linux/kernel/printk/printk_ringbuffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/kernel.h>
   4#include <linux/irqflags.h>
   5#include <linux/string.h>
   6#include <linux/errno.h>
   7#include <linux/bug.h>
   8#include "printk_ringbuffer.h"
   9
  10/**
  11 * DOC: printk_ringbuffer overview
  12 *
  13 * Data Structure
  14 * --------------
  15 * The printk_ringbuffer is made up of 3 internal ringbuffers:
  16 *
  17 *   desc_ring
  18 *     A ring of descriptors and their meta data (such as sequence number,
  19 *     timestamp, loglevel, etc.) as well as internal state information about
  20 *     the record and logical positions specifying where in the other
  21 *     ringbuffer the text strings are located.
  22 *
  23 *   text_data_ring
  24 *     A ring of data blocks. A data block consists of an unsigned long
  25 *     integer (ID) that maps to a desc_ring index followed by the text
  26 *     string of the record.
  27 *
  28 * The internal state information of a descriptor is the key element to allow
  29 * readers and writers to locklessly synchronize access to the data.
  30 *
  31 * Implementation
  32 * --------------
  33 *
  34 * Descriptor Ring
  35 * ~~~~~~~~~~~~~~~
  36 * The descriptor ring is an array of descriptors. A descriptor contains
  37 * essential meta data to track the data of a printk record using
  38 * blk_lpos structs pointing to associated text data blocks (see
  39 * "Data Rings" below). Each descriptor is assigned an ID that maps
  40 * directly to index values of the descriptor array and has a state. The ID
  41 * and the state are bitwise combined into a single descriptor field named
  42 * @state_var, allowing ID and state to be synchronously and atomically
  43 * updated.
  44 *
  45 * Descriptors have four states:
  46 *
  47 *   reserved
  48 *     A writer is modifying the record.
  49 *
  50 *   committed
  51 *     The record and all its data are written. A writer can reopen the
  52 *     descriptor (transitioning it back to reserved), but in the committed
  53 *     state the data is consistent.
  54 *
  55 *   finalized
  56 *     The record and all its data are complete and available for reading. A
  57 *     writer cannot reopen the descriptor.
  58 *
  59 *   reusable
  60 *     The record exists, but its text and/or meta data may no longer be
  61 *     available.
  62 *
  63 * Querying the @state_var of a record requires providing the ID of the
  64 * descriptor to query. This can yield a possible fifth (pseudo) state:
  65 *
  66 *   miss
  67 *     The descriptor being queried has an unexpected ID.
  68 *
  69 * The descriptor ring has a @tail_id that contains the ID of the oldest
  70 * descriptor and @head_id that contains the ID of the newest descriptor.
  71 *
  72 * When a new descriptor should be created (and the ring is full), the tail
  73 * descriptor is invalidated by first transitioning to the reusable state and
  74 * then invalidating all tail data blocks up to and including the data blocks
  75 * associated with the tail descriptor (for the text ring). Then
  76 * @tail_id is advanced, followed by advancing @head_id. And finally the
  77 * @state_var of the new descriptor is initialized to the new ID and reserved
  78 * state.
  79 *
  80 * The @tail_id can only be advanced if the new @tail_id would be in the
  81 * committed or reusable queried state. This makes it possible that a valid
  82 * sequence number of the tail is always available.
  83 *
  84 * Descriptor Finalization
  85 * ~~~~~~~~~~~~~~~~~~~~~~~
  86 * When a writer calls the commit function prb_commit(), record data is
  87 * fully stored and is consistent within the ringbuffer. However, a writer can
  88 * reopen that record, claiming exclusive access (as with prb_reserve()), and
  89 * modify that record. When finished, the writer must again commit the record.
  90 *
  91 * In order for a record to be made available to readers (and also become
  92 * recyclable for writers), it must be finalized. A finalized record cannot be
  93 * reopened and can never become "unfinalized". Record finalization can occur
  94 * in three different scenarios:
  95 *
  96 *   1) A writer can simultaneously commit and finalize its record by calling
  97 *      prb_final_commit() instead of prb_commit().
  98 *
  99 *   2) When a new record is reserved and the previous record has been
 100 *      committed via prb_commit(), that previous record is automatically
 101 *      finalized.
 102 *
 103 *   3) When a record is committed via prb_commit() and a newer record
 104 *      already exists, the record being committed is automatically finalized.
 105 *
 106 * Data Ring
 107 * ~~~~~~~~~
 108 * The text data ring is a byte array composed of data blocks. Data blocks are
 109 * referenced by blk_lpos structs that point to the logical position of the
 110 * beginning of a data block and the beginning of the next adjacent data
 111 * block. Logical positions are mapped directly to index values of the byte
 112 * array ringbuffer.
 113 *
 114 * Each data block consists of an ID followed by the writer data. The ID is
 115 * the identifier of a descriptor that is associated with the data block. A
 116 * given data block is considered valid if all of the following conditions
 117 * are met:
 118 *
 119 *   1) The descriptor associated with the data block is in the committed
 120 *      or finalized queried state.
 121 *
 122 *   2) The blk_lpos struct within the descriptor associated with the data
 123 *      block references back to the same data block.
 124 *
 125 *   3) The data block is within the head/tail logical position range.
 126 *
 127 * If the writer data of a data block would extend beyond the end of the
 128 * byte array, only the ID of the data block is stored at the logical
 129 * position and the full data block (ID and writer data) is stored at the
 130 * beginning of the byte array. The referencing blk_lpos will point to the
 131 * ID before the wrap and the next data block will be at the logical
 132 * position adjacent the full data block after the wrap.
 133 *
 134 * Data rings have a @tail_lpos that points to the beginning of the oldest
 135 * data block and a @head_lpos that points to the logical position of the
 136 * next (not yet existing) data block.
 137 *
 138 * When a new data block should be created (and the ring is full), tail data
 139 * blocks will first be invalidated by putting their associated descriptors
 140 * into the reusable state and then pushing the @tail_lpos forward beyond
 141 * them. Then the @head_lpos is pushed forward and is associated with a new
 142 * descriptor. If a data block is not valid, the @tail_lpos cannot be
 143 * advanced beyond it.
 144 *
 145 * Info Array
 146 * ~~~~~~~~~~
 147 * The general meta data of printk records are stored in printk_info structs,
 148 * stored in an array with the same number of elements as the descriptor ring.
 149 * Each info corresponds to the descriptor of the same index in the
 150 * descriptor ring. Info validity is confirmed by evaluating the corresponding
 151 * descriptor before and after loading the info.
 152 *
 153 * Usage
 154 * -----
 155 * Here are some simple examples demonstrating writers and readers. For the
 156 * examples a global ringbuffer (test_rb) is available (which is not the
 157 * actual ringbuffer used by printk)::
 158 *
 159 *      DEFINE_PRINTKRB(test_rb, 15, 5);
 160 *
 161 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
 162 * 1 MiB (2 ^ (15 + 5)) for text data.
 163 *
 164 * Sample writer code::
 165 *
 166 *      const char *textstr = "message text";
 167 *      struct prb_reserved_entry e;
 168 *      struct printk_record r;
 169 *
 170 *      // specify how much to allocate
 171 *      prb_rec_init_wr(&r, strlen(textstr) + 1);
 172 *
 173 *      if (prb_reserve(&e, &test_rb, &r)) {
 174 *              snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
 175 *
 176 *              r.info->text_len = strlen(textstr);
 177 *              r.info->ts_nsec = local_clock();
 178 *              r.info->caller_id = printk_caller_id();
 179 *
 180 *              // commit and finalize the record
 181 *              prb_final_commit(&e);
 182 *      }
 183 *
 184 * Note that additional writer functions are available to extend a record
 185 * after it has been committed but not yet finalized. This can be done as
 186 * long as no new records have been reserved and the caller is the same.
 187 *
 188 * Sample writer code (record extending)::
 189 *
 190 *              // alternate rest of previous example
 191 *
 192 *              r.info->text_len = strlen(textstr);
 193 *              r.info->ts_nsec = local_clock();
 194 *              r.info->caller_id = printk_caller_id();
 195 *
 196 *              // commit the record (but do not finalize yet)
 197 *              prb_commit(&e);
 198 *      }
 199 *
 200 *      ...
 201 *
 202 *      // specify additional 5 bytes text space to extend
 203 *      prb_rec_init_wr(&r, 5);
 204 *
 205 *      // try to extend, but only if it does not exceed 32 bytes
 206 *      if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) {
 207 *              snprintf(&r.text_buf[r.info->text_len],
 208 *                       r.text_buf_size - r.info->text_len, "hello");
 209 *
 210 *              r.info->text_len += 5;
 211 *
 212 *              // commit and finalize the record
 213 *              prb_final_commit(&e);
 214 *      }
 215 *
 216 * Sample reader code::
 217 *
 218 *      struct printk_info info;
 219 *      struct printk_record r;
 220 *      char text_buf[32];
 221 *      u64 seq;
 222 *
 223 *      prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
 224 *
 225 *      prb_for_each_record(0, &test_rb, &seq, &r) {
 226 *              if (info.seq != seq)
 227 *                      pr_warn("lost %llu records\n", info.seq - seq);
 228 *
 229 *              if (info.text_len > r.text_buf_size) {
 230 *                      pr_warn("record %llu text truncated\n", info.seq);
 231 *                      text_buf[r.text_buf_size - 1] = 0;
 232 *              }
 233 *
 234 *              pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
 235 *                      &text_buf[0]);
 236 *      }
 237 *
 238 * Note that additional less convenient reader functions are available to
 239 * allow complex record access.
 240 *
 241 * ABA Issues
 242 * ~~~~~~~~~~
 243 * To help avoid ABA issues, descriptors are referenced by IDs (array index
 244 * values combined with tagged bits counting array wraps) and data blocks are
 245 * referenced by logical positions (array index values combined with tagged
 246 * bits counting array wraps). However, on 32-bit systems the number of
 247 * tagged bits is relatively small such that an ABA incident is (at least
 248 * theoretically) possible. For example, if 4 million maximally sized (1KiB)
 249 * printk messages were to occur in NMI context on a 32-bit system, the
 250 * interrupted context would not be able to recognize that the 32-bit integer
 251 * completely wrapped and thus represents a different data block than the one
 252 * the interrupted context expects.
 253 *
 254 * To help combat this possibility, additional state checking is performed
 255 * (such as using cmpxchg() even though set() would suffice). These extra
 256 * checks are commented as such and will hopefully catch any ABA issue that
 257 * a 32-bit system might experience.
 258 *
 259 * Memory Barriers
 260 * ~~~~~~~~~~~~~~~
 261 * Multiple memory barriers are used. To simplify proving correctness and
 262 * generating litmus tests, lines of code related to memory barriers
 263 * (loads, stores, and the associated memory barriers) are labeled::
 264 *
 265 *      LMM(function:letter)
 266 *
 267 * Comments reference the labels using only the "function:letter" part.
 268 *
 269 * The memory barrier pairs and their ordering are:
 270 *
 271 *   desc_reserve:D / desc_reserve:B
 272 *     push descriptor tail (id), then push descriptor head (id)
 273 *
 274 *   desc_reserve:D / data_push_tail:B
 275 *     push data tail (lpos), then set new descriptor reserved (state)
 276 *
 277 *   desc_reserve:D / desc_push_tail:C
 278 *     push descriptor tail (id), then set new descriptor reserved (state)
 279 *
 280 *   desc_reserve:D / prb_first_seq:C
 281 *     push descriptor tail (id), then set new descriptor reserved (state)
 282 *
 283 *   desc_reserve:F / desc_read:D
 284 *     set new descriptor id and reserved (state), then allow writer changes
 285 *
 286 *   data_alloc:A (or data_realloc:A) / desc_read:D
 287 *     set old descriptor reusable (state), then modify new data block area
 288 *
 289 *   data_alloc:A (or data_realloc:A) / data_push_tail:B
 290 *     push data tail (lpos), then modify new data block area
 291 *
 292 *   _prb_commit:B / desc_read:B
 293 *     store writer changes, then set new descriptor committed (state)
 294 *
 295 *   desc_reopen_last:A / _prb_commit:B
 296 *     set descriptor reserved (state), then read descriptor data
 297 *
 298 *   _prb_commit:B / desc_reserve:D
 299 *     set new descriptor committed (state), then check descriptor head (id)
 300 *
 301 *   data_push_tail:D / data_push_tail:A
 302 *     set descriptor reusable (state), then push data tail (lpos)
 303 *
 304 *   desc_push_tail:B / desc_reserve:D
 305 *     set descriptor reusable (state), then push descriptor tail (id)
 306 */
 307
 308#define DATA_SIZE(data_ring)            _DATA_SIZE((data_ring)->size_bits)
 309#define DATA_SIZE_MASK(data_ring)       (DATA_SIZE(data_ring) - 1)
 310
 311#define DESCS_COUNT(desc_ring)          _DESCS_COUNT((desc_ring)->count_bits)
 312#define DESCS_COUNT_MASK(desc_ring)     (DESCS_COUNT(desc_ring) - 1)
 313
 314/* Determine the data array index from a logical position. */
 315#define DATA_INDEX(data_ring, lpos)     ((lpos) & DATA_SIZE_MASK(data_ring))
 316
 317/* Determine the desc array index from an ID or sequence number. */
 318#define DESC_INDEX(desc_ring, n)        ((n) & DESCS_COUNT_MASK(desc_ring))
 319
 320/* Determine how many times the data array has wrapped. */
 321#define DATA_WRAPS(data_ring, lpos)     ((lpos) >> (data_ring)->size_bits)
 322
 323/* Determine if a logical position refers to a data-less block. */
 324#define LPOS_DATALESS(lpos)             ((lpos) & 1UL)
 325#define BLK_DATALESS(blk)               (LPOS_DATALESS((blk)->begin) && \
 326                                         LPOS_DATALESS((blk)->next))
 327
 328/* Get the logical position at index 0 of the current wrap. */
 329#define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
 330((lpos) & ~DATA_SIZE_MASK(data_ring))
 331
 332/* Get the ID for the same index of the previous wrap as the given ID. */
 333#define DESC_ID_PREV_WRAP(desc_ring, id) \
 334DESC_ID((id) - DESCS_COUNT(desc_ring))
 335
 336/*
 337 * A data block: mapped directly to the beginning of the data block area
 338 * specified as a logical position within the data ring.
 339 *
 340 * @id:   the ID of the associated descriptor
 341 * @data: the writer data
 342 *
 343 * Note that the size of a data block is only known by its associated
 344 * descriptor.
 345 */
 346struct prb_data_block {
 347        unsigned long   id;
 348        char            data[];
 349};
 350
 351/*
 352 * Return the descriptor associated with @n. @n can be either a
 353 * descriptor ID or a sequence number.
 354 */
 355static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
 356{
 357        return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
 358}
 359
 360/*
 361 * Return the printk_info associated with @n. @n can be either a
 362 * descriptor ID or a sequence number.
 363 */
 364static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
 365{
 366        return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
 367}
 368
 369static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
 370                                       unsigned long begin_lpos)
 371{
 372        return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
 373}
 374
 375/*
 376 * Increase the data size to account for data block meta data plus any
 377 * padding so that the adjacent data block is aligned on the ID size.
 378 */
 379static unsigned int to_blk_size(unsigned int size)
 380{
 381        struct prb_data_block *db = NULL;
 382
 383        size += sizeof(*db);
 384        size = ALIGN(size, sizeof(db->id));
 385        return size;
 386}
 387
 388/*
 389 * Sanity checker for reserve size. The ringbuffer code assumes that a data
 390 * block does not exceed the maximum possible size that could fit within the
 391 * ringbuffer. This function provides that basic size check so that the
 392 * assumption is safe.
 393 */
 394static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
 395{
 396        struct prb_data_block *db = NULL;
 397
 398        if (size == 0)
 399                return true;
 400
 401        /*
 402         * Ensure the alignment padded size could possibly fit in the data
 403         * array. The largest possible data block must still leave room for
 404         * at least the ID of the next block.
 405         */
 406        size = to_blk_size(size);
 407        if (size > DATA_SIZE(data_ring) - sizeof(db->id))
 408                return false;
 409
 410        return true;
 411}
 412
 413/* Query the state of a descriptor. */
 414static enum desc_state get_desc_state(unsigned long id,
 415                                      unsigned long state_val)
 416{
 417        if (id != DESC_ID(state_val))
 418                return desc_miss;
 419
 420        return DESC_STATE(state_val);
 421}
 422
 423/*
 424 * Get a copy of a specified descriptor and return its queried state. If the
 425 * descriptor is in an inconsistent state (miss or reserved), the caller can
 426 * only expect the descriptor's @state_var field to be valid.
 427 *
 428 * The sequence number and caller_id can be optionally retrieved. Like all
 429 * non-state_var data, they are only valid if the descriptor is in a
 430 * consistent state.
 431 */
 432static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
 433                                 unsigned long id, struct prb_desc *desc_out,
 434                                 u64 *seq_out, u32 *caller_id_out)
 435{
 436        struct printk_info *info = to_info(desc_ring, id);
 437        struct prb_desc *desc = to_desc(desc_ring, id);
 438        atomic_long_t *state_var = &desc->state_var;
 439        enum desc_state d_state;
 440        unsigned long state_val;
 441
 442        /* Check the descriptor state. */
 443        state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
 444        d_state = get_desc_state(id, state_val);
 445        if (d_state == desc_miss || d_state == desc_reserved) {
 446                /*
 447                 * The descriptor is in an inconsistent state. Set at least
 448                 * @state_var so that the caller can see the details of
 449                 * the inconsistent state.
 450                 */
 451                goto out;
 452        }
 453
 454        /*
 455         * Guarantee the state is loaded before copying the descriptor
 456         * content. This avoids copying obsolete descriptor content that might
 457         * not apply to the descriptor state. This pairs with _prb_commit:B.
 458         *
 459         * Memory barrier involvement:
 460         *
 461         * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
 462         * from _prb_commit:A.
 463         *
 464         * Relies on:
 465         *
 466         * WMB from _prb_commit:A to _prb_commit:B
 467         *    matching
 468         * RMB from desc_read:A to desc_read:C
 469         */
 470        smp_rmb(); /* LMM(desc_read:B) */
 471
 472        /*
 473         * Copy the descriptor data. The data is not valid until the
 474         * state has been re-checked. A memcpy() for all of @desc
 475         * cannot be used because of the atomic_t @state_var field.
 476         */
 477        memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
 478               sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
 479        if (seq_out)
 480                *seq_out = info->seq; /* also part of desc_read:C */
 481        if (caller_id_out)
 482                *caller_id_out = info->caller_id; /* also part of desc_read:C */
 483
 484        /*
 485         * 1. Guarantee the descriptor content is loaded before re-checking
 486         *    the state. This avoids reading an obsolete descriptor state
 487         *    that may not apply to the copied content. This pairs with
 488         *    desc_reserve:F.
 489         *
 490         *    Memory barrier involvement:
 491         *
 492         *    If desc_read:C reads from desc_reserve:G, then desc_read:E
 493         *    reads from desc_reserve:F.
 494         *
 495         *    Relies on:
 496         *
 497         *    WMB from desc_reserve:F to desc_reserve:G
 498         *       matching
 499         *    RMB from desc_read:C to desc_read:E
 500         *
 501         * 2. Guarantee the record data is loaded before re-checking the
 502         *    state. This avoids reading an obsolete descriptor state that may
 503         *    not apply to the copied data. This pairs with data_alloc:A and
 504         *    data_realloc:A.
 505         *
 506         *    Memory barrier involvement:
 507         *
 508         *    If copy_data:A reads from data_alloc:B, then desc_read:E
 509         *    reads from desc_make_reusable:A.
 510         *
 511         *    Relies on:
 512         *
 513         *    MB from desc_make_reusable:A to data_alloc:B
 514         *       matching
 515         *    RMB from desc_read:C to desc_read:E
 516         *
 517         *    Note: desc_make_reusable:A and data_alloc:B can be different
 518         *          CPUs. However, the data_alloc:B CPU (which performs the
 519         *          full memory barrier) must have previously seen
 520         *          desc_make_reusable:A.
 521         */
 522        smp_rmb(); /* LMM(desc_read:D) */
 523
 524        /*
 525         * The data has been copied. Return the current descriptor state,
 526         * which may have changed since the load above.
 527         */
 528        state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
 529        d_state = get_desc_state(id, state_val);
 530out:
 531        atomic_long_set(&desc_out->state_var, state_val);
 532        return d_state;
 533}
 534
 535/*
 536 * Take a specified descriptor out of the finalized state by attempting
 537 * the transition from finalized to reusable. Either this context or some
 538 * other context will have been successful.
 539 */
 540static void desc_make_reusable(struct prb_desc_ring *desc_ring,
 541                               unsigned long id)
 542{
 543        unsigned long val_finalized = DESC_SV(id, desc_finalized);
 544        unsigned long val_reusable = DESC_SV(id, desc_reusable);
 545        struct prb_desc *desc = to_desc(desc_ring, id);
 546        atomic_long_t *state_var = &desc->state_var;
 547
 548        atomic_long_cmpxchg_relaxed(state_var, val_finalized,
 549                                    val_reusable); /* LMM(desc_make_reusable:A) */
 550}
 551
 552/*
 553 * Given the text data ring, put the associated descriptor of each
 554 * data block from @lpos_begin until @lpos_end into the reusable state.
 555 *
 556 * If there is any problem making the associated descriptor reusable, either
 557 * the descriptor has not yet been finalized or another writer context has
 558 * already pushed the tail lpos past the problematic data block. Regardless,
 559 * on error the caller can re-load the tail lpos to determine the situation.
 560 */
 561static bool data_make_reusable(struct printk_ringbuffer *rb,
 562                               unsigned long lpos_begin,
 563                               unsigned long lpos_end,
 564                               unsigned long *lpos_out)
 565{
 566
 567        struct prb_data_ring *data_ring = &rb->text_data_ring;
 568        struct prb_desc_ring *desc_ring = &rb->desc_ring;
 569        struct prb_data_block *blk;
 570        enum desc_state d_state;
 571        struct prb_desc desc;
 572        struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
 573        unsigned long id;
 574
 575        /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
 576        while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
 577                blk = to_block(data_ring, lpos_begin);
 578
 579                /*
 580                 * Load the block ID from the data block. This is a data race
 581                 * against a writer that may have newly reserved this data
 582                 * area. If the loaded value matches a valid descriptor ID,
 583                 * the blk_lpos of that descriptor will be checked to make
 584                 * sure it points back to this data block. If the check fails,
 585                 * the data area has been recycled by another writer.
 586                 */
 587                id = blk->id; /* LMM(data_make_reusable:A) */
 588
 589                d_state = desc_read(desc_ring, id, &desc,
 590                                    NULL, NULL); /* LMM(data_make_reusable:B) */
 591
 592                switch (d_state) {
 593                case desc_miss:
 594                case desc_reserved:
 595                case desc_committed:
 596                        return false;
 597                case desc_finalized:
 598                        /*
 599                         * This data block is invalid if the descriptor
 600                         * does not point back to it.
 601                         */
 602                        if (blk_lpos->begin != lpos_begin)
 603                                return false;
 604                        desc_make_reusable(desc_ring, id);
 605                        break;
 606                case desc_reusable:
 607                        /*
 608                         * This data block is invalid if the descriptor
 609                         * does not point back to it.
 610                         */
 611                        if (blk_lpos->begin != lpos_begin)
 612                                return false;
 613                        break;
 614                }
 615
 616                /* Advance @lpos_begin to the next data block. */
 617                lpos_begin = blk_lpos->next;
 618        }
 619
 620        *lpos_out = lpos_begin;
 621        return true;
 622}
 623
 624/*
 625 * Advance the data ring tail to at least @lpos. This function puts
 626 * descriptors into the reusable state if the tail is pushed beyond
 627 * their associated data block.
 628 */
 629static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
 630{
 631        struct prb_data_ring *data_ring = &rb->text_data_ring;
 632        unsigned long tail_lpos_new;
 633        unsigned long tail_lpos;
 634        unsigned long next_lpos;
 635
 636        /* If @lpos is from a data-less block, there is nothing to do. */
 637        if (LPOS_DATALESS(lpos))
 638                return true;
 639
 640        /*
 641         * Any descriptor states that have transitioned to reusable due to the
 642         * data tail being pushed to this loaded value will be visible to this
 643         * CPU. This pairs with data_push_tail:D.
 644         *
 645         * Memory barrier involvement:
 646         *
 647         * If data_push_tail:A reads from data_push_tail:D, then this CPU can
 648         * see desc_make_reusable:A.
 649         *
 650         * Relies on:
 651         *
 652         * MB from desc_make_reusable:A to data_push_tail:D
 653         *    matches
 654         * READFROM from data_push_tail:D to data_push_tail:A
 655         *    thus
 656         * READFROM from desc_make_reusable:A to this CPU
 657         */
 658        tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
 659
 660        /*
 661         * Loop until the tail lpos is at or beyond @lpos. This condition
 662         * may already be satisfied, resulting in no full memory barrier
 663         * from data_push_tail:D being performed. However, since this CPU
 664         * sees the new tail lpos, any descriptor states that transitioned to
 665         * the reusable state must already be visible.
 666         */
 667        while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
 668                /*
 669                 * Make all descriptors reusable that are associated with
 670                 * data blocks before @lpos.
 671                 */
 672                if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) {
 673                        /*
 674                         * 1. Guarantee the block ID loaded in
 675                         *    data_make_reusable() is performed before
 676                         *    reloading the tail lpos. The failed
 677                         *    data_make_reusable() may be due to a newly
 678                         *    recycled data area causing the tail lpos to
 679                         *    have been previously pushed. This pairs with
 680                         *    data_alloc:A and data_realloc:A.
 681                         *
 682                         *    Memory barrier involvement:
 683                         *
 684                         *    If data_make_reusable:A reads from data_alloc:B,
 685                         *    then data_push_tail:C reads from
 686                         *    data_push_tail:D.
 687                         *
 688                         *    Relies on:
 689                         *
 690                         *    MB from data_push_tail:D to data_alloc:B
 691                         *       matching
 692                         *    RMB from data_make_reusable:A to
 693                         *    data_push_tail:C
 694                         *
 695                         *    Note: data_push_tail:D and data_alloc:B can be
 696                         *          different CPUs. However, the data_alloc:B
 697                         *          CPU (which performs the full memory
 698                         *          barrier) must have previously seen
 699                         *          data_push_tail:D.
 700                         *
 701                         * 2. Guarantee the descriptor state loaded in
 702                         *    data_make_reusable() is performed before
 703                         *    reloading the tail lpos. The failed
 704                         *    data_make_reusable() may be due to a newly
 705                         *    recycled descriptor causing the tail lpos to
 706                         *    have been previously pushed. This pairs with
 707                         *    desc_reserve:D.
 708                         *
 709                         *    Memory barrier involvement:
 710                         *
 711                         *    If data_make_reusable:B reads from
 712                         *    desc_reserve:F, then data_push_tail:C reads
 713                         *    from data_push_tail:D.
 714                         *
 715                         *    Relies on:
 716                         *
 717                         *    MB from data_push_tail:D to desc_reserve:F
 718                         *       matching
 719                         *    RMB from data_make_reusable:B to
 720                         *    data_push_tail:C
 721                         *
 722                         *    Note: data_push_tail:D and desc_reserve:F can
 723                         *          be different CPUs. However, the
 724                         *          desc_reserve:F CPU (which performs the
 725                         *          full memory barrier) must have previously
 726                         *          seen data_push_tail:D.
 727                         */
 728                        smp_rmb(); /* LMM(data_push_tail:B) */
 729
 730                        tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
 731                                                        ); /* LMM(data_push_tail:C) */
 732                        if (tail_lpos_new == tail_lpos)
 733                                return false;
 734
 735                        /* Another CPU pushed the tail. Try again. */
 736                        tail_lpos = tail_lpos_new;
 737                        continue;
 738                }
 739
 740                /*
 741                 * Guarantee any descriptor states that have transitioned to
 742                 * reusable are stored before pushing the tail lpos. A full
 743                 * memory barrier is needed since other CPUs may have made
 744                 * the descriptor states reusable. This pairs with
 745                 * data_push_tail:A.
 746                 */
 747                if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
 748                                            next_lpos)) { /* LMM(data_push_tail:D) */
 749                        break;
 750                }
 751        }
 752
 753        return true;
 754}
 755
 756/*
 757 * Advance the desc ring tail. This function advances the tail by one
 758 * descriptor, thus invalidating the oldest descriptor. Before advancing
 759 * the tail, the tail descriptor is made reusable and all data blocks up to
 760 * and including the descriptor's data block are invalidated (i.e. the data
 761 * ring tail is pushed past the data block of the descriptor being made
 762 * reusable).
 763 */
 764static bool desc_push_tail(struct printk_ringbuffer *rb,
 765                           unsigned long tail_id)
 766{
 767        struct prb_desc_ring *desc_ring = &rb->desc_ring;
 768        enum desc_state d_state;
 769        struct prb_desc desc;
 770
 771        d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
 772
 773        switch (d_state) {
 774        case desc_miss:
 775                /*
 776                 * If the ID is exactly 1 wrap behind the expected, it is
 777                 * in the process of being reserved by another writer and
 778                 * must be considered reserved.
 779                 */
 780                if (DESC_ID(atomic_long_read(&desc.state_var)) ==
 781                    DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
 782                        return false;
 783                }
 784
 785                /*
 786                 * The ID has changed. Another writer must have pushed the
 787                 * tail and recycled the descriptor already. Success is
 788                 * returned because the caller is only interested in the
 789                 * specified tail being pushed, which it was.
 790                 */
 791                return true;
 792        case desc_reserved:
 793        case desc_committed:
 794                return false;
 795        case desc_finalized:
 796                desc_make_reusable(desc_ring, tail_id);
 797                break;
 798        case desc_reusable:
 799                break;
 800        }
 801
 802        /*
 803         * Data blocks must be invalidated before their associated
 804         * descriptor can be made available for recycling. Invalidating
 805         * them later is not possible because there is no way to trust
 806         * data blocks once their associated descriptor is gone.
 807         */
 808
 809        if (!data_push_tail(rb, desc.text_blk_lpos.next))
 810                return false;
 811
 812        /*
 813         * Check the next descriptor after @tail_id before pushing the tail
 814         * to it because the tail must always be in a finalized or reusable
 815         * state. The implementation of prb_first_seq() relies on this.
 816         *
 817         * A successful read implies that the next descriptor is less than or
 818         * equal to @head_id so there is no risk of pushing the tail past the
 819         * head.
 820         */
 821        d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
 822                            NULL, NULL); /* LMM(desc_push_tail:A) */
 823
 824        if (d_state == desc_finalized || d_state == desc_reusable) {
 825                /*
 826                 * Guarantee any descriptor states that have transitioned to
 827                 * reusable are stored before pushing the tail ID. This allows
 828                 * verifying the recycled descriptor state. A full memory
 829                 * barrier is needed since other CPUs may have made the
 830                 * descriptor states reusable. This pairs with desc_reserve:D.
 831                 */
 832                atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
 833                                    DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
 834        } else {
 835                /*
 836                 * Guarantee the last state load from desc_read() is before
 837                 * reloading @tail_id in order to see a new tail ID in the
 838                 * case that the descriptor has been recycled. This pairs
 839                 * with desc_reserve:D.
 840                 *
 841                 * Memory barrier involvement:
 842                 *
 843                 * If desc_push_tail:A reads from desc_reserve:F, then
 844                 * desc_push_tail:D reads from desc_push_tail:B.
 845                 *
 846                 * Relies on:
 847                 *
 848                 * MB from desc_push_tail:B to desc_reserve:F
 849                 *    matching
 850                 * RMB from desc_push_tail:A to desc_push_tail:D
 851                 *
 852                 * Note: desc_push_tail:B and desc_reserve:F can be different
 853                 *       CPUs. However, the desc_reserve:F CPU (which performs
 854                 *       the full memory barrier) must have previously seen
 855                 *       desc_push_tail:B.
 856                 */
 857                smp_rmb(); /* LMM(desc_push_tail:C) */
 858
 859                /*
 860                 * Re-check the tail ID. The descriptor following @tail_id is
 861                 * not in an allowed tail state. But if the tail has since
 862                 * been moved by another CPU, then it does not matter.
 863                 */
 864                if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
 865                        return false;
 866        }
 867
 868        return true;
 869}
 870
 871/* Reserve a new descriptor, invalidating the oldest if necessary. */
 872static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
 873{
 874        struct prb_desc_ring *desc_ring = &rb->desc_ring;
 875        unsigned long prev_state_val;
 876        unsigned long id_prev_wrap;
 877        struct prb_desc *desc;
 878        unsigned long head_id;
 879        unsigned long id;
 880
 881        head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
 882
 883        do {
 884                id = DESC_ID(head_id + 1);
 885                id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
 886
 887                /*
 888                 * Guarantee the head ID is read before reading the tail ID.
 889                 * Since the tail ID is updated before the head ID, this
 890                 * guarantees that @id_prev_wrap is never ahead of the tail
 891                 * ID. This pairs with desc_reserve:D.
 892                 *
 893                 * Memory barrier involvement:
 894                 *
 895                 * If desc_reserve:A reads from desc_reserve:D, then
 896                 * desc_reserve:C reads from desc_push_tail:B.
 897                 *
 898                 * Relies on:
 899                 *
 900                 * MB from desc_push_tail:B to desc_reserve:D
 901                 *    matching
 902                 * RMB from desc_reserve:A to desc_reserve:C
 903                 *
 904                 * Note: desc_push_tail:B and desc_reserve:D can be different
 905                 *       CPUs. However, the desc_reserve:D CPU (which performs
 906                 *       the full memory barrier) must have previously seen
 907                 *       desc_push_tail:B.
 908                 */
 909                smp_rmb(); /* LMM(desc_reserve:B) */
 910
 911                if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
 912                                                    )) { /* LMM(desc_reserve:C) */
 913                        /*
 914                         * Make space for the new descriptor by
 915                         * advancing the tail.
 916                         */
 917                        if (!desc_push_tail(rb, id_prev_wrap))
 918                                return false;
 919                }
 920
 921                /*
 922                 * 1. Guarantee the tail ID is read before validating the
 923                 *    recycled descriptor state. A read memory barrier is
 924                 *    sufficient for this. This pairs with desc_push_tail:B.
 925                 *
 926                 *    Memory barrier involvement:
 927                 *
 928                 *    If desc_reserve:C reads from desc_push_tail:B, then
 929                 *    desc_reserve:E reads from desc_make_reusable:A.
 930                 *
 931                 *    Relies on:
 932                 *
 933                 *    MB from desc_make_reusable:A to desc_push_tail:B
 934                 *       matching
 935                 *    RMB from desc_reserve:C to desc_reserve:E
 936                 *
 937                 *    Note: desc_make_reusable:A and desc_push_tail:B can be
 938                 *          different CPUs. However, the desc_push_tail:B CPU
 939                 *          (which performs the full memory barrier) must have
 940                 *          previously seen desc_make_reusable:A.
 941                 *
 942                 * 2. Guarantee the tail ID is stored before storing the head
 943                 *    ID. This pairs with desc_reserve:B.
 944                 *
 945                 * 3. Guarantee any data ring tail changes are stored before
 946                 *    recycling the descriptor. Data ring tail changes can
 947                 *    happen via desc_push_tail()->data_push_tail(). A full
 948                 *    memory barrier is needed since another CPU may have
 949                 *    pushed the data ring tails. This pairs with
 950                 *    data_push_tail:B.
 951                 *
 952                 * 4. Guarantee a new tail ID is stored before recycling the
 953                 *    descriptor. A full memory barrier is needed since
 954                 *    another CPU may have pushed the tail ID. This pairs
 955                 *    with desc_push_tail:C and this also pairs with
 956                 *    prb_first_seq:C.
 957                 *
 958                 * 5. Guarantee the head ID is stored before trying to
 959                 *    finalize the previous descriptor. This pairs with
 960                 *    _prb_commit:B.
 961                 */
 962        } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
 963                                          id)); /* LMM(desc_reserve:D) */
 964
 965        desc = to_desc(desc_ring, id);
 966
 967        /*
 968         * If the descriptor has been recycled, verify the old state val.
 969         * See "ABA Issues" about why this verification is performed.
 970         */
 971        prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
 972        if (prev_state_val &&
 973            get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
 974                WARN_ON_ONCE(1);
 975                return false;
 976        }
 977
 978        /*
 979         * Assign the descriptor a new ID and set its state to reserved.
 980         * See "ABA Issues" about why cmpxchg() instead of set() is used.
 981         *
 982         * Guarantee the new descriptor ID and state is stored before making
 983         * any other changes. A write memory barrier is sufficient for this.
 984         * This pairs with desc_read:D.
 985         */
 986        if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
 987                        DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
 988                WARN_ON_ONCE(1);
 989                return false;
 990        }
 991
 992        /* Now data in @desc can be modified: LMM(desc_reserve:G) */
 993
 994        *id_out = id;
 995        return true;
 996}
 997
 998/* Determine the end of a data block. */
 999static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1000                                   unsigned long lpos, unsigned int size)
1001{
1002        unsigned long begin_lpos;
1003        unsigned long next_lpos;
1004
1005        begin_lpos = lpos;
1006        next_lpos = lpos + size;
1007
1008        /* First check if the data block does not wrap. */
1009        if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1010                return next_lpos;
1011
1012        /* Wrapping data blocks store their data at the beginning. */
1013        return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1014}
1015
1016/*
1017 * Allocate a new data block, invalidating the oldest data block(s)
1018 * if necessary. This function also associates the data block with
1019 * a specified descriptor.
1020 */
1021static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1022                        struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1023{
1024        struct prb_data_ring *data_ring = &rb->text_data_ring;
1025        struct prb_data_block *blk;
1026        unsigned long begin_lpos;
1027        unsigned long next_lpos;
1028
1029        if (size == 0) {
1030                /* Specify a data-less block. */
1031                blk_lpos->begin = NO_LPOS;
1032                blk_lpos->next = NO_LPOS;
1033                return NULL;
1034        }
1035
1036        size = to_blk_size(size);
1037
1038        begin_lpos = atomic_long_read(&data_ring->head_lpos);
1039
1040        do {
1041                next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1042
1043                if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) {
1044                        /* Failed to allocate, specify a data-less block. */
1045                        blk_lpos->begin = FAILED_LPOS;
1046                        blk_lpos->next = FAILED_LPOS;
1047                        return NULL;
1048                }
1049
1050                /*
1051                 * 1. Guarantee any descriptor states that have transitioned
1052                 *    to reusable are stored before modifying the newly
1053                 *    allocated data area. A full memory barrier is needed
1054                 *    since other CPUs may have made the descriptor states
1055                 *    reusable. See data_push_tail:A about why the reusable
1056                 *    states are visible. This pairs with desc_read:D.
1057                 *
1058                 * 2. Guarantee any updated tail lpos is stored before
1059                 *    modifying the newly allocated data area. Another CPU may
1060                 *    be in data_make_reusable() and is reading a block ID
1061                 *    from this area. data_make_reusable() can handle reading
1062                 *    a garbage block ID value, but then it must be able to
1063                 *    load a new tail lpos. A full memory barrier is needed
1064                 *    since other CPUs may have updated the tail lpos. This
1065                 *    pairs with data_push_tail:B.
1066                 */
1067        } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1068                                          next_lpos)); /* LMM(data_alloc:A) */
1069
1070        blk = to_block(data_ring, begin_lpos);
1071        blk->id = id; /* LMM(data_alloc:B) */
1072
1073        if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1074                /* Wrapping data blocks store their data at the beginning. */
1075                blk = to_block(data_ring, 0);
1076
1077                /*
1078                 * Store the ID on the wrapped block for consistency.
1079                 * The printk_ringbuffer does not actually use it.
1080                 */
1081                blk->id = id;
1082        }
1083
1084        blk_lpos->begin = begin_lpos;
1085        blk_lpos->next = next_lpos;
1086
1087        return &blk->data[0];
1088}
1089
1090/*
1091 * Try to resize an existing data block associated with the descriptor
1092 * specified by @id. If the resized data block should become wrapped, it
1093 * copies the old data to the new data block. If @size yields a data block
1094 * with the same or less size, the data block is left as is.
1095 *
1096 * Fail if this is not the last allocated data block or if there is not
1097 * enough space or it is not possible make enough space.
1098 *
1099 * Return a pointer to the beginning of the entire data buffer or NULL on
1100 * failure.
1101 */
1102static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1103                          struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1104{
1105        struct prb_data_ring *data_ring = &rb->text_data_ring;
1106        struct prb_data_block *blk;
1107        unsigned long head_lpos;
1108        unsigned long next_lpos;
1109        bool wrapped;
1110
1111        /* Reallocation only works if @blk_lpos is the newest data block. */
1112        head_lpos = atomic_long_read(&data_ring->head_lpos);
1113        if (head_lpos != blk_lpos->next)
1114                return NULL;
1115
1116        /* Keep track if @blk_lpos was a wrapping data block. */
1117        wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1118
1119        size = to_blk_size(size);
1120
1121        next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1122
1123        /* If the data block does not increase, there is nothing to do. */
1124        if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1125                if (wrapped)
1126                        blk = to_block(data_ring, 0);
1127                else
1128                        blk = to_block(data_ring, blk_lpos->begin);
1129                return &blk->data[0];
1130        }
1131
1132        if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring)))
1133                return NULL;
1134
1135        /* The memory barrier involvement is the same as data_alloc:A. */
1136        if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1137                                     next_lpos)) { /* LMM(data_realloc:A) */
1138                return NULL;
1139        }
1140
1141        blk = to_block(data_ring, blk_lpos->begin);
1142
1143        if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1144                struct prb_data_block *old_blk = blk;
1145
1146                /* Wrapping data blocks store their data at the beginning. */
1147                blk = to_block(data_ring, 0);
1148
1149                /*
1150                 * Store the ID on the wrapped block for consistency.
1151                 * The printk_ringbuffer does not actually use it.
1152                 */
1153                blk->id = id;
1154
1155                if (!wrapped) {
1156                        /*
1157                         * Since the allocated space is now in the newly
1158                         * created wrapping data block, copy the content
1159                         * from the old data block.
1160                         */
1161                        memcpy(&blk->data[0], &old_blk->data[0],
1162                               (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1163                }
1164        }
1165
1166        blk_lpos->next = next_lpos;
1167
1168        return &blk->data[0];
1169}
1170
1171/* Return the number of bytes used by a data block. */
1172static unsigned int space_used(struct prb_data_ring *data_ring,
1173                               struct prb_data_blk_lpos *blk_lpos)
1174{
1175        /* Data-less blocks take no space. */
1176        if (BLK_DATALESS(blk_lpos))
1177                return 0;
1178
1179        if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1180                /* Data block does not wrap. */
1181                return (DATA_INDEX(data_ring, blk_lpos->next) -
1182                        DATA_INDEX(data_ring, blk_lpos->begin));
1183        }
1184
1185        /*
1186         * For wrapping data blocks, the trailing (wasted) space is
1187         * also counted.
1188         */
1189        return (DATA_INDEX(data_ring, blk_lpos->next) +
1190                DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1191}
1192
1193/*
1194 * Given @blk_lpos, return a pointer to the writer data from the data block
1195 * and calculate the size of the data part. A NULL pointer is returned if
1196 * @blk_lpos specifies values that could never be legal.
1197 *
1198 * This function (used by readers) performs strict validation on the lpos
1199 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1200 * triggered if an internal error is detected.
1201 */
1202static const char *get_data(struct prb_data_ring *data_ring,
1203                            struct prb_data_blk_lpos *blk_lpos,
1204                            unsigned int *data_size)
1205{
1206        struct prb_data_block *db;
1207
1208        /* Data-less data block description. */
1209        if (BLK_DATALESS(blk_lpos)) {
1210                if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) {
1211                        *data_size = 0;
1212                        return "";
1213                }
1214                return NULL;
1215        }
1216
1217        /* Regular data block: @begin less than @next and in same wrap. */
1218        if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1219            blk_lpos->begin < blk_lpos->next) {
1220                db = to_block(data_ring, blk_lpos->begin);
1221                *data_size = blk_lpos->next - blk_lpos->begin;
1222
1223        /* Wrapping data block: @begin is one wrap behind @next. */
1224        } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1225                   DATA_WRAPS(data_ring, blk_lpos->next)) {
1226                db = to_block(data_ring, 0);
1227                *data_size = DATA_INDEX(data_ring, blk_lpos->next);
1228
1229        /* Illegal block description. */
1230        } else {
1231                WARN_ON_ONCE(1);
1232                return NULL;
1233        }
1234
1235        /* A valid data block will always be aligned to the ID size. */
1236        if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1237            WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1238                return NULL;
1239        }
1240
1241        /* A valid data block will always have at least an ID. */
1242        if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1243                return NULL;
1244
1245        /* Subtract block ID space from size to reflect data size. */
1246        *data_size -= sizeof(db->id);
1247
1248        return &db->data[0];
1249}
1250
1251/*
1252 * Attempt to transition the newest descriptor from committed back to reserved
1253 * so that the record can be modified by a writer again. This is only possible
1254 * if the descriptor is not yet finalized and the provided @caller_id matches.
1255 */
1256static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1257                                         u32 caller_id, unsigned long *id_out)
1258{
1259        unsigned long prev_state_val;
1260        enum desc_state d_state;
1261        struct prb_desc desc;
1262        struct prb_desc *d;
1263        unsigned long id;
1264        u32 cid;
1265
1266        id = atomic_long_read(&desc_ring->head_id);
1267
1268        /*
1269         * To reduce unnecessarily reopening, first check if the descriptor
1270         * state and caller ID are correct.
1271         */
1272        d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1273        if (d_state != desc_committed || cid != caller_id)
1274                return NULL;
1275
1276        d = to_desc(desc_ring, id);
1277
1278        prev_state_val = DESC_SV(id, desc_committed);
1279
1280        /*
1281         * Guarantee the reserved state is stored before reading any
1282         * record data. A full memory barrier is needed because @state_var
1283         * modification is followed by reading. This pairs with _prb_commit:B.
1284         *
1285         * Memory barrier involvement:
1286         *
1287         * If desc_reopen_last:A reads from _prb_commit:B, then
1288         * prb_reserve_in_last:A reads from _prb_commit:A.
1289         *
1290         * Relies on:
1291         *
1292         * WMB from _prb_commit:A to _prb_commit:B
1293         *    matching
1294         * MB If desc_reopen_last:A to prb_reserve_in_last:A
1295         */
1296        if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1297                        DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1298                return NULL;
1299        }
1300
1301        *id_out = id;
1302        return d;
1303}
1304
1305/**
1306 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1307 *                         used by the newest record.
1308 *
1309 * @e:         The entry structure to setup.
1310 * @rb:        The ringbuffer to re-reserve and extend data in.
1311 * @r:         The record structure to allocate buffers for.
1312 * @caller_id: The caller ID of the caller (reserving writer).
1313 * @max_size:  Fail if the extended size would be greater than this.
1314 *
1315 * This is the public function available to writers to re-reserve and extend
1316 * data.
1317 *
1318 * The writer specifies the text size to extend (not the new total size) by
1319 * setting the @text_buf_size field of @r. To ensure proper initialization
1320 * of @r, prb_rec_init_wr() should be used.
1321 *
1322 * This function will fail if @caller_id does not match the caller ID of the
1323 * newest record. In that case the caller must reserve new data using
1324 * prb_reserve().
1325 *
1326 * Context: Any context. Disables local interrupts on success.
1327 * Return: true if text data could be extended, otherwise false.
1328 *
1329 * On success:
1330 *
1331 *   - @r->text_buf points to the beginning of the entire text buffer.
1332 *
1333 *   - @r->text_buf_size is set to the new total size of the buffer.
1334 *
1335 *   - @r->info is not touched so that @r->info->text_len could be used
1336 *     to append the text.
1337 *
1338 *   - prb_record_text_space() can be used on @e to query the new
1339 *     actually used space.
1340 *
1341 * Important: All @r->info fields will already be set with the current values
1342 *            for the record. I.e. @r->info->text_len will be less than
1343 *            @text_buf_size. Writers can use @r->info->text_len to know
1344 *            where concatenation begins and writers should update
1345 *            @r->info->text_len after concatenating.
1346 */
1347bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1348                         struct printk_record *r, u32 caller_id, unsigned int max_size)
1349{
1350        struct prb_desc_ring *desc_ring = &rb->desc_ring;
1351        struct printk_info *info;
1352        unsigned int data_size;
1353        struct prb_desc *d;
1354        unsigned long id;
1355
1356        local_irq_save(e->irqflags);
1357
1358        /* Transition the newest descriptor back to the reserved state. */
1359        d = desc_reopen_last(desc_ring, caller_id, &id);
1360        if (!d) {
1361                local_irq_restore(e->irqflags);
1362                goto fail_reopen;
1363        }
1364
1365        /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1366
1367        info = to_info(desc_ring, id);
1368
1369        /*
1370         * Set the @e fields here so that prb_commit() can be used if
1371         * anything fails from now on.
1372         */
1373        e->rb = rb;
1374        e->id = id;
1375
1376        /*
1377         * desc_reopen_last() checked the caller_id, but there was no
1378         * exclusive access at that point. The descriptor may have
1379         * changed since then.
1380         */
1381        if (caller_id != info->caller_id)
1382                goto fail;
1383
1384        if (BLK_DATALESS(&d->text_blk_lpos)) {
1385                if (WARN_ON_ONCE(info->text_len != 0)) {
1386                        pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1387                                     info->text_len);
1388                        info->text_len = 0;
1389                }
1390
1391                if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1392                        goto fail;
1393
1394                if (r->text_buf_size > max_size)
1395                        goto fail;
1396
1397                r->text_buf = data_alloc(rb, r->text_buf_size,
1398                                         &d->text_blk_lpos, id);
1399        } else {
1400                if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1401                        goto fail;
1402
1403                /*
1404                 * Increase the buffer size to include the original size. If
1405                 * the meta data (@text_len) is not sane, use the full data
1406                 * block size.
1407                 */
1408                if (WARN_ON_ONCE(info->text_len > data_size)) {
1409                        pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1410                                     info->text_len, data_size);
1411                        info->text_len = data_size;
1412                }
1413                r->text_buf_size += info->text_len;
1414
1415                if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1416                        goto fail;
1417
1418                if (r->text_buf_size > max_size)
1419                        goto fail;
1420
1421                r->text_buf = data_realloc(rb, r->text_buf_size,
1422                                           &d->text_blk_lpos, id);
1423        }
1424        if (r->text_buf_size && !r->text_buf)
1425                goto fail;
1426
1427        r->info = info;
1428
1429        e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1430
1431        return true;
1432fail:
1433        prb_commit(e);
1434        /* prb_commit() re-enabled interrupts. */
1435fail_reopen:
1436        /* Make it clear to the caller that the re-reserve failed. */
1437        memset(r, 0, sizeof(*r));
1438        return false;
1439}
1440
1441/*
1442 * Attempt to finalize a specified descriptor. If this fails, the descriptor
1443 * is either already final or it will finalize itself when the writer commits.
1444 */
1445static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id)
1446{
1447        unsigned long prev_state_val = DESC_SV(id, desc_committed);
1448        struct prb_desc *d = to_desc(desc_ring, id);
1449
1450        atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val,
1451                        DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */
1452}
1453
1454/**
1455 * prb_reserve() - Reserve space in the ringbuffer.
1456 *
1457 * @e:  The entry structure to setup.
1458 * @rb: The ringbuffer to reserve data in.
1459 * @r:  The record structure to allocate buffers for.
1460 *
1461 * This is the public function available to writers to reserve data.
1462 *
1463 * The writer specifies the text size to reserve by setting the
1464 * @text_buf_size field of @r. To ensure proper initialization of @r,
1465 * prb_rec_init_wr() should be used.
1466 *
1467 * Context: Any context. Disables local interrupts on success.
1468 * Return: true if at least text data could be allocated, otherwise false.
1469 *
1470 * On success, the fields @info and @text_buf of @r will be set by this
1471 * function and should be filled in by the writer before committing. Also
1472 * on success, prb_record_text_space() can be used on @e to query the actual
1473 * space used for the text data block.
1474 *
1475 * Important: @info->text_len needs to be set correctly by the writer in
1476 *            order for data to be readable and/or extended. Its value
1477 *            is initialized to 0.
1478 */
1479bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1480                 struct printk_record *r)
1481{
1482        struct prb_desc_ring *desc_ring = &rb->desc_ring;
1483        struct printk_info *info;
1484        struct prb_desc *d;
1485        unsigned long id;
1486        u64 seq;
1487
1488        if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1489                goto fail;
1490
1491        /*
1492         * Descriptors in the reserved state act as blockers to all further
1493         * reservations once the desc_ring has fully wrapped. Disable
1494         * interrupts during the reserve/commit window in order to minimize
1495         * the likelihood of this happening.
1496         */
1497        local_irq_save(e->irqflags);
1498
1499        if (!desc_reserve(rb, &id)) {
1500                /* Descriptor reservation failures are tracked. */
1501                atomic_long_inc(&rb->fail);
1502                local_irq_restore(e->irqflags);
1503                goto fail;
1504        }
1505
1506        d = to_desc(desc_ring, id);
1507        info = to_info(desc_ring, id);
1508
1509        /*
1510         * All @info fields (except @seq) are cleared and must be filled in
1511         * by the writer. Save @seq before clearing because it is used to
1512         * determine the new sequence number.
1513         */
1514        seq = info->seq;
1515        memset(info, 0, sizeof(*info));
1516
1517        /*
1518         * Set the @e fields here so that prb_commit() can be used if
1519         * text data allocation fails.
1520         */
1521        e->rb = rb;
1522        e->id = id;
1523
1524        /*
1525         * Initialize the sequence number if it has "never been set".
1526         * Otherwise just increment it by a full wrap.
1527         *
1528         * @seq is considered "never been set" if it has a value of 0,
1529         * _except_ for @infos[0], which was specially setup by the ringbuffer
1530         * initializer and therefore is always considered as set.
1531         *
1532         * See the "Bootstrap" comment block in printk_ringbuffer.h for
1533         * details about how the initializer bootstraps the descriptors.
1534         */
1535        if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1536                info->seq = DESC_INDEX(desc_ring, id);
1537        else
1538                info->seq = seq + DESCS_COUNT(desc_ring);
1539
1540        /*
1541         * New data is about to be reserved. Once that happens, previous
1542         * descriptors are no longer able to be extended. Finalize the
1543         * previous descriptor now so that it can be made available to
1544         * readers. (For seq==0 there is no previous descriptor.)
1545         */
1546        if (info->seq > 0)
1547                desc_make_final(desc_ring, DESC_ID(id - 1));
1548
1549        r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id);
1550        /* If text data allocation fails, a data-less record is committed. */
1551        if (r->text_buf_size && !r->text_buf) {
1552                prb_commit(e);
1553                /* prb_commit() re-enabled interrupts. */
1554                goto fail;
1555        }
1556
1557        r->info = info;
1558
1559        /* Record full text space used by record. */
1560        e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1561
1562        return true;
1563fail:
1564        /* Make it clear to the caller that the reserve failed. */
1565        memset(r, 0, sizeof(*r));
1566        return false;
1567}
1568
1569/* Commit the data (possibly finalizing it) and restore interrupts. */
1570static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1571{
1572        struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1573        struct prb_desc *d = to_desc(desc_ring, e->id);
1574        unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1575
1576        /* Now the writer has finished all writing: LMM(_prb_commit:A) */
1577
1578        /*
1579         * Set the descriptor as committed. See "ABA Issues" about why
1580         * cmpxchg() instead of set() is used.
1581         *
1582         * 1  Guarantee all record data is stored before the descriptor state
1583         *    is stored as committed. A write memory barrier is sufficient
1584         *    for this. This pairs with desc_read:B and desc_reopen_last:A.
1585         *
1586         * 2. Guarantee the descriptor state is stored as committed before
1587         *    re-checking the head ID in order to possibly finalize this
1588         *    descriptor. This pairs with desc_reserve:D.
1589         *
1590         *    Memory barrier involvement:
1591         *
1592         *    If prb_commit:A reads from desc_reserve:D, then
1593         *    desc_make_final:A reads from _prb_commit:B.
1594         *
1595         *    Relies on:
1596         *
1597         *    MB _prb_commit:B to prb_commit:A
1598         *       matching
1599         *    MB desc_reserve:D to desc_make_final:A
1600         */
1601        if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1602                        DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1603                WARN_ON_ONCE(1);
1604        }
1605
1606        /* Restore interrupts, the reserve/commit window is finished. */
1607        local_irq_restore(e->irqflags);
1608}
1609
1610/**
1611 * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1612 *
1613 * @e: The entry containing the reserved data information.
1614 *
1615 * This is the public function available to writers to commit data.
1616 *
1617 * Note that the data is not yet available to readers until it is finalized.
1618 * Finalizing happens automatically when space for the next record is
1619 * reserved.
1620 *
1621 * See prb_final_commit() for a version of this function that finalizes
1622 * immediately.
1623 *
1624 * Context: Any context. Enables local interrupts.
1625 */
1626void prb_commit(struct prb_reserved_entry *e)
1627{
1628        struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1629        unsigned long head_id;
1630
1631        _prb_commit(e, desc_committed);
1632
1633        /*
1634         * If this descriptor is no longer the head (i.e. a new record has
1635         * been allocated), extending the data for this record is no longer
1636         * allowed and therefore it must be finalized.
1637         */
1638        head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1639        if (head_id != e->id)
1640                desc_make_final(desc_ring, e->id);
1641}
1642
1643/**
1644 * prb_final_commit() - Commit and finalize (previously reserved) data to
1645 *                      the ringbuffer.
1646 *
1647 * @e: The entry containing the reserved data information.
1648 *
1649 * This is the public function available to writers to commit+finalize data.
1650 *
1651 * By finalizing, the data is made immediately available to readers.
1652 *
1653 * This function should only be used if there are no intentions of extending
1654 * this data using prb_reserve_in_last().
1655 *
1656 * Context: Any context. Enables local interrupts.
1657 */
1658void prb_final_commit(struct prb_reserved_entry *e)
1659{
1660        _prb_commit(e, desc_finalized);
1661}
1662
1663/*
1664 * Count the number of lines in provided text. All text has at least 1 line
1665 * (even if @text_size is 0). Each '\n' processed is counted as an additional
1666 * line.
1667 */
1668static unsigned int count_lines(const char *text, unsigned int text_size)
1669{
1670        unsigned int next_size = text_size;
1671        unsigned int line_count = 1;
1672        const char *next = text;
1673
1674        while (next_size) {
1675                next = memchr(next, '\n', next_size);
1676                if (!next)
1677                        break;
1678                line_count++;
1679                next++;
1680                next_size = text_size - (next - text);
1681        }
1682
1683        return line_count;
1684}
1685
1686/*
1687 * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1688 * If @line_count is provided, count the number of lines in the data.
1689 *
1690 * This function (used by readers) performs strict validation on the data
1691 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1692 * triggered if an internal error is detected.
1693 */
1694static bool copy_data(struct prb_data_ring *data_ring,
1695                      struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1696                      unsigned int buf_size, unsigned int *line_count)
1697{
1698        unsigned int data_size;
1699        const char *data;
1700
1701        /* Caller might not want any data. */
1702        if ((!buf || !buf_size) && !line_count)
1703                return true;
1704
1705        data = get_data(data_ring, blk_lpos, &data_size);
1706        if (!data)
1707                return false;
1708
1709        /*
1710         * Actual cannot be less than expected. It can be more than expected
1711         * because of the trailing alignment padding.
1712         *
1713         * Note that invalid @len values can occur because the caller loads
1714         * the value during an allowed data race.
1715         */
1716        if (data_size < (unsigned int)len)
1717                return false;
1718
1719        /* Caller interested in the line count? */
1720        if (line_count)
1721                *line_count = count_lines(data, len);
1722
1723        /* Caller interested in the data content? */
1724        if (!buf || !buf_size)
1725                return true;
1726
1727        data_size = min_t(u16, buf_size, len);
1728
1729        memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1730        return true;
1731}
1732
1733/*
1734 * This is an extended version of desc_read(). It gets a copy of a specified
1735 * descriptor. However, it also verifies that the record is finalized and has
1736 * the sequence number @seq. On success, 0 is returned.
1737 *
1738 * Error return values:
1739 * -EINVAL: A finalized record with sequence number @seq does not exist.
1740 * -ENOENT: A finalized record with sequence number @seq exists, but its data
1741 *          is not available. This is a valid record, so readers should
1742 *          continue with the next record.
1743 */
1744static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1745                                   unsigned long id, u64 seq,
1746                                   struct prb_desc *desc_out)
1747{
1748        struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1749        enum desc_state d_state;
1750        u64 s;
1751
1752        d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1753
1754        /*
1755         * An unexpected @id (desc_miss) or @seq mismatch means the record
1756         * does not exist. A descriptor in the reserved or committed state
1757         * means the record does not yet exist for the reader.
1758         */
1759        if (d_state == desc_miss ||
1760            d_state == desc_reserved ||
1761            d_state == desc_committed ||
1762            s != seq) {
1763                return -EINVAL;
1764        }
1765
1766        /*
1767         * A descriptor in the reusable state may no longer have its data
1768         * available; report it as existing but with lost data. Or the record
1769         * may actually be a record with lost data.
1770         */
1771        if (d_state == desc_reusable ||
1772            (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1773                return -ENOENT;
1774        }
1775
1776        return 0;
1777}
1778
1779/*
1780 * Copy the ringbuffer data from the record with @seq to the provided
1781 * @r buffer. On success, 0 is returned.
1782 *
1783 * See desc_read_finalized_seq() for error return values.
1784 */
1785static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1786                    struct printk_record *r, unsigned int *line_count)
1787{
1788        struct prb_desc_ring *desc_ring = &rb->desc_ring;
1789        struct printk_info *info = to_info(desc_ring, seq);
1790        struct prb_desc *rdesc = to_desc(desc_ring, seq);
1791        atomic_long_t *state_var = &rdesc->state_var;
1792        struct prb_desc desc;
1793        unsigned long id;
1794        int err;
1795
1796        /* Extract the ID, used to specify the descriptor to read. */
1797        id = DESC_ID(atomic_long_read(state_var));
1798
1799        /* Get a local copy of the correct descriptor (if available). */
1800        err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1801
1802        /*
1803         * If @r is NULL, the caller is only interested in the availability
1804         * of the record.
1805         */
1806        if (err || !r)
1807                return err;
1808
1809        /* If requested, copy meta data. */
1810        if (r->info)
1811                memcpy(r->info, info, sizeof(*(r->info)));
1812
1813        /* Copy text data. If it fails, this is a data-less record. */
1814        if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1815                       r->text_buf, r->text_buf_size, line_count)) {
1816                return -ENOENT;
1817        }
1818
1819        /* Ensure the record is still finalized and has the same @seq. */
1820        return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1821}
1822
1823/* Get the sequence number of the tail descriptor. */
1824static u64 prb_first_seq(struct printk_ringbuffer *rb)
1825{
1826        struct prb_desc_ring *desc_ring = &rb->desc_ring;
1827        enum desc_state d_state;
1828        struct prb_desc desc;
1829        unsigned long id;
1830        u64 seq;
1831
1832        for (;;) {
1833                id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1834
1835                d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1836
1837                /*
1838                 * This loop will not be infinite because the tail is
1839                 * _always_ in the finalized or reusable state.
1840                 */
1841                if (d_state == desc_finalized || d_state == desc_reusable)
1842                        break;
1843
1844                /*
1845                 * Guarantee the last state load from desc_read() is before
1846                 * reloading @tail_id in order to see a new tail in the case
1847                 * that the descriptor has been recycled. This pairs with
1848                 * desc_reserve:D.
1849                 *
1850                 * Memory barrier involvement:
1851                 *
1852                 * If prb_first_seq:B reads from desc_reserve:F, then
1853                 * prb_first_seq:A reads from desc_push_tail:B.
1854                 *
1855                 * Relies on:
1856                 *
1857                 * MB from desc_push_tail:B to desc_reserve:F
1858                 *    matching
1859                 * RMB prb_first_seq:B to prb_first_seq:A
1860                 */
1861                smp_rmb(); /* LMM(prb_first_seq:C) */
1862        }
1863
1864        return seq;
1865}
1866
1867/*
1868 * Non-blocking read of a record. Updates @seq to the last finalized record
1869 * (which may have no data available).
1870 *
1871 * See the description of prb_read_valid() and prb_read_valid_info()
1872 * for details.
1873 */
1874static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1875                            struct printk_record *r, unsigned int *line_count)
1876{
1877        u64 tail_seq;
1878        int err;
1879
1880        while ((err = prb_read(rb, *seq, r, line_count))) {
1881                tail_seq = prb_first_seq(rb);
1882
1883                if (*seq < tail_seq) {
1884                        /*
1885                         * Behind the tail. Catch up and try again. This
1886                         * can happen for -ENOENT and -EINVAL cases.
1887                         */
1888                        *seq = tail_seq;
1889
1890                } else if (err == -ENOENT) {
1891                        /* Record exists, but no data available. Skip. */
1892                        (*seq)++;
1893
1894                } else {
1895                        /* Non-existent/non-finalized record. Must stop. */
1896                        return false;
1897                }
1898        }
1899
1900        return true;
1901}
1902
1903/**
1904 * prb_read_valid() - Non-blocking read of a requested record or (if gone)
1905 *                    the next available record.
1906 *
1907 * @rb:  The ringbuffer to read from.
1908 * @seq: The sequence number of the record to read.
1909 * @r:   A record data buffer to store the read record to.
1910 *
1911 * This is the public function available to readers to read a record.
1912 *
1913 * The reader provides the @info and @text_buf buffers of @r to be
1914 * filled in. Any of the buffer pointers can be set to NULL if the reader
1915 * is not interested in that data. To ensure proper initialization of @r,
1916 * prb_rec_init_rd() should be used.
1917 *
1918 * Context: Any context.
1919 * Return: true if a record was read, otherwise false.
1920 *
1921 * On success, the reader must check r->info.seq to see which record was
1922 * actually read. This allows the reader to detect dropped records.
1923 *
1924 * Failure means @seq refers to a not yet written record.
1925 */
1926bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
1927                    struct printk_record *r)
1928{
1929        return _prb_read_valid(rb, &seq, r, NULL);
1930}
1931
1932/**
1933 * prb_read_valid_info() - Non-blocking read of meta data for a requested
1934 *                         record or (if gone) the next available record.
1935 *
1936 * @rb:         The ringbuffer to read from.
1937 * @seq:        The sequence number of the record to read.
1938 * @info:       A buffer to store the read record meta data to.
1939 * @line_count: A buffer to store the number of lines in the record text.
1940 *
1941 * This is the public function available to readers to read only the
1942 * meta data of a record.
1943 *
1944 * The reader provides the @info, @line_count buffers to be filled in.
1945 * Either of the buffer pointers can be set to NULL if the reader is not
1946 * interested in that data.
1947 *
1948 * Context: Any context.
1949 * Return: true if a record's meta data was read, otherwise false.
1950 *
1951 * On success, the reader must check info->seq to see which record meta data
1952 * was actually read. This allows the reader to detect dropped records.
1953 *
1954 * Failure means @seq refers to a not yet written record.
1955 */
1956bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
1957                         struct printk_info *info, unsigned int *line_count)
1958{
1959        struct printk_record r;
1960
1961        prb_rec_init_rd(&r, info, NULL, 0);
1962
1963        return _prb_read_valid(rb, &seq, &r, line_count);
1964}
1965
1966/**
1967 * prb_first_valid_seq() - Get the sequence number of the oldest available
1968 *                         record.
1969 *
1970 * @rb: The ringbuffer to get the sequence number from.
1971 *
1972 * This is the public function available to readers to see what the
1973 * first/oldest valid sequence number is.
1974 *
1975 * This provides readers a starting point to begin iterating the ringbuffer.
1976 *
1977 * Context: Any context.
1978 * Return: The sequence number of the first/oldest record or, if the
1979 *         ringbuffer is empty, 0 is returned.
1980 */
1981u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
1982{
1983        u64 seq = 0;
1984
1985        if (!_prb_read_valid(rb, &seq, NULL, NULL))
1986                return 0;
1987
1988        return seq;
1989}
1990
1991/**
1992 * prb_next_seq() - Get the sequence number after the last available record.
1993 *
1994 * @rb:  The ringbuffer to get the sequence number from.
1995 *
1996 * This is the public function available to readers to see what the next
1997 * newest sequence number available to readers will be.
1998 *
1999 * This provides readers a sequence number to jump to if all currently
2000 * available records should be skipped.
2001 *
2002 * Context: Any context.
2003 * Return: The sequence number of the next newest (not yet available) record
2004 *         for readers.
2005 */
2006u64 prb_next_seq(struct printk_ringbuffer *rb)
2007{
2008        u64 seq = 0;
2009
2010        /* Search forward from the oldest descriptor. */
2011        while (_prb_read_valid(rb, &seq, NULL, NULL))
2012                seq++;
2013
2014        return seq;
2015}
2016
2017/**
2018 * prb_init() - Initialize a ringbuffer to use provided external buffers.
2019 *
2020 * @rb:       The ringbuffer to initialize.
2021 * @text_buf: The data buffer for text data.
2022 * @textbits: The size of @text_buf as a power-of-2 value.
2023 * @descs:    The descriptor buffer for ringbuffer records.
2024 * @descbits: The count of @descs items as a power-of-2 value.
2025 * @infos:    The printk_info buffer for ringbuffer records.
2026 *
2027 * This is the public function available to writers to setup a ringbuffer
2028 * during runtime using provided buffers.
2029 *
2030 * This must match the initialization of DEFINE_PRINTKRB().
2031 *
2032 * Context: Any context.
2033 */
2034void prb_init(struct printk_ringbuffer *rb,
2035              char *text_buf, unsigned int textbits,
2036              struct prb_desc *descs, unsigned int descbits,
2037              struct printk_info *infos)
2038{
2039        memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2040        memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2041
2042        rb->desc_ring.count_bits = descbits;
2043        rb->desc_ring.descs = descs;
2044        rb->desc_ring.infos = infos;
2045        atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2046        atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2047
2048        rb->text_data_ring.size_bits = textbits;
2049        rb->text_data_ring.data = text_buf;
2050        atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2051        atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2052
2053        atomic_long_set(&rb->fail, 0);
2054
2055        atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2056        descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2057        descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2058
2059        infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2060        infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2061}
2062
2063/**
2064 * prb_record_text_space() - Query the full actual used ringbuffer space for
2065 *                           the text data of a reserved entry.
2066 *
2067 * @e: The successfully reserved entry to query.
2068 *
2069 * This is the public function available to writers to see how much actual
2070 * space is used in the ringbuffer to store the text data of the specified
2071 * entry.
2072 *
2073 * This function is only valid if @e has been successfully reserved using
2074 * prb_reserve().
2075 *
2076 * Context: Any context.
2077 * Return: The size in bytes used by the text data of the associated record.
2078 */
2079unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2080{
2081        return e->text_space;
2082}
2083