linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
   8 *
   9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
  10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  11 * Papers:
  12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  14 *
  15 * For detailed explanation of Read-Copy Update mechanism see -
  16 *              http://lse.sourceforge.net/locking/rcupdate.html
  17 *
  18 */
  19
  20#ifndef __LINUX_RCUPDATE_H
  21#define __LINUX_RCUPDATE_H
  22
  23#include <linux/types.h>
  24#include <linux/compiler.h>
  25#include <linux/atomic.h>
  26#include <linux/irqflags.h>
  27#include <linux/preempt.h>
  28#include <linux/bottom_half.h>
  29#include <linux/lockdep.h>
  30#include <asm/processor.h>
  31#include <linux/cpumask.h>
  32
  33#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  34#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  35#define ulong2long(a)           (*(long *)(&(a)))
  36#define USHORT_CMP_GE(a, b)     (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
  37#define USHORT_CMP_LT(a, b)     (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
  38
  39/* Exported common interfaces */
  40void call_rcu(struct rcu_head *head, rcu_callback_t func);
  41void rcu_barrier_tasks(void);
  42void rcu_barrier_tasks_rude(void);
  43void synchronize_rcu(void);
  44
  45#ifdef CONFIG_PREEMPT_RCU
  46
  47void __rcu_read_lock(void);
  48void __rcu_read_unlock(void);
  49
  50/*
  51 * Defined as a macro as it is a very low level header included from
  52 * areas that don't even know about current.  This gives the rcu_read_lock()
  53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  55 */
  56#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
  57
  58#else /* #ifdef CONFIG_PREEMPT_RCU */
  59
  60#ifdef CONFIG_TINY_RCU
  61#define rcu_read_unlock_strict() do { } while (0)
  62#else
  63void rcu_read_unlock_strict(void);
  64#endif
  65
  66static inline void __rcu_read_lock(void)
  67{
  68        preempt_disable();
  69}
  70
  71static inline void __rcu_read_unlock(void)
  72{
  73        preempt_enable();
  74        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
  75                rcu_read_unlock_strict();
  76}
  77
  78static inline int rcu_preempt_depth(void)
  79{
  80        return 0;
  81}
  82
  83#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  84
  85/* Internal to kernel */
  86void rcu_init(void);
  87extern int rcu_scheduler_active __read_mostly;
  88void rcu_sched_clock_irq(int user);
  89void rcu_report_dead(unsigned int cpu);
  90void rcutree_migrate_callbacks(int cpu);
  91
  92#ifdef CONFIG_TASKS_RCU_GENERIC
  93void rcu_init_tasks_generic(void);
  94#else
  95static inline void rcu_init_tasks_generic(void) { }
  96#endif
  97
  98#ifdef CONFIG_RCU_STALL_COMMON
  99void rcu_sysrq_start(void);
 100void rcu_sysrq_end(void);
 101#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 102static inline void rcu_sysrq_start(void) { }
 103static inline void rcu_sysrq_end(void) { }
 104#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 105
 106#ifdef CONFIG_NO_HZ_FULL
 107void rcu_user_enter(void);
 108void rcu_user_exit(void);
 109#else
 110static inline void rcu_user_enter(void) { }
 111static inline void rcu_user_exit(void) { }
 112#endif /* CONFIG_NO_HZ_FULL */
 113
 114#ifdef CONFIG_RCU_NOCB_CPU
 115void rcu_init_nohz(void);
 116int rcu_nocb_cpu_offload(int cpu);
 117int rcu_nocb_cpu_deoffload(int cpu);
 118void rcu_nocb_flush_deferred_wakeup(void);
 119#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 120static inline void rcu_init_nohz(void) { }
 121static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
 122static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
 123static inline void rcu_nocb_flush_deferred_wakeup(void) { }
 124#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 125
 126/**
 127 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 128 * @a: Code that RCU needs to pay attention to.
 129 *
 130 * RCU read-side critical sections are forbidden in the inner idle loop,
 131 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
 132 * will happily ignore any such read-side critical sections.  However,
 133 * things like powertop need tracepoints in the inner idle loop.
 134 *
 135 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 136 * will tell RCU that it needs to pay attention, invoke its argument
 137 * (in this example, calling the do_something_with_RCU() function),
 138 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 139 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 140 * on the order of a million or so, even on 32-bit systems).  It is
 141 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 142 * transfer control either into or out of RCU_NONIDLE()'s statement.
 143 */
 144#define RCU_NONIDLE(a) \
 145        do { \
 146                rcu_irq_enter_irqson(); \
 147                do { a; } while (0); \
 148                rcu_irq_exit_irqson(); \
 149        } while (0)
 150
 151/*
 152 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 153 * This is a macro rather than an inline function to avoid #include hell.
 154 */
 155#ifdef CONFIG_TASKS_RCU_GENERIC
 156
 157# ifdef CONFIG_TASKS_RCU
 158# define rcu_tasks_classic_qs(t, preempt)                               \
 159        do {                                                            \
 160                if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))    \
 161                        WRITE_ONCE((t)->rcu_tasks_holdout, false);      \
 162        } while (0)
 163void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 164void synchronize_rcu_tasks(void);
 165# else
 166# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
 167# define call_rcu_tasks call_rcu
 168# define synchronize_rcu_tasks synchronize_rcu
 169# endif
 170
 171# ifdef CONFIG_TASKS_TRACE_RCU
 172# define rcu_tasks_trace_qs(t)                                          \
 173        do {                                                            \
 174                if (!likely(READ_ONCE((t)->trc_reader_checked)) &&      \
 175                    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {    \
 176                        smp_store_release(&(t)->trc_reader_checked, true); \
 177                        smp_mb(); /* Readers partitioned by store. */   \
 178                }                                                       \
 179        } while (0)
 180# else
 181# define rcu_tasks_trace_qs(t) do { } while (0)
 182# endif
 183
 184#define rcu_tasks_qs(t, preempt)                                        \
 185do {                                                                    \
 186        rcu_tasks_classic_qs((t), (preempt));                           \
 187        rcu_tasks_trace_qs((t));                                        \
 188} while (0)
 189
 190# ifdef CONFIG_TASKS_RUDE_RCU
 191void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
 192void synchronize_rcu_tasks_rude(void);
 193# endif
 194
 195#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
 196void exit_tasks_rcu_start(void);
 197void exit_tasks_rcu_finish(void);
 198#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
 199#define rcu_tasks_qs(t, preempt) do { } while (0)
 200#define rcu_note_voluntary_context_switch(t) do { } while (0)
 201#define call_rcu_tasks call_rcu
 202#define synchronize_rcu_tasks synchronize_rcu
 203static inline void exit_tasks_rcu_start(void) { }
 204static inline void exit_tasks_rcu_finish(void) { }
 205#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
 206
 207/**
 208 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 209 *
 210 * This macro resembles cond_resched(), except that it is defined to
 211 * report potential quiescent states to RCU-tasks even if the cond_resched()
 212 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
 213 */
 214#define cond_resched_tasks_rcu_qs() \
 215do { \
 216        rcu_tasks_qs(current, false); \
 217        cond_resched(); \
 218} while (0)
 219
 220/*
 221 * Infrastructure to implement the synchronize_() primitives in
 222 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 223 */
 224
 225#if defined(CONFIG_TREE_RCU)
 226#include <linux/rcutree.h>
 227#elif defined(CONFIG_TINY_RCU)
 228#include <linux/rcutiny.h>
 229#else
 230#error "Unknown RCU implementation specified to kernel configuration"
 231#endif
 232
 233/*
 234 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 235 * are needed for dynamic initialization and destruction of rcu_head
 236 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 237 * dynamic initialization and destruction of statically allocated rcu_head
 238 * structures.  However, rcu_head structures allocated dynamically in the
 239 * heap don't need any initialization.
 240 */
 241#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 242void init_rcu_head(struct rcu_head *head);
 243void destroy_rcu_head(struct rcu_head *head);
 244void init_rcu_head_on_stack(struct rcu_head *head);
 245void destroy_rcu_head_on_stack(struct rcu_head *head);
 246#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 247static inline void init_rcu_head(struct rcu_head *head) { }
 248static inline void destroy_rcu_head(struct rcu_head *head) { }
 249static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 250static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 251#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 252
 253#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 254bool rcu_lockdep_current_cpu_online(void);
 255#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 256static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 257#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 258
 259extern struct lockdep_map rcu_lock_map;
 260extern struct lockdep_map rcu_bh_lock_map;
 261extern struct lockdep_map rcu_sched_lock_map;
 262extern struct lockdep_map rcu_callback_map;
 263
 264#ifdef CONFIG_DEBUG_LOCK_ALLOC
 265
 266static inline void rcu_lock_acquire(struct lockdep_map *map)
 267{
 268        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 269}
 270
 271static inline void rcu_lock_release(struct lockdep_map *map)
 272{
 273        lock_release(map, _THIS_IP_);
 274}
 275
 276int debug_lockdep_rcu_enabled(void);
 277int rcu_read_lock_held(void);
 278int rcu_read_lock_bh_held(void);
 279int rcu_read_lock_sched_held(void);
 280int rcu_read_lock_any_held(void);
 281
 282#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 283
 284# define rcu_lock_acquire(a)            do { } while (0)
 285# define rcu_lock_release(a)            do { } while (0)
 286
 287static inline int rcu_read_lock_held(void)
 288{
 289        return 1;
 290}
 291
 292static inline int rcu_read_lock_bh_held(void)
 293{
 294        return 1;
 295}
 296
 297static inline int rcu_read_lock_sched_held(void)
 298{
 299        return !preemptible();
 300}
 301
 302static inline int rcu_read_lock_any_held(void)
 303{
 304        return !preemptible();
 305}
 306
 307#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 308
 309#ifdef CONFIG_PROVE_RCU
 310
 311/**
 312 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 313 * @c: condition to check
 314 * @s: informative message
 315 */
 316#define RCU_LOCKDEP_WARN(c, s)                                          \
 317        do {                                                            \
 318                static bool __section(".data.unlikely") __warned;       \
 319                if ((c) && debug_lockdep_rcu_enabled() && !__warned) {  \
 320                        __warned = true;                                \
 321                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 322                }                                                       \
 323        } while (0)
 324
 325#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 326static inline void rcu_preempt_sleep_check(void)
 327{
 328        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 329                         "Illegal context switch in RCU read-side critical section");
 330}
 331#else /* #ifdef CONFIG_PROVE_RCU */
 332static inline void rcu_preempt_sleep_check(void) { }
 333#endif /* #else #ifdef CONFIG_PROVE_RCU */
 334
 335#define rcu_sleep_check()                                               \
 336        do {                                                            \
 337                rcu_preempt_sleep_check();                              \
 338                if (!IS_ENABLED(CONFIG_PREEMPT_RT))                     \
 339                    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),    \
 340                                 "Illegal context switch in RCU-bh read-side critical section"); \
 341                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 342                                 "Illegal context switch in RCU-sched read-side critical section"); \
 343        } while (0)
 344
 345#else /* #ifdef CONFIG_PROVE_RCU */
 346
 347#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
 348#define rcu_sleep_check() do { } while (0)
 349
 350#endif /* #else #ifdef CONFIG_PROVE_RCU */
 351
 352/*
 353 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 354 * and rcu_assign_pointer().  Some of these could be folded into their
 355 * callers, but they are left separate in order to ease introduction of
 356 * multiple pointers markings to match different RCU implementations
 357 * (e.g., __srcu), should this make sense in the future.
 358 */
 359
 360#ifdef __CHECKER__
 361#define rcu_check_sparse(p, space) \
 362        ((void)(((typeof(*p) space *)p) == p))
 363#else /* #ifdef __CHECKER__ */
 364#define rcu_check_sparse(p, space)
 365#endif /* #else #ifdef __CHECKER__ */
 366
 367#define __unrcu_pointer(p, local)                                       \
 368({                                                                      \
 369        typeof(*p) *local = (typeof(*p) *__force)(p);                   \
 370        rcu_check_sparse(p, __rcu);                                     \
 371        ((typeof(*p) __force __kernel *)(local));                       \
 372})
 373/**
 374 * unrcu_pointer - mark a pointer as not being RCU protected
 375 * @p: pointer needing to lose its __rcu property
 376 *
 377 * Converts @p from an __rcu pointer to a __kernel pointer.
 378 * This allows an __rcu pointer to be used with xchg() and friends.
 379 */
 380#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
 381
 382#define __rcu_access_pointer(p, local, space) \
 383({ \
 384        typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
 385        rcu_check_sparse(p, space); \
 386        ((typeof(*p) __force __kernel *)(local)); \
 387})
 388#define __rcu_dereference_check(p, local, c, space) \
 389({ \
 390        /* Dependency order vs. p above. */ \
 391        typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
 392        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 393        rcu_check_sparse(p, space); \
 394        ((typeof(*p) __force __kernel *)(local)); \
 395})
 396#define __rcu_dereference_protected(p, local, c, space) \
 397({ \
 398        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 399        rcu_check_sparse(p, space); \
 400        ((typeof(*p) __force __kernel *)(p)); \
 401})
 402#define __rcu_dereference_raw(p, local) \
 403({ \
 404        /* Dependency order vs. p above. */ \
 405        typeof(p) local = READ_ONCE(p); \
 406        ((typeof(*p) __force __kernel *)(local)); \
 407})
 408#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
 409
 410/**
 411 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 412 * @v: The value to statically initialize with.
 413 */
 414#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 415
 416/**
 417 * rcu_assign_pointer() - assign to RCU-protected pointer
 418 * @p: pointer to assign to
 419 * @v: value to assign (publish)
 420 *
 421 * Assigns the specified value to the specified RCU-protected
 422 * pointer, ensuring that any concurrent RCU readers will see
 423 * any prior initialization.
 424 *
 425 * Inserts memory barriers on architectures that require them
 426 * (which is most of them), and also prevents the compiler from
 427 * reordering the code that initializes the structure after the pointer
 428 * assignment.  More importantly, this call documents which pointers
 429 * will be dereferenced by RCU read-side code.
 430 *
 431 * In some special cases, you may use RCU_INIT_POINTER() instead
 432 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 433 * to the fact that it does not constrain either the CPU or the compiler.
 434 * That said, using RCU_INIT_POINTER() when you should have used
 435 * rcu_assign_pointer() is a very bad thing that results in
 436 * impossible-to-diagnose memory corruption.  So please be careful.
 437 * See the RCU_INIT_POINTER() comment header for details.
 438 *
 439 * Note that rcu_assign_pointer() evaluates each of its arguments only
 440 * once, appearances notwithstanding.  One of the "extra" evaluations
 441 * is in typeof() and the other visible only to sparse (__CHECKER__),
 442 * neither of which actually execute the argument.  As with most cpp
 443 * macros, this execute-arguments-only-once property is important, so
 444 * please be careful when making changes to rcu_assign_pointer() and the
 445 * other macros that it invokes.
 446 */
 447#define rcu_assign_pointer(p, v)                                              \
 448do {                                                                          \
 449        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 450        rcu_check_sparse(p, __rcu);                                           \
 451                                                                              \
 452        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 453                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 454        else                                                                  \
 455                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 456} while (0)
 457
 458/**
 459 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
 460 * @rcu_ptr: RCU pointer, whose old value is returned
 461 * @ptr: regular pointer
 462 * @c: the lockdep conditions under which the dereference will take place
 463 *
 464 * Perform a replacement, where @rcu_ptr is an RCU-annotated
 465 * pointer and @c is the lockdep argument that is passed to the
 466 * rcu_dereference_protected() call used to read that pointer.  The old
 467 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
 468 */
 469#define rcu_replace_pointer(rcu_ptr, ptr, c)                            \
 470({                                                                      \
 471        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 472        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 473        __tmp;                                                          \
 474})
 475
 476/**
 477 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 478 * @p: The pointer to read
 479 *
 480 * Return the value of the specified RCU-protected pointer, but omit the
 481 * lockdep checks for being in an RCU read-side critical section.  This is
 482 * useful when the value of this pointer is accessed, but the pointer is
 483 * not dereferenced, for example, when testing an RCU-protected pointer
 484 * against NULL.  Although rcu_access_pointer() may also be used in cases
 485 * where update-side locks prevent the value of the pointer from changing,
 486 * you should instead use rcu_dereference_protected() for this use case.
 487 *
 488 * It is also permissible to use rcu_access_pointer() when read-side
 489 * access to the pointer was removed at least one grace period ago, as
 490 * is the case in the context of the RCU callback that is freeing up
 491 * the data, or after a synchronize_rcu() returns.  This can be useful
 492 * when tearing down multi-linked structures after a grace period
 493 * has elapsed.
 494 */
 495#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
 496
 497/**
 498 * rcu_dereference_check() - rcu_dereference with debug checking
 499 * @p: The pointer to read, prior to dereferencing
 500 * @c: The conditions under which the dereference will take place
 501 *
 502 * Do an rcu_dereference(), but check that the conditions under which the
 503 * dereference will take place are correct.  Typically the conditions
 504 * indicate the various locking conditions that should be held at that
 505 * point.  The check should return true if the conditions are satisfied.
 506 * An implicit check for being in an RCU read-side critical section
 507 * (rcu_read_lock()) is included.
 508 *
 509 * For example:
 510 *
 511 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 512 *
 513 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 514 * if either rcu_read_lock() is held, or that the lock required to replace
 515 * the bar struct at foo->bar is held.
 516 *
 517 * Note that the list of conditions may also include indications of when a lock
 518 * need not be held, for example during initialisation or destruction of the
 519 * target struct:
 520 *
 521 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 522 *                                            atomic_read(&foo->usage) == 0);
 523 *
 524 * Inserts memory barriers on architectures that require them
 525 * (currently only the Alpha), prevents the compiler from refetching
 526 * (and from merging fetches), and, more importantly, documents exactly
 527 * which pointers are protected by RCU and checks that the pointer is
 528 * annotated as __rcu.
 529 */
 530#define rcu_dereference_check(p, c) \
 531        __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 532                                (c) || rcu_read_lock_held(), __rcu)
 533
 534/**
 535 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 536 * @p: The pointer to read, prior to dereferencing
 537 * @c: The conditions under which the dereference will take place
 538 *
 539 * This is the RCU-bh counterpart to rcu_dereference_check().  However,
 540 * please note that starting in v5.0 kernels, vanilla RCU grace periods
 541 * wait for local_bh_disable() regions of code in addition to regions of
 542 * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
 543 * that synchronize_rcu(), call_rcu, and friends all take not only
 544 * rcu_read_lock() but also rcu_read_lock_bh() into account.
 545 */
 546#define rcu_dereference_bh_check(p, c) \
 547        __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 548                                (c) || rcu_read_lock_bh_held(), __rcu)
 549
 550/**
 551 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 552 * @p: The pointer to read, prior to dereferencing
 553 * @c: The conditions under which the dereference will take place
 554 *
 555 * This is the RCU-sched counterpart to rcu_dereference_check().
 556 * However, please note that starting in v5.0 kernels, vanilla RCU grace
 557 * periods wait for preempt_disable() regions of code in addition to
 558 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
 559 * This means that synchronize_rcu(), call_rcu, and friends all take not
 560 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
 561 */
 562#define rcu_dereference_sched_check(p, c) \
 563        __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
 564                                (c) || rcu_read_lock_sched_held(), \
 565                                __rcu)
 566
 567/*
 568 * The tracing infrastructure traces RCU (we want that), but unfortunately
 569 * some of the RCU checks causes tracing to lock up the system.
 570 *
 571 * The no-tracing version of rcu_dereference_raw() must not call
 572 * rcu_read_lock_held().
 573 */
 574#define rcu_dereference_raw_check(p) \
 575        __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
 576
 577/**
 578 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 579 * @p: The pointer to read, prior to dereferencing
 580 * @c: The conditions under which the dereference will take place
 581 *
 582 * Return the value of the specified RCU-protected pointer, but omit
 583 * the READ_ONCE().  This is useful in cases where update-side locks
 584 * prevent the value of the pointer from changing.  Please note that this
 585 * primitive does *not* prevent the compiler from repeating this reference
 586 * or combining it with other references, so it should not be used without
 587 * protection of appropriate locks.
 588 *
 589 * This function is only for update-side use.  Using this function
 590 * when protected only by rcu_read_lock() will result in infrequent
 591 * but very ugly failures.
 592 */
 593#define rcu_dereference_protected(p, c) \
 594        __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
 595
 596
 597/**
 598 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 599 * @p: The pointer to read, prior to dereferencing
 600 *
 601 * This is a simple wrapper around rcu_dereference_check().
 602 */
 603#define rcu_dereference(p) rcu_dereference_check(p, 0)
 604
 605/**
 606 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 607 * @p: The pointer to read, prior to dereferencing
 608 *
 609 * Makes rcu_dereference_check() do the dirty work.
 610 */
 611#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 612
 613/**
 614 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 615 * @p: The pointer to read, prior to dereferencing
 616 *
 617 * Makes rcu_dereference_check() do the dirty work.
 618 */
 619#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 620
 621/**
 622 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 623 * @p: The pointer to hand off
 624 *
 625 * This is simply an identity function, but it documents where a pointer
 626 * is handed off from RCU to some other synchronization mechanism, for
 627 * example, reference counting or locking.  In C11, it would map to
 628 * kill_dependency().  It could be used as follows::
 629 *
 630 *      rcu_read_lock();
 631 *      p = rcu_dereference(gp);
 632 *      long_lived = is_long_lived(p);
 633 *      if (long_lived) {
 634 *              if (!atomic_inc_not_zero(p->refcnt))
 635 *                      long_lived = false;
 636 *              else
 637 *                      p = rcu_pointer_handoff(p);
 638 *      }
 639 *      rcu_read_unlock();
 640 */
 641#define rcu_pointer_handoff(p) (p)
 642
 643/**
 644 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 645 *
 646 * When synchronize_rcu() is invoked on one CPU while other CPUs
 647 * are within RCU read-side critical sections, then the
 648 * synchronize_rcu() is guaranteed to block until after all the other
 649 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 650 * on one CPU while other CPUs are within RCU read-side critical
 651 * sections, invocation of the corresponding RCU callback is deferred
 652 * until after the all the other CPUs exit their critical sections.
 653 *
 654 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
 655 * wait for regions of code with preemption disabled, including regions of
 656 * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
 657 * define synchronize_sched(), only code enclosed within rcu_read_lock()
 658 * and rcu_read_unlock() are guaranteed to be waited for.
 659 *
 660 * Note, however, that RCU callbacks are permitted to run concurrently
 661 * with new RCU read-side critical sections.  One way that this can happen
 662 * is via the following sequence of events: (1) CPU 0 enters an RCU
 663 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 664 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 665 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 666 * callback is invoked.  This is legal, because the RCU read-side critical
 667 * section that was running concurrently with the call_rcu() (and which
 668 * therefore might be referencing something that the corresponding RCU
 669 * callback would free up) has completed before the corresponding
 670 * RCU callback is invoked.
 671 *
 672 * RCU read-side critical sections may be nested.  Any deferred actions
 673 * will be deferred until the outermost RCU read-side critical section
 674 * completes.
 675 *
 676 * You can avoid reading and understanding the next paragraph by
 677 * following this rule: don't put anything in an rcu_read_lock() RCU
 678 * read-side critical section that would block in a !PREEMPTION kernel.
 679 * But if you want the full story, read on!
 680 *
 681 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
 682 * it is illegal to block while in an RCU read-side critical section.
 683 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
 684 * kernel builds, RCU read-side critical sections may be preempted,
 685 * but explicit blocking is illegal.  Finally, in preemptible RCU
 686 * implementations in real-time (with -rt patchset) kernel builds, RCU
 687 * read-side critical sections may be preempted and they may also block, but
 688 * only when acquiring spinlocks that are subject to priority inheritance.
 689 */
 690static __always_inline void rcu_read_lock(void)
 691{
 692        __rcu_read_lock();
 693        __acquire(RCU);
 694        rcu_lock_acquire(&rcu_lock_map);
 695        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 696                         "rcu_read_lock() used illegally while idle");
 697}
 698
 699/*
 700 * So where is rcu_write_lock()?  It does not exist, as there is no
 701 * way for writers to lock out RCU readers.  This is a feature, not
 702 * a bug -- this property is what provides RCU's performance benefits.
 703 * Of course, writers must coordinate with each other.  The normal
 704 * spinlock primitives work well for this, but any other technique may be
 705 * used as well.  RCU does not care how the writers keep out of each
 706 * others' way, as long as they do so.
 707 */
 708
 709/**
 710 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 711 *
 712 * In almost all situations, rcu_read_unlock() is immune from deadlock.
 713 * In recent kernels that have consolidated synchronize_sched() and
 714 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
 715 * also extends to the scheduler's runqueue and priority-inheritance
 716 * spinlocks, courtesy of the quiescent-state deferral that is carried
 717 * out when rcu_read_unlock() is invoked with interrupts disabled.
 718 *
 719 * See rcu_read_lock() for more information.
 720 */
 721static inline void rcu_read_unlock(void)
 722{
 723        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 724                         "rcu_read_unlock() used illegally while idle");
 725        __release(RCU);
 726        __rcu_read_unlock();
 727        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 728}
 729
 730/**
 731 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 732 *
 733 * This is equivalent to rcu_read_lock(), but also disables softirqs.
 734 * Note that anything else that disables softirqs can also serve as an RCU
 735 * read-side critical section.  However, please note that this equivalence
 736 * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
 737 * rcu_read_lock_bh() were unrelated.
 738 *
 739 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 740 * must occur in the same context, for example, it is illegal to invoke
 741 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 742 * was invoked from some other task.
 743 */
 744static inline void rcu_read_lock_bh(void)
 745{
 746        local_bh_disable();
 747        __acquire(RCU_BH);
 748        rcu_lock_acquire(&rcu_bh_lock_map);
 749        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 750                         "rcu_read_lock_bh() used illegally while idle");
 751}
 752
 753/**
 754 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
 755 *
 756 * See rcu_read_lock_bh() for more information.
 757 */
 758static inline void rcu_read_unlock_bh(void)
 759{
 760        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 761                         "rcu_read_unlock_bh() used illegally while idle");
 762        rcu_lock_release(&rcu_bh_lock_map);
 763        __release(RCU_BH);
 764        local_bh_enable();
 765}
 766
 767/**
 768 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 769 *
 770 * This is equivalent to rcu_read_lock(), but also disables preemption.
 771 * Read-side critical sections can also be introduced by anything else that
 772 * disables preemption, including local_irq_disable() and friends.  However,
 773 * please note that the equivalence to rcu_read_lock() applies only to
 774 * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
 775 * were unrelated.
 776 *
 777 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 778 * must occur in the same context, for example, it is illegal to invoke
 779 * rcu_read_unlock_sched() from process context if the matching
 780 * rcu_read_lock_sched() was invoked from an NMI handler.
 781 */
 782static inline void rcu_read_lock_sched(void)
 783{
 784        preempt_disable();
 785        __acquire(RCU_SCHED);
 786        rcu_lock_acquire(&rcu_sched_lock_map);
 787        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 788                         "rcu_read_lock_sched() used illegally while idle");
 789}
 790
 791/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 792static inline notrace void rcu_read_lock_sched_notrace(void)
 793{
 794        preempt_disable_notrace();
 795        __acquire(RCU_SCHED);
 796}
 797
 798/**
 799 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
 800 *
 801 * See rcu_read_lock_sched() for more information.
 802 */
 803static inline void rcu_read_unlock_sched(void)
 804{
 805        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 806                         "rcu_read_unlock_sched() used illegally while idle");
 807        rcu_lock_release(&rcu_sched_lock_map);
 808        __release(RCU_SCHED);
 809        preempt_enable();
 810}
 811
 812/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 813static inline notrace void rcu_read_unlock_sched_notrace(void)
 814{
 815        __release(RCU_SCHED);
 816        preempt_enable_notrace();
 817}
 818
 819/**
 820 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 821 * @p: The pointer to be initialized.
 822 * @v: The value to initialized the pointer to.
 823 *
 824 * Initialize an RCU-protected pointer in special cases where readers
 825 * do not need ordering constraints on the CPU or the compiler.  These
 826 * special cases are:
 827 *
 828 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 829 * 2.   The caller has taken whatever steps are required to prevent
 830 *      RCU readers from concurrently accessing this pointer *or*
 831 * 3.   The referenced data structure has already been exposed to
 832 *      readers either at compile time or via rcu_assign_pointer() *and*
 833 *
 834 *      a.      You have not made *any* reader-visible changes to
 835 *              this structure since then *or*
 836 *      b.      It is OK for readers accessing this structure from its
 837 *              new location to see the old state of the structure.  (For
 838 *              example, the changes were to statistical counters or to
 839 *              other state where exact synchronization is not required.)
 840 *
 841 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 842 * result in impossible-to-diagnose memory corruption.  As in the structures
 843 * will look OK in crash dumps, but any concurrent RCU readers might
 844 * see pre-initialized values of the referenced data structure.  So
 845 * please be very careful how you use RCU_INIT_POINTER()!!!
 846 *
 847 * If you are creating an RCU-protected linked structure that is accessed
 848 * by a single external-to-structure RCU-protected pointer, then you may
 849 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 850 * pointers, but you must use rcu_assign_pointer() to initialize the
 851 * external-to-structure pointer *after* you have completely initialized
 852 * the reader-accessible portions of the linked structure.
 853 *
 854 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 855 * ordering guarantees for either the CPU or the compiler.
 856 */
 857#define RCU_INIT_POINTER(p, v) \
 858        do { \
 859                rcu_check_sparse(p, __rcu); \
 860                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 861        } while (0)
 862
 863/**
 864 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 865 * @p: The pointer to be initialized.
 866 * @v: The value to initialized the pointer to.
 867 *
 868 * GCC-style initialization for an RCU-protected pointer in a structure field.
 869 */
 870#define RCU_POINTER_INITIALIZER(p, v) \
 871                .p = RCU_INITIALIZER(v)
 872
 873/*
 874 * Does the specified offset indicate that the corresponding rcu_head
 875 * structure can be handled by kvfree_rcu()?
 876 */
 877#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
 878
 879/**
 880 * kfree_rcu() - kfree an object after a grace period.
 881 * @ptr: pointer to kfree for both single- and double-argument invocations.
 882 * @rhf: the name of the struct rcu_head within the type of @ptr,
 883 *       but only for double-argument invocations.
 884 *
 885 * Many rcu callbacks functions just call kfree() on the base structure.
 886 * These functions are trivial, but their size adds up, and furthermore
 887 * when they are used in a kernel module, that module must invoke the
 888 * high-latency rcu_barrier() function at module-unload time.
 889 *
 890 * The kfree_rcu() function handles this issue.  Rather than encoding a
 891 * function address in the embedded rcu_head structure, kfree_rcu() instead
 892 * encodes the offset of the rcu_head structure within the base structure.
 893 * Because the functions are not allowed in the low-order 4096 bytes of
 894 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 895 * If the offset is larger than 4095 bytes, a compile-time error will
 896 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
 897 * either fall back to use of call_rcu() or rearrange the structure to
 898 * position the rcu_head structure into the first 4096 bytes.
 899 *
 900 * Note that the allowable offset might decrease in the future, for example,
 901 * to allow something like kmem_cache_free_rcu().
 902 *
 903 * The BUILD_BUG_ON check must not involve any function calls, hence the
 904 * checks are done in macros here.
 905 */
 906#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
 907
 908/**
 909 * kvfree_rcu() - kvfree an object after a grace period.
 910 *
 911 * This macro consists of one or two arguments and it is
 912 * based on whether an object is head-less or not. If it
 913 * has a head then a semantic stays the same as it used
 914 * to be before:
 915 *
 916 *     kvfree_rcu(ptr, rhf);
 917 *
 918 * where @ptr is a pointer to kvfree(), @rhf is the name
 919 * of the rcu_head structure within the type of @ptr.
 920 *
 921 * When it comes to head-less variant, only one argument
 922 * is passed and that is just a pointer which has to be
 923 * freed after a grace period. Therefore the semantic is
 924 *
 925 *     kvfree_rcu(ptr);
 926 *
 927 * where @ptr is a pointer to kvfree().
 928 *
 929 * Please note, head-less way of freeing is permitted to
 930 * use from a context that has to follow might_sleep()
 931 * annotation. Otherwise, please switch and embed the
 932 * rcu_head structure within the type of @ptr.
 933 */
 934#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,           \
 935        kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
 936
 937#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
 938#define kvfree_rcu_arg_2(ptr, rhf)                                      \
 939do {                                                                    \
 940        typeof (ptr) ___p = (ptr);                                      \
 941                                                                        \
 942        if (___p) {                                                                     \
 943                BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));   \
 944                kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long)         \
 945                        (offsetof(typeof(*(ptr)), rhf)));                               \
 946        }                                                                               \
 947} while (0)
 948
 949#define kvfree_rcu_arg_1(ptr)                                   \
 950do {                                                            \
 951        typeof(ptr) ___p = (ptr);                               \
 952                                                                \
 953        if (___p)                                               \
 954                kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
 955} while (0)
 956
 957/*
 958 * Place this after a lock-acquisition primitive to guarantee that
 959 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 960 * if the UNLOCK and LOCK are executed by the same CPU or if the
 961 * UNLOCK and LOCK operate on the same lock variable.
 962 */
 963#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 964#define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 965#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 966#define smp_mb__after_unlock_lock()     do { } while (0)
 967#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 968
 969
 970/* Has the specified rcu_head structure been handed to call_rcu()? */
 971
 972/**
 973 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
 974 * @rhp: The rcu_head structure to initialize.
 975 *
 976 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
 977 * given rcu_head structure has already been passed to call_rcu(), then
 978 * you must also invoke this rcu_head_init() function on it just after
 979 * allocating that structure.  Calls to this function must not race with
 980 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
 981 */
 982static inline void rcu_head_init(struct rcu_head *rhp)
 983{
 984        rhp->func = (rcu_callback_t)~0L;
 985}
 986
 987/**
 988 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
 989 * @rhp: The rcu_head structure to test.
 990 * @f: The function passed to call_rcu() along with @rhp.
 991 *
 992 * Returns @true if the @rhp has been passed to call_rcu() with @func,
 993 * and @false otherwise.  Emits a warning in any other case, including
 994 * the case where @rhp has already been invoked after a grace period.
 995 * Calls to this function must not race with callback invocation.  One way
 996 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
 997 * in an RCU read-side critical section that includes a read-side fetch
 998 * of the pointer to the structure containing @rhp.
 999 */
1000static inline bool
1001rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1002{
1003        rcu_callback_t func = READ_ONCE(rhp->func);
1004
1005        if (func == f)
1006                return true;
1007        WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1008        return false;
1009}
1010
1011/* kernel/ksysfs.c definitions */
1012extern int rcu_expedited;
1013extern int rcu_normal;
1014
1015#endif /* __LINUX_RCUPDATE_H */
1016