linux/kernel/sched/cputime.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
   5#include "sched.h"
   6
   7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   8
   9/*
  10 * There are no locks covering percpu hardirq/softirq time.
  11 * They are only modified in vtime_account, on corresponding CPU
  12 * with interrupts disabled. So, writes are safe.
  13 * They are read and saved off onto struct rq in update_rq_clock().
  14 * This may result in other CPU reading this CPU's irq time and can
  15 * race with irq/vtime_account on this CPU. We would either get old
  16 * or new value with a side effect of accounting a slice of irq time to wrong
  17 * task when irq is in progress while we read rq->clock. That is a worthy
  18 * compromise in place of having locks on each irq in account_system_time.
  19 */
  20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  21
  22static int sched_clock_irqtime;
  23
  24void enable_sched_clock_irqtime(void)
  25{
  26        sched_clock_irqtime = 1;
  27}
  28
  29void disable_sched_clock_irqtime(void)
  30{
  31        sched_clock_irqtime = 0;
  32}
  33
  34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  35                                  enum cpu_usage_stat idx)
  36{
  37        u64 *cpustat = kcpustat_this_cpu->cpustat;
  38
  39        u64_stats_update_begin(&irqtime->sync);
  40        cpustat[idx] += delta;
  41        irqtime->total += delta;
  42        irqtime->tick_delta += delta;
  43        u64_stats_update_end(&irqtime->sync);
  44}
  45
  46/*
  47 * Called after incrementing preempt_count on {soft,}irq_enter
  48 * and before decrementing preempt_count on {soft,}irq_exit.
  49 */
  50void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
  51{
  52        struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  53        unsigned int pc;
  54        s64 delta;
  55        int cpu;
  56
  57        if (!sched_clock_irqtime)
  58                return;
  59
  60        cpu = smp_processor_id();
  61        delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  62        irqtime->irq_start_time += delta;
  63        pc = irq_count() - offset;
  64
  65        /*
  66         * We do not account for softirq time from ksoftirqd here.
  67         * We want to continue accounting softirq time to ksoftirqd thread
  68         * in that case, so as not to confuse scheduler with a special task
  69         * that do not consume any time, but still wants to run.
  70         */
  71        if (pc & HARDIRQ_MASK)
  72                irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  73        else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
  74                irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
  75}
  76
  77static u64 irqtime_tick_accounted(u64 maxtime)
  78{
  79        struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  80        u64 delta;
  81
  82        delta = min(irqtime->tick_delta, maxtime);
  83        irqtime->tick_delta -= delta;
  84
  85        return delta;
  86}
  87
  88#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  89
  90#define sched_clock_irqtime     (0)
  91
  92static u64 irqtime_tick_accounted(u64 dummy)
  93{
  94        return 0;
  95}
  96
  97#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  98
  99static inline void task_group_account_field(struct task_struct *p, int index,
 100                                            u64 tmp)
 101{
 102        /*
 103         * Since all updates are sure to touch the root cgroup, we
 104         * get ourselves ahead and touch it first. If the root cgroup
 105         * is the only cgroup, then nothing else should be necessary.
 106         *
 107         */
 108        __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 109
 110        cgroup_account_cputime_field(p, index, tmp);
 111}
 112
 113/*
 114 * Account user CPU time to a process.
 115 * @p: the process that the CPU time gets accounted to
 116 * @cputime: the CPU time spent in user space since the last update
 117 */
 118void account_user_time(struct task_struct *p, u64 cputime)
 119{
 120        int index;
 121
 122        /* Add user time to process. */
 123        p->utime += cputime;
 124        account_group_user_time(p, cputime);
 125
 126        index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 127
 128        /* Add user time to cpustat. */
 129        task_group_account_field(p, index, cputime);
 130
 131        /* Account for user time used */
 132        acct_account_cputime(p);
 133}
 134
 135/*
 136 * Account guest CPU time to a process.
 137 * @p: the process that the CPU time gets accounted to
 138 * @cputime: the CPU time spent in virtual machine since the last update
 139 */
 140void account_guest_time(struct task_struct *p, u64 cputime)
 141{
 142        u64 *cpustat = kcpustat_this_cpu->cpustat;
 143
 144        /* Add guest time to process. */
 145        p->utime += cputime;
 146        account_group_user_time(p, cputime);
 147        p->gtime += cputime;
 148
 149        /* Add guest time to cpustat. */
 150        if (task_nice(p) > 0) {
 151                task_group_account_field(p, CPUTIME_NICE, cputime);
 152                cpustat[CPUTIME_GUEST_NICE] += cputime;
 153        } else {
 154                task_group_account_field(p, CPUTIME_USER, cputime);
 155                cpustat[CPUTIME_GUEST] += cputime;
 156        }
 157}
 158
 159/*
 160 * Account system CPU time to a process and desired cpustat field
 161 * @p: the process that the CPU time gets accounted to
 162 * @cputime: the CPU time spent in kernel space since the last update
 163 * @index: pointer to cpustat field that has to be updated
 164 */
 165void account_system_index_time(struct task_struct *p,
 166                               u64 cputime, enum cpu_usage_stat index)
 167{
 168        /* Add system time to process. */
 169        p->stime += cputime;
 170        account_group_system_time(p, cputime);
 171
 172        /* Add system time to cpustat. */
 173        task_group_account_field(p, index, cputime);
 174
 175        /* Account for system time used */
 176        acct_account_cputime(p);
 177}
 178
 179/*
 180 * Account system CPU time to a process.
 181 * @p: the process that the CPU time gets accounted to
 182 * @hardirq_offset: the offset to subtract from hardirq_count()
 183 * @cputime: the CPU time spent in kernel space since the last update
 184 */
 185void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 186{
 187        int index;
 188
 189        if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 190                account_guest_time(p, cputime);
 191                return;
 192        }
 193
 194        if (hardirq_count() - hardirq_offset)
 195                index = CPUTIME_IRQ;
 196        else if (in_serving_softirq())
 197                index = CPUTIME_SOFTIRQ;
 198        else
 199                index = CPUTIME_SYSTEM;
 200
 201        account_system_index_time(p, cputime, index);
 202}
 203
 204/*
 205 * Account for involuntary wait time.
 206 * @cputime: the CPU time spent in involuntary wait
 207 */
 208void account_steal_time(u64 cputime)
 209{
 210        u64 *cpustat = kcpustat_this_cpu->cpustat;
 211
 212        cpustat[CPUTIME_STEAL] += cputime;
 213}
 214
 215/*
 216 * Account for idle time.
 217 * @cputime: the CPU time spent in idle wait
 218 */
 219void account_idle_time(u64 cputime)
 220{
 221        u64 *cpustat = kcpustat_this_cpu->cpustat;
 222        struct rq *rq = this_rq();
 223
 224        if (atomic_read(&rq->nr_iowait) > 0)
 225                cpustat[CPUTIME_IOWAIT] += cputime;
 226        else
 227                cpustat[CPUTIME_IDLE] += cputime;
 228}
 229
 230/*
 231 * When a guest is interrupted for a longer amount of time, missed clock
 232 * ticks are not redelivered later. Due to that, this function may on
 233 * occasion account more time than the calling functions think elapsed.
 234 */
 235static __always_inline u64 steal_account_process_time(u64 maxtime)
 236{
 237#ifdef CONFIG_PARAVIRT
 238        if (static_key_false(&paravirt_steal_enabled)) {
 239                u64 steal;
 240
 241                steal = paravirt_steal_clock(smp_processor_id());
 242                steal -= this_rq()->prev_steal_time;
 243                steal = min(steal, maxtime);
 244                account_steal_time(steal);
 245                this_rq()->prev_steal_time += steal;
 246
 247                return steal;
 248        }
 249#endif
 250        return 0;
 251}
 252
 253/*
 254 * Account how much elapsed time was spent in steal, irq, or softirq time.
 255 */
 256static inline u64 account_other_time(u64 max)
 257{
 258        u64 accounted;
 259
 260        lockdep_assert_irqs_disabled();
 261
 262        accounted = steal_account_process_time(max);
 263
 264        if (accounted < max)
 265                accounted += irqtime_tick_accounted(max - accounted);
 266
 267        return accounted;
 268}
 269
 270#ifdef CONFIG_64BIT
 271static inline u64 read_sum_exec_runtime(struct task_struct *t)
 272{
 273        return t->se.sum_exec_runtime;
 274}
 275#else
 276static u64 read_sum_exec_runtime(struct task_struct *t)
 277{
 278        u64 ns;
 279        struct rq_flags rf;
 280        struct rq *rq;
 281
 282        rq = task_rq_lock(t, &rf);
 283        ns = t->se.sum_exec_runtime;
 284        task_rq_unlock(rq, t, &rf);
 285
 286        return ns;
 287}
 288#endif
 289
 290/*
 291 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 292 * tasks (sum on group iteration) belonging to @tsk's group.
 293 */
 294void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 295{
 296        struct signal_struct *sig = tsk->signal;
 297        u64 utime, stime;
 298        struct task_struct *t;
 299        unsigned int seq, nextseq;
 300        unsigned long flags;
 301
 302        /*
 303         * Update current task runtime to account pending time since last
 304         * scheduler action or thread_group_cputime() call. This thread group
 305         * might have other running tasks on different CPUs, but updating
 306         * their runtime can affect syscall performance, so we skip account
 307         * those pending times and rely only on values updated on tick or
 308         * other scheduler action.
 309         */
 310        if (same_thread_group(current, tsk))
 311                (void) task_sched_runtime(current);
 312
 313        rcu_read_lock();
 314        /* Attempt a lockless read on the first round. */
 315        nextseq = 0;
 316        do {
 317                seq = nextseq;
 318                flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 319                times->utime = sig->utime;
 320                times->stime = sig->stime;
 321                times->sum_exec_runtime = sig->sum_sched_runtime;
 322
 323                for_each_thread(tsk, t) {
 324                        task_cputime(t, &utime, &stime);
 325                        times->utime += utime;
 326                        times->stime += stime;
 327                        times->sum_exec_runtime += read_sum_exec_runtime(t);
 328                }
 329                /* If lockless access failed, take the lock. */
 330                nextseq = 1;
 331        } while (need_seqretry(&sig->stats_lock, seq));
 332        done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 333        rcu_read_unlock();
 334}
 335
 336#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 337/*
 338 * Account a tick to a process and cpustat
 339 * @p: the process that the CPU time gets accounted to
 340 * @user_tick: is the tick from userspace
 341 * @rq: the pointer to rq
 342 *
 343 * Tick demultiplexing follows the order
 344 * - pending hardirq update
 345 * - pending softirq update
 346 * - user_time
 347 * - idle_time
 348 * - system time
 349 *   - check for guest_time
 350 *   - else account as system_time
 351 *
 352 * Check for hardirq is done both for system and user time as there is
 353 * no timer going off while we are on hardirq and hence we may never get an
 354 * opportunity to update it solely in system time.
 355 * p->stime and friends are only updated on system time and not on irq
 356 * softirq as those do not count in task exec_runtime any more.
 357 */
 358static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 359                                         int ticks)
 360{
 361        u64 other, cputime = TICK_NSEC * ticks;
 362
 363        /*
 364         * When returning from idle, many ticks can get accounted at
 365         * once, including some ticks of steal, irq, and softirq time.
 366         * Subtract those ticks from the amount of time accounted to
 367         * idle, or potentially user or system time. Due to rounding,
 368         * other time can exceed ticks occasionally.
 369         */
 370        other = account_other_time(ULONG_MAX);
 371        if (other >= cputime)
 372                return;
 373
 374        cputime -= other;
 375
 376        if (this_cpu_ksoftirqd() == p) {
 377                /*
 378                 * ksoftirqd time do not get accounted in cpu_softirq_time.
 379                 * So, we have to handle it separately here.
 380                 * Also, p->stime needs to be updated for ksoftirqd.
 381                 */
 382                account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 383        } else if (user_tick) {
 384                account_user_time(p, cputime);
 385        } else if (p == this_rq()->idle) {
 386                account_idle_time(cputime);
 387        } else if (p->flags & PF_VCPU) { /* System time or guest time */
 388                account_guest_time(p, cputime);
 389        } else {
 390                account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 391        }
 392}
 393
 394static void irqtime_account_idle_ticks(int ticks)
 395{
 396        irqtime_account_process_tick(current, 0, ticks);
 397}
 398#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 399static inline void irqtime_account_idle_ticks(int ticks) { }
 400static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 401                                                int nr_ticks) { }
 402#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 403
 404/*
 405 * Use precise platform statistics if available:
 406 */
 407#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 408
 409# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 410void vtime_task_switch(struct task_struct *prev)
 411{
 412        if (is_idle_task(prev))
 413                vtime_account_idle(prev);
 414        else
 415                vtime_account_kernel(prev);
 416
 417        vtime_flush(prev);
 418        arch_vtime_task_switch(prev);
 419}
 420# endif
 421
 422void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
 423{
 424        unsigned int pc = irq_count() - offset;
 425
 426        if (pc & HARDIRQ_OFFSET) {
 427                vtime_account_hardirq(tsk);
 428        } else if (pc & SOFTIRQ_OFFSET) {
 429                vtime_account_softirq(tsk);
 430        } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
 431                   is_idle_task(tsk)) {
 432                vtime_account_idle(tsk);
 433        } else {
 434                vtime_account_kernel(tsk);
 435        }
 436}
 437
 438void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 439                    u64 *ut, u64 *st)
 440{
 441        *ut = curr->utime;
 442        *st = curr->stime;
 443}
 444
 445void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 446{
 447        *ut = p->utime;
 448        *st = p->stime;
 449}
 450EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 451
 452void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 453{
 454        struct task_cputime cputime;
 455
 456        thread_group_cputime(p, &cputime);
 457
 458        *ut = cputime.utime;
 459        *st = cputime.stime;
 460}
 461
 462#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 463
 464/*
 465 * Account a single tick of CPU time.
 466 * @p: the process that the CPU time gets accounted to
 467 * @user_tick: indicates if the tick is a user or a system tick
 468 */
 469void account_process_tick(struct task_struct *p, int user_tick)
 470{
 471        u64 cputime, steal;
 472
 473        if (vtime_accounting_enabled_this_cpu())
 474                return;
 475
 476        if (sched_clock_irqtime) {
 477                irqtime_account_process_tick(p, user_tick, 1);
 478                return;
 479        }
 480
 481        cputime = TICK_NSEC;
 482        steal = steal_account_process_time(ULONG_MAX);
 483
 484        if (steal >= cputime)
 485                return;
 486
 487        cputime -= steal;
 488
 489        if (user_tick)
 490                account_user_time(p, cputime);
 491        else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 492                account_system_time(p, HARDIRQ_OFFSET, cputime);
 493        else
 494                account_idle_time(cputime);
 495}
 496
 497/*
 498 * Account multiple ticks of idle time.
 499 * @ticks: number of stolen ticks
 500 */
 501void account_idle_ticks(unsigned long ticks)
 502{
 503        u64 cputime, steal;
 504
 505        if (sched_clock_irqtime) {
 506                irqtime_account_idle_ticks(ticks);
 507                return;
 508        }
 509
 510        cputime = ticks * TICK_NSEC;
 511        steal = steal_account_process_time(ULONG_MAX);
 512
 513        if (steal >= cputime)
 514                return;
 515
 516        cputime -= steal;
 517        account_idle_time(cputime);
 518}
 519
 520/*
 521 * Adjust tick based cputime random precision against scheduler runtime
 522 * accounting.
 523 *
 524 * Tick based cputime accounting depend on random scheduling timeslices of a
 525 * task to be interrupted or not by the timer.  Depending on these
 526 * circumstances, the number of these interrupts may be over or
 527 * under-optimistic, matching the real user and system cputime with a variable
 528 * precision.
 529 *
 530 * Fix this by scaling these tick based values against the total runtime
 531 * accounted by the CFS scheduler.
 532 *
 533 * This code provides the following guarantees:
 534 *
 535 *   stime + utime == rtime
 536 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 537 *
 538 * Assuming that rtime_i+1 >= rtime_i.
 539 */
 540void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 541                    u64 *ut, u64 *st)
 542{
 543        u64 rtime, stime, utime;
 544        unsigned long flags;
 545
 546        /* Serialize concurrent callers such that we can honour our guarantees */
 547        raw_spin_lock_irqsave(&prev->lock, flags);
 548        rtime = curr->sum_exec_runtime;
 549
 550        /*
 551         * This is possible under two circumstances:
 552         *  - rtime isn't monotonic after all (a bug);
 553         *  - we got reordered by the lock.
 554         *
 555         * In both cases this acts as a filter such that the rest of the code
 556         * can assume it is monotonic regardless of anything else.
 557         */
 558        if (prev->stime + prev->utime >= rtime)
 559                goto out;
 560
 561        stime = curr->stime;
 562        utime = curr->utime;
 563
 564        /*
 565         * If either stime or utime are 0, assume all runtime is userspace.
 566         * Once a task gets some ticks, the monotonicity code at 'update:'
 567         * will ensure things converge to the observed ratio.
 568         */
 569        if (stime == 0) {
 570                utime = rtime;
 571                goto update;
 572        }
 573
 574        if (utime == 0) {
 575                stime = rtime;
 576                goto update;
 577        }
 578
 579        stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 580
 581update:
 582        /*
 583         * Make sure stime doesn't go backwards; this preserves monotonicity
 584         * for utime because rtime is monotonic.
 585         *
 586         *  utime_i+1 = rtime_i+1 - stime_i
 587         *            = rtime_i+1 - (rtime_i - utime_i)
 588         *            = (rtime_i+1 - rtime_i) + utime_i
 589         *            >= utime_i
 590         */
 591        if (stime < prev->stime)
 592                stime = prev->stime;
 593        utime = rtime - stime;
 594
 595        /*
 596         * Make sure utime doesn't go backwards; this still preserves
 597         * monotonicity for stime, analogous argument to above.
 598         */
 599        if (utime < prev->utime) {
 600                utime = prev->utime;
 601                stime = rtime - utime;
 602        }
 603
 604        prev->stime = stime;
 605        prev->utime = utime;
 606out:
 607        *ut = prev->utime;
 608        *st = prev->stime;
 609        raw_spin_unlock_irqrestore(&prev->lock, flags);
 610}
 611
 612void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 613{
 614        struct task_cputime cputime = {
 615                .sum_exec_runtime = p->se.sum_exec_runtime,
 616        };
 617
 618        if (task_cputime(p, &cputime.utime, &cputime.stime))
 619                cputime.sum_exec_runtime = task_sched_runtime(p);
 620        cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 621}
 622EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 623
 624void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 625{
 626        struct task_cputime cputime;
 627
 628        thread_group_cputime(p, &cputime);
 629        cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 630}
 631#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 632
 633#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 634static u64 vtime_delta(struct vtime *vtime)
 635{
 636        unsigned long long clock;
 637
 638        clock = sched_clock();
 639        if (clock < vtime->starttime)
 640                return 0;
 641
 642        return clock - vtime->starttime;
 643}
 644
 645static u64 get_vtime_delta(struct vtime *vtime)
 646{
 647        u64 delta = vtime_delta(vtime);
 648        u64 other;
 649
 650        /*
 651         * Unlike tick based timing, vtime based timing never has lost
 652         * ticks, and no need for steal time accounting to make up for
 653         * lost ticks. Vtime accounts a rounded version of actual
 654         * elapsed time. Limit account_other_time to prevent rounding
 655         * errors from causing elapsed vtime to go negative.
 656         */
 657        other = account_other_time(delta);
 658        WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 659        vtime->starttime += delta;
 660
 661        return delta - other;
 662}
 663
 664static void vtime_account_system(struct task_struct *tsk,
 665                                 struct vtime *vtime)
 666{
 667        vtime->stime += get_vtime_delta(vtime);
 668        if (vtime->stime >= TICK_NSEC) {
 669                account_system_time(tsk, irq_count(), vtime->stime);
 670                vtime->stime = 0;
 671        }
 672}
 673
 674static void vtime_account_guest(struct task_struct *tsk,
 675                                struct vtime *vtime)
 676{
 677        vtime->gtime += get_vtime_delta(vtime);
 678        if (vtime->gtime >= TICK_NSEC) {
 679                account_guest_time(tsk, vtime->gtime);
 680                vtime->gtime = 0;
 681        }
 682}
 683
 684static void __vtime_account_kernel(struct task_struct *tsk,
 685                                   struct vtime *vtime)
 686{
 687        /* We might have scheduled out from guest path */
 688        if (vtime->state == VTIME_GUEST)
 689                vtime_account_guest(tsk, vtime);
 690        else
 691                vtime_account_system(tsk, vtime);
 692}
 693
 694void vtime_account_kernel(struct task_struct *tsk)
 695{
 696        struct vtime *vtime = &tsk->vtime;
 697
 698        if (!vtime_delta(vtime))
 699                return;
 700
 701        write_seqcount_begin(&vtime->seqcount);
 702        __vtime_account_kernel(tsk, vtime);
 703        write_seqcount_end(&vtime->seqcount);
 704}
 705
 706void vtime_user_enter(struct task_struct *tsk)
 707{
 708        struct vtime *vtime = &tsk->vtime;
 709
 710        write_seqcount_begin(&vtime->seqcount);
 711        vtime_account_system(tsk, vtime);
 712        vtime->state = VTIME_USER;
 713        write_seqcount_end(&vtime->seqcount);
 714}
 715
 716void vtime_user_exit(struct task_struct *tsk)
 717{
 718        struct vtime *vtime = &tsk->vtime;
 719
 720        write_seqcount_begin(&vtime->seqcount);
 721        vtime->utime += get_vtime_delta(vtime);
 722        if (vtime->utime >= TICK_NSEC) {
 723                account_user_time(tsk, vtime->utime);
 724                vtime->utime = 0;
 725        }
 726        vtime->state = VTIME_SYS;
 727        write_seqcount_end(&vtime->seqcount);
 728}
 729
 730void vtime_guest_enter(struct task_struct *tsk)
 731{
 732        struct vtime *vtime = &tsk->vtime;
 733        /*
 734         * The flags must be updated under the lock with
 735         * the vtime_starttime flush and update.
 736         * That enforces a right ordering and update sequence
 737         * synchronization against the reader (task_gtime())
 738         * that can thus safely catch up with a tickless delta.
 739         */
 740        write_seqcount_begin(&vtime->seqcount);
 741        vtime_account_system(tsk, vtime);
 742        tsk->flags |= PF_VCPU;
 743        vtime->state = VTIME_GUEST;
 744        write_seqcount_end(&vtime->seqcount);
 745}
 746EXPORT_SYMBOL_GPL(vtime_guest_enter);
 747
 748void vtime_guest_exit(struct task_struct *tsk)
 749{
 750        struct vtime *vtime = &tsk->vtime;
 751
 752        write_seqcount_begin(&vtime->seqcount);
 753        vtime_account_guest(tsk, vtime);
 754        tsk->flags &= ~PF_VCPU;
 755        vtime->state = VTIME_SYS;
 756        write_seqcount_end(&vtime->seqcount);
 757}
 758EXPORT_SYMBOL_GPL(vtime_guest_exit);
 759
 760void vtime_account_idle(struct task_struct *tsk)
 761{
 762        account_idle_time(get_vtime_delta(&tsk->vtime));
 763}
 764
 765void vtime_task_switch_generic(struct task_struct *prev)
 766{
 767        struct vtime *vtime = &prev->vtime;
 768
 769        write_seqcount_begin(&vtime->seqcount);
 770        if (vtime->state == VTIME_IDLE)
 771                vtime_account_idle(prev);
 772        else
 773                __vtime_account_kernel(prev, vtime);
 774        vtime->state = VTIME_INACTIVE;
 775        vtime->cpu = -1;
 776        write_seqcount_end(&vtime->seqcount);
 777
 778        vtime = &current->vtime;
 779
 780        write_seqcount_begin(&vtime->seqcount);
 781        if (is_idle_task(current))
 782                vtime->state = VTIME_IDLE;
 783        else if (current->flags & PF_VCPU)
 784                vtime->state = VTIME_GUEST;
 785        else
 786                vtime->state = VTIME_SYS;
 787        vtime->starttime = sched_clock();
 788        vtime->cpu = smp_processor_id();
 789        write_seqcount_end(&vtime->seqcount);
 790}
 791
 792void vtime_init_idle(struct task_struct *t, int cpu)
 793{
 794        struct vtime *vtime = &t->vtime;
 795        unsigned long flags;
 796
 797        local_irq_save(flags);
 798        write_seqcount_begin(&vtime->seqcount);
 799        vtime->state = VTIME_IDLE;
 800        vtime->starttime = sched_clock();
 801        vtime->cpu = cpu;
 802        write_seqcount_end(&vtime->seqcount);
 803        local_irq_restore(flags);
 804}
 805
 806u64 task_gtime(struct task_struct *t)
 807{
 808        struct vtime *vtime = &t->vtime;
 809        unsigned int seq;
 810        u64 gtime;
 811
 812        if (!vtime_accounting_enabled())
 813                return t->gtime;
 814
 815        do {
 816                seq = read_seqcount_begin(&vtime->seqcount);
 817
 818                gtime = t->gtime;
 819                if (vtime->state == VTIME_GUEST)
 820                        gtime += vtime->gtime + vtime_delta(vtime);
 821
 822        } while (read_seqcount_retry(&vtime->seqcount, seq));
 823
 824        return gtime;
 825}
 826
 827/*
 828 * Fetch cputime raw values from fields of task_struct and
 829 * add up the pending nohz execution time since the last
 830 * cputime snapshot.
 831 */
 832bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 833{
 834        struct vtime *vtime = &t->vtime;
 835        unsigned int seq;
 836        u64 delta;
 837        int ret;
 838
 839        if (!vtime_accounting_enabled()) {
 840                *utime = t->utime;
 841                *stime = t->stime;
 842                return false;
 843        }
 844
 845        do {
 846                ret = false;
 847                seq = read_seqcount_begin(&vtime->seqcount);
 848
 849                *utime = t->utime;
 850                *stime = t->stime;
 851
 852                /* Task is sleeping or idle, nothing to add */
 853                if (vtime->state < VTIME_SYS)
 854                        continue;
 855
 856                ret = true;
 857                delta = vtime_delta(vtime);
 858
 859                /*
 860                 * Task runs either in user (including guest) or kernel space,
 861                 * add pending nohz time to the right place.
 862                 */
 863                if (vtime->state == VTIME_SYS)
 864                        *stime += vtime->stime + delta;
 865                else
 866                        *utime += vtime->utime + delta;
 867        } while (read_seqcount_retry(&vtime->seqcount, seq));
 868
 869        return ret;
 870}
 871
 872static int vtime_state_fetch(struct vtime *vtime, int cpu)
 873{
 874        int state = READ_ONCE(vtime->state);
 875
 876        /*
 877         * We raced against a context switch, fetch the
 878         * kcpustat task again.
 879         */
 880        if (vtime->cpu != cpu && vtime->cpu != -1)
 881                return -EAGAIN;
 882
 883        /*
 884         * Two possible things here:
 885         * 1) We are seeing the scheduling out task (prev) or any past one.
 886         * 2) We are seeing the scheduling in task (next) but it hasn't
 887         *    passed though vtime_task_switch() yet so the pending
 888         *    cputime of the prev task may not be flushed yet.
 889         *
 890         * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 891         */
 892        if (state == VTIME_INACTIVE)
 893                return -EAGAIN;
 894
 895        return state;
 896}
 897
 898static u64 kcpustat_user_vtime(struct vtime *vtime)
 899{
 900        if (vtime->state == VTIME_USER)
 901                return vtime->utime + vtime_delta(vtime);
 902        else if (vtime->state == VTIME_GUEST)
 903                return vtime->gtime + vtime_delta(vtime);
 904        return 0;
 905}
 906
 907static int kcpustat_field_vtime(u64 *cpustat,
 908                                struct task_struct *tsk,
 909                                enum cpu_usage_stat usage,
 910                                int cpu, u64 *val)
 911{
 912        struct vtime *vtime = &tsk->vtime;
 913        unsigned int seq;
 914
 915        do {
 916                int state;
 917
 918                seq = read_seqcount_begin(&vtime->seqcount);
 919
 920                state = vtime_state_fetch(vtime, cpu);
 921                if (state < 0)
 922                        return state;
 923
 924                *val = cpustat[usage];
 925
 926                /*
 927                 * Nice VS unnice cputime accounting may be inaccurate if
 928                 * the nice value has changed since the last vtime update.
 929                 * But proper fix would involve interrupting target on nice
 930                 * updates which is a no go on nohz_full (although the scheduler
 931                 * may still interrupt the target if rescheduling is needed...)
 932                 */
 933                switch (usage) {
 934                case CPUTIME_SYSTEM:
 935                        if (state == VTIME_SYS)
 936                                *val += vtime->stime + vtime_delta(vtime);
 937                        break;
 938                case CPUTIME_USER:
 939                        if (task_nice(tsk) <= 0)
 940                                *val += kcpustat_user_vtime(vtime);
 941                        break;
 942                case CPUTIME_NICE:
 943                        if (task_nice(tsk) > 0)
 944                                *val += kcpustat_user_vtime(vtime);
 945                        break;
 946                case CPUTIME_GUEST:
 947                        if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 948                                *val += vtime->gtime + vtime_delta(vtime);
 949                        break;
 950                case CPUTIME_GUEST_NICE:
 951                        if (state == VTIME_GUEST && task_nice(tsk) > 0)
 952                                *val += vtime->gtime + vtime_delta(vtime);
 953                        break;
 954                default:
 955                        break;
 956                }
 957        } while (read_seqcount_retry(&vtime->seqcount, seq));
 958
 959        return 0;
 960}
 961
 962u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 963                   enum cpu_usage_stat usage, int cpu)
 964{
 965        u64 *cpustat = kcpustat->cpustat;
 966        u64 val = cpustat[usage];
 967        struct rq *rq;
 968        int err;
 969
 970        if (!vtime_accounting_enabled_cpu(cpu))
 971                return val;
 972
 973        rq = cpu_rq(cpu);
 974
 975        for (;;) {
 976                struct task_struct *curr;
 977
 978                rcu_read_lock();
 979                curr = rcu_dereference(rq->curr);
 980                if (WARN_ON_ONCE(!curr)) {
 981                        rcu_read_unlock();
 982                        return cpustat[usage];
 983                }
 984
 985                err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
 986                rcu_read_unlock();
 987
 988                if (!err)
 989                        return val;
 990
 991                cpu_relax();
 992        }
 993}
 994EXPORT_SYMBOL_GPL(kcpustat_field);
 995
 996static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
 997                                    const struct kernel_cpustat *src,
 998                                    struct task_struct *tsk, int cpu)
 999{
1000        struct vtime *vtime = &tsk->vtime;
1001        unsigned int seq;
1002
1003        do {
1004                u64 *cpustat;
1005                u64 delta;
1006                int state;
1007
1008                seq = read_seqcount_begin(&vtime->seqcount);
1009
1010                state = vtime_state_fetch(vtime, cpu);
1011                if (state < 0)
1012                        return state;
1013
1014                *dst = *src;
1015                cpustat = dst->cpustat;
1016
1017                /* Task is sleeping, dead or idle, nothing to add */
1018                if (state < VTIME_SYS)
1019                        continue;
1020
1021                delta = vtime_delta(vtime);
1022
1023                /*
1024                 * Task runs either in user (including guest) or kernel space,
1025                 * add pending nohz time to the right place.
1026                 */
1027                if (state == VTIME_SYS) {
1028                        cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1029                } else if (state == VTIME_USER) {
1030                        if (task_nice(tsk) > 0)
1031                                cpustat[CPUTIME_NICE] += vtime->utime + delta;
1032                        else
1033                                cpustat[CPUTIME_USER] += vtime->utime + delta;
1034                } else {
1035                        WARN_ON_ONCE(state != VTIME_GUEST);
1036                        if (task_nice(tsk) > 0) {
1037                                cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1038                                cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1039                        } else {
1040                                cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1041                                cpustat[CPUTIME_USER] += vtime->gtime + delta;
1042                        }
1043                }
1044        } while (read_seqcount_retry(&vtime->seqcount, seq));
1045
1046        return 0;
1047}
1048
1049void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1050{
1051        const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1052        struct rq *rq;
1053        int err;
1054
1055        if (!vtime_accounting_enabled_cpu(cpu)) {
1056                *dst = *src;
1057                return;
1058        }
1059
1060        rq = cpu_rq(cpu);
1061
1062        for (;;) {
1063                struct task_struct *curr;
1064
1065                rcu_read_lock();
1066                curr = rcu_dereference(rq->curr);
1067                if (WARN_ON_ONCE(!curr)) {
1068                        rcu_read_unlock();
1069                        *dst = *src;
1070                        return;
1071                }
1072
1073                err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1074                rcu_read_unlock();
1075
1076                if (!err)
1077                        return;
1078
1079                cpu_relax();
1080        }
1081}
1082EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1083
1084#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1085