linux/kernel/sched/cpuacct.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * CPU accounting code for task groups.
   4 *
   5 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
   6 * (balbir@in.ibm.com).
   7 */
   8#include <asm/irq_regs.h>
   9#include "sched.h"
  10
  11/* Time spent by the tasks of the CPU accounting group executing in ... */
  12enum cpuacct_stat_index {
  13        CPUACCT_STAT_USER,      /* ... user mode */
  14        CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
  15
  16        CPUACCT_STAT_NSTATS,
  17};
  18
  19static const char * const cpuacct_stat_desc[] = {
  20        [CPUACCT_STAT_USER] = "user",
  21        [CPUACCT_STAT_SYSTEM] = "system",
  22};
  23
  24/* track CPU usage of a group of tasks and its child groups */
  25struct cpuacct {
  26        struct cgroup_subsys_state      css;
  27        /* cpuusage holds pointer to a u64-type object on every CPU */
  28        u64 __percpu    *cpuusage;
  29        struct kernel_cpustat __percpu  *cpustat;
  30};
  31
  32static inline struct cpuacct *css_ca(struct cgroup_subsys_state *css)
  33{
  34        return css ? container_of(css, struct cpuacct, css) : NULL;
  35}
  36
  37/* Return CPU accounting group to which this task belongs */
  38static inline struct cpuacct *task_ca(struct task_struct *tsk)
  39{
  40        return css_ca(task_css(tsk, cpuacct_cgrp_id));
  41}
  42
  43static inline struct cpuacct *parent_ca(struct cpuacct *ca)
  44{
  45        return css_ca(ca->css.parent);
  46}
  47
  48static DEFINE_PER_CPU(u64, root_cpuacct_cpuusage);
  49static struct cpuacct root_cpuacct = {
  50        .cpustat        = &kernel_cpustat,
  51        .cpuusage       = &root_cpuacct_cpuusage,
  52};
  53
  54/* Create a new CPU accounting group */
  55static struct cgroup_subsys_state *
  56cpuacct_css_alloc(struct cgroup_subsys_state *parent_css)
  57{
  58        struct cpuacct *ca;
  59
  60        if (!parent_css)
  61                return &root_cpuacct.css;
  62
  63        ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  64        if (!ca)
  65                goto out;
  66
  67        ca->cpuusage = alloc_percpu(u64);
  68        if (!ca->cpuusage)
  69                goto out_free_ca;
  70
  71        ca->cpustat = alloc_percpu(struct kernel_cpustat);
  72        if (!ca->cpustat)
  73                goto out_free_cpuusage;
  74
  75        return &ca->css;
  76
  77out_free_cpuusage:
  78        free_percpu(ca->cpuusage);
  79out_free_ca:
  80        kfree(ca);
  81out:
  82        return ERR_PTR(-ENOMEM);
  83}
  84
  85/* Destroy an existing CPU accounting group */
  86static void cpuacct_css_free(struct cgroup_subsys_state *css)
  87{
  88        struct cpuacct *ca = css_ca(css);
  89
  90        free_percpu(ca->cpustat);
  91        free_percpu(ca->cpuusage);
  92        kfree(ca);
  93}
  94
  95static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu,
  96                                 enum cpuacct_stat_index index)
  97{
  98        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  99        u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat;
 100        u64 data;
 101
 102        /*
 103         * We allow index == CPUACCT_STAT_NSTATS here to read
 104         * the sum of usages.
 105         */
 106        if (WARN_ON_ONCE(index > CPUACCT_STAT_NSTATS))
 107                return 0;
 108
 109#ifndef CONFIG_64BIT
 110        /*
 111         * Take rq->lock to make 64-bit read safe on 32-bit platforms.
 112         */
 113        raw_spin_rq_lock_irq(cpu_rq(cpu));
 114#endif
 115
 116        switch (index) {
 117        case CPUACCT_STAT_USER:
 118                data = cpustat[CPUTIME_USER] + cpustat[CPUTIME_NICE];
 119                break;
 120        case CPUACCT_STAT_SYSTEM:
 121                data = cpustat[CPUTIME_SYSTEM] + cpustat[CPUTIME_IRQ] +
 122                        cpustat[CPUTIME_SOFTIRQ];
 123                break;
 124        case CPUACCT_STAT_NSTATS:
 125                data = *cpuusage;
 126                break;
 127        }
 128
 129#ifndef CONFIG_64BIT
 130        raw_spin_rq_unlock_irq(cpu_rq(cpu));
 131#endif
 132
 133        return data;
 134}
 135
 136static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu)
 137{
 138        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
 139        u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat;
 140
 141        /* Don't allow to reset global kernel_cpustat */
 142        if (ca == &root_cpuacct)
 143                return;
 144
 145#ifndef CONFIG_64BIT
 146        /*
 147         * Take rq->lock to make 64-bit write safe on 32-bit platforms.
 148         */
 149        raw_spin_rq_lock_irq(cpu_rq(cpu));
 150#endif
 151        *cpuusage = 0;
 152        cpustat[CPUTIME_USER] = cpustat[CPUTIME_NICE] = 0;
 153        cpustat[CPUTIME_SYSTEM] = cpustat[CPUTIME_IRQ] = 0;
 154        cpustat[CPUTIME_SOFTIRQ] = 0;
 155
 156#ifndef CONFIG_64BIT
 157        raw_spin_rq_unlock_irq(cpu_rq(cpu));
 158#endif
 159}
 160
 161/* Return total CPU usage (in nanoseconds) of a group */
 162static u64 __cpuusage_read(struct cgroup_subsys_state *css,
 163                           enum cpuacct_stat_index index)
 164{
 165        struct cpuacct *ca = css_ca(css);
 166        u64 totalcpuusage = 0;
 167        int i;
 168
 169        for_each_possible_cpu(i)
 170                totalcpuusage += cpuacct_cpuusage_read(ca, i, index);
 171
 172        return totalcpuusage;
 173}
 174
 175static u64 cpuusage_user_read(struct cgroup_subsys_state *css,
 176                              struct cftype *cft)
 177{
 178        return __cpuusage_read(css, CPUACCT_STAT_USER);
 179}
 180
 181static u64 cpuusage_sys_read(struct cgroup_subsys_state *css,
 182                             struct cftype *cft)
 183{
 184        return __cpuusage_read(css, CPUACCT_STAT_SYSTEM);
 185}
 186
 187static u64 cpuusage_read(struct cgroup_subsys_state *css, struct cftype *cft)
 188{
 189        return __cpuusage_read(css, CPUACCT_STAT_NSTATS);
 190}
 191
 192static int cpuusage_write(struct cgroup_subsys_state *css, struct cftype *cft,
 193                          u64 val)
 194{
 195        struct cpuacct *ca = css_ca(css);
 196        int cpu;
 197
 198        /*
 199         * Only allow '0' here to do a reset.
 200         */
 201        if (val)
 202                return -EINVAL;
 203
 204        for_each_possible_cpu(cpu)
 205                cpuacct_cpuusage_write(ca, cpu);
 206
 207        return 0;
 208}
 209
 210static int __cpuacct_percpu_seq_show(struct seq_file *m,
 211                                     enum cpuacct_stat_index index)
 212{
 213        struct cpuacct *ca = css_ca(seq_css(m));
 214        u64 percpu;
 215        int i;
 216
 217        for_each_possible_cpu(i) {
 218                percpu = cpuacct_cpuusage_read(ca, i, index);
 219                seq_printf(m, "%llu ", (unsigned long long) percpu);
 220        }
 221        seq_printf(m, "\n");
 222        return 0;
 223}
 224
 225static int cpuacct_percpu_user_seq_show(struct seq_file *m, void *V)
 226{
 227        return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_USER);
 228}
 229
 230static int cpuacct_percpu_sys_seq_show(struct seq_file *m, void *V)
 231{
 232        return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_SYSTEM);
 233}
 234
 235static int cpuacct_percpu_seq_show(struct seq_file *m, void *V)
 236{
 237        return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_NSTATS);
 238}
 239
 240static int cpuacct_all_seq_show(struct seq_file *m, void *V)
 241{
 242        struct cpuacct *ca = css_ca(seq_css(m));
 243        int index;
 244        int cpu;
 245
 246        seq_puts(m, "cpu");
 247        for (index = 0; index < CPUACCT_STAT_NSTATS; index++)
 248                seq_printf(m, " %s", cpuacct_stat_desc[index]);
 249        seq_puts(m, "\n");
 250
 251        for_each_possible_cpu(cpu) {
 252                seq_printf(m, "%d", cpu);
 253                for (index = 0; index < CPUACCT_STAT_NSTATS; index++)
 254                        seq_printf(m, " %llu",
 255                                   cpuacct_cpuusage_read(ca, cpu, index));
 256                seq_puts(m, "\n");
 257        }
 258        return 0;
 259}
 260
 261static int cpuacct_stats_show(struct seq_file *sf, void *v)
 262{
 263        struct cpuacct *ca = css_ca(seq_css(sf));
 264        struct task_cputime cputime;
 265        u64 val[CPUACCT_STAT_NSTATS];
 266        int cpu;
 267        int stat;
 268
 269        memset(&cputime, 0, sizeof(cputime));
 270        for_each_possible_cpu(cpu) {
 271                u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat;
 272
 273                cputime.utime += cpustat[CPUTIME_USER];
 274                cputime.utime += cpustat[CPUTIME_NICE];
 275                cputime.stime += cpustat[CPUTIME_SYSTEM];
 276                cputime.stime += cpustat[CPUTIME_IRQ];
 277                cputime.stime += cpustat[CPUTIME_SOFTIRQ];
 278
 279                cputime.sum_exec_runtime += *per_cpu_ptr(ca->cpuusage, cpu);
 280        }
 281
 282        cputime_adjust(&cputime, &seq_css(sf)->cgroup->prev_cputime,
 283                &val[CPUACCT_STAT_USER], &val[CPUACCT_STAT_SYSTEM]);
 284
 285        for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) {
 286                seq_printf(sf, "%s %llu\n", cpuacct_stat_desc[stat],
 287                        nsec_to_clock_t(val[stat]));
 288        }
 289
 290        return 0;
 291}
 292
 293static struct cftype files[] = {
 294        {
 295                .name = "usage",
 296                .read_u64 = cpuusage_read,
 297                .write_u64 = cpuusage_write,
 298        },
 299        {
 300                .name = "usage_user",
 301                .read_u64 = cpuusage_user_read,
 302        },
 303        {
 304                .name = "usage_sys",
 305                .read_u64 = cpuusage_sys_read,
 306        },
 307        {
 308                .name = "usage_percpu",
 309                .seq_show = cpuacct_percpu_seq_show,
 310        },
 311        {
 312                .name = "usage_percpu_user",
 313                .seq_show = cpuacct_percpu_user_seq_show,
 314        },
 315        {
 316                .name = "usage_percpu_sys",
 317                .seq_show = cpuacct_percpu_sys_seq_show,
 318        },
 319        {
 320                .name = "usage_all",
 321                .seq_show = cpuacct_all_seq_show,
 322        },
 323        {
 324                .name = "stat",
 325                .seq_show = cpuacct_stats_show,
 326        },
 327        { }     /* terminate */
 328};
 329
 330/*
 331 * charge this task's execution time to its accounting group.
 332 *
 333 * called with rq->lock held.
 334 */
 335void cpuacct_charge(struct task_struct *tsk, u64 cputime)
 336{
 337        struct cpuacct *ca;
 338
 339        rcu_read_lock();
 340
 341        for (ca = task_ca(tsk); ca; ca = parent_ca(ca))
 342                __this_cpu_add(*ca->cpuusage, cputime);
 343
 344        rcu_read_unlock();
 345}
 346
 347/*
 348 * Add user/system time to cpuacct.
 349 *
 350 * Note: it's the caller that updates the account of the root cgroup.
 351 */
 352void cpuacct_account_field(struct task_struct *tsk, int index, u64 val)
 353{
 354        struct cpuacct *ca;
 355
 356        rcu_read_lock();
 357        for (ca = task_ca(tsk); ca != &root_cpuacct; ca = parent_ca(ca))
 358                __this_cpu_add(ca->cpustat->cpustat[index], val);
 359        rcu_read_unlock();
 360}
 361
 362struct cgroup_subsys cpuacct_cgrp_subsys = {
 363        .css_alloc      = cpuacct_css_alloc,
 364        .css_free       = cpuacct_css_free,
 365        .legacy_cftypes = files,
 366        .early_init     = true,
 367};
 368