linux/include/linux/radix-tree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Copyright (C) 2001 Momchil Velikov
   4 * Portions Copyright (C) 2001 Christoph Hellwig
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 */
   8#ifndef _LINUX_RADIX_TREE_H
   9#define _LINUX_RADIX_TREE_H
  10
  11#include <linux/bitops.h>
  12#include <linux/gfp.h>
  13#include <linux/list.h>
  14#include <linux/lockdep.h>
  15#include <linux/math.h>
  16#include <linux/percpu.h>
  17#include <linux/preempt.h>
  18#include <linux/rcupdate.h>
  19#include <linux/spinlock.h>
  20#include <linux/types.h>
  21#include <linux/xarray.h>
  22#include <linux/local_lock.h>
  23
  24/* Keep unconverted code working */
  25#define radix_tree_root         xarray
  26#define radix_tree_node         xa_node
  27
  28struct radix_tree_preload {
  29        local_lock_t lock;
  30        unsigned nr;
  31        /* nodes->parent points to next preallocated node */
  32        struct radix_tree_node *nodes;
  33};
  34DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads);
  35
  36/*
  37 * The bottom two bits of the slot determine how the remaining bits in the
  38 * slot are interpreted:
  39 *
  40 * 00 - data pointer
  41 * 10 - internal entry
  42 * x1 - value entry
  43 *
  44 * The internal entry may be a pointer to the next level in the tree, a
  45 * sibling entry, or an indicator that the entry in this slot has been moved
  46 * to another location in the tree and the lookup should be restarted.  While
  47 * NULL fits the 'data pointer' pattern, it means that there is no entry in
  48 * the tree for this index (no matter what level of the tree it is found at).
  49 * This means that storing a NULL entry in the tree is the same as deleting
  50 * the entry from the tree.
  51 */
  52#define RADIX_TREE_ENTRY_MASK           3UL
  53#define RADIX_TREE_INTERNAL_NODE        2UL
  54
  55static inline bool radix_tree_is_internal_node(void *ptr)
  56{
  57        return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
  58                                RADIX_TREE_INTERNAL_NODE;
  59}
  60
  61/*** radix-tree API starts here ***/
  62
  63#define RADIX_TREE_MAP_SHIFT    XA_CHUNK_SHIFT
  64#define RADIX_TREE_MAP_SIZE     (1UL << RADIX_TREE_MAP_SHIFT)
  65#define RADIX_TREE_MAP_MASK     (RADIX_TREE_MAP_SIZE-1)
  66
  67#define RADIX_TREE_MAX_TAGS     XA_MAX_MARKS
  68#define RADIX_TREE_TAG_LONGS    XA_MARK_LONGS
  69
  70#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
  71#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
  72                                          RADIX_TREE_MAP_SHIFT))
  73
  74/* The IDR tag is stored in the low bits of xa_flags */
  75#define ROOT_IS_IDR     ((__force gfp_t)4)
  76/* The top bits of xa_flags are used to store the root tags */
  77#define ROOT_TAG_SHIFT  (__GFP_BITS_SHIFT)
  78
  79#define RADIX_TREE_INIT(name, mask)     XARRAY_INIT(name, mask)
  80
  81#define RADIX_TREE(name, mask) \
  82        struct radix_tree_root name = RADIX_TREE_INIT(name, mask)
  83
  84#define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask)
  85
  86static inline bool radix_tree_empty(const struct radix_tree_root *root)
  87{
  88        return root->xa_head == NULL;
  89}
  90
  91/**
  92 * struct radix_tree_iter - radix tree iterator state
  93 *
  94 * @index:      index of current slot
  95 * @next_index: one beyond the last index for this chunk
  96 * @tags:       bit-mask for tag-iterating
  97 * @node:       node that contains current slot
  98 *
  99 * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
 100 * subinterval of slots contained within one radix tree leaf node.  It is
 101 * described by a pointer to its first slot and a struct radix_tree_iter
 102 * which holds the chunk's position in the tree and its size.  For tagged
 103 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
 104 * radix tree tag.
 105 */
 106struct radix_tree_iter {
 107        unsigned long   index;
 108        unsigned long   next_index;
 109        unsigned long   tags;
 110        struct radix_tree_node *node;
 111};
 112
 113/**
 114 * Radix-tree synchronization
 115 *
 116 * The radix-tree API requires that users provide all synchronisation (with
 117 * specific exceptions, noted below).
 118 *
 119 * Synchronization of access to the data items being stored in the tree, and
 120 * management of their lifetimes must be completely managed by API users.
 121 *
 122 * For API usage, in general,
 123 * - any function _modifying_ the tree or tags (inserting or deleting
 124 *   items, setting or clearing tags) must exclude other modifications, and
 125 *   exclude any functions reading the tree.
 126 * - any function _reading_ the tree or tags (looking up items or tags,
 127 *   gang lookups) must exclude modifications to the tree, but may occur
 128 *   concurrently with other readers.
 129 *
 130 * The notable exceptions to this rule are the following functions:
 131 * __radix_tree_lookup
 132 * radix_tree_lookup
 133 * radix_tree_lookup_slot
 134 * radix_tree_tag_get
 135 * radix_tree_gang_lookup
 136 * radix_tree_gang_lookup_tag
 137 * radix_tree_gang_lookup_tag_slot
 138 * radix_tree_tagged
 139 *
 140 * The first 7 functions are able to be called locklessly, using RCU. The
 141 * caller must ensure calls to these functions are made within rcu_read_lock()
 142 * regions. Other readers (lock-free or otherwise) and modifications may be
 143 * running concurrently.
 144 *
 145 * It is still required that the caller manage the synchronization and lifetimes
 146 * of the items. So if RCU lock-free lookups are used, typically this would mean
 147 * that the items have their own locks, or are amenable to lock-free access; and
 148 * that the items are freed by RCU (or only freed after having been deleted from
 149 * the radix tree *and* a synchronize_rcu() grace period).
 150 *
 151 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
 152 * access to data items when inserting into or looking up from the radix tree)
 153 *
 154 * Note that the value returned by radix_tree_tag_get() may not be relied upon
 155 * if only the RCU read lock is held.  Functions to set/clear tags and to
 156 * delete nodes running concurrently with it may affect its result such that
 157 * two consecutive reads in the same locked section may return different
 158 * values.  If reliability is required, modification functions must also be
 159 * excluded from concurrency.
 160 *
 161 * radix_tree_tagged is able to be called without locking or RCU.
 162 */
 163
 164/**
 165 * radix_tree_deref_slot - dereference a slot
 166 * @slot: slot pointer, returned by radix_tree_lookup_slot
 167 *
 168 * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
 169 * locked across slot lookup and dereference. Not required if write lock is
 170 * held (ie. items cannot be concurrently inserted).
 171 *
 172 * radix_tree_deref_retry must be used to confirm validity of the pointer if
 173 * only the read lock is held.
 174 *
 175 * Return: entry stored in that slot.
 176 */
 177static inline void *radix_tree_deref_slot(void __rcu **slot)
 178{
 179        return rcu_dereference(*slot);
 180}
 181
 182/**
 183 * radix_tree_deref_slot_protected - dereference a slot with tree lock held
 184 * @slot: slot pointer, returned by radix_tree_lookup_slot
 185 *
 186 * Similar to radix_tree_deref_slot.  The caller does not hold the RCU read
 187 * lock but it must hold the tree lock to prevent parallel updates.
 188 *
 189 * Return: entry stored in that slot.
 190 */
 191static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
 192                                                        spinlock_t *treelock)
 193{
 194        return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
 195}
 196
 197/**
 198 * radix_tree_deref_retry       - check radix_tree_deref_slot
 199 * @arg:        pointer returned by radix_tree_deref_slot
 200 * Returns:     0 if retry is not required, otherwise retry is required
 201 *
 202 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
 203 */
 204static inline int radix_tree_deref_retry(void *arg)
 205{
 206        return unlikely(radix_tree_is_internal_node(arg));
 207}
 208
 209/**
 210 * radix_tree_exception - radix_tree_deref_slot returned either exception?
 211 * @arg:        value returned by radix_tree_deref_slot
 212 * Returns:     0 if well-aligned pointer, non-0 if either kind of exception.
 213 */
 214static inline int radix_tree_exception(void *arg)
 215{
 216        return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
 217}
 218
 219int radix_tree_insert(struct radix_tree_root *, unsigned long index,
 220                        void *);
 221void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
 222                          struct radix_tree_node **nodep, void __rcu ***slotp);
 223void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
 224void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
 225                                        unsigned long index);
 226void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
 227                          void __rcu **slot, void *entry);
 228void radix_tree_iter_replace(struct radix_tree_root *,
 229                const struct radix_tree_iter *, void __rcu **slot, void *entry);
 230void radix_tree_replace_slot(struct radix_tree_root *,
 231                             void __rcu **slot, void *entry);
 232void radix_tree_iter_delete(struct radix_tree_root *,
 233                        struct radix_tree_iter *iter, void __rcu **slot);
 234void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
 235void *radix_tree_delete(struct radix_tree_root *, unsigned long);
 236unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
 237                        void **results, unsigned long first_index,
 238                        unsigned int max_items);
 239int radix_tree_preload(gfp_t gfp_mask);
 240int radix_tree_maybe_preload(gfp_t gfp_mask);
 241void radix_tree_init(void);
 242void *radix_tree_tag_set(struct radix_tree_root *,
 243                        unsigned long index, unsigned int tag);
 244void *radix_tree_tag_clear(struct radix_tree_root *,
 245                        unsigned long index, unsigned int tag);
 246int radix_tree_tag_get(const struct radix_tree_root *,
 247                        unsigned long index, unsigned int tag);
 248void radix_tree_iter_tag_clear(struct radix_tree_root *,
 249                const struct radix_tree_iter *iter, unsigned int tag);
 250unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
 251                void **results, unsigned long first_index,
 252                unsigned int max_items, unsigned int tag);
 253unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
 254                void __rcu ***results, unsigned long first_index,
 255                unsigned int max_items, unsigned int tag);
 256int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
 257
 258static inline void radix_tree_preload_end(void)
 259{
 260        local_unlock(&radix_tree_preloads.lock);
 261}
 262
 263void __rcu **idr_get_free(struct radix_tree_root *root,
 264                              struct radix_tree_iter *iter, gfp_t gfp,
 265                              unsigned long max);
 266
 267enum {
 268        RADIX_TREE_ITER_TAG_MASK = 0x0f,        /* tag index in lower nybble */
 269        RADIX_TREE_ITER_TAGGED   = 0x10,        /* lookup tagged slots */
 270        RADIX_TREE_ITER_CONTIG   = 0x20,        /* stop at first hole */
 271};
 272
 273/**
 274 * radix_tree_iter_init - initialize radix tree iterator
 275 *
 276 * @iter:       pointer to iterator state
 277 * @start:      iteration starting index
 278 * Returns:     NULL
 279 */
 280static __always_inline void __rcu **
 281radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
 282{
 283        /*
 284         * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
 285         * in the case of a successful tagged chunk lookup.  If the lookup was
 286         * unsuccessful or non-tagged then nobody cares about ->tags.
 287         *
 288         * Set index to zero to bypass next_index overflow protection.
 289         * See the comment in radix_tree_next_chunk() for details.
 290         */
 291        iter->index = 0;
 292        iter->next_index = start;
 293        return NULL;
 294}
 295
 296/**
 297 * radix_tree_next_chunk - find next chunk of slots for iteration
 298 *
 299 * @root:       radix tree root
 300 * @iter:       iterator state
 301 * @flags:      RADIX_TREE_ITER_* flags and tag index
 302 * Returns:     pointer to chunk first slot, or NULL if there no more left
 303 *
 304 * This function looks up the next chunk in the radix tree starting from
 305 * @iter->next_index.  It returns a pointer to the chunk's first slot.
 306 * Also it fills @iter with data about chunk: position in the tree (index),
 307 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
 308 */
 309void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
 310                             struct radix_tree_iter *iter, unsigned flags);
 311
 312/**
 313 * radix_tree_iter_lookup - look up an index in the radix tree
 314 * @root: radix tree root
 315 * @iter: iterator state
 316 * @index: key to look up
 317 *
 318 * If @index is present in the radix tree, this function returns the slot
 319 * containing it and updates @iter to describe the entry.  If @index is not
 320 * present, it returns NULL.
 321 */
 322static inline void __rcu **
 323radix_tree_iter_lookup(const struct radix_tree_root *root,
 324                        struct radix_tree_iter *iter, unsigned long index)
 325{
 326        radix_tree_iter_init(iter, index);
 327        return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
 328}
 329
 330/**
 331 * radix_tree_iter_retry - retry this chunk of the iteration
 332 * @iter:       iterator state
 333 *
 334 * If we iterate over a tree protected only by the RCU lock, a race
 335 * against deletion or creation may result in seeing a slot for which
 336 * radix_tree_deref_retry() returns true.  If so, call this function
 337 * and continue the iteration.
 338 */
 339static inline __must_check
 340void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
 341{
 342        iter->next_index = iter->index;
 343        iter->tags = 0;
 344        return NULL;
 345}
 346
 347static inline unsigned long
 348__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
 349{
 350        return iter->index + slots;
 351}
 352
 353/**
 354 * radix_tree_iter_resume - resume iterating when the chunk may be invalid
 355 * @slot: pointer to current slot
 356 * @iter: iterator state
 357 * Returns: New slot pointer
 358 *
 359 * If the iterator needs to release then reacquire a lock, the chunk may
 360 * have been invalidated by an insertion or deletion.  Call this function
 361 * before releasing the lock to continue the iteration from the next index.
 362 */
 363void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
 364                                        struct radix_tree_iter *iter);
 365
 366/**
 367 * radix_tree_chunk_size - get current chunk size
 368 *
 369 * @iter:       pointer to radix tree iterator
 370 * Returns:     current chunk size
 371 */
 372static __always_inline long
 373radix_tree_chunk_size(struct radix_tree_iter *iter)
 374{
 375        return iter->next_index - iter->index;
 376}
 377
 378/**
 379 * radix_tree_next_slot - find next slot in chunk
 380 *
 381 * @slot:       pointer to current slot
 382 * @iter:       pointer to iterator state
 383 * @flags:      RADIX_TREE_ITER_*, should be constant
 384 * Returns:     pointer to next slot, or NULL if there no more left
 385 *
 386 * This function updates @iter->index in the case of a successful lookup.
 387 * For tagged lookup it also eats @iter->tags.
 388 *
 389 * There are several cases where 'slot' can be passed in as NULL to this
 390 * function.  These cases result from the use of radix_tree_iter_resume() or
 391 * radix_tree_iter_retry().  In these cases we don't end up dereferencing
 392 * 'slot' because either:
 393 * a) we are doing tagged iteration and iter->tags has been set to 0, or
 394 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
 395 *    have been set up so that radix_tree_chunk_size() returns 1 or 0.
 396 */
 397static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
 398                                struct radix_tree_iter *iter, unsigned flags)
 399{
 400        if (flags & RADIX_TREE_ITER_TAGGED) {
 401                iter->tags >>= 1;
 402                if (unlikely(!iter->tags))
 403                        return NULL;
 404                if (likely(iter->tags & 1ul)) {
 405                        iter->index = __radix_tree_iter_add(iter, 1);
 406                        slot++;
 407                        goto found;
 408                }
 409                if (!(flags & RADIX_TREE_ITER_CONTIG)) {
 410                        unsigned offset = __ffs(iter->tags);
 411
 412                        iter->tags >>= offset++;
 413                        iter->index = __radix_tree_iter_add(iter, offset);
 414                        slot += offset;
 415                        goto found;
 416                }
 417        } else {
 418                long count = radix_tree_chunk_size(iter);
 419
 420                while (--count > 0) {
 421                        slot++;
 422                        iter->index = __radix_tree_iter_add(iter, 1);
 423
 424                        if (likely(*slot))
 425                                goto found;
 426                        if (flags & RADIX_TREE_ITER_CONTIG) {
 427                                /* forbid switching to the next chunk */
 428                                iter->next_index = 0;
 429                                break;
 430                        }
 431                }
 432        }
 433        return NULL;
 434
 435 found:
 436        return slot;
 437}
 438
 439/**
 440 * radix_tree_for_each_slot - iterate over non-empty slots
 441 *
 442 * @slot:       the void** variable for pointer to slot
 443 * @root:       the struct radix_tree_root pointer
 444 * @iter:       the struct radix_tree_iter pointer
 445 * @start:      iteration starting index
 446 *
 447 * @slot points to radix tree slot, @iter->index contains its index.
 448 */
 449#define radix_tree_for_each_slot(slot, root, iter, start)               \
 450        for (slot = radix_tree_iter_init(iter, start) ;                 \
 451             slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;    \
 452             slot = radix_tree_next_slot(slot, iter, 0))
 453
 454/**
 455 * radix_tree_for_each_tagged - iterate over tagged slots
 456 *
 457 * @slot:       the void** variable for pointer to slot
 458 * @root:       the struct radix_tree_root pointer
 459 * @iter:       the struct radix_tree_iter pointer
 460 * @start:      iteration starting index
 461 * @tag:        tag index
 462 *
 463 * @slot points to radix tree slot, @iter->index contains its index.
 464 */
 465#define radix_tree_for_each_tagged(slot, root, iter, start, tag)        \
 466        for (slot = radix_tree_iter_init(iter, start) ;                 \
 467             slot || (slot = radix_tree_next_chunk(root, iter,          \
 468                              RADIX_TREE_ITER_TAGGED | tag)) ;          \
 469             slot = radix_tree_next_slot(slot, iter,                    \
 470                                RADIX_TREE_ITER_TAGGED | tag))
 471
 472#endif /* _LINUX_RADIX_TREE_H */
 473