linux/include/linux/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PGTABLE_H
   3#define _LINUX_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6#include <asm/pgtable.h>
   7
   8#ifndef __ASSEMBLY__
   9#ifdef CONFIG_MMU
  10
  11#include <linux/mm_types.h>
  12#include <linux/bug.h>
  13#include <linux/errno.h>
  14#include <asm-generic/pgtable_uffd.h>
  15
  16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  17        defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  19#endif
  20
  21/*
  22 * On almost all architectures and configurations, 0 can be used as the
  23 * upper ceiling to free_pgtables(): on many architectures it has the same
  24 * effect as using TASK_SIZE.  However, there is one configuration which
  25 * must impose a more careful limit, to avoid freeing kernel pgtables.
  26 */
  27#ifndef USER_PGTABLES_CEILING
  28#define USER_PGTABLES_CEILING   0UL
  29#endif
  30
  31/*
  32 * This defines the first usable user address. Platforms
  33 * can override its value with custom FIRST_USER_ADDRESS
  34 * defined in their respective <asm/pgtable.h>.
  35 */
  36#ifndef FIRST_USER_ADDRESS
  37#define FIRST_USER_ADDRESS      0UL
  38#endif
  39
  40/*
  41 * This defines the generic helper for accessing PMD page
  42 * table page. Although platforms can still override this
  43 * via their respective <asm/pgtable.h>.
  44 */
  45#ifndef pmd_pgtable
  46#define pmd_pgtable(pmd) pmd_page(pmd)
  47#endif
  48
  49/*
  50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
  51 *
  52 * The pXx_index() functions return the index of the entry in the page
  53 * table page which would control the given virtual address
  54 *
  55 * As these functions may be used by the same code for different levels of
  56 * the page table folding, they are always available, regardless of
  57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
  58 * because in such cases PTRS_PER_PxD equals 1.
  59 */
  60
  61static inline unsigned long pte_index(unsigned long address)
  62{
  63        return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  64}
  65#define pte_index pte_index
  66
  67#ifndef pmd_index
  68static inline unsigned long pmd_index(unsigned long address)
  69{
  70        return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
  71}
  72#define pmd_index pmd_index
  73#endif
  74
  75#ifndef pud_index
  76static inline unsigned long pud_index(unsigned long address)
  77{
  78        return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
  79}
  80#define pud_index pud_index
  81#endif
  82
  83#ifndef pgd_index
  84/* Must be a compile-time constant, so implement it as a macro */
  85#define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
  86#endif
  87
  88#ifndef pte_offset_kernel
  89static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
  90{
  91        return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
  92}
  93#define pte_offset_kernel pte_offset_kernel
  94#endif
  95
  96#if defined(CONFIG_HIGHPTE)
  97#define pte_offset_map(dir, address)                            \
  98        ((pte_t *)kmap_atomic(pmd_page(*(dir))) +               \
  99         pte_index((address)))
 100#define pte_unmap(pte) kunmap_atomic((pte))
 101#else
 102#define pte_offset_map(dir, address)    pte_offset_kernel((dir), (address))
 103#define pte_unmap(pte) ((void)(pte))    /* NOP */
 104#endif
 105
 106/* Find an entry in the second-level page table.. */
 107#ifndef pmd_offset
 108static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
 109{
 110        return pud_pgtable(*pud) + pmd_index(address);
 111}
 112#define pmd_offset pmd_offset
 113#endif
 114
 115#ifndef pud_offset
 116static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
 117{
 118        return p4d_pgtable(*p4d) + pud_index(address);
 119}
 120#define pud_offset pud_offset
 121#endif
 122
 123static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
 124{
 125        return (pgd + pgd_index(address));
 126};
 127
 128/*
 129 * a shortcut to get a pgd_t in a given mm
 130 */
 131#ifndef pgd_offset
 132#define pgd_offset(mm, address)         pgd_offset_pgd((mm)->pgd, (address))
 133#endif
 134
 135/*
 136 * a shortcut which implies the use of the kernel's pgd, instead
 137 * of a process's
 138 */
 139#ifndef pgd_offset_k
 140#define pgd_offset_k(address)           pgd_offset(&init_mm, (address))
 141#endif
 142
 143/*
 144 * In many cases it is known that a virtual address is mapped at PMD or PTE
 145 * level, so instead of traversing all the page table levels, we can get a
 146 * pointer to the PMD entry in user or kernel page table or translate a virtual
 147 * address to the pointer in the PTE in the kernel page tables with simple
 148 * helpers.
 149 */
 150static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
 151{
 152        return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
 153}
 154
 155static inline pmd_t *pmd_off_k(unsigned long va)
 156{
 157        return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
 158}
 159
 160static inline pte_t *virt_to_kpte(unsigned long vaddr)
 161{
 162        pmd_t *pmd = pmd_off_k(vaddr);
 163
 164        return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
 165}
 166
 167#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 168extern int ptep_set_access_flags(struct vm_area_struct *vma,
 169                                 unsigned long address, pte_t *ptep,
 170                                 pte_t entry, int dirty);
 171#endif
 172
 173#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 174#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 175extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 176                                 unsigned long address, pmd_t *pmdp,
 177                                 pmd_t entry, int dirty);
 178extern int pudp_set_access_flags(struct vm_area_struct *vma,
 179                                 unsigned long address, pud_t *pudp,
 180                                 pud_t entry, int dirty);
 181#else
 182static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 183                                        unsigned long address, pmd_t *pmdp,
 184                                        pmd_t entry, int dirty)
 185{
 186        BUILD_BUG();
 187        return 0;
 188}
 189static inline int pudp_set_access_flags(struct vm_area_struct *vma,
 190                                        unsigned long address, pud_t *pudp,
 191                                        pud_t entry, int dirty)
 192{
 193        BUILD_BUG();
 194        return 0;
 195}
 196#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 197#endif
 198
 199#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 200static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 201                                            unsigned long address,
 202                                            pte_t *ptep)
 203{
 204        pte_t pte = *ptep;
 205        int r = 1;
 206        if (!pte_young(pte))
 207                r = 0;
 208        else
 209                set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 210        return r;
 211}
 212#endif
 213
 214#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 215#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 216static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 217                                            unsigned long address,
 218                                            pmd_t *pmdp)
 219{
 220        pmd_t pmd = *pmdp;
 221        int r = 1;
 222        if (!pmd_young(pmd))
 223                r = 0;
 224        else
 225                set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 226        return r;
 227}
 228#else
 229static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 230                                            unsigned long address,
 231                                            pmd_t *pmdp)
 232{
 233        BUILD_BUG();
 234        return 0;
 235}
 236#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 237#endif
 238
 239#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 240int ptep_clear_flush_young(struct vm_area_struct *vma,
 241                           unsigned long address, pte_t *ptep);
 242#endif
 243
 244#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 246extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 247                                  unsigned long address, pmd_t *pmdp);
 248#else
 249/*
 250 * Despite relevant to THP only, this API is called from generic rmap code
 251 * under PageTransHuge(), hence needs a dummy implementation for !THP
 252 */
 253static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 254                                         unsigned long address, pmd_t *pmdp)
 255{
 256        BUILD_BUG();
 257        return 0;
 258}
 259#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 260#endif
 261
 262#ifndef __HAVE_ARCH_PTEP_CLEAR
 263static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
 264                              pte_t *ptep)
 265{
 266        pte_clear(mm, addr, ptep);
 267}
 268#endif
 269
 270#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 271static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 272                                       unsigned long address,
 273                                       pte_t *ptep)
 274{
 275        pte_t pte = *ptep;
 276        pte_clear(mm, address, ptep);
 277        return pte;
 278}
 279#endif
 280
 281#ifndef __HAVE_ARCH_PTEP_GET
 282static inline pte_t ptep_get(pte_t *ptep)
 283{
 284        return READ_ONCE(*ptep);
 285}
 286#endif
 287
 288#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
 289/*
 290 * WARNING: only to be used in the get_user_pages_fast() implementation.
 291 *
 292 * With get_user_pages_fast(), we walk down the pagetables without taking any
 293 * locks.  For this we would like to load the pointers atomically, but sometimes
 294 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 295 * we do have is the guarantee that a PTE will only either go from not present
 296 * to present, or present to not present or both -- it will not switch to a
 297 * completely different present page without a TLB flush in between; something
 298 * that we are blocking by holding interrupts off.
 299 *
 300 * Setting ptes from not present to present goes:
 301 *
 302 *   ptep->pte_high = h;
 303 *   smp_wmb();
 304 *   ptep->pte_low = l;
 305 *
 306 * And present to not present goes:
 307 *
 308 *   ptep->pte_low = 0;
 309 *   smp_wmb();
 310 *   ptep->pte_high = 0;
 311 *
 312 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 313 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 314 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 315 * picked up a changed pte high. We might have gotten rubbish values from
 316 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 317 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 318 * operates on present ptes we're safe.
 319 */
 320static inline pte_t ptep_get_lockless(pte_t *ptep)
 321{
 322        pte_t pte;
 323
 324        do {
 325                pte.pte_low = ptep->pte_low;
 326                smp_rmb();
 327                pte.pte_high = ptep->pte_high;
 328                smp_rmb();
 329        } while (unlikely(pte.pte_low != ptep->pte_low));
 330
 331        return pte;
 332}
 333#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
 334/*
 335 * We require that the PTE can be read atomically.
 336 */
 337static inline pte_t ptep_get_lockless(pte_t *ptep)
 338{
 339        return ptep_get(ptep);
 340}
 341#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
 342
 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 344#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 345static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 346                                            unsigned long address,
 347                                            pmd_t *pmdp)
 348{
 349        pmd_t pmd = *pmdp;
 350        pmd_clear(pmdp);
 351        return pmd;
 352}
 353#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 354#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 355static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 356                                            unsigned long address,
 357                                            pud_t *pudp)
 358{
 359        pud_t pud = *pudp;
 360
 361        pud_clear(pudp);
 362        return pud;
 363}
 364#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 365#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 366
 367#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 368#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 369static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
 370                                            unsigned long address, pmd_t *pmdp,
 371                                            int full)
 372{
 373        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
 374}
 375#endif
 376
 377#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 378static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 379                                            unsigned long address, pud_t *pudp,
 380                                            int full)
 381{
 382        return pudp_huge_get_and_clear(mm, address, pudp);
 383}
 384#endif
 385#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 386
 387#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 388static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 389                                            unsigned long address, pte_t *ptep,
 390                                            int full)
 391{
 392        pte_t pte;
 393        pte = ptep_get_and_clear(mm, address, ptep);
 394        return pte;
 395}
 396#endif
 397
 398
 399/*
 400 * If two threads concurrently fault at the same page, the thread that
 401 * won the race updates the PTE and its local TLB/Cache. The other thread
 402 * gives up, simply does nothing, and continues; on architectures where
 403 * software can update TLB,  local TLB can be updated here to avoid next page
 404 * fault. This function updates TLB only, do nothing with cache or others.
 405 * It is the difference with function update_mmu_cache.
 406 */
 407#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
 408static inline void update_mmu_tlb(struct vm_area_struct *vma,
 409                                unsigned long address, pte_t *ptep)
 410{
 411}
 412#define __HAVE_ARCH_UPDATE_MMU_TLB
 413#endif
 414
 415/*
 416 * Some architectures may be able to avoid expensive synchronization
 417 * primitives when modifications are made to PTE's which are already
 418 * not present, or in the process of an address space destruction.
 419 */
 420#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 421static inline void pte_clear_not_present_full(struct mm_struct *mm,
 422                                              unsigned long address,
 423                                              pte_t *ptep,
 424                                              int full)
 425{
 426        pte_clear(mm, address, ptep);
 427}
 428#endif
 429
 430#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 431extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 432                              unsigned long address,
 433                              pte_t *ptep);
 434#endif
 435
 436#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 437extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 438                              unsigned long address,
 439                              pmd_t *pmdp);
 440extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 441                              unsigned long address,
 442                              pud_t *pudp);
 443#endif
 444
 445#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 446struct mm_struct;
 447static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 448{
 449        pte_t old_pte = *ptep;
 450        set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 451}
 452#endif
 453
 454/*
 455 * On some architectures hardware does not set page access bit when accessing
 456 * memory page, it is responsibility of software setting this bit. It brings
 457 * out extra page fault penalty to track page access bit. For optimization page
 458 * access bit can be set during all page fault flow on these arches.
 459 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
 460 * where software maintains page access bit.
 461 */
 462#ifndef pte_sw_mkyoung
 463static inline pte_t pte_sw_mkyoung(pte_t pte)
 464{
 465        return pte;
 466}
 467#define pte_sw_mkyoung  pte_sw_mkyoung
 468#endif
 469
 470#ifndef pte_savedwrite
 471#define pte_savedwrite pte_write
 472#endif
 473
 474#ifndef pte_mk_savedwrite
 475#define pte_mk_savedwrite pte_mkwrite
 476#endif
 477
 478#ifndef pte_clear_savedwrite
 479#define pte_clear_savedwrite pte_wrprotect
 480#endif
 481
 482#ifndef pmd_savedwrite
 483#define pmd_savedwrite pmd_write
 484#endif
 485
 486#ifndef pmd_mk_savedwrite
 487#define pmd_mk_savedwrite pmd_mkwrite
 488#endif
 489
 490#ifndef pmd_clear_savedwrite
 491#define pmd_clear_savedwrite pmd_wrprotect
 492#endif
 493
 494#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 495#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 496static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 497                                      unsigned long address, pmd_t *pmdp)
 498{
 499        pmd_t old_pmd = *pmdp;
 500        set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 501}
 502#else
 503static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 504                                      unsigned long address, pmd_t *pmdp)
 505{
 506        BUILD_BUG();
 507}
 508#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 509#endif
 510#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 511#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 512static inline void pudp_set_wrprotect(struct mm_struct *mm,
 513                                      unsigned long address, pud_t *pudp)
 514{
 515        pud_t old_pud = *pudp;
 516
 517        set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 518}
 519#else
 520static inline void pudp_set_wrprotect(struct mm_struct *mm,
 521                                      unsigned long address, pud_t *pudp)
 522{
 523        BUILD_BUG();
 524}
 525#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 526#endif
 527
 528#ifndef pmdp_collapse_flush
 529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 530extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 531                                 unsigned long address, pmd_t *pmdp);
 532#else
 533static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 534                                        unsigned long address,
 535                                        pmd_t *pmdp)
 536{
 537        BUILD_BUG();
 538        return *pmdp;
 539}
 540#define pmdp_collapse_flush pmdp_collapse_flush
 541#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 542#endif
 543
 544#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 545extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 546                                       pgtable_t pgtable);
 547#endif
 548
 549#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 550extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 551#endif
 552
 553#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 554/*
 555 * This is an implementation of pmdp_establish() that is only suitable for an
 556 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 557 * can't race with CPU which sets these bits and non-atomic approach is fine.
 558 */
 559static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 560                unsigned long address, pmd_t *pmdp, pmd_t pmd)
 561{
 562        pmd_t old_pmd = *pmdp;
 563        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 564        return old_pmd;
 565}
 566#endif
 567
 568#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 569extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 570                            pmd_t *pmdp);
 571#endif
 572
 573#ifndef __HAVE_ARCH_PTE_SAME
 574static inline int pte_same(pte_t pte_a, pte_t pte_b)
 575{
 576        return pte_val(pte_a) == pte_val(pte_b);
 577}
 578#endif
 579
 580#ifndef __HAVE_ARCH_PTE_UNUSED
 581/*
 582 * Some architectures provide facilities to virtualization guests
 583 * so that they can flag allocated pages as unused. This allows the
 584 * host to transparently reclaim unused pages. This function returns
 585 * whether the pte's page is unused.
 586 */
 587static inline int pte_unused(pte_t pte)
 588{
 589        return 0;
 590}
 591#endif
 592
 593#ifndef pte_access_permitted
 594#define pte_access_permitted(pte, write) \
 595        (pte_present(pte) && (!(write) || pte_write(pte)))
 596#endif
 597
 598#ifndef pmd_access_permitted
 599#define pmd_access_permitted(pmd, write) \
 600        (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 601#endif
 602
 603#ifndef pud_access_permitted
 604#define pud_access_permitted(pud, write) \
 605        (pud_present(pud) && (!(write) || pud_write(pud)))
 606#endif
 607
 608#ifndef p4d_access_permitted
 609#define p4d_access_permitted(p4d, write) \
 610        (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 611#endif
 612
 613#ifndef pgd_access_permitted
 614#define pgd_access_permitted(pgd, write) \
 615        (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 616#endif
 617
 618#ifndef __HAVE_ARCH_PMD_SAME
 619static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 620{
 621        return pmd_val(pmd_a) == pmd_val(pmd_b);
 622}
 623
 624static inline int pud_same(pud_t pud_a, pud_t pud_b)
 625{
 626        return pud_val(pud_a) == pud_val(pud_b);
 627}
 628#endif
 629
 630#ifndef __HAVE_ARCH_P4D_SAME
 631static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 632{
 633        return p4d_val(p4d_a) == p4d_val(p4d_b);
 634}
 635#endif
 636
 637#ifndef __HAVE_ARCH_PGD_SAME
 638static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 639{
 640        return pgd_val(pgd_a) == pgd_val(pgd_b);
 641}
 642#endif
 643
 644/*
 645 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 646 * TLB flush will be required as a result of the "set". For example, use
 647 * in scenarios where it is known ahead of time that the routine is
 648 * setting non-present entries, or re-setting an existing entry to the
 649 * same value. Otherwise, use the typical "set" helpers and flush the
 650 * TLB.
 651 */
 652#define set_pte_safe(ptep, pte) \
 653({ \
 654        WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 655        set_pte(ptep, pte); \
 656})
 657
 658#define set_pmd_safe(pmdp, pmd) \
 659({ \
 660        WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 661        set_pmd(pmdp, pmd); \
 662})
 663
 664#define set_pud_safe(pudp, pud) \
 665({ \
 666        WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 667        set_pud(pudp, pud); \
 668})
 669
 670#define set_p4d_safe(p4dp, p4d) \
 671({ \
 672        WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 673        set_p4d(p4dp, p4d); \
 674})
 675
 676#define set_pgd_safe(pgdp, pgd) \
 677({ \
 678        WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 679        set_pgd(pgdp, pgd); \
 680})
 681
 682#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 683/*
 684 * Some architectures support metadata associated with a page. When a
 685 * page is being swapped out, this metadata must be saved so it can be
 686 * restored when the page is swapped back in. SPARC M7 and newer
 687 * processors support an ADI (Application Data Integrity) tag for the
 688 * page as metadata for the page. arch_do_swap_page() can restore this
 689 * metadata when a page is swapped back in.
 690 */
 691static inline void arch_do_swap_page(struct mm_struct *mm,
 692                                     struct vm_area_struct *vma,
 693                                     unsigned long addr,
 694                                     pte_t pte, pte_t oldpte)
 695{
 696
 697}
 698#endif
 699
 700#ifndef __HAVE_ARCH_UNMAP_ONE
 701/*
 702 * Some architectures support metadata associated with a page. When a
 703 * page is being swapped out, this metadata must be saved so it can be
 704 * restored when the page is swapped back in. SPARC M7 and newer
 705 * processors support an ADI (Application Data Integrity) tag for the
 706 * page as metadata for the page. arch_unmap_one() can save this
 707 * metadata on a swap-out of a page.
 708 */
 709static inline int arch_unmap_one(struct mm_struct *mm,
 710                                  struct vm_area_struct *vma,
 711                                  unsigned long addr,
 712                                  pte_t orig_pte)
 713{
 714        return 0;
 715}
 716#endif
 717
 718/*
 719 * Allow architectures to preserve additional metadata associated with
 720 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
 721 * prototypes must be defined in the arch-specific asm/pgtable.h file.
 722 */
 723#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
 724static inline int arch_prepare_to_swap(struct page *page)
 725{
 726        return 0;
 727}
 728#endif
 729
 730#ifndef __HAVE_ARCH_SWAP_INVALIDATE
 731static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
 732{
 733}
 734
 735static inline void arch_swap_invalidate_area(int type)
 736{
 737}
 738#endif
 739
 740#ifndef __HAVE_ARCH_SWAP_RESTORE
 741static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
 742{
 743}
 744#endif
 745
 746#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 747#define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
 748#endif
 749
 750#ifndef __HAVE_ARCH_MOVE_PTE
 751#define move_pte(pte, prot, old_addr, new_addr) (pte)
 752#endif
 753
 754#ifndef pte_accessible
 755# define pte_accessible(mm, pte)        ((void)(pte), 1)
 756#endif
 757
 758#ifndef flush_tlb_fix_spurious_fault
 759#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 760#endif
 761
 762/*
 763 * When walking page tables, get the address of the next boundary,
 764 * or the end address of the range if that comes earlier.  Although no
 765 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 766 */
 767
 768#define pgd_addr_end(addr, end)                                         \
 769({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
 770        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 771})
 772
 773#ifndef p4d_addr_end
 774#define p4d_addr_end(addr, end)                                         \
 775({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;      \
 776        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 777})
 778#endif
 779
 780#ifndef pud_addr_end
 781#define pud_addr_end(addr, end)                                         \
 782({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
 783        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 784})
 785#endif
 786
 787#ifndef pmd_addr_end
 788#define pmd_addr_end(addr, end)                                         \
 789({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
 790        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 791})
 792#endif
 793
 794/*
 795 * When walking page tables, we usually want to skip any p?d_none entries;
 796 * and any p?d_bad entries - reporting the error before resetting to none.
 797 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 798 */
 799void pgd_clear_bad(pgd_t *);
 800
 801#ifndef __PAGETABLE_P4D_FOLDED
 802void p4d_clear_bad(p4d_t *);
 803#else
 804#define p4d_clear_bad(p4d)        do { } while (0)
 805#endif
 806
 807#ifndef __PAGETABLE_PUD_FOLDED
 808void pud_clear_bad(pud_t *);
 809#else
 810#define pud_clear_bad(p4d)        do { } while (0)
 811#endif
 812
 813void pmd_clear_bad(pmd_t *);
 814
 815static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 816{
 817        if (pgd_none(*pgd))
 818                return 1;
 819        if (unlikely(pgd_bad(*pgd))) {
 820                pgd_clear_bad(pgd);
 821                return 1;
 822        }
 823        return 0;
 824}
 825
 826static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 827{
 828        if (p4d_none(*p4d))
 829                return 1;
 830        if (unlikely(p4d_bad(*p4d))) {
 831                p4d_clear_bad(p4d);
 832                return 1;
 833        }
 834        return 0;
 835}
 836
 837static inline int pud_none_or_clear_bad(pud_t *pud)
 838{
 839        if (pud_none(*pud))
 840                return 1;
 841        if (unlikely(pud_bad(*pud))) {
 842                pud_clear_bad(pud);
 843                return 1;
 844        }
 845        return 0;
 846}
 847
 848static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 849{
 850        if (pmd_none(*pmd))
 851                return 1;
 852        if (unlikely(pmd_bad(*pmd))) {
 853                pmd_clear_bad(pmd);
 854                return 1;
 855        }
 856        return 0;
 857}
 858
 859static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 860                                             unsigned long addr,
 861                                             pte_t *ptep)
 862{
 863        /*
 864         * Get the current pte state, but zero it out to make it
 865         * non-present, preventing the hardware from asynchronously
 866         * updating it.
 867         */
 868        return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 869}
 870
 871static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 872                                             unsigned long addr,
 873                                             pte_t *ptep, pte_t pte)
 874{
 875        /*
 876         * The pte is non-present, so there's no hardware state to
 877         * preserve.
 878         */
 879        set_pte_at(vma->vm_mm, addr, ptep, pte);
 880}
 881
 882#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 883/*
 884 * Start a pte protection read-modify-write transaction, which
 885 * protects against asynchronous hardware modifications to the pte.
 886 * The intention is not to prevent the hardware from making pte
 887 * updates, but to prevent any updates it may make from being lost.
 888 *
 889 * This does not protect against other software modifications of the
 890 * pte; the appropriate pte lock must be held over the transaction.
 891 *
 892 * Note that this interface is intended to be batchable, meaning that
 893 * ptep_modify_prot_commit may not actually update the pte, but merely
 894 * queue the update to be done at some later time.  The update must be
 895 * actually committed before the pte lock is released, however.
 896 */
 897static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 898                                           unsigned long addr,
 899                                           pte_t *ptep)
 900{
 901        return __ptep_modify_prot_start(vma, addr, ptep);
 902}
 903
 904/*
 905 * Commit an update to a pte, leaving any hardware-controlled bits in
 906 * the PTE unmodified.
 907 */
 908static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 909                                           unsigned long addr,
 910                                           pte_t *ptep, pte_t old_pte, pte_t pte)
 911{
 912        __ptep_modify_prot_commit(vma, addr, ptep, pte);
 913}
 914#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 915#endif /* CONFIG_MMU */
 916
 917/*
 918 * No-op macros that just return the current protection value. Defined here
 919 * because these macros can be used even if CONFIG_MMU is not defined.
 920 */
 921
 922#ifndef pgprot_nx
 923#define pgprot_nx(prot) (prot)
 924#endif
 925
 926#ifndef pgprot_noncached
 927#define pgprot_noncached(prot)  (prot)
 928#endif
 929
 930#ifndef pgprot_writecombine
 931#define pgprot_writecombine pgprot_noncached
 932#endif
 933
 934#ifndef pgprot_writethrough
 935#define pgprot_writethrough pgprot_noncached
 936#endif
 937
 938#ifndef pgprot_device
 939#define pgprot_device pgprot_noncached
 940#endif
 941
 942#ifndef pgprot_mhp
 943#define pgprot_mhp(prot)        (prot)
 944#endif
 945
 946#ifdef CONFIG_MMU
 947#ifndef pgprot_modify
 948#define pgprot_modify pgprot_modify
 949static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 950{
 951        if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 952                newprot = pgprot_noncached(newprot);
 953        if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 954                newprot = pgprot_writecombine(newprot);
 955        if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 956                newprot = pgprot_device(newprot);
 957        return newprot;
 958}
 959#endif
 960#endif /* CONFIG_MMU */
 961
 962#ifndef pgprot_encrypted
 963#define pgprot_encrypted(prot)  (prot)
 964#endif
 965
 966#ifndef pgprot_decrypted
 967#define pgprot_decrypted(prot)  (prot)
 968#endif
 969
 970/*
 971 * A facility to provide lazy MMU batching.  This allows PTE updates and
 972 * page invalidations to be delayed until a call to leave lazy MMU mode
 973 * is issued.  Some architectures may benefit from doing this, and it is
 974 * beneficial for both shadow and direct mode hypervisors, which may batch
 975 * the PTE updates which happen during this window.  Note that using this
 976 * interface requires that read hazards be removed from the code.  A read
 977 * hazard could result in the direct mode hypervisor case, since the actual
 978 * write to the page tables may not yet have taken place, so reads though
 979 * a raw PTE pointer after it has been modified are not guaranteed to be
 980 * up to date.  This mode can only be entered and left under the protection of
 981 * the page table locks for all page tables which may be modified.  In the UP
 982 * case, this is required so that preemption is disabled, and in the SMP case,
 983 * it must synchronize the delayed page table writes properly on other CPUs.
 984 */
 985#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 986#define arch_enter_lazy_mmu_mode()      do {} while (0)
 987#define arch_leave_lazy_mmu_mode()      do {} while (0)
 988#define arch_flush_lazy_mmu_mode()      do {} while (0)
 989#endif
 990
 991/*
 992 * A facility to provide batching of the reload of page tables and
 993 * other process state with the actual context switch code for
 994 * paravirtualized guests.  By convention, only one of the batched
 995 * update (lazy) modes (CPU, MMU) should be active at any given time,
 996 * entry should never be nested, and entry and exits should always be
 997 * paired.  This is for sanity of maintaining and reasoning about the
 998 * kernel code.  In this case, the exit (end of the context switch) is
 999 * in architecture-specific code, and so doesn't need a generic
1000 * definition.
1001 */
1002#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1003#define arch_start_context_switch(prev) do {} while (0)
1004#endif
1005
1006#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1007#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1008static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1009{
1010        return pmd;
1011}
1012
1013static inline int pmd_swp_soft_dirty(pmd_t pmd)
1014{
1015        return 0;
1016}
1017
1018static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1019{
1020        return pmd;
1021}
1022#endif
1023#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1024static inline int pte_soft_dirty(pte_t pte)
1025{
1026        return 0;
1027}
1028
1029static inline int pmd_soft_dirty(pmd_t pmd)
1030{
1031        return 0;
1032}
1033
1034static inline pte_t pte_mksoft_dirty(pte_t pte)
1035{
1036        return pte;
1037}
1038
1039static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1040{
1041        return pmd;
1042}
1043
1044static inline pte_t pte_clear_soft_dirty(pte_t pte)
1045{
1046        return pte;
1047}
1048
1049static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1050{
1051        return pmd;
1052}
1053
1054static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1055{
1056        return pte;
1057}
1058
1059static inline int pte_swp_soft_dirty(pte_t pte)
1060{
1061        return 0;
1062}
1063
1064static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1065{
1066        return pte;
1067}
1068
1069static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1070{
1071        return pmd;
1072}
1073
1074static inline int pmd_swp_soft_dirty(pmd_t pmd)
1075{
1076        return 0;
1077}
1078
1079static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1080{
1081        return pmd;
1082}
1083#endif
1084
1085#ifndef __HAVE_PFNMAP_TRACKING
1086/*
1087 * Interfaces that can be used by architecture code to keep track of
1088 * memory type of pfn mappings specified by the remap_pfn_range,
1089 * vmf_insert_pfn.
1090 */
1091
1092/*
1093 * track_pfn_remap is called when a _new_ pfn mapping is being established
1094 * by remap_pfn_range() for physical range indicated by pfn and size.
1095 */
1096static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1097                                  unsigned long pfn, unsigned long addr,
1098                                  unsigned long size)
1099{
1100        return 0;
1101}
1102
1103/*
1104 * track_pfn_insert is called when a _new_ single pfn is established
1105 * by vmf_insert_pfn().
1106 */
1107static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1108                                    pfn_t pfn)
1109{
1110}
1111
1112/*
1113 * track_pfn_copy is called when vma that is covering the pfnmap gets
1114 * copied through copy_page_range().
1115 */
1116static inline int track_pfn_copy(struct vm_area_struct *vma)
1117{
1118        return 0;
1119}
1120
1121/*
1122 * untrack_pfn is called while unmapping a pfnmap for a region.
1123 * untrack can be called for a specific region indicated by pfn and size or
1124 * can be for the entire vma (in which case pfn, size are zero).
1125 */
1126static inline void untrack_pfn(struct vm_area_struct *vma,
1127                               unsigned long pfn, unsigned long size)
1128{
1129}
1130
1131/*
1132 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1133 */
1134static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1135{
1136}
1137#else
1138extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1139                           unsigned long pfn, unsigned long addr,
1140                           unsigned long size);
1141extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1142                             pfn_t pfn);
1143extern int track_pfn_copy(struct vm_area_struct *vma);
1144extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1145                        unsigned long size);
1146extern void untrack_pfn_moved(struct vm_area_struct *vma);
1147#endif
1148
1149#ifdef CONFIG_MMU
1150#ifdef __HAVE_COLOR_ZERO_PAGE
1151static inline int is_zero_pfn(unsigned long pfn)
1152{
1153        extern unsigned long zero_pfn;
1154        unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1155        return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1156}
1157
1158#define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
1159
1160#else
1161static inline int is_zero_pfn(unsigned long pfn)
1162{
1163        extern unsigned long zero_pfn;
1164        return pfn == zero_pfn;
1165}
1166
1167static inline unsigned long my_zero_pfn(unsigned long addr)
1168{
1169        extern unsigned long zero_pfn;
1170        return zero_pfn;
1171}
1172#endif
1173#else
1174static inline int is_zero_pfn(unsigned long pfn)
1175{
1176        return 0;
1177}
1178
1179static inline unsigned long my_zero_pfn(unsigned long addr)
1180{
1181        return 0;
1182}
1183#endif /* CONFIG_MMU */
1184
1185#ifdef CONFIG_MMU
1186
1187#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1188static inline int pmd_trans_huge(pmd_t pmd)
1189{
1190        return 0;
1191}
1192#ifndef pmd_write
1193static inline int pmd_write(pmd_t pmd)
1194{
1195        BUG();
1196        return 0;
1197}
1198#endif /* pmd_write */
1199#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1200
1201#ifndef pud_write
1202static inline int pud_write(pud_t pud)
1203{
1204        BUG();
1205        return 0;
1206}
1207#endif /* pud_write */
1208
1209#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1210static inline int pmd_devmap(pmd_t pmd)
1211{
1212        return 0;
1213}
1214static inline int pud_devmap(pud_t pud)
1215{
1216        return 0;
1217}
1218static inline int pgd_devmap(pgd_t pgd)
1219{
1220        return 0;
1221}
1222#endif
1223
1224#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1225        (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1226         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1227static inline int pud_trans_huge(pud_t pud)
1228{
1229        return 0;
1230}
1231#endif
1232
1233/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1234static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1235{
1236        pud_t pudval = READ_ONCE(*pud);
1237
1238        if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1239                return 1;
1240        if (unlikely(pud_bad(pudval))) {
1241                pud_clear_bad(pud);
1242                return 1;
1243        }
1244        return 0;
1245}
1246
1247/* See pmd_trans_unstable for discussion. */
1248static inline int pud_trans_unstable(pud_t *pud)
1249{
1250#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
1251        defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1252        return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1253#else
1254        return 0;
1255#endif
1256}
1257
1258#ifndef pmd_read_atomic
1259static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1260{
1261        /*
1262         * Depend on compiler for an atomic pmd read. NOTE: this is
1263         * only going to work, if the pmdval_t isn't larger than
1264         * an unsigned long.
1265         */
1266        return *pmdp;
1267}
1268#endif
1269
1270#ifndef arch_needs_pgtable_deposit
1271#define arch_needs_pgtable_deposit() (false)
1272#endif
1273/*
1274 * This function is meant to be used by sites walking pagetables with
1275 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1276 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1277 * into a null pmd and the transhuge page fault can convert a null pmd
1278 * into an hugepmd or into a regular pmd (if the hugepage allocation
1279 * fails). While holding the mmap_lock in read mode the pmd becomes
1280 * stable and stops changing under us only if it's not null and not a
1281 * transhuge pmd. When those races occurs and this function makes a
1282 * difference vs the standard pmd_none_or_clear_bad, the result is
1283 * undefined so behaving like if the pmd was none is safe (because it
1284 * can return none anyway). The compiler level barrier() is critically
1285 * important to compute the two checks atomically on the same pmdval.
1286 *
1287 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1288 * care of reading the pmd atomically to avoid SMP race conditions
1289 * against pmd_populate() when the mmap_lock is hold for reading by the
1290 * caller (a special atomic read not done by "gcc" as in the generic
1291 * version above, is also needed when THP is disabled because the page
1292 * fault can populate the pmd from under us).
1293 */
1294static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1295{
1296        pmd_t pmdval = pmd_read_atomic(pmd);
1297        /*
1298         * The barrier will stabilize the pmdval in a register or on
1299         * the stack so that it will stop changing under the code.
1300         *
1301         * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1302         * pmd_read_atomic is allowed to return a not atomic pmdval
1303         * (for example pointing to an hugepage that has never been
1304         * mapped in the pmd). The below checks will only care about
1305         * the low part of the pmd with 32bit PAE x86 anyway, with the
1306         * exception of pmd_none(). So the important thing is that if
1307         * the low part of the pmd is found null, the high part will
1308         * be also null or the pmd_none() check below would be
1309         * confused.
1310         */
1311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312        barrier();
1313#endif
1314        /*
1315         * !pmd_present() checks for pmd migration entries
1316         *
1317         * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1318         * But using that requires moving current function and pmd_trans_unstable()
1319         * to linux/swapops.h to resolve dependency, which is too much code move.
1320         *
1321         * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1322         * because !pmd_present() pages can only be under migration not swapped
1323         * out.
1324         *
1325         * pmd_none() is preserved for future condition checks on pmd migration
1326         * entries and not confusing with this function name, although it is
1327         * redundant with !pmd_present().
1328         */
1329        if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1330                (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1331                return 1;
1332        if (unlikely(pmd_bad(pmdval))) {
1333                pmd_clear_bad(pmd);
1334                return 1;
1335        }
1336        return 0;
1337}
1338
1339/*
1340 * This is a noop if Transparent Hugepage Support is not built into
1341 * the kernel. Otherwise it is equivalent to
1342 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1343 * places that already verified the pmd is not none and they want to
1344 * walk ptes while holding the mmap sem in read mode (write mode don't
1345 * need this). If THP is not enabled, the pmd can't go away under the
1346 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1347 * run a pmd_trans_unstable before walking the ptes after
1348 * split_huge_pmd returns (because it may have run when the pmd become
1349 * null, but then a page fault can map in a THP and not a regular page).
1350 */
1351static inline int pmd_trans_unstable(pmd_t *pmd)
1352{
1353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1354        return pmd_none_or_trans_huge_or_clear_bad(pmd);
1355#else
1356        return 0;
1357#endif
1358}
1359
1360/*
1361 * the ordering of these checks is important for pmds with _page_devmap set.
1362 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1363 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1364 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1365 */
1366static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1367{
1368        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1369}
1370
1371#ifndef CONFIG_NUMA_BALANCING
1372/*
1373 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1374 * the only case the kernel cares is for NUMA balancing and is only ever set
1375 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1376 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1377 * is the responsibility of the caller to distinguish between PROT_NONE
1378 * protections and NUMA hinting fault protections.
1379 */
1380static inline int pte_protnone(pte_t pte)
1381{
1382        return 0;
1383}
1384
1385static inline int pmd_protnone(pmd_t pmd)
1386{
1387        return 0;
1388}
1389#endif /* CONFIG_NUMA_BALANCING */
1390
1391#endif /* CONFIG_MMU */
1392
1393#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1394
1395#ifndef __PAGETABLE_P4D_FOLDED
1396int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1397int p4d_clear_huge(p4d_t *p4d);
1398#else
1399static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1400{
1401        return 0;
1402}
1403static inline int p4d_clear_huge(p4d_t *p4d)
1404{
1405        return 0;
1406}
1407#endif /* !__PAGETABLE_P4D_FOLDED */
1408
1409int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1410int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1411int pud_clear_huge(pud_t *pud);
1412int pmd_clear_huge(pmd_t *pmd);
1413int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1414int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1415int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1416#else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1417static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1418{
1419        return 0;
1420}
1421static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1422{
1423        return 0;
1424}
1425static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1426{
1427        return 0;
1428}
1429static inline int p4d_clear_huge(p4d_t *p4d)
1430{
1431        return 0;
1432}
1433static inline int pud_clear_huge(pud_t *pud)
1434{
1435        return 0;
1436}
1437static inline int pmd_clear_huge(pmd_t *pmd)
1438{
1439        return 0;
1440}
1441static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1442{
1443        return 0;
1444}
1445static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1446{
1447        return 0;
1448}
1449static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1450{
1451        return 0;
1452}
1453#endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1454
1455#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1457/*
1458 * ARCHes with special requirements for evicting THP backing TLB entries can
1459 * implement this. Otherwise also, it can help optimize normal TLB flush in
1460 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1461 * entire TLB if flush span is greater than a threshold, which will
1462 * likely be true for a single huge page. Thus a single THP flush will
1463 * invalidate the entire TLB which is not desirable.
1464 * e.g. see arch/arc: flush_pmd_tlb_range
1465 */
1466#define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1467#define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1468#else
1469#define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
1470#define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
1471#endif
1472#endif
1473
1474struct file;
1475int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1476                        unsigned long size, pgprot_t *vma_prot);
1477
1478#ifndef CONFIG_X86_ESPFIX64
1479static inline void init_espfix_bsp(void) { }
1480#endif
1481
1482extern void __init pgtable_cache_init(void);
1483
1484#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1485static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1486{
1487        return true;
1488}
1489
1490static inline bool arch_has_pfn_modify_check(void)
1491{
1492        return false;
1493}
1494#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1495
1496/*
1497 * Architecture PAGE_KERNEL_* fallbacks
1498 *
1499 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1500 * because they really don't support them, or the port needs to be updated to
1501 * reflect the required functionality. Below are a set of relatively safe
1502 * fallbacks, as best effort, which we can count on in lieu of the architectures
1503 * not defining them on their own yet.
1504 */
1505
1506#ifndef PAGE_KERNEL_RO
1507# define PAGE_KERNEL_RO PAGE_KERNEL
1508#endif
1509
1510#ifndef PAGE_KERNEL_EXEC
1511# define PAGE_KERNEL_EXEC PAGE_KERNEL
1512#endif
1513
1514/*
1515 * Page Table Modification bits for pgtbl_mod_mask.
1516 *
1517 * These are used by the p?d_alloc_track*() set of functions an in the generic
1518 * vmalloc/ioremap code to track at which page-table levels entries have been
1519 * modified. Based on that the code can better decide when vmalloc and ioremap
1520 * mapping changes need to be synchronized to other page-tables in the system.
1521 */
1522#define         __PGTBL_PGD_MODIFIED    0
1523#define         __PGTBL_P4D_MODIFIED    1
1524#define         __PGTBL_PUD_MODIFIED    2
1525#define         __PGTBL_PMD_MODIFIED    3
1526#define         __PGTBL_PTE_MODIFIED    4
1527
1528#define         PGTBL_PGD_MODIFIED      BIT(__PGTBL_PGD_MODIFIED)
1529#define         PGTBL_P4D_MODIFIED      BIT(__PGTBL_P4D_MODIFIED)
1530#define         PGTBL_PUD_MODIFIED      BIT(__PGTBL_PUD_MODIFIED)
1531#define         PGTBL_PMD_MODIFIED      BIT(__PGTBL_PMD_MODIFIED)
1532#define         PGTBL_PTE_MODIFIED      BIT(__PGTBL_PTE_MODIFIED)
1533
1534/* Page-Table Modification Mask */
1535typedef unsigned int pgtbl_mod_mask;
1536
1537#endif /* !__ASSEMBLY__ */
1538
1539#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1540#ifdef CONFIG_PHYS_ADDR_T_64BIT
1541/*
1542 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1543 * with physical address space extension, but falls back to
1544 * BITS_PER_LONG otherwise.
1545 */
1546#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1547#else
1548#define MAX_POSSIBLE_PHYSMEM_BITS 32
1549#endif
1550#endif
1551
1552#ifndef has_transparent_hugepage
1553#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1554#define has_transparent_hugepage() 1
1555#else
1556#define has_transparent_hugepage() 0
1557#endif
1558#endif
1559
1560/*
1561 * On some architectures it depends on the mm if the p4d/pud or pmd
1562 * layer of the page table hierarchy is folded or not.
1563 */
1564#ifndef mm_p4d_folded
1565#define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
1566#endif
1567
1568#ifndef mm_pud_folded
1569#define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
1570#endif
1571
1572#ifndef mm_pmd_folded
1573#define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
1574#endif
1575
1576#ifndef p4d_offset_lockless
1577#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1578#endif
1579#ifndef pud_offset_lockless
1580#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1581#endif
1582#ifndef pmd_offset_lockless
1583#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1584#endif
1585
1586/*
1587 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1588 * This differs from p?d_huge() by the fact that they are always available (if
1589 * the architecture supports large pages at the appropriate level) even
1590 * if CONFIG_HUGETLB_PAGE is not defined.
1591 * Only meaningful when called on a valid entry.
1592 */
1593#ifndef pgd_leaf
1594#define pgd_leaf(x)     0
1595#endif
1596#ifndef p4d_leaf
1597#define p4d_leaf(x)     0
1598#endif
1599#ifndef pud_leaf
1600#define pud_leaf(x)     0
1601#endif
1602#ifndef pmd_leaf
1603#define pmd_leaf(x)     0
1604#endif
1605
1606#ifndef pgd_leaf_size
1607#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1608#endif
1609#ifndef p4d_leaf_size
1610#define p4d_leaf_size(x) P4D_SIZE
1611#endif
1612#ifndef pud_leaf_size
1613#define pud_leaf_size(x) PUD_SIZE
1614#endif
1615#ifndef pmd_leaf_size
1616#define pmd_leaf_size(x) PMD_SIZE
1617#endif
1618#ifndef pte_leaf_size
1619#define pte_leaf_size(x) PAGE_SIZE
1620#endif
1621
1622/*
1623 * Some architectures have MMUs that are configurable or selectable at boot
1624 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1625 * helps to have a static maximum value.
1626 */
1627
1628#ifndef MAX_PTRS_PER_PTE
1629#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1630#endif
1631
1632#ifndef MAX_PTRS_PER_PMD
1633#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1634#endif
1635
1636#ifndef MAX_PTRS_PER_PUD
1637#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1638#endif
1639
1640#ifndef MAX_PTRS_PER_P4D
1641#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1642#endif
1643
1644#endif /* _LINUX_PGTABLE_H */
1645