linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  High-resolution kernel timers
   8 *
   9 *  In contrast to the low-resolution timeout API, aka timer wheel,
  10 *  hrtimers provide finer resolution and accuracy depending on system
  11 *  configuration and capabilities.
  12 *
  13 *  Started by: Thomas Gleixner and Ingo Molnar
  14 *
  15 *  Credits:
  16 *      Based on the original timer wheel code
  17 *
  18 *      Help, testing, suggestions, bugfixes, improvements were
  19 *      provided by:
  20 *
  21 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  22 *      et. al.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/export.h>
  27#include <linux/percpu.h>
  28#include <linux/hrtimer.h>
  29#include <linux/notifier.h>
  30#include <linux/syscalls.h>
  31#include <linux/interrupt.h>
  32#include <linux/tick.h>
  33#include <linux/err.h>
  34#include <linux/debugobjects.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/deadline.h>
  39#include <linux/sched/nohz.h>
  40#include <linux/sched/debug.h>
  41#include <linux/timer.h>
  42#include <linux/freezer.h>
  43#include <linux/compat.h>
  44
  45#include <linux/uaccess.h>
  46
  47#include <trace/events/timer.h>
  48
  49#include "tick-internal.h"
  50
  51/*
  52 * Masks for selecting the soft and hard context timers from
  53 * cpu_base->active
  54 */
  55#define MASK_SHIFT              (HRTIMER_BASE_MONOTONIC_SOFT)
  56#define HRTIMER_ACTIVE_HARD     ((1U << MASK_SHIFT) - 1)
  57#define HRTIMER_ACTIVE_SOFT     (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  58#define HRTIMER_ACTIVE_ALL      (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  59
  60/*
  61 * The timer bases:
  62 *
  63 * There are more clockids than hrtimer bases. Thus, we index
  64 * into the timer bases by the hrtimer_base_type enum. When trying
  65 * to reach a base using a clockid, hrtimer_clockid_to_base()
  66 * is used to convert from clockid to the proper hrtimer_base_type.
  67 */
  68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  69{
  70        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                },
  78                {
  79                        .index = HRTIMER_BASE_REALTIME,
  80                        .clockid = CLOCK_REALTIME,
  81                        .get_time = &ktime_get_real,
  82                },
  83                {
  84                        .index = HRTIMER_BASE_BOOTTIME,
  85                        .clockid = CLOCK_BOOTTIME,
  86                        .get_time = &ktime_get_boottime,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_TAI,
  90                        .clockid = CLOCK_TAI,
  91                        .get_time = &ktime_get_clocktai,
  92                },
  93                {
  94                        .index = HRTIMER_BASE_MONOTONIC_SOFT,
  95                        .clockid = CLOCK_MONOTONIC,
  96                        .get_time = &ktime_get,
  97                },
  98                {
  99                        .index = HRTIMER_BASE_REALTIME_SOFT,
 100                        .clockid = CLOCK_REALTIME,
 101                        .get_time = &ktime_get_real,
 102                },
 103                {
 104                        .index = HRTIMER_BASE_BOOTTIME_SOFT,
 105                        .clockid = CLOCK_BOOTTIME,
 106                        .get_time = &ktime_get_boottime,
 107                },
 108                {
 109                        .index = HRTIMER_BASE_TAI_SOFT,
 110                        .clockid = CLOCK_TAI,
 111                        .get_time = &ktime_get_clocktai,
 112                },
 113        }
 114};
 115
 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 117        /* Make sure we catch unsupported clockids */
 118        [0 ... MAX_CLOCKS - 1]  = HRTIMER_MAX_CLOCK_BASES,
 119
 120        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 121        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 122        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 123        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 124};
 125
 126/*
 127 * Functions and macros which are different for UP/SMP systems are kept in a
 128 * single place
 129 */
 130#ifdef CONFIG_SMP
 131
 132/*
 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 134 * such that hrtimer_callback_running() can unconditionally dereference
 135 * timer->base->cpu_base
 136 */
 137static struct hrtimer_cpu_base migration_cpu_base = {
 138        .clock_base = { {
 139                .cpu_base = &migration_cpu_base,
 140                .seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
 141                                                     &migration_cpu_base.lock),
 142        }, },
 143};
 144
 145#define migration_base  migration_cpu_base.clock_base[0]
 146
 147static inline bool is_migration_base(struct hrtimer_clock_base *base)
 148{
 149        return base == &migration_base;
 150}
 151
 152/*
 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 154 * means that all timers which are tied to this base via timer->base are
 155 * locked, and the base itself is locked too.
 156 *
 157 * So __run_timers/migrate_timers can safely modify all timers which could
 158 * be found on the lists/queues.
 159 *
 160 * When the timer's base is locked, and the timer removed from list, it is
 161 * possible to set timer->base = &migration_base and drop the lock: the timer
 162 * remains locked.
 163 */
 164static
 165struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 166                                             unsigned long *flags)
 167{
 168        struct hrtimer_clock_base *base;
 169
 170        for (;;) {
 171                base = READ_ONCE(timer->base);
 172                if (likely(base != &migration_base)) {
 173                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 174                        if (likely(base == timer->base))
 175                                return base;
 176                        /* The timer has migrated to another CPU: */
 177                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 178                }
 179                cpu_relax();
 180        }
 181}
 182
 183/*
 184 * We do not migrate the timer when it is expiring before the next
 185 * event on the target cpu. When high resolution is enabled, we cannot
 186 * reprogram the target cpu hardware and we would cause it to fire
 187 * late. To keep it simple, we handle the high resolution enabled and
 188 * disabled case similar.
 189 *
 190 * Called with cpu_base->lock of target cpu held.
 191 */
 192static int
 193hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 194{
 195        ktime_t expires;
 196
 197        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 198        return expires < new_base->cpu_base->expires_next;
 199}
 200
 201static inline
 202struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 203                                         int pinned)
 204{
 205#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 206        if (static_branch_likely(&timers_migration_enabled) && !pinned)
 207                return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 208#endif
 209        return base;
 210}
 211
 212/*
 213 * We switch the timer base to a power-optimized selected CPU target,
 214 * if:
 215 *      - NO_HZ_COMMON is enabled
 216 *      - timer migration is enabled
 217 *      - the timer callback is not running
 218 *      - the timer is not the first expiring timer on the new target
 219 *
 220 * If one of the above requirements is not fulfilled we move the timer
 221 * to the current CPU or leave it on the previously assigned CPU if
 222 * the timer callback is currently running.
 223 */
 224static inline struct hrtimer_clock_base *
 225switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 226                    int pinned)
 227{
 228        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 229        struct hrtimer_clock_base *new_base;
 230        int basenum = base->index;
 231
 232        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 233        new_cpu_base = get_target_base(this_cpu_base, pinned);
 234again:
 235        new_base = &new_cpu_base->clock_base[basenum];
 236
 237        if (base != new_base) {
 238                /*
 239                 * We are trying to move timer to new_base.
 240                 * However we can't change timer's base while it is running,
 241                 * so we keep it on the same CPU. No hassle vs. reprogramming
 242                 * the event source in the high resolution case. The softirq
 243                 * code will take care of this when the timer function has
 244                 * completed. There is no conflict as we hold the lock until
 245                 * the timer is enqueued.
 246                 */
 247                if (unlikely(hrtimer_callback_running(timer)))
 248                        return base;
 249
 250                /* See the comment in lock_hrtimer_base() */
 251                WRITE_ONCE(timer->base, &migration_base);
 252                raw_spin_unlock(&base->cpu_base->lock);
 253                raw_spin_lock(&new_base->cpu_base->lock);
 254
 255                if (new_cpu_base != this_cpu_base &&
 256                    hrtimer_check_target(timer, new_base)) {
 257                        raw_spin_unlock(&new_base->cpu_base->lock);
 258                        raw_spin_lock(&base->cpu_base->lock);
 259                        new_cpu_base = this_cpu_base;
 260                        WRITE_ONCE(timer->base, base);
 261                        goto again;
 262                }
 263                WRITE_ONCE(timer->base, new_base);
 264        } else {
 265                if (new_cpu_base != this_cpu_base &&
 266                    hrtimer_check_target(timer, new_base)) {
 267                        new_cpu_base = this_cpu_base;
 268                        goto again;
 269                }
 270        }
 271        return new_base;
 272}
 273
 274#else /* CONFIG_SMP */
 275
 276static inline bool is_migration_base(struct hrtimer_clock_base *base)
 277{
 278        return false;
 279}
 280
 281static inline struct hrtimer_clock_base *
 282lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 283{
 284        struct hrtimer_clock_base *base = timer->base;
 285
 286        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 287
 288        return base;
 289}
 290
 291# define switch_hrtimer_base(t, b, p)   (b)
 292
 293#endif  /* !CONFIG_SMP */
 294
 295/*
 296 * Functions for the union type storage format of ktime_t which are
 297 * too large for inlining:
 298 */
 299#if BITS_PER_LONG < 64
 300/*
 301 * Divide a ktime value by a nanosecond value
 302 */
 303s64 __ktime_divns(const ktime_t kt, s64 div)
 304{
 305        int sft = 0;
 306        s64 dclc;
 307        u64 tmp;
 308
 309        dclc = ktime_to_ns(kt);
 310        tmp = dclc < 0 ? -dclc : dclc;
 311
 312        /* Make sure the divisor is less than 2^32: */
 313        while (div >> 32) {
 314                sft++;
 315                div >>= 1;
 316        }
 317        tmp >>= sft;
 318        do_div(tmp, (u32) div);
 319        return dclc < 0 ? -tmp : tmp;
 320}
 321EXPORT_SYMBOL_GPL(__ktime_divns);
 322#endif /* BITS_PER_LONG >= 64 */
 323
 324/*
 325 * Add two ktime values and do a safety check for overflow:
 326 */
 327ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 328{
 329        ktime_t res = ktime_add_unsafe(lhs, rhs);
 330
 331        /*
 332         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 333         * return to user space in a timespec:
 334         */
 335        if (res < 0 || res < lhs || res < rhs)
 336                res = ktime_set(KTIME_SEC_MAX, 0);
 337
 338        return res;
 339}
 340
 341EXPORT_SYMBOL_GPL(ktime_add_safe);
 342
 343#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 344
 345static const struct debug_obj_descr hrtimer_debug_descr;
 346
 347static void *hrtimer_debug_hint(void *addr)
 348{
 349        return ((struct hrtimer *) addr)->function;
 350}
 351
 352/*
 353 * fixup_init is called when:
 354 * - an active object is initialized
 355 */
 356static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 357{
 358        struct hrtimer *timer = addr;
 359
 360        switch (state) {
 361        case ODEBUG_STATE_ACTIVE:
 362                hrtimer_cancel(timer);
 363                debug_object_init(timer, &hrtimer_debug_descr);
 364                return true;
 365        default:
 366                return false;
 367        }
 368}
 369
 370/*
 371 * fixup_activate is called when:
 372 * - an active object is activated
 373 * - an unknown non-static object is activated
 374 */
 375static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 376{
 377        switch (state) {
 378        case ODEBUG_STATE_ACTIVE:
 379                WARN_ON(1);
 380                fallthrough;
 381        default:
 382                return false;
 383        }
 384}
 385
 386/*
 387 * fixup_free is called when:
 388 * - an active object is freed
 389 */
 390static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 391{
 392        struct hrtimer *timer = addr;
 393
 394        switch (state) {
 395        case ODEBUG_STATE_ACTIVE:
 396                hrtimer_cancel(timer);
 397                debug_object_free(timer, &hrtimer_debug_descr);
 398                return true;
 399        default:
 400                return false;
 401        }
 402}
 403
 404static const struct debug_obj_descr hrtimer_debug_descr = {
 405        .name           = "hrtimer",
 406        .debug_hint     = hrtimer_debug_hint,
 407        .fixup_init     = hrtimer_fixup_init,
 408        .fixup_activate = hrtimer_fixup_activate,
 409        .fixup_free     = hrtimer_fixup_free,
 410};
 411
 412static inline void debug_hrtimer_init(struct hrtimer *timer)
 413{
 414        debug_object_init(timer, &hrtimer_debug_descr);
 415}
 416
 417static inline void debug_hrtimer_activate(struct hrtimer *timer,
 418                                          enum hrtimer_mode mode)
 419{
 420        debug_object_activate(timer, &hrtimer_debug_descr);
 421}
 422
 423static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 424{
 425        debug_object_deactivate(timer, &hrtimer_debug_descr);
 426}
 427
 428static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 429                           enum hrtimer_mode mode);
 430
 431void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 432                           enum hrtimer_mode mode)
 433{
 434        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 435        __hrtimer_init(timer, clock_id, mode);
 436}
 437EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 438
 439static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
 440                                   clockid_t clock_id, enum hrtimer_mode mode);
 441
 442void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
 443                                   clockid_t clock_id, enum hrtimer_mode mode)
 444{
 445        debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
 446        __hrtimer_init_sleeper(sl, clock_id, mode);
 447}
 448EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
 449
 450void destroy_hrtimer_on_stack(struct hrtimer *timer)
 451{
 452        debug_object_free(timer, &hrtimer_debug_descr);
 453}
 454EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 455
 456#else
 457
 458static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 459static inline void debug_hrtimer_activate(struct hrtimer *timer,
 460                                          enum hrtimer_mode mode) { }
 461static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 462#endif
 463
 464static inline void
 465debug_init(struct hrtimer *timer, clockid_t clockid,
 466           enum hrtimer_mode mode)
 467{
 468        debug_hrtimer_init(timer);
 469        trace_hrtimer_init(timer, clockid, mode);
 470}
 471
 472static inline void debug_activate(struct hrtimer *timer,
 473                                  enum hrtimer_mode mode)
 474{
 475        debug_hrtimer_activate(timer, mode);
 476        trace_hrtimer_start(timer, mode);
 477}
 478
 479static inline void debug_deactivate(struct hrtimer *timer)
 480{
 481        debug_hrtimer_deactivate(timer);
 482        trace_hrtimer_cancel(timer);
 483}
 484
 485static struct hrtimer_clock_base *
 486__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 487{
 488        unsigned int idx;
 489
 490        if (!*active)
 491                return NULL;
 492
 493        idx = __ffs(*active);
 494        *active &= ~(1U << idx);
 495
 496        return &cpu_base->clock_base[idx];
 497}
 498
 499#define for_each_active_base(base, cpu_base, active)    \
 500        while ((base = __next_base((cpu_base), &(active))))
 501
 502static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 503                                         const struct hrtimer *exclude,
 504                                         unsigned int active,
 505                                         ktime_t expires_next)
 506{
 507        struct hrtimer_clock_base *base;
 508        ktime_t expires;
 509
 510        for_each_active_base(base, cpu_base, active) {
 511                struct timerqueue_node *next;
 512                struct hrtimer *timer;
 513
 514                next = timerqueue_getnext(&base->active);
 515                timer = container_of(next, struct hrtimer, node);
 516                if (timer == exclude) {
 517                        /* Get to the next timer in the queue. */
 518                        next = timerqueue_iterate_next(next);
 519                        if (!next)
 520                                continue;
 521
 522                        timer = container_of(next, struct hrtimer, node);
 523                }
 524                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 525                if (expires < expires_next) {
 526                        expires_next = expires;
 527
 528                        /* Skip cpu_base update if a timer is being excluded. */
 529                        if (exclude)
 530                                continue;
 531
 532                        if (timer->is_soft)
 533                                cpu_base->softirq_next_timer = timer;
 534                        else
 535                                cpu_base->next_timer = timer;
 536                }
 537        }
 538        /*
 539         * clock_was_set() might have changed base->offset of any of
 540         * the clock bases so the result might be negative. Fix it up
 541         * to prevent a false positive in clockevents_program_event().
 542         */
 543        if (expires_next < 0)
 544                expires_next = 0;
 545        return expires_next;
 546}
 547
 548/*
 549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
 550 * but does not set cpu_base::*expires_next, that is done by
 551 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
 552 * cpu_base::*expires_next right away, reprogramming logic would no longer
 553 * work.
 554 *
 555 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 556 * those timers will get run whenever the softirq gets handled, at the end of
 557 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 558 *
 559 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 560 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 561 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 562 *
 563 * @active_mask must be one of:
 564 *  - HRTIMER_ACTIVE_ALL,
 565 *  - HRTIMER_ACTIVE_SOFT, or
 566 *  - HRTIMER_ACTIVE_HARD.
 567 */
 568static ktime_t
 569__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 570{
 571        unsigned int active;
 572        struct hrtimer *next_timer = NULL;
 573        ktime_t expires_next = KTIME_MAX;
 574
 575        if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 576                active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 577                cpu_base->softirq_next_timer = NULL;
 578                expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 579                                                         active, KTIME_MAX);
 580
 581                next_timer = cpu_base->softirq_next_timer;
 582        }
 583
 584        if (active_mask & HRTIMER_ACTIVE_HARD) {
 585                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 586                cpu_base->next_timer = next_timer;
 587                expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 588                                                         expires_next);
 589        }
 590
 591        return expires_next;
 592}
 593
 594static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
 595{
 596        ktime_t expires_next, soft = KTIME_MAX;
 597
 598        /*
 599         * If the soft interrupt has already been activated, ignore the
 600         * soft bases. They will be handled in the already raised soft
 601         * interrupt.
 602         */
 603        if (!cpu_base->softirq_activated) {
 604                soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
 605                /*
 606                 * Update the soft expiry time. clock_settime() might have
 607                 * affected it.
 608                 */
 609                cpu_base->softirq_expires_next = soft;
 610        }
 611
 612        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
 613        /*
 614         * If a softirq timer is expiring first, update cpu_base->next_timer
 615         * and program the hardware with the soft expiry time.
 616         */
 617        if (expires_next > soft) {
 618                cpu_base->next_timer = cpu_base->softirq_next_timer;
 619                expires_next = soft;
 620        }
 621
 622        return expires_next;
 623}
 624
 625static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 626{
 627        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 628        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 629        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 630
 631        ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 632                                            offs_real, offs_boot, offs_tai);
 633
 634        base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 635        base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 636        base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 637
 638        return now;
 639}
 640
 641/*
 642 * Is the high resolution mode active ?
 643 */
 644static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 645{
 646        return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 647                cpu_base->hres_active : 0;
 648}
 649
 650static inline int hrtimer_hres_active(void)
 651{
 652        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 653}
 654
 655static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
 656                                struct hrtimer *next_timer,
 657                                ktime_t expires_next)
 658{
 659        cpu_base->expires_next = expires_next;
 660
 661        /*
 662         * If hres is not active, hardware does not have to be
 663         * reprogrammed yet.
 664         *
 665         * If a hang was detected in the last timer interrupt then we
 666         * leave the hang delay active in the hardware. We want the
 667         * system to make progress. That also prevents the following
 668         * scenario:
 669         * T1 expires 50ms from now
 670         * T2 expires 5s from now
 671         *
 672         * T1 is removed, so this code is called and would reprogram
 673         * the hardware to 5s from now. Any hrtimer_start after that
 674         * will not reprogram the hardware due to hang_detected being
 675         * set. So we'd effectively block all timers until the T2 event
 676         * fires.
 677         */
 678        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 679                return;
 680
 681        tick_program_event(expires_next, 1);
 682}
 683
 684/*
 685 * Reprogram the event source with checking both queues for the
 686 * next event
 687 * Called with interrupts disabled and base->lock held
 688 */
 689static void
 690hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 691{
 692        ktime_t expires_next;
 693
 694        expires_next = hrtimer_update_next_event(cpu_base);
 695
 696        if (skip_equal && expires_next == cpu_base->expires_next)
 697                return;
 698
 699        __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
 700}
 701
 702/* High resolution timer related functions */
 703#ifdef CONFIG_HIGH_RES_TIMERS
 704
 705/*
 706 * High resolution timer enabled ?
 707 */
 708static bool hrtimer_hres_enabled __read_mostly  = true;
 709unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 710EXPORT_SYMBOL_GPL(hrtimer_resolution);
 711
 712/*
 713 * Enable / Disable high resolution mode
 714 */
 715static int __init setup_hrtimer_hres(char *str)
 716{
 717        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 718}
 719
 720__setup("highres=", setup_hrtimer_hres);
 721
 722/*
 723 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 724 */
 725static inline int hrtimer_is_hres_enabled(void)
 726{
 727        return hrtimer_hres_enabled;
 728}
 729
 730static void retrigger_next_event(void *arg);
 731
 732/*
 733 * Switch to high resolution mode
 734 */
 735static void hrtimer_switch_to_hres(void)
 736{
 737        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 738
 739        if (tick_init_highres()) {
 740                pr_warn("Could not switch to high resolution mode on CPU %u\n",
 741                        base->cpu);
 742                return;
 743        }
 744        base->hres_active = 1;
 745        hrtimer_resolution = HIGH_RES_NSEC;
 746
 747        tick_setup_sched_timer();
 748        /* "Retrigger" the interrupt to get things going */
 749        retrigger_next_event(NULL);
 750}
 751
 752#else
 753
 754static inline int hrtimer_is_hres_enabled(void) { return 0; }
 755static inline void hrtimer_switch_to_hres(void) { }
 756
 757#endif /* CONFIG_HIGH_RES_TIMERS */
 758/*
 759 * Retrigger next event is called after clock was set with interrupts
 760 * disabled through an SMP function call or directly from low level
 761 * resume code.
 762 *
 763 * This is only invoked when:
 764 *      - CONFIG_HIGH_RES_TIMERS is enabled.
 765 *      - CONFIG_NOHZ_COMMON is enabled
 766 *
 767 * For the other cases this function is empty and because the call sites
 768 * are optimized out it vanishes as well, i.e. no need for lots of
 769 * #ifdeffery.
 770 */
 771static void retrigger_next_event(void *arg)
 772{
 773        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 774
 775        /*
 776         * When high resolution mode or nohz is active, then the offsets of
 777         * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
 778         * next tick will take care of that.
 779         *
 780         * If high resolution mode is active then the next expiring timer
 781         * must be reevaluated and the clock event device reprogrammed if
 782         * necessary.
 783         *
 784         * In the NOHZ case the update of the offset and the reevaluation
 785         * of the next expiring timer is enough. The return from the SMP
 786         * function call will take care of the reprogramming in case the
 787         * CPU was in a NOHZ idle sleep.
 788         */
 789        if (!__hrtimer_hres_active(base) && !tick_nohz_active)
 790                return;
 791
 792        raw_spin_lock(&base->lock);
 793        hrtimer_update_base(base);
 794        if (__hrtimer_hres_active(base))
 795                hrtimer_force_reprogram(base, 0);
 796        else
 797                hrtimer_update_next_event(base);
 798        raw_spin_unlock(&base->lock);
 799}
 800
 801/*
 802 * When a timer is enqueued and expires earlier than the already enqueued
 803 * timers, we have to check, whether it expires earlier than the timer for
 804 * which the clock event device was armed.
 805 *
 806 * Called with interrupts disabled and base->cpu_base.lock held
 807 */
 808static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 809{
 810        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 811        struct hrtimer_clock_base *base = timer->base;
 812        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 813
 814        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 815
 816        /*
 817         * CLOCK_REALTIME timer might be requested with an absolute
 818         * expiry time which is less than base->offset. Set it to 0.
 819         */
 820        if (expires < 0)
 821                expires = 0;
 822
 823        if (timer->is_soft) {
 824                /*
 825                 * soft hrtimer could be started on a remote CPU. In this
 826                 * case softirq_expires_next needs to be updated on the
 827                 * remote CPU. The soft hrtimer will not expire before the
 828                 * first hard hrtimer on the remote CPU -
 829                 * hrtimer_check_target() prevents this case.
 830                 */
 831                struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 832
 833                if (timer_cpu_base->softirq_activated)
 834                        return;
 835
 836                if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 837                        return;
 838
 839                timer_cpu_base->softirq_next_timer = timer;
 840                timer_cpu_base->softirq_expires_next = expires;
 841
 842                if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 843                    !reprogram)
 844                        return;
 845        }
 846
 847        /*
 848         * If the timer is not on the current cpu, we cannot reprogram
 849         * the other cpus clock event device.
 850         */
 851        if (base->cpu_base != cpu_base)
 852                return;
 853
 854        if (expires >= cpu_base->expires_next)
 855                return;
 856
 857        /*
 858         * If the hrtimer interrupt is running, then it will reevaluate the
 859         * clock bases and reprogram the clock event device.
 860         */
 861        if (cpu_base->in_hrtirq)
 862                return;
 863
 864        cpu_base->next_timer = timer;
 865
 866        __hrtimer_reprogram(cpu_base, timer, expires);
 867}
 868
 869static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
 870                             unsigned int active)
 871{
 872        struct hrtimer_clock_base *base;
 873        unsigned int seq;
 874        ktime_t expires;
 875
 876        /*
 877         * Update the base offsets unconditionally so the following
 878         * checks whether the SMP function call is required works.
 879         *
 880         * The update is safe even when the remote CPU is in the hrtimer
 881         * interrupt or the hrtimer soft interrupt and expiring affected
 882         * bases. Either it will see the update before handling a base or
 883         * it will see it when it finishes the processing and reevaluates
 884         * the next expiring timer.
 885         */
 886        seq = cpu_base->clock_was_set_seq;
 887        hrtimer_update_base(cpu_base);
 888
 889        /*
 890         * If the sequence did not change over the update then the
 891         * remote CPU already handled it.
 892         */
 893        if (seq == cpu_base->clock_was_set_seq)
 894                return false;
 895
 896        /*
 897         * If the remote CPU is currently handling an hrtimer interrupt, it
 898         * will reevaluate the first expiring timer of all clock bases
 899         * before reprogramming. Nothing to do here.
 900         */
 901        if (cpu_base->in_hrtirq)
 902                return false;
 903
 904        /*
 905         * Walk the affected clock bases and check whether the first expiring
 906         * timer in a clock base is moving ahead of the first expiring timer of
 907         * @cpu_base. If so, the IPI must be invoked because per CPU clock
 908         * event devices cannot be remotely reprogrammed.
 909         */
 910        active &= cpu_base->active_bases;
 911
 912        for_each_active_base(base, cpu_base, active) {
 913                struct timerqueue_node *next;
 914
 915                next = timerqueue_getnext(&base->active);
 916                expires = ktime_sub(next->expires, base->offset);
 917                if (expires < cpu_base->expires_next)
 918                        return true;
 919
 920                /* Extra check for softirq clock bases */
 921                if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
 922                        continue;
 923                if (cpu_base->softirq_activated)
 924                        continue;
 925                if (expires < cpu_base->softirq_expires_next)
 926                        return true;
 927        }
 928        return false;
 929}
 930
 931/*
 932 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
 933 * CLOCK_BOOTTIME (for late sleep time injection).
 934 *
 935 * This requires to update the offsets for these clocks
 936 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
 937 * also requires to eventually reprogram the per CPU clock event devices
 938 * when the change moves an affected timer ahead of the first expiring
 939 * timer on that CPU. Obviously remote per CPU clock event devices cannot
 940 * be reprogrammed. The other reason why an IPI has to be sent is when the
 941 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
 942 * in the tick, which obviously might be stopped, so this has to bring out
 943 * the remote CPU which might sleep in idle to get this sorted.
 944 */
 945void clock_was_set(unsigned int bases)
 946{
 947        struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
 948        cpumask_var_t mask;
 949        int cpu;
 950
 951        if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
 952                goto out_timerfd;
 953
 954        if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
 955                on_each_cpu(retrigger_next_event, NULL, 1);
 956                goto out_timerfd;
 957        }
 958
 959        /* Avoid interrupting CPUs if possible */
 960        cpus_read_lock();
 961        for_each_online_cpu(cpu) {
 962                unsigned long flags;
 963
 964                cpu_base = &per_cpu(hrtimer_bases, cpu);
 965                raw_spin_lock_irqsave(&cpu_base->lock, flags);
 966
 967                if (update_needs_ipi(cpu_base, bases))
 968                        cpumask_set_cpu(cpu, mask);
 969
 970                raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
 971        }
 972
 973        preempt_disable();
 974        smp_call_function_many(mask, retrigger_next_event, NULL, 1);
 975        preempt_enable();
 976        cpus_read_unlock();
 977        free_cpumask_var(mask);
 978
 979out_timerfd:
 980        timerfd_clock_was_set();
 981}
 982
 983static void clock_was_set_work(struct work_struct *work)
 984{
 985        clock_was_set(CLOCK_SET_WALL);
 986}
 987
 988static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 989
 990/*
 991 * Called from timekeeping code to reprogram the hrtimer interrupt device
 992 * on all cpus and to notify timerfd.
 993 */
 994void clock_was_set_delayed(void)
 995{
 996        schedule_work(&hrtimer_work);
 997}
 998
 999/*
1000 * Called during resume either directly from via timekeeping_resume()
1001 * or in the case of s2idle from tick_unfreeze() to ensure that the
1002 * hrtimers are up to date.
1003 */
1004void hrtimers_resume_local(void)
1005{
1006        lockdep_assert_irqs_disabled();
1007        /* Retrigger on the local CPU */
1008        retrigger_next_event(NULL);
1009}
1010
1011/*
1012 * Counterpart to lock_hrtimer_base above:
1013 */
1014static inline
1015void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1016{
1017        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1018}
1019
1020/**
1021 * hrtimer_forward - forward the timer expiry
1022 * @timer:      hrtimer to forward
1023 * @now:        forward past this time
1024 * @interval:   the interval to forward
1025 *
1026 * Forward the timer expiry so it will expire in the future.
1027 * Returns the number of overruns.
1028 *
1029 * Can be safely called from the callback function of @timer. If
1030 * called from other contexts @timer must neither be enqueued nor
1031 * running the callback and the caller needs to take care of
1032 * serialization.
1033 *
1034 * Note: This only updates the timer expiry value and does not requeue
1035 * the timer.
1036 */
1037u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1038{
1039        u64 orun = 1;
1040        ktime_t delta;
1041
1042        delta = ktime_sub(now, hrtimer_get_expires(timer));
1043
1044        if (delta < 0)
1045                return 0;
1046
1047        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1048                return 0;
1049
1050        if (interval < hrtimer_resolution)
1051                interval = hrtimer_resolution;
1052
1053        if (unlikely(delta >= interval)) {
1054                s64 incr = ktime_to_ns(interval);
1055
1056                orun = ktime_divns(delta, incr);
1057                hrtimer_add_expires_ns(timer, incr * orun);
1058                if (hrtimer_get_expires_tv64(timer) > now)
1059                        return orun;
1060                /*
1061                 * This (and the ktime_add() below) is the
1062                 * correction for exact:
1063                 */
1064                orun++;
1065        }
1066        hrtimer_add_expires(timer, interval);
1067
1068        return orun;
1069}
1070EXPORT_SYMBOL_GPL(hrtimer_forward);
1071
1072/*
1073 * enqueue_hrtimer - internal function to (re)start a timer
1074 *
1075 * The timer is inserted in expiry order. Insertion into the
1076 * red black tree is O(log(n)). Must hold the base lock.
1077 *
1078 * Returns 1 when the new timer is the leftmost timer in the tree.
1079 */
1080static int enqueue_hrtimer(struct hrtimer *timer,
1081                           struct hrtimer_clock_base *base,
1082                           enum hrtimer_mode mode)
1083{
1084        debug_activate(timer, mode);
1085
1086        base->cpu_base->active_bases |= 1 << base->index;
1087
1088        /* Pairs with the lockless read in hrtimer_is_queued() */
1089        WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1090
1091        return timerqueue_add(&base->active, &timer->node);
1092}
1093
1094/*
1095 * __remove_hrtimer - internal function to remove a timer
1096 *
1097 * Caller must hold the base lock.
1098 *
1099 * High resolution timer mode reprograms the clock event device when the
1100 * timer is the one which expires next. The caller can disable this by setting
1101 * reprogram to zero. This is useful, when the context does a reprogramming
1102 * anyway (e.g. timer interrupt)
1103 */
1104static void __remove_hrtimer(struct hrtimer *timer,
1105                             struct hrtimer_clock_base *base,
1106                             u8 newstate, int reprogram)
1107{
1108        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1109        u8 state = timer->state;
1110
1111        /* Pairs with the lockless read in hrtimer_is_queued() */
1112        WRITE_ONCE(timer->state, newstate);
1113        if (!(state & HRTIMER_STATE_ENQUEUED))
1114                return;
1115
1116        if (!timerqueue_del(&base->active, &timer->node))
1117                cpu_base->active_bases &= ~(1 << base->index);
1118
1119        /*
1120         * Note: If reprogram is false we do not update
1121         * cpu_base->next_timer. This happens when we remove the first
1122         * timer on a remote cpu. No harm as we never dereference
1123         * cpu_base->next_timer. So the worst thing what can happen is
1124         * an superfluous call to hrtimer_force_reprogram() on the
1125         * remote cpu later on if the same timer gets enqueued again.
1126         */
1127        if (reprogram && timer == cpu_base->next_timer)
1128                hrtimer_force_reprogram(cpu_base, 1);
1129}
1130
1131/*
1132 * remove hrtimer, called with base lock held
1133 */
1134static inline int
1135remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1136               bool restart, bool keep_local)
1137{
1138        u8 state = timer->state;
1139
1140        if (state & HRTIMER_STATE_ENQUEUED) {
1141                bool reprogram;
1142
1143                /*
1144                 * Remove the timer and force reprogramming when high
1145                 * resolution mode is active and the timer is on the current
1146                 * CPU. If we remove a timer on another CPU, reprogramming is
1147                 * skipped. The interrupt event on this CPU is fired and
1148                 * reprogramming happens in the interrupt handler. This is a
1149                 * rare case and less expensive than a smp call.
1150                 */
1151                debug_deactivate(timer);
1152                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1153
1154                /*
1155                 * If the timer is not restarted then reprogramming is
1156                 * required if the timer is local. If it is local and about
1157                 * to be restarted, avoid programming it twice (on removal
1158                 * and a moment later when it's requeued).
1159                 */
1160                if (!restart)
1161                        state = HRTIMER_STATE_INACTIVE;
1162                else
1163                        reprogram &= !keep_local;
1164
1165                __remove_hrtimer(timer, base, state, reprogram);
1166                return 1;
1167        }
1168        return 0;
1169}
1170
1171static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1172                                            const enum hrtimer_mode mode)
1173{
1174#ifdef CONFIG_TIME_LOW_RES
1175        /*
1176         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1177         * granular time values. For relative timers we add hrtimer_resolution
1178         * (i.e. one jiffie) to prevent short timeouts.
1179         */
1180        timer->is_rel = mode & HRTIMER_MODE_REL;
1181        if (timer->is_rel)
1182                tim = ktime_add_safe(tim, hrtimer_resolution);
1183#endif
1184        return tim;
1185}
1186
1187static void
1188hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1189{
1190        ktime_t expires;
1191
1192        /*
1193         * Find the next SOFT expiration.
1194         */
1195        expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1196
1197        /*
1198         * reprogramming needs to be triggered, even if the next soft
1199         * hrtimer expires at the same time than the next hard
1200         * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1201         */
1202        if (expires == KTIME_MAX)
1203                return;
1204
1205        /*
1206         * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1207         * cpu_base->*expires_next is only set by hrtimer_reprogram()
1208         */
1209        hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1210}
1211
1212static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1213                                    u64 delta_ns, const enum hrtimer_mode mode,
1214                                    struct hrtimer_clock_base *base)
1215{
1216        struct hrtimer_clock_base *new_base;
1217        bool force_local, first;
1218
1219        /*
1220         * If the timer is on the local cpu base and is the first expiring
1221         * timer then this might end up reprogramming the hardware twice
1222         * (on removal and on enqueue). To avoid that by prevent the
1223         * reprogram on removal, keep the timer local to the current CPU
1224         * and enforce reprogramming after it is queued no matter whether
1225         * it is the new first expiring timer again or not.
1226         */
1227        force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1228        force_local &= base->cpu_base->next_timer == timer;
1229
1230        /*
1231         * Remove an active timer from the queue. In case it is not queued
1232         * on the current CPU, make sure that remove_hrtimer() updates the
1233         * remote data correctly.
1234         *
1235         * If it's on the current CPU and the first expiring timer, then
1236         * skip reprogramming, keep the timer local and enforce
1237         * reprogramming later if it was the first expiring timer.  This
1238         * avoids programming the underlying clock event twice (once at
1239         * removal and once after enqueue).
1240         */
1241        remove_hrtimer(timer, base, true, force_local);
1242
1243        if (mode & HRTIMER_MODE_REL)
1244                tim = ktime_add_safe(tim, base->get_time());
1245
1246        tim = hrtimer_update_lowres(timer, tim, mode);
1247
1248        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1249
1250        /* Switch the timer base, if necessary: */
1251        if (!force_local) {
1252                new_base = switch_hrtimer_base(timer, base,
1253                                               mode & HRTIMER_MODE_PINNED);
1254        } else {
1255                new_base = base;
1256        }
1257
1258        first = enqueue_hrtimer(timer, new_base, mode);
1259        if (!force_local)
1260                return first;
1261
1262        /*
1263         * Timer was forced to stay on the current CPU to avoid
1264         * reprogramming on removal and enqueue. Force reprogram the
1265         * hardware by evaluating the new first expiring timer.
1266         */
1267        hrtimer_force_reprogram(new_base->cpu_base, 1);
1268        return 0;
1269}
1270
1271/**
1272 * hrtimer_start_range_ns - (re)start an hrtimer
1273 * @timer:      the timer to be added
1274 * @tim:        expiry time
1275 * @delta_ns:   "slack" range for the timer
1276 * @mode:       timer mode: absolute (HRTIMER_MODE_ABS) or
1277 *              relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1278 *              softirq based mode is considered for debug purpose only!
1279 */
1280void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1281                            u64 delta_ns, const enum hrtimer_mode mode)
1282{
1283        struct hrtimer_clock_base *base;
1284        unsigned long flags;
1285
1286        /*
1287         * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1288         * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1289         * expiry mode because unmarked timers are moved to softirq expiry.
1290         */
1291        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1292                WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1293        else
1294                WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1295
1296        base = lock_hrtimer_base(timer, &flags);
1297
1298        if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1299                hrtimer_reprogram(timer, true);
1300
1301        unlock_hrtimer_base(timer, &flags);
1302}
1303EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1304
1305/**
1306 * hrtimer_try_to_cancel - try to deactivate a timer
1307 * @timer:      hrtimer to stop
1308 *
1309 * Returns:
1310 *
1311 *  *  0 when the timer was not active
1312 *  *  1 when the timer was active
1313 *  * -1 when the timer is currently executing the callback function and
1314 *    cannot be stopped
1315 */
1316int hrtimer_try_to_cancel(struct hrtimer *timer)
1317{
1318        struct hrtimer_clock_base *base;
1319        unsigned long flags;
1320        int ret = -1;
1321
1322        /*
1323         * Check lockless first. If the timer is not active (neither
1324         * enqueued nor running the callback, nothing to do here.  The
1325         * base lock does not serialize against a concurrent enqueue,
1326         * so we can avoid taking it.
1327         */
1328        if (!hrtimer_active(timer))
1329                return 0;
1330
1331        base = lock_hrtimer_base(timer, &flags);
1332
1333        if (!hrtimer_callback_running(timer))
1334                ret = remove_hrtimer(timer, base, false, false);
1335
1336        unlock_hrtimer_base(timer, &flags);
1337
1338        return ret;
1339
1340}
1341EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1342
1343#ifdef CONFIG_PREEMPT_RT
1344static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1345{
1346        spin_lock_init(&base->softirq_expiry_lock);
1347}
1348
1349static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1350{
1351        spin_lock(&base->softirq_expiry_lock);
1352}
1353
1354static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1355{
1356        spin_unlock(&base->softirq_expiry_lock);
1357}
1358
1359/*
1360 * The counterpart to hrtimer_cancel_wait_running().
1361 *
1362 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1363 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1364 * allows the waiter to acquire the lock and make progress.
1365 */
1366static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1367                                      unsigned long flags)
1368{
1369        if (atomic_read(&cpu_base->timer_waiters)) {
1370                raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1371                spin_unlock(&cpu_base->softirq_expiry_lock);
1372                spin_lock(&cpu_base->softirq_expiry_lock);
1373                raw_spin_lock_irq(&cpu_base->lock);
1374        }
1375}
1376
1377/*
1378 * This function is called on PREEMPT_RT kernels when the fast path
1379 * deletion of a timer failed because the timer callback function was
1380 * running.
1381 *
1382 * This prevents priority inversion: if the soft irq thread is preempted
1383 * in the middle of a timer callback, then calling del_timer_sync() can
1384 * lead to two issues:
1385 *
1386 *  - If the caller is on a remote CPU then it has to spin wait for the timer
1387 *    handler to complete. This can result in unbound priority inversion.
1388 *
1389 *  - If the caller originates from the task which preempted the timer
1390 *    handler on the same CPU, then spin waiting for the timer handler to
1391 *    complete is never going to end.
1392 */
1393void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1394{
1395        /* Lockless read. Prevent the compiler from reloading it below */
1396        struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1397
1398        /*
1399         * Just relax if the timer expires in hard interrupt context or if
1400         * it is currently on the migration base.
1401         */
1402        if (!timer->is_soft || is_migration_base(base)) {
1403                cpu_relax();
1404                return;
1405        }
1406
1407        /*
1408         * Mark the base as contended and grab the expiry lock, which is
1409         * held by the softirq across the timer callback. Drop the lock
1410         * immediately so the softirq can expire the next timer. In theory
1411         * the timer could already be running again, but that's more than
1412         * unlikely and just causes another wait loop.
1413         */
1414        atomic_inc(&base->cpu_base->timer_waiters);
1415        spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1416        atomic_dec(&base->cpu_base->timer_waiters);
1417        spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1418}
1419#else
1420static inline void
1421hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1422static inline void
1423hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1424static inline void
1425hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1426static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1427                                             unsigned long flags) { }
1428#endif
1429
1430/**
1431 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1432 * @timer:      the timer to be cancelled
1433 *
1434 * Returns:
1435 *  0 when the timer was not active
1436 *  1 when the timer was active
1437 */
1438int hrtimer_cancel(struct hrtimer *timer)
1439{
1440        int ret;
1441
1442        do {
1443                ret = hrtimer_try_to_cancel(timer);
1444
1445                if (ret < 0)
1446                        hrtimer_cancel_wait_running(timer);
1447        } while (ret < 0);
1448        return ret;
1449}
1450EXPORT_SYMBOL_GPL(hrtimer_cancel);
1451
1452/**
1453 * __hrtimer_get_remaining - get remaining time for the timer
1454 * @timer:      the timer to read
1455 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1456 */
1457ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1458{
1459        unsigned long flags;
1460        ktime_t rem;
1461
1462        lock_hrtimer_base(timer, &flags);
1463        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1464                rem = hrtimer_expires_remaining_adjusted(timer);
1465        else
1466                rem = hrtimer_expires_remaining(timer);
1467        unlock_hrtimer_base(timer, &flags);
1468
1469        return rem;
1470}
1471EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1472
1473#ifdef CONFIG_NO_HZ_COMMON
1474/**
1475 * hrtimer_get_next_event - get the time until next expiry event
1476 *
1477 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1478 */
1479u64 hrtimer_get_next_event(void)
1480{
1481        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1482        u64 expires = KTIME_MAX;
1483        unsigned long flags;
1484
1485        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1486
1487        if (!__hrtimer_hres_active(cpu_base))
1488                expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1489
1490        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1491
1492        return expires;
1493}
1494
1495/**
1496 * hrtimer_next_event_without - time until next expiry event w/o one timer
1497 * @exclude:    timer to exclude
1498 *
1499 * Returns the next expiry time over all timers except for the @exclude one or
1500 * KTIME_MAX if none of them is pending.
1501 */
1502u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1503{
1504        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1505        u64 expires = KTIME_MAX;
1506        unsigned long flags;
1507
1508        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1509
1510        if (__hrtimer_hres_active(cpu_base)) {
1511                unsigned int active;
1512
1513                if (!cpu_base->softirq_activated) {
1514                        active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1515                        expires = __hrtimer_next_event_base(cpu_base, exclude,
1516                                                            active, KTIME_MAX);
1517                }
1518                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1519                expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1520                                                    expires);
1521        }
1522
1523        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1524
1525        return expires;
1526}
1527#endif
1528
1529static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1530{
1531        if (likely(clock_id < MAX_CLOCKS)) {
1532                int base = hrtimer_clock_to_base_table[clock_id];
1533
1534                if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1535                        return base;
1536        }
1537        WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1538        return HRTIMER_BASE_MONOTONIC;
1539}
1540
1541static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1542                           enum hrtimer_mode mode)
1543{
1544        bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1545        struct hrtimer_cpu_base *cpu_base;
1546        int base;
1547
1548        /*
1549         * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1550         * marked for hard interrupt expiry mode are moved into soft
1551         * interrupt context for latency reasons and because the callbacks
1552         * can invoke functions which might sleep on RT, e.g. spin_lock().
1553         */
1554        if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1555                softtimer = true;
1556
1557        memset(timer, 0, sizeof(struct hrtimer));
1558
1559        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1560
1561        /*
1562         * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1563         * clock modifications, so they needs to become CLOCK_MONOTONIC to
1564         * ensure POSIX compliance.
1565         */
1566        if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1567                clock_id = CLOCK_MONOTONIC;
1568
1569        base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1570        base += hrtimer_clockid_to_base(clock_id);
1571        timer->is_soft = softtimer;
1572        timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1573        timer->base = &cpu_base->clock_base[base];
1574        timerqueue_init(&timer->node);
1575}
1576
1577/**
1578 * hrtimer_init - initialize a timer to the given clock
1579 * @timer:      the timer to be initialized
1580 * @clock_id:   the clock to be used
1581 * @mode:       The modes which are relevant for initialization:
1582 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1583 *              HRTIMER_MODE_REL_SOFT
1584 *
1585 *              The PINNED variants of the above can be handed in,
1586 *              but the PINNED bit is ignored as pinning happens
1587 *              when the hrtimer is started
1588 */
1589void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1590                  enum hrtimer_mode mode)
1591{
1592        debug_init(timer, clock_id, mode);
1593        __hrtimer_init(timer, clock_id, mode);
1594}
1595EXPORT_SYMBOL_GPL(hrtimer_init);
1596
1597/*
1598 * A timer is active, when it is enqueued into the rbtree or the
1599 * callback function is running or it's in the state of being migrated
1600 * to another cpu.
1601 *
1602 * It is important for this function to not return a false negative.
1603 */
1604bool hrtimer_active(const struct hrtimer *timer)
1605{
1606        struct hrtimer_clock_base *base;
1607        unsigned int seq;
1608
1609        do {
1610                base = READ_ONCE(timer->base);
1611                seq = raw_read_seqcount_begin(&base->seq);
1612
1613                if (timer->state != HRTIMER_STATE_INACTIVE ||
1614                    base->running == timer)
1615                        return true;
1616
1617        } while (read_seqcount_retry(&base->seq, seq) ||
1618                 base != READ_ONCE(timer->base));
1619
1620        return false;
1621}
1622EXPORT_SYMBOL_GPL(hrtimer_active);
1623
1624/*
1625 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1626 * distinct sections:
1627 *
1628 *  - queued:   the timer is queued
1629 *  - callback: the timer is being ran
1630 *  - post:     the timer is inactive or (re)queued
1631 *
1632 * On the read side we ensure we observe timer->state and cpu_base->running
1633 * from the same section, if anything changed while we looked at it, we retry.
1634 * This includes timer->base changing because sequence numbers alone are
1635 * insufficient for that.
1636 *
1637 * The sequence numbers are required because otherwise we could still observe
1638 * a false negative if the read side got smeared over multiple consecutive
1639 * __run_hrtimer() invocations.
1640 */
1641
1642static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1643                          struct hrtimer_clock_base *base,
1644                          struct hrtimer *timer, ktime_t *now,
1645                          unsigned long flags) __must_hold(&cpu_base->lock)
1646{
1647        enum hrtimer_restart (*fn)(struct hrtimer *);
1648        bool expires_in_hardirq;
1649        int restart;
1650
1651        lockdep_assert_held(&cpu_base->lock);
1652
1653        debug_deactivate(timer);
1654        base->running = timer;
1655
1656        /*
1657         * Separate the ->running assignment from the ->state assignment.
1658         *
1659         * As with a regular write barrier, this ensures the read side in
1660         * hrtimer_active() cannot observe base->running == NULL &&
1661         * timer->state == INACTIVE.
1662         */
1663        raw_write_seqcount_barrier(&base->seq);
1664
1665        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1666        fn = timer->function;
1667
1668        /*
1669         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1670         * timer is restarted with a period then it becomes an absolute
1671         * timer. If its not restarted it does not matter.
1672         */
1673        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1674                timer->is_rel = false;
1675
1676        /*
1677         * The timer is marked as running in the CPU base, so it is
1678         * protected against migration to a different CPU even if the lock
1679         * is dropped.
1680         */
1681        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1682        trace_hrtimer_expire_entry(timer, now);
1683        expires_in_hardirq = lockdep_hrtimer_enter(timer);
1684
1685        restart = fn(timer);
1686
1687        lockdep_hrtimer_exit(expires_in_hardirq);
1688        trace_hrtimer_expire_exit(timer);
1689        raw_spin_lock_irq(&cpu_base->lock);
1690
1691        /*
1692         * Note: We clear the running state after enqueue_hrtimer and
1693         * we do not reprogram the event hardware. Happens either in
1694         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1695         *
1696         * Note: Because we dropped the cpu_base->lock above,
1697         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1698         * for us already.
1699         */
1700        if (restart != HRTIMER_NORESTART &&
1701            !(timer->state & HRTIMER_STATE_ENQUEUED))
1702                enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1703
1704        /*
1705         * Separate the ->running assignment from the ->state assignment.
1706         *
1707         * As with a regular write barrier, this ensures the read side in
1708         * hrtimer_active() cannot observe base->running.timer == NULL &&
1709         * timer->state == INACTIVE.
1710         */
1711        raw_write_seqcount_barrier(&base->seq);
1712
1713        WARN_ON_ONCE(base->running != timer);
1714        base->running = NULL;
1715}
1716
1717static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1718                                 unsigned long flags, unsigned int active_mask)
1719{
1720        struct hrtimer_clock_base *base;
1721        unsigned int active = cpu_base->active_bases & active_mask;
1722
1723        for_each_active_base(base, cpu_base, active) {
1724                struct timerqueue_node *node;
1725                ktime_t basenow;
1726
1727                basenow = ktime_add(now, base->offset);
1728
1729                while ((node = timerqueue_getnext(&base->active))) {
1730                        struct hrtimer *timer;
1731
1732                        timer = container_of(node, struct hrtimer, node);
1733
1734                        /*
1735                         * The immediate goal for using the softexpires is
1736                         * minimizing wakeups, not running timers at the
1737                         * earliest interrupt after their soft expiration.
1738                         * This allows us to avoid using a Priority Search
1739                         * Tree, which can answer a stabbing query for
1740                         * overlapping intervals and instead use the simple
1741                         * BST we already have.
1742                         * We don't add extra wakeups by delaying timers that
1743                         * are right-of a not yet expired timer, because that
1744                         * timer will have to trigger a wakeup anyway.
1745                         */
1746                        if (basenow < hrtimer_get_softexpires_tv64(timer))
1747                                break;
1748
1749                        __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1750                        if (active_mask == HRTIMER_ACTIVE_SOFT)
1751                                hrtimer_sync_wait_running(cpu_base, flags);
1752                }
1753        }
1754}
1755
1756static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1757{
1758        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1759        unsigned long flags;
1760        ktime_t now;
1761
1762        hrtimer_cpu_base_lock_expiry(cpu_base);
1763        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1764
1765        now = hrtimer_update_base(cpu_base);
1766        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1767
1768        cpu_base->softirq_activated = 0;
1769        hrtimer_update_softirq_timer(cpu_base, true);
1770
1771        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1772        hrtimer_cpu_base_unlock_expiry(cpu_base);
1773}
1774
1775#ifdef CONFIG_HIGH_RES_TIMERS
1776
1777/*
1778 * High resolution timer interrupt
1779 * Called with interrupts disabled
1780 */
1781void hrtimer_interrupt(struct clock_event_device *dev)
1782{
1783        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1784        ktime_t expires_next, now, entry_time, delta;
1785        unsigned long flags;
1786        int retries = 0;
1787
1788        BUG_ON(!cpu_base->hres_active);
1789        cpu_base->nr_events++;
1790        dev->next_event = KTIME_MAX;
1791
1792        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1793        entry_time = now = hrtimer_update_base(cpu_base);
1794retry:
1795        cpu_base->in_hrtirq = 1;
1796        /*
1797         * We set expires_next to KTIME_MAX here with cpu_base->lock
1798         * held to prevent that a timer is enqueued in our queue via
1799         * the migration code. This does not affect enqueueing of
1800         * timers which run their callback and need to be requeued on
1801         * this CPU.
1802         */
1803        cpu_base->expires_next = KTIME_MAX;
1804
1805        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1806                cpu_base->softirq_expires_next = KTIME_MAX;
1807                cpu_base->softirq_activated = 1;
1808                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1809        }
1810
1811        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1812
1813        /* Reevaluate the clock bases for the [soft] next expiry */
1814        expires_next = hrtimer_update_next_event(cpu_base);
1815        /*
1816         * Store the new expiry value so the migration code can verify
1817         * against it.
1818         */
1819        cpu_base->expires_next = expires_next;
1820        cpu_base->in_hrtirq = 0;
1821        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1822
1823        /* Reprogramming necessary ? */
1824        if (!tick_program_event(expires_next, 0)) {
1825                cpu_base->hang_detected = 0;
1826                return;
1827        }
1828
1829        /*
1830         * The next timer was already expired due to:
1831         * - tracing
1832         * - long lasting callbacks
1833         * - being scheduled away when running in a VM
1834         *
1835         * We need to prevent that we loop forever in the hrtimer
1836         * interrupt routine. We give it 3 attempts to avoid
1837         * overreacting on some spurious event.
1838         *
1839         * Acquire base lock for updating the offsets and retrieving
1840         * the current time.
1841         */
1842        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1843        now = hrtimer_update_base(cpu_base);
1844        cpu_base->nr_retries++;
1845        if (++retries < 3)
1846                goto retry;
1847        /*
1848         * Give the system a chance to do something else than looping
1849         * here. We stored the entry time, so we know exactly how long
1850         * we spent here. We schedule the next event this amount of
1851         * time away.
1852         */
1853        cpu_base->nr_hangs++;
1854        cpu_base->hang_detected = 1;
1855        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1856
1857        delta = ktime_sub(now, entry_time);
1858        if ((unsigned int)delta > cpu_base->max_hang_time)
1859                cpu_base->max_hang_time = (unsigned int) delta;
1860        /*
1861         * Limit it to a sensible value as we enforce a longer
1862         * delay. Give the CPU at least 100ms to catch up.
1863         */
1864        if (delta > 100 * NSEC_PER_MSEC)
1865                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1866        else
1867                expires_next = ktime_add(now, delta);
1868        tick_program_event(expires_next, 1);
1869        pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1870}
1871
1872/* called with interrupts disabled */
1873static inline void __hrtimer_peek_ahead_timers(void)
1874{
1875        struct tick_device *td;
1876
1877        if (!hrtimer_hres_active())
1878                return;
1879
1880        td = this_cpu_ptr(&tick_cpu_device);
1881        if (td && td->evtdev)
1882                hrtimer_interrupt(td->evtdev);
1883}
1884
1885#else /* CONFIG_HIGH_RES_TIMERS */
1886
1887static inline void __hrtimer_peek_ahead_timers(void) { }
1888
1889#endif  /* !CONFIG_HIGH_RES_TIMERS */
1890
1891/*
1892 * Called from run_local_timers in hardirq context every jiffy
1893 */
1894void hrtimer_run_queues(void)
1895{
1896        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1897        unsigned long flags;
1898        ktime_t now;
1899
1900        if (__hrtimer_hres_active(cpu_base))
1901                return;
1902
1903        /*
1904         * This _is_ ugly: We have to check periodically, whether we
1905         * can switch to highres and / or nohz mode. The clocksource
1906         * switch happens with xtime_lock held. Notification from
1907         * there only sets the check bit in the tick_oneshot code,
1908         * otherwise we might deadlock vs. xtime_lock.
1909         */
1910        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1911                hrtimer_switch_to_hres();
1912                return;
1913        }
1914
1915        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1916        now = hrtimer_update_base(cpu_base);
1917
1918        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1919                cpu_base->softirq_expires_next = KTIME_MAX;
1920                cpu_base->softirq_activated = 1;
1921                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1922        }
1923
1924        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1925        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1926}
1927
1928/*
1929 * Sleep related functions:
1930 */
1931static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1932{
1933        struct hrtimer_sleeper *t =
1934                container_of(timer, struct hrtimer_sleeper, timer);
1935        struct task_struct *task = t->task;
1936
1937        t->task = NULL;
1938        if (task)
1939                wake_up_process(task);
1940
1941        return HRTIMER_NORESTART;
1942}
1943
1944/**
1945 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1946 * @sl:         sleeper to be started
1947 * @mode:       timer mode abs/rel
1948 *
1949 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1950 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1951 */
1952void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1953                                   enum hrtimer_mode mode)
1954{
1955        /*
1956         * Make the enqueue delivery mode check work on RT. If the sleeper
1957         * was initialized for hard interrupt delivery, force the mode bit.
1958         * This is a special case for hrtimer_sleepers because
1959         * hrtimer_init_sleeper() determines the delivery mode on RT so the
1960         * fiddling with this decision is avoided at the call sites.
1961         */
1962        if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1963                mode |= HRTIMER_MODE_HARD;
1964
1965        hrtimer_start_expires(&sl->timer, mode);
1966}
1967EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1968
1969static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1970                                   clockid_t clock_id, enum hrtimer_mode mode)
1971{
1972        /*
1973         * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1974         * marked for hard interrupt expiry mode are moved into soft
1975         * interrupt context either for latency reasons or because the
1976         * hrtimer callback takes regular spinlocks or invokes other
1977         * functions which are not suitable for hard interrupt context on
1978         * PREEMPT_RT.
1979         *
1980         * The hrtimer_sleeper callback is RT compatible in hard interrupt
1981         * context, but there is a latency concern: Untrusted userspace can
1982         * spawn many threads which arm timers for the same expiry time on
1983         * the same CPU. That causes a latency spike due to the wakeup of
1984         * a gazillion threads.
1985         *
1986         * OTOH, privileged real-time user space applications rely on the
1987         * low latency of hard interrupt wakeups. If the current task is in
1988         * a real-time scheduling class, mark the mode for hard interrupt
1989         * expiry.
1990         */
1991        if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1992                if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1993                        mode |= HRTIMER_MODE_HARD;
1994        }
1995
1996        __hrtimer_init(&sl->timer, clock_id, mode);
1997        sl->timer.function = hrtimer_wakeup;
1998        sl->task = current;
1999}
2000
2001/**
2002 * hrtimer_init_sleeper - initialize sleeper to the given clock
2003 * @sl:         sleeper to be initialized
2004 * @clock_id:   the clock to be used
2005 * @mode:       timer mode abs/rel
2006 */
2007void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
2008                          enum hrtimer_mode mode)
2009{
2010        debug_init(&sl->timer, clock_id, mode);
2011        __hrtimer_init_sleeper(sl, clock_id, mode);
2012
2013}
2014EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2015
2016int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2017{
2018        switch(restart->nanosleep.type) {
2019#ifdef CONFIG_COMPAT_32BIT_TIME
2020        case TT_COMPAT:
2021                if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2022                        return -EFAULT;
2023                break;
2024#endif
2025        case TT_NATIVE:
2026                if (put_timespec64(ts, restart->nanosleep.rmtp))
2027                        return -EFAULT;
2028                break;
2029        default:
2030                BUG();
2031        }
2032        return -ERESTART_RESTARTBLOCK;
2033}
2034
2035static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2036{
2037        struct restart_block *restart;
2038
2039        do {
2040                set_current_state(TASK_INTERRUPTIBLE);
2041                hrtimer_sleeper_start_expires(t, mode);
2042
2043                if (likely(t->task))
2044                        freezable_schedule();
2045
2046                hrtimer_cancel(&t->timer);
2047                mode = HRTIMER_MODE_ABS;
2048
2049        } while (t->task && !signal_pending(current));
2050
2051        __set_current_state(TASK_RUNNING);
2052
2053        if (!t->task)
2054                return 0;
2055
2056        restart = &current->restart_block;
2057        if (restart->nanosleep.type != TT_NONE) {
2058                ktime_t rem = hrtimer_expires_remaining(&t->timer);
2059                struct timespec64 rmt;
2060
2061                if (rem <= 0)
2062                        return 0;
2063                rmt = ktime_to_timespec64(rem);
2064
2065                return nanosleep_copyout(restart, &rmt);
2066        }
2067        return -ERESTART_RESTARTBLOCK;
2068}
2069
2070static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2071{
2072        struct hrtimer_sleeper t;
2073        int ret;
2074
2075        hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2076                                      HRTIMER_MODE_ABS);
2077        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2078        ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2079        destroy_hrtimer_on_stack(&t.timer);
2080        return ret;
2081}
2082
2083long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2084                       const clockid_t clockid)
2085{
2086        struct restart_block *restart;
2087        struct hrtimer_sleeper t;
2088        int ret = 0;
2089        u64 slack;
2090
2091        slack = current->timer_slack_ns;
2092        if (dl_task(current) || rt_task(current))
2093                slack = 0;
2094
2095        hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2096        hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2097        ret = do_nanosleep(&t, mode);
2098        if (ret != -ERESTART_RESTARTBLOCK)
2099                goto out;
2100
2101        /* Absolute timers do not update the rmtp value and restart: */
2102        if (mode == HRTIMER_MODE_ABS) {
2103                ret = -ERESTARTNOHAND;
2104                goto out;
2105        }
2106
2107        restart = &current->restart_block;
2108        restart->nanosleep.clockid = t.timer.base->clockid;
2109        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2110        set_restart_fn(restart, hrtimer_nanosleep_restart);
2111out:
2112        destroy_hrtimer_on_stack(&t.timer);
2113        return ret;
2114}
2115
2116#ifdef CONFIG_64BIT
2117
2118SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2119                struct __kernel_timespec __user *, rmtp)
2120{
2121        struct timespec64 tu;
2122
2123        if (get_timespec64(&tu, rqtp))
2124                return -EFAULT;
2125
2126        if (!timespec64_valid(&tu))
2127                return -EINVAL;
2128
2129        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2130        current->restart_block.nanosleep.rmtp = rmtp;
2131        return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2132                                 CLOCK_MONOTONIC);
2133}
2134
2135#endif
2136
2137#ifdef CONFIG_COMPAT_32BIT_TIME
2138
2139SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2140                       struct old_timespec32 __user *, rmtp)
2141{
2142        struct timespec64 tu;
2143
2144        if (get_old_timespec32(&tu, rqtp))
2145                return -EFAULT;
2146
2147        if (!timespec64_valid(&tu))
2148                return -EINVAL;
2149
2150        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2151        current->restart_block.nanosleep.compat_rmtp = rmtp;
2152        return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2153                                 CLOCK_MONOTONIC);
2154}
2155#endif
2156
2157/*
2158 * Functions related to boot-time initialization:
2159 */
2160int hrtimers_prepare_cpu(unsigned int cpu)
2161{
2162        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2163        int i;
2164
2165        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2166                struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2167
2168                clock_b->cpu_base = cpu_base;
2169                seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2170                timerqueue_init_head(&clock_b->active);
2171        }
2172
2173        cpu_base->cpu = cpu;
2174        cpu_base->active_bases = 0;
2175        cpu_base->hres_active = 0;
2176        cpu_base->hang_detected = 0;
2177        cpu_base->next_timer = NULL;
2178        cpu_base->softirq_next_timer = NULL;
2179        cpu_base->expires_next = KTIME_MAX;
2180        cpu_base->softirq_expires_next = KTIME_MAX;
2181        hrtimer_cpu_base_init_expiry_lock(cpu_base);
2182        return 0;
2183}
2184
2185#ifdef CONFIG_HOTPLUG_CPU
2186
2187static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2188                                struct hrtimer_clock_base *new_base)
2189{
2190        struct hrtimer *timer;
2191        struct timerqueue_node *node;
2192
2193        while ((node = timerqueue_getnext(&old_base->active))) {
2194                timer = container_of(node, struct hrtimer, node);
2195                BUG_ON(hrtimer_callback_running(timer));
2196                debug_deactivate(timer);
2197
2198                /*
2199                 * Mark it as ENQUEUED not INACTIVE otherwise the
2200                 * timer could be seen as !active and just vanish away
2201                 * under us on another CPU
2202                 */
2203                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2204                timer->base = new_base;
2205                /*
2206                 * Enqueue the timers on the new cpu. This does not
2207                 * reprogram the event device in case the timer
2208                 * expires before the earliest on this CPU, but we run
2209                 * hrtimer_interrupt after we migrated everything to
2210                 * sort out already expired timers and reprogram the
2211                 * event device.
2212                 */
2213                enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2214        }
2215}
2216
2217int hrtimers_dead_cpu(unsigned int scpu)
2218{
2219        struct hrtimer_cpu_base *old_base, *new_base;
2220        int i;
2221
2222        BUG_ON(cpu_online(scpu));
2223        tick_cancel_sched_timer(scpu);
2224
2225        /*
2226         * this BH disable ensures that raise_softirq_irqoff() does
2227         * not wakeup ksoftirqd (and acquire the pi-lock) while
2228         * holding the cpu_base lock
2229         */
2230        local_bh_disable();
2231        local_irq_disable();
2232        old_base = &per_cpu(hrtimer_bases, scpu);
2233        new_base = this_cpu_ptr(&hrtimer_bases);
2234        /*
2235         * The caller is globally serialized and nobody else
2236         * takes two locks at once, deadlock is not possible.
2237         */
2238        raw_spin_lock(&new_base->lock);
2239        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2240
2241        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2242                migrate_hrtimer_list(&old_base->clock_base[i],
2243                                     &new_base->clock_base[i]);
2244        }
2245
2246        /*
2247         * The migration might have changed the first expiring softirq
2248         * timer on this CPU. Update it.
2249         */
2250        hrtimer_update_softirq_timer(new_base, false);
2251
2252        raw_spin_unlock(&old_base->lock);
2253        raw_spin_unlock(&new_base->lock);
2254
2255        /* Check, if we got expired work to do */
2256        __hrtimer_peek_ahead_timers();
2257        local_irq_enable();
2258        local_bh_enable();
2259        return 0;
2260}
2261
2262#endif /* CONFIG_HOTPLUG_CPU */
2263
2264void __init hrtimers_init(void)
2265{
2266        hrtimers_prepare_cpu(smp_processor_id());
2267        open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2268}
2269
2270/**
2271 * schedule_hrtimeout_range_clock - sleep until timeout
2272 * @expires:    timeout value (ktime_t)
2273 * @delta:      slack in expires timeout (ktime_t)
2274 * @mode:       timer mode
2275 * @clock_id:   timer clock to be used
2276 */
2277int __sched
2278schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2279                               const enum hrtimer_mode mode, clockid_t clock_id)
2280{
2281        struct hrtimer_sleeper t;
2282
2283        /*
2284         * Optimize when a zero timeout value is given. It does not
2285         * matter whether this is an absolute or a relative time.
2286         */
2287        if (expires && *expires == 0) {
2288                __set_current_state(TASK_RUNNING);
2289                return 0;
2290        }
2291
2292        /*
2293         * A NULL parameter means "infinite"
2294         */
2295        if (!expires) {
2296                schedule();
2297                return -EINTR;
2298        }
2299
2300        hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2301        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2302        hrtimer_sleeper_start_expires(&t, mode);
2303
2304        if (likely(t.task))
2305                schedule();
2306
2307        hrtimer_cancel(&t.timer);
2308        destroy_hrtimer_on_stack(&t.timer);
2309
2310        __set_current_state(TASK_RUNNING);
2311
2312        return !t.task ? 0 : -EINTR;
2313}
2314
2315/**
2316 * schedule_hrtimeout_range - sleep until timeout
2317 * @expires:    timeout value (ktime_t)
2318 * @delta:      slack in expires timeout (ktime_t)
2319 * @mode:       timer mode
2320 *
2321 * Make the current task sleep until the given expiry time has
2322 * elapsed. The routine will return immediately unless
2323 * the current task state has been set (see set_current_state()).
2324 *
2325 * The @delta argument gives the kernel the freedom to schedule the
2326 * actual wakeup to a time that is both power and performance friendly.
2327 * The kernel give the normal best effort behavior for "@expires+@delta",
2328 * but may decide to fire the timer earlier, but no earlier than @expires.
2329 *
2330 * You can set the task state as follows -
2331 *
2332 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2333 * pass before the routine returns unless the current task is explicitly
2334 * woken up, (e.g. by wake_up_process()).
2335 *
2336 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2337 * delivered to the current task or the current task is explicitly woken
2338 * up.
2339 *
2340 * The current task state is guaranteed to be TASK_RUNNING when this
2341 * routine returns.
2342 *
2343 * Returns 0 when the timer has expired. If the task was woken before the
2344 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2345 * by an explicit wakeup, it returns -EINTR.
2346 */
2347int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2348                                     const enum hrtimer_mode mode)
2349{
2350        return schedule_hrtimeout_range_clock(expires, delta, mode,
2351                                              CLOCK_MONOTONIC);
2352}
2353EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2354
2355/**
2356 * schedule_hrtimeout - sleep until timeout
2357 * @expires:    timeout value (ktime_t)
2358 * @mode:       timer mode
2359 *
2360 * Make the current task sleep until the given expiry time has
2361 * elapsed. The routine will return immediately unless
2362 * the current task state has been set (see set_current_state()).
2363 *
2364 * You can set the task state as follows -
2365 *
2366 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2367 * pass before the routine returns unless the current task is explicitly
2368 * woken up, (e.g. by wake_up_process()).
2369 *
2370 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2371 * delivered to the current task or the current task is explicitly woken
2372 * up.
2373 *
2374 * The current task state is guaranteed to be TASK_RUNNING when this
2375 * routine returns.
2376 *
2377 * Returns 0 when the timer has expired. If the task was woken before the
2378 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2379 * by an explicit wakeup, it returns -EINTR.
2380 */
2381int __sched schedule_hrtimeout(ktime_t *expires,
2382                               const enum hrtimer_mode mode)
2383{
2384        return schedule_hrtimeout_range(expires, 0, mode);
2385}
2386EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2387