;
 158
 159                        struct hw_perf_event_extra extra_reg;
 160                        struct hw_perf_event_extra branch_reg;
 161                };
 162                struct { /* software */
 163                        struct hrtimer  hrtimer;
 164                };
 165                struct { /* tracepoint */
 166                        /* for tp_event->class */
 167                        struct list_head        tp_list;
 168                };
 169                struct { /* amd_power */
 170                        u64     pwr_acc;
 171                        u64     ptsc;
 172                };
 173#ifdef CONFIG_HAVE_HW_BREAKPOINT
 174                struct { /* breakpoint */
 175                        /*
 176                         * Crufty hack to avoid the chicken and egg
 177                         * problem hw_breakpoint has with context
 178                         * creation and event initalization.
 179                         */
 180                        struct arch_hw_breakpoint       info;
 181                        struct list_head                bp_list;
 182                };
 183#endif
 184                struct { /* amd_iommu */
 185                        u8      iommu_bank;
 186                        u8      iommu_cntr;
 187                        u16     padding;
 188                        u64     conf;
 189                        u64     conf1;
 190                };
 191        };
 192        /*
 193         * If the event is a per task event, this will point to the task in
 194         * question. See the comment in perf_event_alloc().
 195         */
 196        struct task_struct              *target;
 197
 198        /*
 199         * PMU would store hardware filter configuration
 200         * here.
 201         */
 202        void                            *addr_filters;
 203
 204        /* Last sync'ed generation of filters */
 205        unsigned long                   addr_filters_gen;
 206
 207/*
 208 * hw_perf_event::state flags; used to track the PERF_EF_* state.
 209 */
 210#define PERF_HES_STOPPED        0x01 /* the counter is stopped */
 211#define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
 212#define PERF_HES_ARCH           0x04
 213
 214        int                             state;
 215
 216        /*
 217         * The last observed hardware counter value, updated with a
 218         * local64_cmpxchg() such that pmu::read() can be called nested.
 219         */
 220        local64_t                       prev_count;
 221
 222        /*
 223         * The period to start the next sample with.
 224         */
 225        u64                             sample_period;
 226
 227        union {
 228                struct { /* Sampling */
 229                        /*
 230                         * The period we started this sample with.
 231                         */
 232                        u64                             last_period;
 233
 234                        /*
 235                         * However much is left of the current period;
 236                         * note that this is a full 64bit value and
 237                         * allows for generation of periods longer
 238                         * than hardware might allow.
 239                         */
 240                        local64_t                       period_left;
 241                };
 242                struct { /* Topdown events counting for context switch */
 243                        u64                             saved_metric;
 244                        u64                             saved_slots;
 245                };
 246        };
 247
 248        /*
 249         * State for throttling the event, see __perf_event_overflow() and
 250         * perf_adjust_freq_unthr_context().
 251         */
 252        u64                             interrupts_seq;
 253        u64                             interrupts;
 254
 255        /*
 256         * State for freq target events, see __perf_event_overflow() and
 257         * perf_adjust_freq_unthr_context().
 258         */
 259        u64                             freq_time_stamp;
 260        u64                             freq_count_stamp;
 261#endif
 262};
 263
 264struct perf_event;
 265
 266/*
 267 * Common implementation detail of pmu::{start,commit,cancel}_txn
 268 */
 269#define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
 270#define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
 271
 272/**
 273 * pmu::capabilities flags
 274 */
 275#define PERF_PMU_CAP_NO_INTERRUPT               0x0001
 276#define PERF_PMU_CAP_NO_NMI                     0x0002
 277#define PERF_PMU_CAP_AUX_NO_SG                  0x0004
 278#define PERF_PMU_CAP_EXTENDED_REGS              0x0008
 279#define PERF_PMU_CAP_EXCLUSIVE                  0x0010
 280#define PERF_PMU_CAP_ITRACE                     0x0020
 281#define PERF_PMU_CAP_HETEROGENEOUS_CPUS         0x0040
 282#define PERF_PMU_CAP_NO_EXCLUDE                 0x0080
 283#define PERF_PMU_CAP_AUX_OUTPUT                 0x0100
 284#define PERF_PMU_CAP_EXTENDED_HW_TYPE           0x0200
 285
 286struct perf_output_handle;
 287
 288/**
 289 * struct pmu - generic performance monitoring unit
 290 */
 291struct pmu {
 292        struct list_head                entry;
 293
 294        struct module                   *module;
 295        struct device                   *dev;
 296        const struct attribute_group    **attr_groups;
 297        const struct attribute_group    **attr_update;
 298        const char                      *name;
 299        int                             type;
 300
 301        /*
 302         * various common per-pmu feature flags
 303         */
 304        int                             capabilities;
 305
 306        int __percpu                    *pmu_disable_count;
 307        struct perf_cpu_context __percpu *pmu_cpu_context;
 308        atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
 309        int                             task_ctx_nr;
 310        int                             hrtimer_interval_ms;
 311
 312        /* number of address filters this PMU can do */
 313        unsigned int                    nr_addr_filters;
 314
 315        /*
 316         * Fully disable/enable this PMU, can be used to protect from the PMI
 317         * as well as for lazy/batch writing of the MSRs.
 318         */
 319        void (*pmu_enable)              (struct pmu *pmu); /* optional */
 320        void (*pmu_disable)             (struct pmu *pmu); /* optional */
 321
 322        /*
 323         * Try and initialize the event for this PMU.
 324         *
 325         * Returns:
 326         *  -ENOENT     -- @event is not for this PMU
 327         *
 328         *  -ENODEV     -- @event is for this PMU but PMU not present
 329         *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
 330         *  -EINVAL     -- @event is for this PMU but @event is not valid
 331         *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
 332         *  -EACCES     -- @event is for this PMU, @event is valid, but no privileges
 333         *
 334         *  0           -- @event is for this PMU and valid
 335         *
 336         * Other error return values are allowed.
 337         */
 338        int (*event_init)               (struct perf_event *event);
 339
 340        /*
 341         * Notification that the event was mapped or unmapped.  Called
 342         * in the context of the mapping task.
 343         */
 344        void (*event_mapped)            (struct perf_event *event, struct mm_struct *mm); /* optional */
 345        void (*event_unmapped)          (struct perf_event *event, struct mm_struct *mm); /* optional */
 346
 347        /*
 348         * Flags for ->add()/->del()/ ->start()/->stop(). There are
 349         * matching hw_perf_event::state flags.
 350         */
 351#define PERF_EF_START   0x01            /* start the counter when adding    */
 352#define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
 353#define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
 354
 355        /*
 356         * Adds/Removes a counter to/from the PMU, can be done inside a
 357         * transaction, see the ->*_txn() methods.
 358         *
 359         * The add/del callbacks will reserve all hardware resources required
 360         * to service the event, this includes any counter constraint
 361         * scheduling etc.
 362         *
 363         * Called with IRQs disabled and the PMU disabled on the CPU the event
 364         * is on.
 365         *
 366         * ->add() called without PERF_EF_START should result in the same state
 367         *  as ->add() followed by ->stop().
 368         *
 369         * ->del() must always PERF_EF_UPDATE stop an event. If it calls
 370         *  ->stop() that must deal with already being stopped without
 371         *  PERF_EF_UPDATE.
 372         */
 373        int  (*add)                     (struct perf_event *event, int flags);
 374        void (*del)                     (struct perf_event *event, int flags);
 375
 376        /*
 377         * Starts/Stops a counter present on the PMU.
 378         *
 379         * The PMI handler should stop the counter when perf_event_overflow()
 380         * returns !0. ->start() will be used to continue.
 381         *
 382         * Also used to change the sample period.
 383         *
 384         * Called with IRQs disabled and the PMU disabled on the CPU the event
 385         * is on -- will be called from NMI context with the PMU generates
 386         * NMIs.
 387         *
 388         * ->stop() with PERF_EF_UPDATE will read the counter and update
 389         *  period/count values like ->read() would.
 390         *
 391         * ->start() with PERF_EF_RELOAD will reprogram the counter
 392         *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
 393         */
 394        void (*start)                   (struct perf_event *event, int flags);
 395        void (*stop)                    (struct perf_event *event, int flags);
 396
 397        /*
 398         * Updates the counter value of the event.
 399         *
 400         * For sampling capable PMUs this will also update the software period
 401         * hw_perf_event::period_left field.
 402         */
 403        void (*read)                    (struct perf_event *event);
 404
 405        /*
 406         * Group events scheduling is treated as a transaction, add
 407         * group events as a whole and perform one schedulability test.
 408         * If the test fails, roll back the whole group
 409         *
 410         * Start the transaction, after this ->add() doesn't need to
 411         * do schedulability tests.
 412         *
 413         * Optional.
 414         */
 415        void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
 416        /*
 417         * If ->start_txn() disabled the ->add() schedulability test
 418         * then ->commit_txn() is required to perform one. On success
 419         * the transaction is closed. On error the transaction is kept
 420         * open until ->cancel_txn() is called.
 421         *
 422         * Optional.
 423         */
 424        int  (*commit_txn)              (struct pmu *pmu);
 425        /*
 426         * Will cancel the transaction, assumes ->del() is called
 427         * for each successful ->add() during the transaction.
 428         *
 429         * Optional.
 430         */
 431        void (*cancel_txn)              (struct pmu *pmu);
 432
 433        /*
 434         * Will return the value for perf_event_mmap_page::index for this event,
 435         * if no implementation is provided it will default to: event->hw.idx + 1.
 436         */
 437        int (*event_idx)                (struct perf_event *event); /*optional */
 438
 439        /*
 440         * context-switches callback
 441         */
 442        void (*sched_task)              (struct perf_event_context *ctx,
 443                                        bool sched_in);
 444
 445        /*
 446         * Kmem cache of PMU specific data
 447         */
 448        struct kmem_cache               *task_ctx_cache;
 449
 450        /*
 451         * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
 452         * can be synchronized using this function. See Intel LBR callstack support
 453         * implementation and Perf core context switch handling callbacks for usage
 454         * examples.
 455         */
 456        void (*swap_task_ctx)           (struct perf_event_context *prev,
 457                                         struct perf_event_context *next);
 458                                        /* optional */
 459
 460        /*
 461         * Set up pmu-private data structures for an AUX area
 462         */
 463        void *(*setup_aux)              (struct perf_event *event, void **pages,
 464                                         int nr_pages, bool overwrite);
 465                                        /* optional */
 466
 467        /*
 468         * Free pmu-private AUX data structures
 469         */
 470        void (*free_aux)                (void *aux); /* optional */
 471
 472        /*
 473         * Take a snapshot of the AUX buffer without touching the event
 474         * state, so that preempting ->start()/->stop() callbacks does
 475         * not interfere with their logic. Called in PMI context.
 476         *
 477         * Returns the size of AUX data copied to the output handle.
 478         *
 479         * Optional.
 480         */
 481        long (*snapshot_aux)            (struct perf_event *event,
 482                                         struct perf_output_handle *handle,
 483                                         unsigned long size);
 484
 485        /*
 486         * Validate address range filters: make sure the HW supports the
 487         * requested configuration and number of filters; return 0 if the
 488         * supplied filters are valid, -errno otherwise.
 489         *
 490         * Runs in the context of the ioctl()ing process and is not serialized
 491         * with the rest of the PMU callbacks.
 492         */
 493        int (*addr_filters_validate)    (struct list_head *filters);
 494                                        /* optional */
 495
 496        /*
 497         * Synchronize address range filter configuration:
 498         * translate hw-agnostic filters into hardware configuration in
 499         * event::hw::addr_filters.
 500         *
 501         * Runs as a part of filter sync sequence that is done in ->start()
 502         * callback by calling perf_event_addr_filters_sync().
 503         *
 504         * May (and should) traverse event::addr_filters::list, for which its
 505         * caller provides necessary serialization.
 506         */
 507        void (*addr_filters_sync)       (struct perf_event *event);
 508                                        /* optional */
 509
 510        /*
 511         * Check if event can be used for aux_output purposes for
 512         * events of this PMU.
 513         *
 514         * Runs from perf_event_open(). Should return 0 for "no match"
 515         * or non-zero for "match".
 516         */
 517        int (*aux_output_match)         (struct perf_event *event);
 518                                        /* optional */
 519
 520        /*
 521         * Filter events for PMU-specific reasons.
 522         */
 523        int (*filter_match)             (struct perf_event *event); /* optional */
 524
 525        /*
 526         * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
 527         */
 528        int (*check_period)             (struct perf_event *event, u64 value); /* optional */
 529};
 530
 531enum perf_addr_filter_action_t {
 532        PERF_ADDR_FILTER_ACTION_STOP = 0,
 533        PERF_ADDR_FILTER_ACTION_START,
 534        PERF_ADDR_FILTER_ACTION_FILTER,
 535};
 536
 537/**
 538 * struct perf_addr_filter - address range filter definition
 539 * @entry:      event's filter list linkage
 540 * @path:       object file's path for file-based filters
 541 * @offset:     filter range offset
 542 * @size:       filter range size (size==0 means single address trigger)
 543 * @action:     filter/start/stop
 544 *
 545 * This is a hardware-agnostic filter configuration as specified by the user.
 546 */
 547struct perf_addr_filter {
 548        struct list_head        entry;
 549        struct path             path;
 550        unsigned long           offset;
 551        unsigned long           size;
 552        enum perf_addr_filter_action_t  action;
 553};
 554
 555/**
 556 * struct perf_addr_filters_head - container for address range filters
 557 * @list:       list of filters for this event
 558 * @lock:       spinlock that serializes accesses to the @list and event's
 559 *              (and its children's) filter generations.
 560 * @nr_file_filters:    number of file-based filters
 561 *
 562 * A child event will use parent's @list (and therefore @lock), so they are
 563 * bundled together; see perf_event_addr_filters().
 564 */
 565struct perf_addr_filters_head {
 566        struct list_head        list;
 567        raw_spinlock_t          lock;
 568        unsigned int            nr_file_filters;
 569};
 570
 571struct perf_addr_filter_range {
 572        unsigned long           start;
 573        unsigned long           size;
 574};
 575
 576/**
 577 * enum perf_event_state - the states of an event:
 578 */
 579enum perf_event_state {
 580        PERF_EVENT_STATE_DEAD           = -4,
 581        PERF_EVENT_STATE_EXIT           = -3,
 582        PERF_EVENT_STATE_ERROR          = -2,
 583        PERF_EVENT_STATE_OFF            = -1,
 584        PERF_EVENT_STATE_INACTIVE       =  0,
 585        PERF_EVENT_STATE_ACTIVE         =  1,
 586};
 587
 588struct file;
 589struct perf_sample_data;
 590
 591typedef void (*perf_overflow_handler_t)(struct perf_event *,
 592                                        struct perf_sample_data *,
 593                                        struct pt_regs *regs);
 594
 595/*
 596 * Event capabilities. For event_caps and groups caps.
 597 *
 598 * PERF_EV_CAP_SOFTWARE: Is a software event.
 599 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
 600 * from any CPU in the package where it is active.
 601 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
 602 * cannot be a group leader. If an event with this flag is detached from the
 603 * group it is scheduled out and moved into an unrecoverable ERROR state.
 604 */
 605#define PERF_EV_CAP_SOFTWARE            BIT(0)
 606#define PERF_EV_CAP_READ_ACTIVE_PKG     BIT(1)
 607#define PERF_EV_CAP_SIBLING             BIT(2)
 608
 609#define SWEVENT_HLIST_BITS              8
 610#define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
 611
 612struct swevent_hlist {
 613        struct hlist_head               heads[SWEVENT_HLIST_SIZE];
 614        struct rcu_head                 rcu_head;
 615};
 616
 617#define PERF_ATTACH_CONTEXT     0x01
 618#define PERF_ATTACH_GROUP       0x02
 619#define PERF_ATTACH_TASK        0x04
 620#define PERF_ATTACH_TASK_DATA   0x08
 621#define PERF_ATTACH_ITRACE      0x10
 622#define PERF_ATTACH_SCHED_CB    0x20
 623#define PERF_ATTACH_CHILD       0x40
 624
 625struct bpf_prog;
 626struct perf_cgroup;
 627struct perf_buffer;
 628
 629struct pmu_event_list {
 630        raw_spinlock_t          lock;
 631        struct list_head        list;
 632};
 633
 634#define for_each_sibling_event(sibling, event)                  \
 635        if ((event)->group_leader == (event))                   \
 636                list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
 637
 638/**
 639 * struct perf_event - performance event kernel representation:
 640 */
 641struct perf_event {
 642#ifdef CONFIG_PERF_EVENTS
 643        /*
 644         * entry onto perf_event_context::event_list;
 645         *   modifications require ctx->lock
 646         *   RCU safe iterations.
 647         */
 648        struct list_head                event_entry;
 649
 650        /*
 651         * Locked for modification by both ctx->mutex and ctx->lock; holding
 652         * either sufficies for read.
 653         */
 654        struct list_head                sibling_list;
 655        struct list_head                active_list;
 656        /*
 657         * Node on the pinned or flexible tree located at the event context;
 658         */
 659        struct rb_node                  group_node;
 660        u64                             group_index;
 661        /*
 662         * We need storage to track the entries in perf_pmu_migrate_context; we
 663         * cannot use the event_entry because of RCU and we want to keep the
 664         * group in tact which avoids us using the other two entries.
 665         */
 666        struct list_head                migrate_entry;
 667
 668        struct hlist_node               hlist_entry;
 669        struct list_head                active_entry;
 670        int                             nr_siblings;
 671
 672        /* Not serialized. Only written during event initialization. */
 673        int                             event_caps;
 674        /* The cumulative AND of all event_caps for events in this group. */
 675        int                             group_caps;
 676
 677        struct perf_event               *group_leader;
 678        struct pmu                      *pmu;
 679        void                            *pmu_private;
 680
 681        enum perf_event_state           state;
 682        unsigned int                    attach_state;
 683        local64_t                       count;
 684        atomic64_t                      child_count;
 685
 686        /*
 687         * These are the total time in nanoseconds that the event
 688         * has been enabled (i.e. eligible to run, and the task has
 689         * been scheduled in, if this is a per-task event)
 690         * and running (scheduled onto the CPU), respectively.
 691         */
 692        u64                             total_time_enabled;
 693        u64                             total_time_running;
 694        u64                             tstamp;
 695
 696        struct perf_event_attr          attr;
 697        u16                             header_size;
 698        u16                             id_header_size;
 699        u16                             read_size;
 700        struct hw_perf_event            hw;
 701
 702        struct perf_event_context       *ctx;
 703        atomic_long_t                   refcount;
 704
 705        /*
 706         * These accumulate total time (in nanoseconds) that children
 707         * events have been enabled and running, respectively.
 708         */
 709        atomic64_t                      child_total_time_enabled;
 710        atomic64_t                      child_total_time_running;
 711
 712        /*
 713         * Protect attach/detach and child_list:
 714         */
 715        struct mutex                    child_mutex;
 716        struct list_head                child_list;
 717        struct perf_event               *parent;
 718
 719        int                             oncpu;
 720        int                             cpu;
 721
 722        struct list_head                owner_entry;
 723        struct task_struct              *owner;
 724
 725        /* mmap bits */
 726        struct mutex                    mmap_mutex;
 727        atomic_t                        mmap_count;
 728
 729        struct perf_buffer              *rb;
 730        struct list_head                rb_entry;
 731        unsigned long                   rcu_batches;
 732        int                             rcu_pending;
 733
 734        /* poll related */
 735        wait_queue_head_t               waitq;
 736        struct fasync_struct            *fasync;
 737
 738        /* delayed work for NMIs and such */
 739        int                             pending_wakeup;
 740        int                             pending_kill;
 741        int                             pending_disable;
 742        unsigned long                   pending_addr;   /* SIGTRAP */
 743        struct irq_work                 pending;
 744
 745        atomic_t                        event_limit;
 746
 747        /* address range filters */
 748        struct perf_addr_filters_head   addr_filters;
 749        /* vma address array for file-based filders */
 750        struct perf_addr_filter_range   *addr_filter_ranges;
 751        unsigned long                   addr_filters_gen;
 752
 753        /* for aux_output events */
 754        struct perf_event               *aux_event;
 755
 756        void (*destroy)(struct perf_event *);
 757        struct rcu_head                 rcu_head;
 758
 759        struct pid_namespace            *ns;
 760        u64                             id;
 761
 762        u64                             (*clock)(void);
 763        perf_overflow_handler_t         overflow_handler;
 764        void                            *overflow_handler_context;
 765#ifdef CONFIG_BPF_SYSCALL
 766        perf_overflow_handler_t         orig_overflow_handler;
 767        struct bpf_prog                 *prog;
 768        u64                             bpf_cookie;
 769#endif
 770
 771#ifdef CONFIG_EVENT_TRACING
 772        struct trace_event_call         *tp_event;
 773        struct event_filter             *filter;
 774#ifdef CONFIG_FUNCTION_TRACER
 775        struct ftrace_ops               ftrace_ops;
 776#endif
 777#endif
 778
 779#ifdef CONFIG_CGROUP_PERF
 780        struct perf_cgroup              *cgrp; /* cgroup event is attach to */
 781#endif
 782
 783#ifdef CONFIG_SECURITY
 784        void *security;
 785#endif
 786        struct list_head                sb_list;
 787#endif /* CONFIG_PERF_EVENTS */
 788};
 789
 790
 791struct perf_event_groups {
 792        struct rb_root  tree;
 793        u64             index;
 794};
 795
 796/**
 797 * struct perf_event_context - event context structure
 798 *
 799 * Used as a container for task events and CPU events as well:
 800 */
 801struct perf_event_context {
 802        struct pmu                      *pmu;
 803        /*
 804         * Protect the states of the events in the list,
 805         * nr_active, and the list:
 806         */
 807        raw_spinlock_t                  lock;
 808        /*
 809         * Protect the list of events.  Locking either mutex or lock
 810         * is sufficient to ensure the list doesn't change; to change
 811         * the list you need to lock both the mutex and the spinlock.
 812         */
 813        struct mutex                    mutex;
 814
 815        struct list_head                active_ctx_list;
 816        struct perf_event_groups        pinned_groups;
 817        struct perf_event_groups        flexible_groups;
 818        struct list_head                event_list;
 819
 820        struct list_head                pinned_active;
 821        struct list_head                flexible_active;
 822
 823        int                             nr_events;
 824        int                             nr_active;
 825        int                             nr_user;
 826        int                             is_active;
 827        int                             nr_stat;
 828        int                             nr_freq;
 829        int                             rotate_disable;
 830        /*
 831         * Set when nr_events != nr_active, except tolerant to events not
 832         * necessary to be active due to scheduling constraints, such as cgroups.
 833         */
 834        int                             rotate_necessary;
 835        refcount_t                      refcount;
 836        struct task_struct              *task;
 837
 838        /*
 839         * Context clock, runs when context enabled.
 840         */
 841        u64                             time;
 842        u64                             timestamp;
 843        u64                             timeoffset;
 844
 845        /*
 846         * These fields let us detect when two contexts have both
 847         * been cloned (inherited) from a common ancestor.
 848         */
 849        struct perf_event_context       *parent_ctx;
 850        u64                             parent_gen;
 851        u64                             generation;
 852        int                             pin_count;
 853#ifdef CONFIG_CGROUP_PERF
 854        int                             nr_cgroups;      /* cgroup evts */
 855#endif
 856        void                            *task_ctx_data; /* pmu specific data */
 857        struct rcu_head                 rcu_head;
 858};
 859
 860/*
 861 * Number of contexts where an event can trigger:
 862 *      task, softirq, hardirq, nmi.
 863 */
 864#define PERF_NR_CONTEXTS        4
 865
 866/**
 867 * struct perf_event_cpu_context - per cpu event context structure
 868 */
 869struct perf_cpu_context {
 870        struct perf_event_context       ctx;
 871        struct perf_event_context       *task_ctx;
 872        int                             active_oncpu;
 873        int                             exclusive;
 874
 875        raw_spinlock_t                  hrtimer_lock;
 876        struct hrtimer                  hrtimer;
 877        ktime_t                         hrtimer_interval;
 878        unsigned int                    hrtimer_active;
 879
 880#ifdef CONFIG_CGROUP_PERF
 881        struct perf_cgroup              *cgrp;
 882        struct list_head                cgrp_cpuctx_entry;
 883#endif
 884
 885        struct list_head                sched_cb_entry;
 886        int                             sched_cb_usage;
 887
 888        int                             online;
 889        /*
 890         * Per-CPU storage for iterators used in visit_groups_merge. The default
 891         * storage is of size 2 to hold the CPU and any CPU event iterators.
 892         */
 893        int                             heap_size;
 894        struct perf_event               **heap;
 895        struct perf_event               *heap_default[2];
 896};
 897
 898struct perf_output_handle {
 899        struct perf_event               *event;
 900        struct perf_buffer              *rb;
 901        unsigned long                   wakeup;
 902        unsigned long                   size;
 903        u64                             aux_flags;
 904        union {
 905                void                    *addr;
 906                unsigned long           head;
 907        };
 908        int                             page;
 909};
 910
 911struct bpf_perf_event_data_kern {
 912        bpf_user_pt_regs_t *regs;
 913        struct perf_sample_data *data;
 914        struct perf_event *event;
 915};
 916
 917#ifdef CONFIG_CGROUP_PERF
 918
 919/*
 920 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 921 * This is a per-cpu dynamically allocated data structure.
 922 */
 923struct perf_cgroup_info {
 924        u64                             time;
 925        u64                             timestamp;
 926        u64                             timeoffset;
 927        int                             active;
 928};
 929
 930struct perf_cgroup {
 931        struct cgroup_subsys_state      css;
 932        struct perf_cgroup_info __percpu *info;
 933};
 934
 935/*
 936 * Must ensure cgroup is pinned (css_get) before calling
 937 * this function. In other words, we cannot call this function
 938 * if there is no cgroup event for the current CPU context.
 939 */
 940static inline struct perf_cgroup *
 941perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
 942{
 943        return container_of(task_css_check(task, perf_event_cgrp_id,
 944                                           ctx ? lockdep_is_held(&ctx->lock)
 945                                               : true),
 946                            struct perf_cgroup, css);
 947}
 948#endif /* CONFIG_CGROUP_PERF */
 949
 950#ifdef CONFIG_PERF_EVENTS
 951
 952extern void *perf_aux_output_begin(struct perf_output_handle *handle,
 953                                   struct perf_event *event);
 954extern void perf_aux_output_end(struct perf_output_handle *handle,
 955                                unsigned long size);
 956extern int perf_aux_output_skip(struct perf_output_handle *handle,
 957                                unsigned long size);
 958extern void *perf_get_aux(struct perf_output_handle *handle);
 959extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
 960extern void perf_event_itrace_started(struct perf_event *event);
 961
 962extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
 963extern void perf_pmu_unregister(struct pmu *pmu);
 964
 965extern void __perf_event_task_sched_in(struct task_struct *prev,
 966                                       struct task_struct *task);
 967extern void __perf_event_task_sched_out(struct task_struct *prev,
 968                                        struct task_struct *next);
 969extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
 970extern void perf_event_exit_task(struct task_struct *child);
 971extern void perf_event_free_task(struct task_struct *task);
 972extern void perf_event_delayed_put(struct task_struct *task);
 973extern struct file *perf_event_get(unsigned int fd);
 974extern const struct perf_event *perf_get_event(struct file *file);
 975extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
 976extern void perf_event_print_debug(void);
 977extern void perf_pmu_disable(struct pmu *pmu);
 978extern void perf_pmu_enable(struct pmu *pmu);
 979extern void perf_sched_cb_dec(struct pmu *pmu);
 980extern void perf_sched_cb_inc(struct pmu *pmu);
 981extern int perf_event_task_disable(void);
 982extern int perf_event_task_enable(void);
 983
 984extern void perf_pmu_resched(struct pmu *pmu);
 985
 986extern int perf_event_refresh(struct perf_event *event, int refresh);
 987extern void perf_event_update_userpage(struct perf_event *event);
 988extern int perf_event_release_kernel(struct perf_event *event);
 989extern struct perf_event *
 990perf_event_create_kernel_counter(struct perf_event_attr *attr,
 991                                int cpu,
 992                                struct task_struct *task,
 993                                perf_overflow_handler_t callback,
 994                                void *context);
 995extern void perf_pmu_migrate_context(struct pmu *pmu,
 996                                int src_cpu, int dst_cpu);
 997int perf_event_read_local(struct perf_event *event, u64 *value,
 998                          u64 *enabled, u64 *running);
 999extern u64 perf_event_read_value(struct perf_event *event,
1000                                 u64 *enabled, u64 *running);
1001
1002
1003struct perf_sample_data {
1004        /*
1005         * Fields set by perf_sample_data_init(), group so as to
1006         * minimize the cachelines touched.
1007         */
1008        u64                             addr;
1009        struct perf_raw_record          *raw;
1010        struct perf_branch_stack        *br_stack;
1011        u64                             period;
1012        union perf_sample_weight        weight;
1013        u64                             txn;
1014        union  perf_mem_data_src        data_src;
1015
1016        /*
1017         * The other fields, optionally {set,used} by
1018         * perf_{prepare,output}_sample().
1019         */
1020        u64                             type;
1021        u64                             ip;
1022        struct {
1023                u32     pid;
1024                u32     tid;
1025        }                               tid_entry;
1026        u64                             time;
1027        u64                             id;
1028        u64                             stream_id;
1029        struct {
1030                u32     cpu;
1031                u32     reserved;
1032        }                               cpu_entry;
1033        struct perf_callchain_entry     *callchain;
1034        u64                             aux_size;
1035
1036        struct perf_regs                regs_user;
1037        struct perf_regs                regs_intr;
1038        u64                             stack_user_size;
1039
1040        u64                             phys_addr;
1041        u64                             cgroup;
1042        u64                             data_page_size;
1043        u64                             code_page_size;
1044} ____cacheline_aligned;
1045
1046/* default value for data source */
1047#define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1048                    PERF_MEM_S(LVL, NA)   |\
1049                    PERF_MEM_S(SNOOP, NA) |\
1050                    PERF_MEM_S(LOCK, NA)  |\
1051                    PERF_MEM_S(TLB, NA))
1052
1053static inline void perf_sample_data_init(struct perf_sample_data *data,
1054                                         u64 addr, u64 period)
1055{
1056        /* remaining struct members initialized in perf_prepare_sample() */
1057        data->addr = addr;
1058        data->raw  = NULL;
1059        data->br_stack = NULL;
1060        data->period = period;
1061        data->weight.full = 0;
1062        data->data_src.val = PERF_MEM_NA;
1063        data->txn = 0;
1064}
1065
1066extern void perf_output_sample(struct perf_output_handle *handle,
1067                               struct perf_event_header *header,
1068                               struct perf_sample_data *data,
1069                               struct perf_event *event);
1070extern void perf_prepare_sample(struct perf_event_header *header,
1071                                struct perf_sample_data *data,
1072                                struct perf_event *event,
1073                                struct pt_regs *regs);
1074
1075extern int perf_event_overflow(struct perf_event *event,
1076                                 struct perf_sample_data *data,
1077                                 struct pt_regs *regs);
1078
1079extern void perf_event_output_forward(struct perf_event *event,
1080                                     struct perf_sample_data *data,
1081                                     struct pt_regs *regs);
1082extern void perf_event_output_backward(struct perf_event *event,
1083                                       struct perf_sample_data *data,
1084                                       struct pt_regs *regs);
1085extern int perf_event_output(struct perf_event *event,
1086                             struct perf_sample_data *data,
1087                             struct pt_regs *regs);
1088
1089static inline bool
1090is_default_overflow_handler(struct perf_event *event)
1091{
1092        if (likely(event->overflow_handler == perf_event_output_forward))
1093                return true;
1094        if (unlikely(event->overflow_handler == perf_event_output_backward))
1095                return true;
1096        return false;
1097}
1098
1099extern void
1100perf_event_header__init_id(struct perf_event_header *header,
1101                           struct perf_sample_data *data,
1102                           struct perf_event *event);
1103extern void
1104perf_event__output_id_sample(struct perf_event *event,
1105                             struct perf_output_handle *handle,
1106                             struct perf_sample_data *sample);
1107
1108extern void
1109perf_log_lost_samples(struct perf_event *event, u64 lost);
1110
1111static inline bool event_has_any_exclude_flag(struct perf_event *event)
1112{
1113        struct perf_event_attr *attr = &event->attr;
1114
1115        return attr->exclude_idle || attr->exclude_user ||
1116               attr->exclude_kernel || attr->exclude_hv ||
1117               attr->exclude_guest || attr->exclude_host;
1118}
1119
1120static inline bool is_sampling_event(struct perf_event *event)
1121{
1122        return event->attr.sample_period != 0;
1123}
1124
1125/*
1126 * Return 1 for a software event, 0 for a hardware event
1127 */
1128static inline int is_software_event(struct perf_event *event)
1129{
1130        return event->event_caps & PERF_EV_CAP_SOFTWARE;
1131}
1132
1133/*
1134 * Return 1 for event in sw context, 0 for event in hw context
1135 */
1136static inline int in_software_context(struct perf_event *event)
1137{
1138        return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1139}
1140
1141static inline int is_exclusive_pmu(struct pmu *pmu)
1142{
1143        return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1144}
1145
1146extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1147
1148extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1149extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1150
1151#ifndef perf_arch_fetch_caller_regs
1152static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1153#endif
1154
1155/*
1156 * When generating a perf sample in-line, instead of from an interrupt /
1157 * exception, we lack a pt_regs. This is typically used from software events
1158 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1159 *
1160 * We typically don't need a full set, but (for x86) do require:
1161 * - ip for PERF_SAMPLE_IP
1162 * - cs for user_mode() tests
1163 * - sp for PERF_SAMPLE_CALLCHAIN
1164 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1165 *
1166 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1167 * things like PERF_SAMPLE_REGS_INTR.
1168 */
1169static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1170{
1171        perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1172}
1173
1174static __always_inline void
1175perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1176{
1177        if (static_key_false(&perf_swevent_enabled[event_id]))
1178                __perf_sw_event(event_id, nr, regs, addr);
1179}
1180
1181DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1182
1183/*
1184 * 'Special' version for the scheduler, it hard assumes no recursion,
1185 * which is guaranteed by us not actually scheduling inside other swevents
1186 * because those disable preemption.
1187 */
1188static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1189{
1190        struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1191
1192        perf_fetch_caller_regs(regs);
1193        ___perf_sw_event(event_id, nr, regs, addr);
1194}
1195
1196extern struct static_key_false perf_sched_events;
1197
1198static __always_inline bool __perf_sw_enabled(int swevt)
1199{
1200        return static_key_false(&perf_swevent_enabled[swevt]);
1201}
1202
1203static inline void perf_event_task_migrate(struct task_struct *task)
1204{
1205        if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1206                task->sched_migrated = 1;
1207}
1208
1209static inline void perf_event_task_sched_in(struct task_struct *prev,
1210                                            struct task_struct *task)
1211{
1212        if (static_branch_unlikely(&perf_sched_events))
1213                __perf_event_task_sched_in(prev, task);
1214
1215        if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1216            task->sched_migrated) {
1217                __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1218                task->sched_migrated = 0;
1219        }
1220}
1221
1222static inline void perf_event_task_sched_out(struct task_struct *prev,
1223                                             struct task_struct *next)
1224{
1225        if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1226                __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1227
1228#ifdef CONFIG_CGROUP_PERF
1229        if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1230            perf_cgroup_from_task(prev, NULL) !=
1231            perf_cgroup_from_task(next, NULL))
1232                __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1233#endif
1234
1235        if (static_branch_unlikely(&perf_sched_events))
1236                __perf_event_task_sched_out(prev, next);
1237}
1238
1239extern void perf_event_mmap(struct vm_area_struct *vma);
1240
1241extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1242                               bool unregister, const char *sym);
1243extern void perf_event_bpf_event(struct bpf_prog *prog,
1244                                 enum perf_bpf_event_type type,
1245                                 u16 flags);
1246
1247#ifdef CONFIG_GUEST_PERF_EVENTS
1248extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1249
1250DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1251DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1252DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1253
1254static inline unsigned int perf_guest_state(void)
1255{
1256        return static_call(__perf_guest_state)();
1257}
1258static inline unsigned long perf_guest_get_ip(void)
1259{
1260        return static_call(__perf_guest_get_ip)();
1261}
1262static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1263{
1264        return static_call(__perf_guest_handle_intel_pt_intr)();
1265}
1266extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1267extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1268#else
1269static inline unsigned int perf_guest_state(void)                { return 0; }
1270static inline unsigned long perf_guest_get_ip(void)              { return 0; }
1271static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1272#endif /* CONFIG_GUEST_PERF_EVENTS */
1273
1274extern void perf_event_exec(void);
1275extern void perf_event_comm(struct task_struct *tsk, bool exec);
1276extern void perf_event_namespaces(struct task_struct *tsk);
1277extern void perf_event_fork(struct task_struct *tsk);
1278extern void perf_event_text_poke(const void *addr,
1279                                 const void *old_bytes, size_t old_len,
1280                                 const void *new_bytes, size_t new_len);
1281
1282/* Callchains */
1283DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1284
1285extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1286extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1287extern struct perf_callchain_entry *
1288get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1289                   u32 max_stack, bool crosstask, bool add_mark);
1290extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1291extern int get_callchain_buffers(int max_stack);
1292extern void put_callchain_buffers(void);
1293extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1294extern void put_callchain_entry(int rctx);
1295
1296extern int sysctl_perf_event_max_stack;
1297extern int sysctl_perf_event_max_contexts_per_stack;
1298
1299static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1300{
1301        if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1302                struct perf_callchain_entry *entry = ctx->entry;
1303                entry->ip[entry->nr++] = ip;
1304                ++ctx->contexts;
1305                return 0;
1306        } else {
1307                ctx->contexts_maxed = true;
1308                return -1; /* no more room, stop walking the stack */
1309        }
1310}
1311
1312static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1313{
1314        if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1315                struct perf_callchain_entry *entry = ctx->entry;
1316                entry->ip[entry->nr++] = ip;
1317                ++ctx->nr;
1318                return 0;
1319        } else {
1320                return -1; /* no more room, stop walking the stack */
1321        }
1322}
1323
1324extern int sysctl_perf_event_paranoid;
1325extern int sysctl_perf_event_mlock;
1326extern int sysctl_perf_event_sample_rate;
1327extern int sysctl_perf_cpu_time_max_percent;
1328
1329extern void perf_sample_event_took(u64 sample_len_ns);
1330
1331int perf_proc_update_handler(struct ctl_table *table, int write,
1332                void *buffer, size_t *lenp, loff_t *ppos);
1333int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1334                void *buffer, size_t *lenp, loff_t *ppos);
1335int perf_event_max_stack_handler(struct ctl_table *table, int write,
1336                void *buffer, size_t *lenp, loff_t *ppos);
1337
1338/* Access to perf_event_open(2) syscall. */
1339#define PERF_SECURITY_OPEN              0
1340
1341/* Finer grained perf_event_open(2) access control. */
1342#define PERF_SECURITY_CPU               1
1343#define PERF_SECURITY_KERNEL            2
1344#define PERF_SECURITY_TRACEPOINT        3
1345
1346static inline int perf_is_paranoid(void)
1347{
1348        return sysctl_perf_event_paranoid > -1;
1349}
1350
1351static inline int perf_allow_kernel(struct perf_event_attr *attr)
1352{
1353        if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1354                return -EACCES;
1355
1356        return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1357}
1358
1359static inline int perf_allow_cpu(struct perf_event_attr *attr)
1360{
1361        if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1362                return -EACCES;
1363
1364        return security_perf_event_open(attr, PERF_SECURITY_CPU);
1365}
1366
1367static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1368{
1369        if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1370                return -EPERM;
1371
1372        return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1373}
1374
1375extern void perf_event_init(void);
1376extern void perf_tp_event(u16 event_type, u64 count, void *record,
1377                          int entry_size, struct pt_regs *regs,
1378                          struct hlist_head *head, int rctx,
1379                          struct task_struct *task);
1380extern void perf_bp_event(struct perf_event *event, void *data);
1381
1382#ifndef perf_misc_flags
1383# define perf_misc_flags(regs) \
1384                (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1385# define perf_instruction_pointer(regs) instruction_pointer(regs)
1386#endif
1387#ifndef perf_arch_bpf_user_pt_regs
1388# define perf_arch_bpf_user_pt_regs(regs) regs
1389#endif
1390
1391static inline bool has_branch_stack(struct perf_event *event)
1392{
1393        return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1394}
1395
1396static inline bool needs_branch_stack(struct perf_event *event)
1397{
1398        return event->attr.branch_sample_type != 0;
1399}
1400
1401static inline bool has_aux(struct perf_event *event)
1402{
1403        return event->pmu->setup_aux;
1404}
1405
1406static inline bool is_write_backward(struct perf_event *event)
1407{
1408        return !!event->attr.write_backward;
1409}
1410
1411static inline bool has_addr_filter(struct perf_event *event)
1412{
1413        return event->pmu->nr_addr_filters;
1414}
1415
1416/*
1417 * An inherited event uses parent's filters
1418 */
1419static inline struct perf_addr_filters_head *
1420perf_event_addr_filters(struct perf_event *event)
1421{
1422        struct perf_addr_filters_head *ifh = &event->addr_filters;
1423
1424        if (event->parent)
1425                ifh = &event->parent->addr_filters;
1426
1427        return ifh;
1428}
1429
1430extern void perf_event_addr_filters_sync(struct perf_event *event);
1431extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1432
1433extern int perf_output_begin(struct perf_output_handle *handle,
1434                             struct perf_sample_data *data,
1435                             struct perf_event *event, unsigned int size);
1436extern int perf_output_begin_forward(struct perf_output_handle *handle,
1437                                     struct perf_sample_data *data,
1438                                     struct perf_event *event,
1439                                     unsigned int size);
1440extern int perf_output_begin_backward(struct perf_output_handle *handle,
1441                                      struct perf_sample_data *data,
1442                                      struct perf_event *event,
1443                                      unsigned int size);
1444
1445extern void perf_output_end(struct perf_output_handle *handle);
1446extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1447                             const void *buf, unsigned int len);
1448extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1449                                     unsigned int len);
1450extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1451                                 struct perf_output_handle *handle,
1452                                 unsigned long from, unsigned long to);
1453extern int perf_swevent_get_recursion_context(void);
1454extern void perf_swevent_put_recursion_context(int rctx);
1455extern u64 perf_swevent_set_period(struct perf_event *event);
1456extern void perf_event_enable(struct perf_event *event);
1457extern void perf_event_disable(struct perf_event *event);
1458extern void perf_event_disable_local(struct perf_event *event);
1459extern void perf_event_disable_inatomic(struct perf_event *event);
1460extern void perf_event_task_tick(void);
1461extern int perf_event_account_interrupt(struct perf_event *event);
1462extern int perf_event_period(struct perf_event *event, u64 value);
1463extern u64 perf_event_pause(struct perf_event *event, bool reset);
1464#else /* !CONFIG_PERF_EVENTS: */
1465static inline void *
1466perf_aux_output_begin(struct perf_output_handle *handle,
1467                      struct perf_event *event)                         { return NULL; }
1468static inline void
1469perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1470                                                                        { }
1471static inline int
1472perf_aux_output_skip(struct perf_output_handle *handle,
1473                     unsigned long size)                                { return -EINVAL; }
1474static inline void *
1475perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1476static inline void
1477perf_event_task_migrate(struct task_struct *task)                       { }
1478static inline void
1479perf_event_task_sched_in(struct task_struct *prev,
1480                         struct task_struct *task)                      { }
1481static inline void
1482perf_event_task_sched_out(struct task_struct *prev,
1483                          struct task_struct *next)                     { }
1484static inline int perf_event_init_task(struct task_struct *child,
1485                                       u64 clone_flags)                 { return 0; }
1486static inline void perf_event_exit_task(struct task_struct *child)      { }
1487static inline void perf_event_free_task(struct task_struct *task)       { }
1488static inline void perf_event_delayed_put(struct task_struct *task)     { }
1489static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1490static inline const struct perf_event *perf_get_event(struct file *file)
1491{
1492        return ERR_PTR(-EINVAL);
1493}
1494static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1495{
1496        return ERR_PTR(-EINVAL);
1497}
1498static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1499                                        u64 *enabled, u64 *running)
1500{
1501        return -EINVAL;
1502}
1503static inline void perf_event_print_debug(void)                         { }
1504static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1505static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1506static inline int perf_event_refresh(struct perf_event *event, int refresh)
1507{
1508        return -EINVAL;
1509}
1510
1511static inline void
1512perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1513static inline void
1514perf_bp_event(struct perf_event *event, void *data)                     { }
1515
1516static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1517
1518typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1519static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1520                                      bool unregister, const char *sym) { }
1521static inline void perf_event_bpf_event(struct bpf_prog *prog,
1522                                        enum perf_bpf_event_type type,
1523                                        u16 flags)                      { }
1524static inline void perf_event_exec(void)                                { }
1525static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1526static inline void perf_event_namespaces(struct task_struct *tsk)       { }
1527static inline void perf_event_fork(struct task_struct *tsk)             { }
1528static inline void perf_event_text_poke(const void *addr,
1529                                        const void *old_bytes,
1530                                        size_t old_len,
1531                                        const void *new_bytes,
1532                                        size_t new_len)                 { }
1533static inline void perf_event_init(void)                                { }
1534static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1535static inline void perf_swevent_put_recursion_context(int rctx)         { }
1536static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1537static inline void perf_event_enable(struct perf_event *event)          { }
1538static inline void perf_event_disable(struct perf_event *event)         { }
1539static inline int __perf_event_disable(void *info)                      { return -1; }
1540static inline void perf_event_task_tick(void)                           { }
1541static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1542static inline int perf_event_period(struct perf_event *event, u64 value)
1543{
1544        return -EINVAL;
1545}
1546static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1547{
1548        return 0;
1549}
1550#endif
1551
1552#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1553extern void perf_restore_debug_store(void);
1554#else
1555static inline void perf_restore_debug_store(void)                       { }
1556#endif
1557
1558static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1559{
1560        return frag->pad < sizeof(u64);
1561}
1562
1563#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1564
1565struct perf_pmu_events_attr {
1566        struct device_attribute attr;
1567        u64 id;
1568        const char *event_str;
1569};
1570
1571struct perf_pmu_events_ht_attr {
1572        struct device_attribute                 attr;
1573        u64                                     id;
1574        const char                              *event_str_ht;
1575        const char                              *event_str_noht;
1576};
1577
1578struct perf_pmu_events_hybrid_attr {
1579        struct device_attribute                 attr;
1580        u64                                     id;
1581        const char                              *event_str;
1582        u64                                     pmu_type;
1583};
1584
1585struct perf_pmu_format_hybrid_attr {
1586        struct device_attribute                 attr;
1587        u64                                     pmu_type;
1588};
1589
1590ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1591                              char *page);
1592
1593#define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1594static struct perf_pmu_events_attr _var = {                             \
1595        .attr = __ATTR(_name, 0444, _show, NULL),                       \
1596        .id   =  _id,                                                   \
1597};
1598
1599#define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1600static struct perf_pmu_events_attr _var = {                                 \
1601        .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1602        .id             = 0,                                                \
1603        .event_str      = _str,                                             \
1604};
1605
1606#define PMU_EVENT_ATTR_ID(_name, _show, _id)                            \
1607        (&((struct perf_pmu_events_attr[]) {                            \
1608                { .attr = __ATTR(_name, 0444, _show, NULL),             \
1609                  .id = _id, }                                          \
1610        })[0].attr.attr)
1611
1612#define PMU_FORMAT_ATTR(_name, _format)                                 \
1613static ssize_t                                                          \
1614_name##_show(struct device *dev,                                        \
1615                               struct device_attribute *attr,           \
1616                               char *page)                              \
1617{                                                                       \
1618        BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1619        return sprintf(page, _format "\n");                             \
1620}                                                                       \
1621                                                                        \
1622static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1623
1624/* Performance counter hotplug functions */
1625#ifdef CONFIG_PERF_EVENTS
1626int perf_event_init_cpu(unsigned int cpu);
1627int perf_event_exit_cpu(unsigned int cpu);
1628#else
1629#define perf_event_init_cpu     NULL
1630#define perf_event_exit_cpu     NULL
1631#endif
1632
1633extern void __weak arch_perf_update_userpage(struct perf_event *event,
1634                                             struct perf_event_mmap_page *userpg,
1635                                             u64 now);
1636
1637#ifdef CONFIG_MMU
1638extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1639#endif
1640
1641/*
1642 * Snapshot branch stack on software events.
1643 *
1644 * Branch stack can be very useful in understanding software events. For
1645 * example, when a long function, e.g. sys_perf_event_open, returns an
1646 * errno, it is not obvious why the function failed. Branch stack could
1647 * provide very helpful information in this type of scenarios.
1648 *
1649 * On software event, it is necessary to stop the hardware branch recorder
1650 * fast. Otherwise, the hardware register/buffer will be flushed with
1651 * entries of the triggering event. Therefore, static call is used to
1652 * stop the hardware recorder.
1653 */
1654
1655/*
1656 * cnt is the number of entries allocated for entries.
1657 * Return number of entries copied to .
1658 */
1659typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1660                                           unsigned int cnt);
1661DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1662
1663#endif /* _LINUX_PERF_EVENT_H */
1664