linux/kernel/sched/clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * sched_clock() for unstable CPU clocks
   4 *
   5 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
   6 *
   7 *  Updates and enhancements:
   8 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
   9 *
  10 * Based on code by:
  11 *   Ingo Molnar <mingo@redhat.com>
  12 *   Guillaume Chazarain <guichaz@gmail.com>
  13 *
  14 *
  15 * What this file implements:
  16 *
  17 * cpu_clock(i) provides a fast (execution time) high resolution
  18 * clock with bounded drift between CPUs. The value of cpu_clock(i)
  19 * is monotonic for constant i. The timestamp returned is in nanoseconds.
  20 *
  21 * ######################### BIG FAT WARNING ##########################
  22 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  23 * # go backwards !!                                                  #
  24 * ####################################################################
  25 *
  26 * There is no strict promise about the base, although it tends to start
  27 * at 0 on boot (but people really shouldn't rely on that).
  28 *
  29 * cpu_clock(i)       -- can be used from any context, including NMI.
  30 * local_clock()      -- is cpu_clock() on the current CPU.
  31 *
  32 * sched_clock_cpu(i)
  33 *
  34 * How it is implemented:
  35 *
  36 * The implementation either uses sched_clock() when
  37 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  38 * sched_clock() is assumed to provide these properties (mostly it means
  39 * the architecture provides a globally synchronized highres time source).
  40 *
  41 * Otherwise it tries to create a semi stable clock from a mixture of other
  42 * clocks, including:
  43 *
  44 *  - GTOD (clock monotonic)
  45 *  - sched_clock()
  46 *  - explicit idle events
  47 *
  48 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  49 * deltas are filtered to provide monotonicity and keeping it within an
  50 * expected window.
  51 *
  52 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  53 * that is otherwise invisible (TSC gets stopped).
  54 *
  55 */
  56#include "sched.h"
  57#include <linux/sched_clock.h>
  58
  59/*
  60 * Scheduler clock - returns current time in nanosec units.
  61 * This is default implementation.
  62 * Architectures and sub-architectures can override this.
  63 */
  64unsigned long long __weak sched_clock(void)
  65{
  66        return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  67                                        * (NSEC_PER_SEC / HZ);
  68}
  69EXPORT_SYMBOL_GPL(sched_clock);
  70
  71static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
  72
  73#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  74/*
  75 * We must start with !__sched_clock_stable because the unstable -> stable
  76 * transition is accurate, while the stable -> unstable transition is not.
  77 *
  78 * Similarly we start with __sched_clock_stable_early, thereby assuming we
  79 * will become stable, such that there's only a single 1 -> 0 transition.
  80 */
  81static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
  82static int __sched_clock_stable_early = 1;
  83
  84/*
  85 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
  86 */
  87__read_mostly u64 __sched_clock_offset;
  88static __read_mostly u64 __gtod_offset;
  89
  90struct sched_clock_data {
  91        u64                     tick_raw;
  92        u64                     tick_gtod;
  93        u64                     clock;
  94};
  95
  96static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  97
  98static inline struct sched_clock_data *this_scd(void)
  99{
 100        return this_cpu_ptr(&sched_clock_data);
 101}
 102
 103static inline struct sched_clock_data *cpu_sdc(int cpu)
 104{
 105        return &per_cpu(sched_clock_data, cpu);
 106}
 107
 108int sched_clock_stable(void)
 109{
 110        return static_branch_likely(&__sched_clock_stable);
 111}
 112
 113static void __scd_stamp(struct sched_clock_data *scd)
 114{
 115        scd->tick_gtod = ktime_get_ns();
 116        scd->tick_raw = sched_clock();
 117}
 118
 119static void __set_sched_clock_stable(void)
 120{
 121        struct sched_clock_data *scd;
 122
 123        /*
 124         * Since we're still unstable and the tick is already running, we have
 125         * to disable IRQs in order to get a consistent scd->tick* reading.
 126         */
 127        local_irq_disable();
 128        scd = this_scd();
 129        /*
 130         * Attempt to make the (initial) unstable->stable transition continuous.
 131         */
 132        __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
 133        local_irq_enable();
 134
 135        printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
 136                        scd->tick_gtod, __gtod_offset,
 137                        scd->tick_raw,  __sched_clock_offset);
 138
 139        static_branch_enable(&__sched_clock_stable);
 140        tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
 141}
 142
 143/*
 144 * If we ever get here, we're screwed, because we found out -- typically after
 145 * the fact -- that TSC wasn't good. This means all our clocksources (including
 146 * ktime) could have reported wrong values.
 147 *
 148 * What we do here is an attempt to fix up and continue sort of where we left
 149 * off in a coherent manner.
 150 *
 151 * The only way to fully avoid random clock jumps is to boot with:
 152 * "tsc=unstable".
 153 */
 154static void __sched_clock_work(struct work_struct *work)
 155{
 156        struct sched_clock_data *scd;
 157        int cpu;
 158
 159        /* take a current timestamp and set 'now' */
 160        preempt_disable();
 161        scd = this_scd();
 162        __scd_stamp(scd);
 163        scd->clock = scd->tick_gtod + __gtod_offset;
 164        preempt_enable();
 165
 166        /* clone to all CPUs */
 167        for_each_possible_cpu(cpu)
 168                per_cpu(sched_clock_data, cpu) = *scd;
 169
 170        printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
 171        printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
 172                        scd->tick_gtod, __gtod_offset,
 173                        scd->tick_raw,  __sched_clock_offset);
 174
 175        static_branch_disable(&__sched_clock_stable);
 176}
 177
 178static DECLARE_WORK(sched_clock_work, __sched_clock_work);
 179
 180static void __clear_sched_clock_stable(void)
 181{
 182        if (!sched_clock_stable())
 183                return;
 184
 185        tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
 186        schedule_work(&sched_clock_work);
 187}
 188
 189void clear_sched_clock_stable(void)
 190{
 191        __sched_clock_stable_early = 0;
 192
 193        smp_mb(); /* matches sched_clock_init_late() */
 194
 195        if (static_key_count(&sched_clock_running.key) == 2)
 196                __clear_sched_clock_stable();
 197}
 198
 199static void __sched_clock_gtod_offset(void)
 200{
 201        struct sched_clock_data *scd = this_scd();
 202
 203        __scd_stamp(scd);
 204        __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
 205}
 206
 207void __init sched_clock_init(void)
 208{
 209        /*
 210         * Set __gtod_offset such that once we mark sched_clock_running,
 211         * sched_clock_tick() continues where sched_clock() left off.
 212         *
 213         * Even if TSC is buggered, we're still UP at this point so it
 214         * can't really be out of sync.
 215         */
 216        local_irq_disable();
 217        __sched_clock_gtod_offset();
 218        local_irq_enable();
 219
 220        static_branch_inc(&sched_clock_running);
 221}
 222/*
 223 * We run this as late_initcall() such that it runs after all built-in drivers,
 224 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
 225 */
 226static int __init sched_clock_init_late(void)
 227{
 228        static_branch_inc(&sched_clock_running);
 229        /*
 230         * Ensure that it is impossible to not do a static_key update.
 231         *
 232         * Either {set,clear}_sched_clock_stable() must see sched_clock_running
 233         * and do the update, or we must see their __sched_clock_stable_early
 234         * and do the update, or both.
 235         */
 236        smp_mb(); /* matches {set,clear}_sched_clock_stable() */
 237
 238        if (__sched_clock_stable_early)
 239                __set_sched_clock_stable();
 240
 241        return 0;
 242}
 243late_initcall(sched_clock_init_late);
 244
 245/*
 246 * min, max except they take wrapping into account
 247 */
 248
 249static inline u64 wrap_min(u64 x, u64 y)
 250{
 251        return (s64)(x - y) < 0 ? x : y;
 252}
 253
 254static inline u64 wrap_max(u64 x, u64 y)
 255{
 256        return (s64)(x - y) > 0 ? x : y;
 257}
 258
 259/*
 260 * update the percpu scd from the raw @now value
 261 *
 262 *  - filter out backward motion
 263 *  - use the GTOD tick value to create a window to filter crazy TSC values
 264 */
 265static u64 sched_clock_local(struct sched_clock_data *scd)
 266{
 267        u64 now, clock, old_clock, min_clock, max_clock, gtod;
 268        s64 delta;
 269
 270again:
 271        now = sched_clock();
 272        delta = now - scd->tick_raw;
 273        if (unlikely(delta < 0))
 274                delta = 0;
 275
 276        old_clock = scd->clock;
 277
 278        /*
 279         * scd->clock = clamp(scd->tick_gtod + delta,
 280         *                    max(scd->tick_gtod, scd->clock),
 281         *                    scd->tick_gtod + TICK_NSEC);
 282         */
 283
 284        gtod = scd->tick_gtod + __gtod_offset;
 285        clock = gtod + delta;
 286        min_clock = wrap_max(gtod, old_clock);
 287        max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
 288
 289        clock = wrap_max(clock, min_clock);
 290        clock = wrap_min(clock, max_clock);
 291
 292        if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
 293                goto again;
 294
 295        return clock;
 296}
 297
 298static u64 sched_clock_remote(struct sched_clock_data *scd)
 299{
 300        struct sched_clock_data *my_scd = this_scd();
 301        u64 this_clock, remote_clock;
 302        u64 *ptr, old_val, val;
 303
 304#if BITS_PER_LONG != 64
 305again:
 306        /*
 307         * Careful here: The local and the remote clock values need to
 308         * be read out atomic as we need to compare the values and
 309         * then update either the local or the remote side. So the
 310         * cmpxchg64 below only protects one readout.
 311         *
 312         * We must reread via sched_clock_local() in the retry case on
 313         * 32-bit kernels as an NMI could use sched_clock_local() via the
 314         * tracer and hit between the readout of
 315         * the low 32-bit and the high 32-bit portion.
 316         */
 317        this_clock = sched_clock_local(my_scd);
 318        /*
 319         * We must enforce atomic readout on 32-bit, otherwise the
 320         * update on the remote CPU can hit inbetween the readout of
 321         * the low 32-bit and the high 32-bit portion.
 322         */
 323        remote_clock = cmpxchg64(&scd->clock, 0, 0);
 324#else
 325        /*
 326         * On 64-bit kernels the read of [my]scd->clock is atomic versus the
 327         * update, so we can avoid the above 32-bit dance.
 328         */
 329        sched_clock_local(my_scd);
 330again:
 331        this_clock = my_scd->clock;
 332        remote_clock = scd->clock;
 333#endif
 334
 335        /*
 336         * Use the opportunity that we have both locks
 337         * taken to couple the two clocks: we take the
 338         * larger time as the latest time for both
 339         * runqueues. (this creates monotonic movement)
 340         */
 341        if (likely((s64)(remote_clock - this_clock) < 0)) {
 342                ptr = &scd->clock;
 343                old_val = remote_clock;
 344                val = this_clock;
 345        } else {
 346                /*
 347                 * Should be rare, but possible:
 348                 */
 349                ptr = &my_scd->clock;
 350                old_val = this_clock;
 351                val = remote_clock;
 352        }
 353
 354        if (cmpxchg64(ptr, old_val, val) != old_val)
 355                goto again;
 356
 357        return val;
 358}
 359
 360/*
 361 * Similar to cpu_clock(), but requires local IRQs to be disabled.
 362 *
 363 * See cpu_clock().
 364 */
 365u64 sched_clock_cpu(int cpu)
 366{
 367        struct sched_clock_data *scd;
 368        u64 clock;
 369
 370        if (sched_clock_stable())
 371                return sched_clock() + __sched_clock_offset;
 372
 373        if (!static_branch_likely(&sched_clock_running))
 374                return sched_clock();
 375
 376        preempt_disable_notrace();
 377        scd = cpu_sdc(cpu);
 378
 379        if (cpu != smp_processor_id())
 380                clock = sched_clock_remote(scd);
 381        else
 382                clock = sched_clock_local(scd);
 383        preempt_enable_notrace();
 384
 385        return clock;
 386}
 387EXPORT_SYMBOL_GPL(sched_clock_cpu);
 388
 389void sched_clock_tick(void)
 390{
 391        struct sched_clock_data *scd;
 392
 393        if (sched_clock_stable())
 394                return;
 395
 396        if (!static_branch_likely(&sched_clock_running))
 397                return;
 398
 399        lockdep_assert_irqs_disabled();
 400
 401        scd = this_scd();
 402        __scd_stamp(scd);
 403        sched_clock_local(scd);
 404}
 405
 406void sched_clock_tick_stable(void)
 407{
 408        if (!sched_clock_stable())
 409                return;
 410
 411        /*
 412         * Called under watchdog_lock.
 413         *
 414         * The watchdog just found this TSC to (still) be stable, so now is a
 415         * good moment to update our __gtod_offset. Because once we find the
 416         * TSC to be unstable, any computation will be computing crap.
 417         */
 418        local_irq_disable();
 419        __sched_clock_gtod_offset();
 420        local_irq_enable();
 421}
 422
 423/*
 424 * We are going deep-idle (irqs are disabled):
 425 */
 426void sched_clock_idle_sleep_event(void)
 427{
 428        sched_clock_cpu(smp_processor_id());
 429}
 430EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 431
 432/*
 433 * We just idled; resync with ktime.
 434 */
 435void sched_clock_idle_wakeup_event(void)
 436{
 437        unsigned long flags;
 438
 439        if (sched_clock_stable())
 440                return;
 441
 442        if (unlikely(timekeeping_suspended))
 443                return;
 444
 445        local_irq_save(flags);
 446        sched_clock_tick();
 447        local_irq_restore(flags);
 448}
 449EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 450
 451#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 452
 453void __init sched_clock_init(void)
 454{
 455        static_branch_inc(&sched_clock_running);
 456        local_irq_disable();
 457        generic_sched_clock_init();
 458        local_irq_enable();
 459}
 460
 461u64 sched_clock_cpu(int cpu)
 462{
 463        if (!static_branch_likely(&sched_clock_running))
 464                return 0;
 465
 466        return sched_clock();
 467}
 468
 469#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 470
 471/*
 472 * Running clock - returns the time that has elapsed while a guest has been
 473 * running.
 474 * On a guest this value should be local_clock minus the time the guest was
 475 * suspended by the hypervisor (for any reason).
 476 * On bare metal this function should return the same as local_clock.
 477 * Architectures and sub-architectures can override this.
 478 */
 479u64 __weak running_clock(void)
 480{
 481        return local_clock();
 482}
 483