linux/kernel/workqueue.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002           Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010           SUSE Linux Products GmbH
  16 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/nmi.h>
  53#include <linux/kvm_para.h>
  54
  55#include "workqueue_internal.h"
  56
  57enum {
  58        /*
  59         * worker_pool flags
  60         *
  61         * A bound pool is either associated or disassociated with its CPU.
  62         * While associated (!DISASSOCIATED), all workers are bound to the
  63         * CPU and none has %WORKER_UNBOUND set and concurrency management
  64         * is in effect.
  65         *
  66         * While DISASSOCIATED, the cpu may be offline and all workers have
  67         * %WORKER_UNBOUND set and concurrency management disabled, and may
  68         * be executing on any CPU.  The pool behaves as an unbound one.
  69         *
  70         * Note that DISASSOCIATED should be flipped only while holding
  71         * wq_pool_attach_mutex to avoid changing binding state while
  72         * worker_attach_to_pool() is in progress.
  73         */
  74        POOL_MANAGER_ACTIVE     = 1 << 0,       /* being managed */
  75        POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
  76
  77        /* worker flags */
  78        WORKER_DIE              = 1 << 1,       /* die die die */
  79        WORKER_IDLE             = 1 << 2,       /* is idle */
  80        WORKER_PREP             = 1 << 3,       /* preparing to run works */
  81        WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
  82        WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
  83        WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
  84
  85        WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
  86                                  WORKER_UNBOUND | WORKER_REBOUND,
  87
  88        NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
  89
  90        UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
  91        BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
  92
  93        MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
  94        IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
  95
  96        MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  97                                                /* call for help after 10ms
  98                                                   (min two ticks) */
  99        MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
 100        CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
 101
 102        /*
 103         * Rescue workers are used only on emergencies and shared by
 104         * all cpus.  Give MIN_NICE.
 105         */
 106        RESCUER_NICE_LEVEL      = MIN_NICE,
 107        HIGHPRI_NICE_LEVEL      = MIN_NICE,
 108
 109        WQ_NAME_LEN             = 24,
 110};
 111
 112/*
 113 * Structure fields follow one of the following exclusion rules.
 114 *
 115 * I: Modifiable by initialization/destruction paths and read-only for
 116 *    everyone else.
 117 *
 118 * P: Preemption protected.  Disabling preemption is enough and should
 119 *    only be modified and accessed from the local cpu.
 120 *
 121 * L: pool->lock protected.  Access with pool->lock held.
 122 *
 123 * X: During normal operation, modification requires pool->lock and should
 124 *    be done only from local cpu.  Either disabling preemption on local
 125 *    cpu or grabbing pool->lock is enough for read access.  If
 126 *    POOL_DISASSOCIATED is set, it's identical to L.
 127 *
 128 * A: wq_pool_attach_mutex protected.
 129 *
 130 * PL: wq_pool_mutex protected.
 131 *
 132 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 133 *
 134 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 135 *
 136 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 137 *      RCU for reads.
 138 *
 139 * WQ: wq->mutex protected.
 140 *
 141 * WR: wq->mutex protected for writes.  RCU protected for reads.
 142 *
 143 * MD: wq_mayday_lock protected.
 144 */
 145
 146/* struct worker is defined in workqueue_internal.h */
 147
 148struct worker_pool {
 149        raw_spinlock_t          lock;           /* the pool lock */
 150        int                     cpu;            /* I: the associated cpu */
 151        int                     node;           /* I: the associated node ID */
 152        int                     id;             /* I: pool ID */
 153        unsigned int            flags;          /* X: flags */
 154
 155        unsigned long           watchdog_ts;    /* L: watchdog timestamp */
 156
 157        /* The current concurrency level. */
 158        atomic_t                nr_running;
 159
 160        struct list_head        worklist;       /* L: list of pending works */
 161
 162        int                     nr_workers;     /* L: total number of workers */
 163        int                     nr_idle;        /* L: currently idle workers */
 164
 165        struct list_head        idle_list;      /* X: list of idle workers */
 166        struct timer_list       idle_timer;     /* L: worker idle timeout */
 167        struct timer_list       mayday_timer;   /* L: SOS timer for workers */
 168
 169        /* a workers is either on busy_hash or idle_list, or the manager */
 170        DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 171                                                /* L: hash of busy workers */
 172
 173        struct worker           *manager;       /* L: purely informational */
 174        struct list_head        workers;        /* A: attached workers */
 175        struct completion       *detach_completion; /* all workers detached */
 176
 177        struct ida              worker_ida;     /* worker IDs for task name */
 178
 179        struct workqueue_attrs  *attrs;         /* I: worker attributes */
 180        struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
 181        int                     refcnt;         /* PL: refcnt for unbound pools */
 182
 183        /*
 184         * Destruction of pool is RCU protected to allow dereferences
 185         * from get_work_pool().
 186         */
 187        struct rcu_head         rcu;
 188};
 189
 190/*
 191 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 192 * of work_struct->data are used for flags and the remaining high bits
 193 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 194 * number of flag bits.
 195 */
 196struct pool_workqueue {
 197        struct worker_pool      *pool;          /* I: the associated pool */
 198        struct workqueue_struct *wq;            /* I: the owning workqueue */
 199        int                     work_color;     /* L: current color */
 200        int                     flush_color;    /* L: flushing color */
 201        int                     refcnt;         /* L: reference count */
 202        int                     nr_in_flight[WORK_NR_COLORS];
 203                                                /* L: nr of in_flight works */
 204
 205        /*
 206         * nr_active management and WORK_STRUCT_INACTIVE:
 207         *
 208         * When pwq->nr_active >= max_active, new work item is queued to
 209         * pwq->inactive_works instead of pool->worklist and marked with
 210         * WORK_STRUCT_INACTIVE.
 211         *
 212         * All work items marked with WORK_STRUCT_INACTIVE do not participate
 213         * in pwq->nr_active and all work items in pwq->inactive_works are
 214         * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
 215         * work items are in pwq->inactive_works.  Some of them are ready to
 216         * run in pool->worklist or worker->scheduled.  Those work itmes are
 217         * only struct wq_barrier which is used for flush_work() and should
 218         * not participate in pwq->nr_active.  For non-barrier work item, it
 219         * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 220         */
 221        int                     nr_active;      /* L: nr of active works */
 222        int                     max_active;     /* L: max active works */
 223        struct list_head        inactive_works; /* L: inactive works */
 224        struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
 225        struct list_head        mayday_node;    /* MD: node on wq->maydays */
 226
 227        /*
 228         * Release of unbound pwq is punted to system_wq.  See put_pwq()
 229         * and pwq_unbound_release_workfn() for details.  pool_workqueue
 230         * itself is also RCU protected so that the first pwq can be
 231         * determined without grabbing wq->mutex.
 232         */
 233        struct work_struct      unbound_release_work;
 234        struct rcu_head         rcu;
 235} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 236
 237/*
 238 * Structure used to wait for workqueue flush.
 239 */
 240struct wq_flusher {
 241        struct list_head        list;           /* WQ: list of flushers */
 242        int                     flush_color;    /* WQ: flush color waiting for */
 243        struct completion       done;           /* flush completion */
 244};
 245
 246struct wq_device;
 247
 248/*
 249 * The externally visible workqueue.  It relays the issued work items to
 250 * the appropriate worker_pool through its pool_workqueues.
 251 */
 252struct workqueue_struct {
 253        struct list_head        pwqs;           /* WR: all pwqs of this wq */
 254        struct list_head        list;           /* PR: list of all workqueues */
 255
 256        struct mutex            mutex;          /* protects this wq */
 257        int                     work_color;     /* WQ: current work color */
 258        int                     flush_color;    /* WQ: current flush color */
 259        atomic_t                nr_pwqs_to_flush; /* flush in progress */
 260        struct wq_flusher       *first_flusher; /* WQ: first flusher */
 261        struct list_head        flusher_queue;  /* WQ: flush waiters */
 262        struct list_head        flusher_overflow; /* WQ: flush overflow list */
 263
 264        struct list_head        maydays;        /* MD: pwqs requesting rescue */
 265        struct worker           *rescuer;       /* MD: rescue worker */
 266
 267        int                     nr_drainers;    /* WQ: drain in progress */
 268        int                     saved_max_active; /* WQ: saved pwq max_active */
 269
 270        struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
 271        struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
 272
 273#ifdef CONFIG_SYSFS
 274        struct wq_device        *wq_dev;        /* I: for sysfs interface */
 275#endif
 276#ifdef CONFIG_LOCKDEP
 277        char                    *lock_name;
 278        struct lock_class_key   key;
 279        struct lockdep_map      lockdep_map;
 280#endif
 281        char                    name[WQ_NAME_LEN]; /* I: workqueue name */
 282
 283        /*
 284         * Destruction of workqueue_struct is RCU protected to allow walking
 285         * the workqueues list without grabbing wq_pool_mutex.
 286         * This is used to dump all workqueues from sysrq.
 287         */
 288        struct rcu_head         rcu;
 289
 290        /* hot fields used during command issue, aligned to cacheline */
 291        unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
 292        struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 293        struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 294};
 295
 296static struct kmem_cache *pwq_cache;
 297
 298static cpumask_var_t *wq_numa_possible_cpumask;
 299                                        /* possible CPUs of each node */
 300
 301static bool wq_disable_numa;
 302module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 303
 304/* see the comment above the definition of WQ_POWER_EFFICIENT */
 305static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 306module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 307
 308static bool wq_online;                  /* can kworkers be created yet? */
 309
 310static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
 311
 312/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 313static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 314
 315static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
 316static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 317static DEFINE_RAW_SPINLOCK(wq_mayday_lock);     /* protects wq->maydays list */
 318/* wait for manager to go away */
 319static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 320
 321static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
 322static bool workqueue_freezing;         /* PL: have wqs started freezing? */
 323
 324/* PL: allowable cpus for unbound wqs and work items */
 325static cpumask_var_t wq_unbound_cpumask;
 326
 327/* CPU where unbound work was last round robin scheduled from this CPU */
 328static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 329
 330/*
 331 * Local execution of unbound work items is no longer guaranteed.  The
 332 * following always forces round-robin CPU selection on unbound work items
 333 * to uncover usages which depend on it.
 334 */
 335#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 336static bool wq_debug_force_rr_cpu = true;
 337#else
 338static bool wq_debug_force_rr_cpu = false;
 339#endif
 340module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 341
 342/* the per-cpu worker pools */
 343static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 344
 345static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
 346
 347/* PL: hash of all unbound pools keyed by pool->attrs */
 348static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 349
 350/* I: attributes used when instantiating standard unbound pools on demand */
 351static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 352
 353/* I: attributes used when instantiating ordered pools on demand */
 354static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 355
 356struct workqueue_struct *system_wq __read_mostly;
 357EXPORT_SYMBOL(system_wq);
 358struct workqueue_struct *system_highpri_wq __read_mostly;
 359EXPORT_SYMBOL_GPL(system_highpri_wq);
 360struct workqueue_struct *system_long_wq __read_mostly;
 361EXPORT_SYMBOL_GPL(system_long_wq);
 362struct workqueue_struct *system_unbound_wq __read_mostly;
 363EXPORT_SYMBOL_GPL(system_unbound_wq);
 364struct workqueue_struct *system_freezable_wq __read_mostly;
 365EXPORT_SYMBOL_GPL(system_freezable_wq);
 366struct workqueue_struct *system_power_efficient_wq __read_mostly;
 367EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 368struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 369EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 370
 371static int worker_thread(void *__worker);
 372static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 373static void show_pwq(struct pool_workqueue *pwq);
 374static void show_one_worker_pool(struct worker_pool *pool);
 375
 376#define CREATE_TRACE_POINTS
 377#include <trace/events/workqueue.h>
 378
 379#define assert_rcu_or_pool_mutex()                                      \
 380        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 381                         !lockdep_is_held(&wq_pool_mutex),              \
 382                         "RCU or wq_pool_mutex should be held")
 383
 384#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
 385        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 386                         !lockdep_is_held(&wq->mutex) &&                \
 387                         !lockdep_is_held(&wq_pool_mutex),              \
 388                         "RCU, wq->mutex or wq_pool_mutex should be held")
 389
 390#define for_each_cpu_worker_pool(pool, cpu)                             \
 391        for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
 392             (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 393             (pool)++)
 394
 395/**
 396 * for_each_pool - iterate through all worker_pools in the system
 397 * @pool: iteration cursor
 398 * @pi: integer used for iteration
 399 *
 400 * This must be called either with wq_pool_mutex held or RCU read
 401 * locked.  If the pool needs to be used beyond the locking in effect, the
 402 * caller is responsible for guaranteeing that the pool stays online.
 403 *
 404 * The if/else clause exists only for the lockdep assertion and can be
 405 * ignored.
 406 */
 407#define for_each_pool(pool, pi)                                         \
 408        idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
 409                if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
 410                else
 411
 412/**
 413 * for_each_pool_worker - iterate through all workers of a worker_pool
 414 * @worker: iteration cursor
 415 * @pool: worker_pool to iterate workers of
 416 *
 417 * This must be called with wq_pool_attach_mutex.
 418 *
 419 * The if/else clause exists only for the lockdep assertion and can be
 420 * ignored.
 421 */
 422#define for_each_pool_worker(worker, pool)                              \
 423        list_for_each_entry((worker), &(pool)->workers, node)           \
 424                if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 425                else
 426
 427/**
 428 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 429 * @pwq: iteration cursor
 430 * @wq: the target workqueue
 431 *
 432 * This must be called either with wq->mutex held or RCU read locked.
 433 * If the pwq needs to be used beyond the locking in effect, the caller is
 434 * responsible for guaranteeing that the pwq stays online.
 435 *
 436 * The if/else clause exists only for the lockdep assertion and can be
 437 * ignored.
 438 */
 439#define for_each_pwq(pwq, wq)                                           \
 440        list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,          \
 441                                 lockdep_is_held(&(wq->mutex)))
 442
 443#ifdef CONFIG_DEBUG_OBJECTS_WORK
 444
 445static const struct debug_obj_descr work_debug_descr;
 446
 447static void *work_debug_hint(void *addr)
 448{
 449        return ((struct work_struct *) addr)->func;
 450}
 451
 452static bool work_is_static_object(void *addr)
 453{
 454        struct work_struct *work = addr;
 455
 456        return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 457}
 458
 459/*
 460 * fixup_init is called when:
 461 * - an active object is initialized
 462 */
 463static bool work_fixup_init(void *addr, enum debug_obj_state state)
 464{
 465        struct work_struct *work = addr;
 466
 467        switch (state) {
 468        case ODEBUG_STATE_ACTIVE:
 469                cancel_work_sync(work);
 470                debug_object_init(work, &work_debug_descr);
 471                return true;
 472        default:
 473                return false;
 474        }
 475}
 476
 477/*
 478 * fixup_free is called when:
 479 * - an active object is freed
 480 */
 481static bool work_fixup_free(void *addr, enum debug_obj_state state)
 482{
 483        struct work_struct *work = addr;
 484
 485        switch (state) {
 486        case ODEBUG_STATE_ACTIVE:
 487                cancel_work_sync(work);
 488                debug_object_free(work, &work_debug_descr);
 489                return true;
 490        default:
 491                return false;
 492        }
 493}
 494
 495static const struct debug_obj_descr work_debug_descr = {
 496        .name           = "work_struct",
 497        .debug_hint     = work_debug_hint,
 498        .is_static_object = work_is_static_object,
 499        .fixup_init     = work_fixup_init,
 500        .fixup_free     = work_fixup_free,
 501};
 502
 503static inline void debug_work_activate(struct work_struct *work)
 504{
 505        debug_object_activate(work, &work_debug_descr);
 506}
 507
 508static inline void debug_work_deactivate(struct work_struct *work)
 509{
 510        debug_object_deactivate(work, &work_debug_descr);
 511}
 512
 513void __init_work(struct work_struct *work, int onstack)
 514{
 515        if (onstack)
 516                debug_object_init_on_stack(work, &work_debug_descr);
 517        else
 518                debug_object_init(work, &work_debug_descr);
 519}
 520EXPORT_SYMBOL_GPL(__init_work);
 521
 522void destroy_work_on_stack(struct work_struct *work)
 523{
 524        debug_object_free(work, &work_debug_descr);
 525}
 526EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 527
 528void destroy_delayed_work_on_stack(struct delayed_work *work)
 529{
 530        destroy_timer_on_stack(&work->timer);
 531        debug_object_free(&work->work, &work_debug_descr);
 532}
 533EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 534
 535#else
 536static inline void debug_work_activate(struct work_struct *work) { }
 537static inline void debug_work_deactivate(struct work_struct *work) { }
 538#endif
 539
 540/**
 541 * worker_pool_assign_id - allocate ID and assign it to @pool
 542 * @pool: the pool pointer of interest
 543 *
 544 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 545 * successfully, -errno on failure.
 546 */
 547static int worker_pool_assign_id(struct worker_pool *pool)
 548{
 549        int ret;
 550
 551        lockdep_assert_held(&wq_pool_mutex);
 552
 553        ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 554                        GFP_KERNEL);
 555        if (ret >= 0) {
 556                pool->id = ret;
 557                return 0;
 558        }
 559        return ret;
 560}
 561
 562/**
 563 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 564 * @wq: the target workqueue
 565 * @node: the node ID
 566 *
 567 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 568 * read locked.
 569 * If the pwq needs to be used beyond the locking in effect, the caller is
 570 * responsible for guaranteeing that the pwq stays online.
 571 *
 572 * Return: The unbound pool_workqueue for @node.
 573 */
 574static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 575                                                  int node)
 576{
 577        assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 578
 579        /*
 580         * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 581         * delayed item is pending.  The plan is to keep CPU -> NODE
 582         * mapping valid and stable across CPU on/offlines.  Once that
 583         * happens, this workaround can be removed.
 584         */
 585        if (unlikely(node == NUMA_NO_NODE))
 586                return wq->dfl_pwq;
 587
 588        return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 589}
 590
 591static unsigned int work_color_to_flags(int color)
 592{
 593        return color << WORK_STRUCT_COLOR_SHIFT;
 594}
 595
 596static int get_work_color(unsigned long work_data)
 597{
 598        return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 599                ((1 << WORK_STRUCT_COLOR_BITS) - 1);
 600}
 601
 602static int work_next_color(int color)
 603{
 604        return (color + 1) % WORK_NR_COLORS;
 605}
 606
 607/*
 608 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 609 * contain the pointer to the queued pwq.  Once execution starts, the flag
 610 * is cleared and the high bits contain OFFQ flags and pool ID.
 611 *
 612 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 613 * and clear_work_data() can be used to set the pwq, pool or clear
 614 * work->data.  These functions should only be called while the work is
 615 * owned - ie. while the PENDING bit is set.
 616 *
 617 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 618 * corresponding to a work.  Pool is available once the work has been
 619 * queued anywhere after initialization until it is sync canceled.  pwq is
 620 * available only while the work item is queued.
 621 *
 622 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 623 * canceled.  While being canceled, a work item may have its PENDING set
 624 * but stay off timer and worklist for arbitrarily long and nobody should
 625 * try to steal the PENDING bit.
 626 */
 627static inline void set_work_data(struct work_struct *work, unsigned long data,
 628                                 unsigned long flags)
 629{
 630        WARN_ON_ONCE(!work_pending(work));
 631        atomic_long_set(&work->data, data | flags | work_static(work));
 632}
 633
 634static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 635                         unsigned long extra_flags)
 636{
 637        set_work_data(work, (unsigned long)pwq,
 638                      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 639}
 640
 641static void set_work_pool_and_keep_pending(struct work_struct *work,
 642                                           int pool_id)
 643{
 644        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 645                      WORK_STRUCT_PENDING);
 646}
 647
 648static void set_work_pool_and_clear_pending(struct work_struct *work,
 649                                            int pool_id)
 650{
 651        /*
 652         * The following wmb is paired with the implied mb in
 653         * test_and_set_bit(PENDING) and ensures all updates to @work made
 654         * here are visible to and precede any updates by the next PENDING
 655         * owner.
 656         */
 657        smp_wmb();
 658        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 659        /*
 660         * The following mb guarantees that previous clear of a PENDING bit
 661         * will not be reordered with any speculative LOADS or STORES from
 662         * work->current_func, which is executed afterwards.  This possible
 663         * reordering can lead to a missed execution on attempt to queue
 664         * the same @work.  E.g. consider this case:
 665         *
 666         *   CPU#0                         CPU#1
 667         *   ----------------------------  --------------------------------
 668         *
 669         * 1  STORE event_indicated
 670         * 2  queue_work_on() {
 671         * 3    test_and_set_bit(PENDING)
 672         * 4 }                             set_..._and_clear_pending() {
 673         * 5                                 set_work_data() # clear bit
 674         * 6                                 smp_mb()
 675         * 7                               work->current_func() {
 676         * 8                                  LOAD event_indicated
 677         *                                 }
 678         *
 679         * Without an explicit full barrier speculative LOAD on line 8 can
 680         * be executed before CPU#0 does STORE on line 1.  If that happens,
 681         * CPU#0 observes the PENDING bit is still set and new execution of
 682         * a @work is not queued in a hope, that CPU#1 will eventually
 683         * finish the queued @work.  Meanwhile CPU#1 does not see
 684         * event_indicated is set, because speculative LOAD was executed
 685         * before actual STORE.
 686         */
 687        smp_mb();
 688}
 689
 690static void clear_work_data(struct work_struct *work)
 691{
 692        smp_wmb();      /* see set_work_pool_and_clear_pending() */
 693        set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 694}
 695
 696static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 697{
 698        unsigned long data = atomic_long_read(&work->data);
 699
 700        if (data & WORK_STRUCT_PWQ)
 701                return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 702        else
 703                return NULL;
 704}
 705
 706/**
 707 * get_work_pool - return the worker_pool a given work was associated with
 708 * @work: the work item of interest
 709 *
 710 * Pools are created and destroyed under wq_pool_mutex, and allows read
 711 * access under RCU read lock.  As such, this function should be
 712 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 713 *
 714 * All fields of the returned pool are accessible as long as the above
 715 * mentioned locking is in effect.  If the returned pool needs to be used
 716 * beyond the critical section, the caller is responsible for ensuring the
 717 * returned pool is and stays online.
 718 *
 719 * Return: The worker_pool @work was last associated with.  %NULL if none.
 720 */
 721static struct worker_pool *get_work_pool(struct work_struct *work)
 722{
 723        unsigned long data = atomic_long_read(&work->data);
 724        int pool_id;
 725
 726        assert_rcu_or_pool_mutex();
 727
 728        if (data & WORK_STRUCT_PWQ)
 729                return ((struct pool_workqueue *)
 730                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 731
 732        pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 733        if (pool_id == WORK_OFFQ_POOL_NONE)
 734                return NULL;
 735
 736        return idr_find(&worker_pool_idr, pool_id);
 737}
 738
 739/**
 740 * get_work_pool_id - return the worker pool ID a given work is associated with
 741 * @work: the work item of interest
 742 *
 743 * Return: The worker_pool ID @work was last associated with.
 744 * %WORK_OFFQ_POOL_NONE if none.
 745 */
 746static int get_work_pool_id(struct work_struct *work)
 747{
 748        unsigned long data = atomic_long_read(&work->data);
 749
 750        if (data & WORK_STRUCT_PWQ)
 751                return ((struct pool_workqueue *)
 752                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 753
 754        return data >> WORK_OFFQ_POOL_SHIFT;
 755}
 756
 757static void mark_work_canceling(struct work_struct *work)
 758{
 759        unsigned long pool_id = get_work_pool_id(work);
 760
 761        pool_id <<= WORK_OFFQ_POOL_SHIFT;
 762        set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 763}
 764
 765static bool work_is_canceling(struct work_struct *work)
 766{
 767        unsigned long data = atomic_long_read(&work->data);
 768
 769        return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 770}
 771
 772/*
 773 * Policy functions.  These define the policies on how the global worker
 774 * pools are managed.  Unless noted otherwise, these functions assume that
 775 * they're being called with pool->lock held.
 776 */
 777
 778static bool __need_more_worker(struct worker_pool *pool)
 779{
 780        return !atomic_read(&pool->nr_running);
 781}
 782
 783/*
 784 * Need to wake up a worker?  Called from anything but currently
 785 * running workers.
 786 *
 787 * Note that, because unbound workers never contribute to nr_running, this
 788 * function will always return %true for unbound pools as long as the
 789 * worklist isn't empty.
 790 */
 791static bool need_more_worker(struct worker_pool *pool)
 792{
 793        return !list_empty(&pool->worklist) && __need_more_worker(pool);
 794}
 795
 796/* Can I start working?  Called from busy but !running workers. */
 797static bool may_start_working(struct worker_pool *pool)
 798{
 799        return pool->nr_idle;
 800}
 801
 802/* Do I need to keep working?  Called from currently running workers. */
 803static bool keep_working(struct worker_pool *pool)
 804{
 805        return !list_empty(&pool->worklist) &&
 806                atomic_read(&pool->nr_running) <= 1;
 807}
 808
 809/* Do we need a new worker?  Called from manager. */
 810static bool need_to_create_worker(struct worker_pool *pool)
 811{
 812        return need_more_worker(pool) && !may_start_working(pool);
 813}
 814
 815/* Do we have too many workers and should some go away? */
 816static bool too_many_workers(struct worker_pool *pool)
 817{
 818        bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 819        int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 820        int nr_busy = pool->nr_workers - nr_idle;
 821
 822        return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 823}
 824
 825/*
 826 * Wake up functions.
 827 */
 828
 829/* Return the first idle worker.  Safe with preemption disabled */
 830static struct worker *first_idle_worker(struct worker_pool *pool)
 831{
 832        if (unlikely(list_empty(&pool->idle_list)))
 833                return NULL;
 834
 835        return list_first_entry(&pool->idle_list, struct worker, entry);
 836}
 837
 838/**
 839 * wake_up_worker - wake up an idle worker
 840 * @pool: worker pool to wake worker from
 841 *
 842 * Wake up the first idle worker of @pool.
 843 *
 844 * CONTEXT:
 845 * raw_spin_lock_irq(pool->lock).
 846 */
 847static void wake_up_worker(struct worker_pool *pool)
 848{
 849        struct worker *worker = first_idle_worker(pool);
 850
 851        if (likely(worker))
 852                wake_up_process(worker->task);
 853}
 854
 855/**
 856 * wq_worker_running - a worker is running again
 857 * @task: task waking up
 858 *
 859 * This function is called when a worker returns from schedule()
 860 */
 861void wq_worker_running(struct task_struct *task)
 862{
 863        struct worker *worker = kthread_data(task);
 864
 865        if (!worker->sleeping)
 866                return;
 867
 868        /*
 869         * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
 870         * and the nr_running increment below, we may ruin the nr_running reset
 871         * and leave with an unexpected pool->nr_running == 1 on the newly unbound
 872         * pool. Protect against such race.
 873         */
 874        preempt_disable();
 875        if (!(worker->flags & WORKER_NOT_RUNNING))
 876                atomic_inc(&worker->pool->nr_running);
 877        preempt_enable();
 878        worker->sleeping = 0;
 879}
 880
 881/**
 882 * wq_worker_sleeping - a worker is going to sleep
 883 * @task: task going to sleep
 884 *
 885 * This function is called from schedule() when a busy worker is
 886 * going to sleep.
 887 */
 888void wq_worker_sleeping(struct task_struct *task)
 889{
 890        struct worker *next, *worker = kthread_data(task);
 891        struct worker_pool *pool;
 892
 893        /*
 894         * Rescuers, which may not have all the fields set up like normal
 895         * workers, also reach here, let's not access anything before
 896         * checking NOT_RUNNING.
 897         */
 898        if (worker->flags & WORKER_NOT_RUNNING)
 899                return;
 900
 901        pool = worker->pool;
 902
 903        /* Return if preempted before wq_worker_running() was reached */
 904        if (worker->sleeping)
 905                return;
 906
 907        worker->sleeping = 1;
 908        raw_spin_lock_irq(&pool->lock);
 909
 910        /*
 911         * Recheck in case unbind_workers() preempted us. We don't
 912         * want to decrement nr_running after the worker is unbound
 913         * and nr_running has been reset.
 914         */
 915        if (worker->flags & WORKER_NOT_RUNNING) {
 916                raw_spin_unlock_irq(&pool->lock);
 917                return;
 918        }
 919
 920        /*
 921         * The counterpart of the following dec_and_test, implied mb,
 922         * worklist not empty test sequence is in insert_work().
 923         * Please read comment there.
 924         *
 925         * NOT_RUNNING is clear.  This means that we're bound to and
 926         * running on the local cpu w/ rq lock held and preemption
 927         * disabled, which in turn means that none else could be
 928         * manipulating idle_list, so dereferencing idle_list without pool
 929         * lock is safe.
 930         */
 931        if (atomic_dec_and_test(&pool->nr_running) &&
 932            !list_empty(&pool->worklist)) {
 933                next = first_idle_worker(pool);
 934                if (next)
 935                        wake_up_process(next->task);
 936        }
 937        raw_spin_unlock_irq(&pool->lock);
 938}
 939
 940/**
 941 * wq_worker_last_func - retrieve worker's last work function
 942 * @task: Task to retrieve last work function of.
 943 *
 944 * Determine the last function a worker executed. This is called from
 945 * the scheduler to get a worker's last known identity.
 946 *
 947 * CONTEXT:
 948 * raw_spin_lock_irq(rq->lock)
 949 *
 950 * This function is called during schedule() when a kworker is going
 951 * to sleep. It's used by psi to identify aggregation workers during
 952 * dequeuing, to allow periodic aggregation to shut-off when that
 953 * worker is the last task in the system or cgroup to go to sleep.
 954 *
 955 * As this function doesn't involve any workqueue-related locking, it
 956 * only returns stable values when called from inside the scheduler's
 957 * queuing and dequeuing paths, when @task, which must be a kworker,
 958 * is guaranteed to not be processing any works.
 959 *
 960 * Return:
 961 * The last work function %current executed as a worker, NULL if it
 962 * hasn't executed any work yet.
 963 */
 964work_func_t wq_worker_last_func(struct task_struct *task)
 965{
 966        struct worker *worker = kthread_data(task);
 967
 968        return worker->last_func;
 969}
 970
 971/**
 972 * worker_set_flags - set worker flags and adjust nr_running accordingly
 973 * @worker: self
 974 * @flags: flags to set
 975 *
 976 * Set @flags in @worker->flags and adjust nr_running accordingly.
 977 *
 978 * CONTEXT:
 979 * raw_spin_lock_irq(pool->lock)
 980 */
 981static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 982{
 983        struct worker_pool *pool = worker->pool;
 984
 985        WARN_ON_ONCE(worker->task != current);
 986
 987        /* If transitioning into NOT_RUNNING, adjust nr_running. */
 988        if ((flags & WORKER_NOT_RUNNING) &&
 989            !(worker->flags & WORKER_NOT_RUNNING)) {
 990                atomic_dec(&pool->nr_running);
 991        }
 992
 993        worker->flags |= flags;
 994}
 995
 996/**
 997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 998 * @worker: self
 999 * @flags: flags to clear
1000 *
1001 * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002 *
1003 * CONTEXT:
1004 * raw_spin_lock_irq(pool->lock)
1005 */
1006static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1007{
1008        struct worker_pool *pool = worker->pool;
1009        unsigned int oflags = worker->flags;
1010
1011        WARN_ON_ONCE(worker->task != current);
1012
1013        worker->flags &= ~flags;
1014
1015        /*
1016         * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1017         * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1018         * of multiple flags, not a single flag.
1019         */
1020        if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1021                if (!(worker->flags & WORKER_NOT_RUNNING))
1022                        atomic_inc(&pool->nr_running);
1023}
1024
1025/**
1026 * find_worker_executing_work - find worker which is executing a work
1027 * @pool: pool of interest
1028 * @work: work to find worker for
1029 *
1030 * Find a worker which is executing @work on @pool by searching
1031 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1032 * to match, its current execution should match the address of @work and
1033 * its work function.  This is to avoid unwanted dependency between
1034 * unrelated work executions through a work item being recycled while still
1035 * being executed.
1036 *
1037 * This is a bit tricky.  A work item may be freed once its execution
1038 * starts and nothing prevents the freed area from being recycled for
1039 * another work item.  If the same work item address ends up being reused
1040 * before the original execution finishes, workqueue will identify the
1041 * recycled work item as currently executing and make it wait until the
1042 * current execution finishes, introducing an unwanted dependency.
1043 *
1044 * This function checks the work item address and work function to avoid
1045 * false positives.  Note that this isn't complete as one may construct a
1046 * work function which can introduce dependency onto itself through a
1047 * recycled work item.  Well, if somebody wants to shoot oneself in the
1048 * foot that badly, there's only so much we can do, and if such deadlock
1049 * actually occurs, it should be easy to locate the culprit work function.
1050 *
1051 * CONTEXT:
1052 * raw_spin_lock_irq(pool->lock).
1053 *
1054 * Return:
1055 * Pointer to worker which is executing @work if found, %NULL
1056 * otherwise.
1057 */
1058static struct worker *find_worker_executing_work(struct worker_pool *pool,
1059                                                 struct work_struct *work)
1060{
1061        struct worker *worker;
1062
1063        hash_for_each_possible(pool->busy_hash, worker, hentry,
1064                               (unsigned long)work)
1065                if (worker->current_work == work &&
1066                    worker->current_func == work->func)
1067                        return worker;
1068
1069        return NULL;
1070}
1071
1072/**
1073 * move_linked_works - move linked works to a list
1074 * @work: start of series of works to be scheduled
1075 * @head: target list to append @work to
1076 * @nextp: out parameter for nested worklist walking
1077 *
1078 * Schedule linked works starting from @work to @head.  Work series to
1079 * be scheduled starts at @work and includes any consecutive work with
1080 * WORK_STRUCT_LINKED set in its predecessor.
1081 *
1082 * If @nextp is not NULL, it's updated to point to the next work of
1083 * the last scheduled work.  This allows move_linked_works() to be
1084 * nested inside outer list_for_each_entry_safe().
1085 *
1086 * CONTEXT:
1087 * raw_spin_lock_irq(pool->lock).
1088 */
1089static void move_linked_works(struct work_struct *work, struct list_head *head,
1090                              struct work_struct **nextp)
1091{
1092        struct work_struct *n;
1093
1094        /*
1095         * Linked worklist will always end before the end of the list,
1096         * use NULL for list head.
1097         */
1098        list_for_each_entry_safe_from(work, n, NULL, entry) {
1099                list_move_tail(&work->entry, head);
1100                if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1101                        break;
1102        }
1103
1104        /*
1105         * If we're already inside safe list traversal and have moved
1106         * multiple works to the scheduled queue, the next position
1107         * needs to be updated.
1108         */
1109        if (nextp)
1110                *nextp = n;
1111}
1112
1113/**
1114 * get_pwq - get an extra reference on the specified pool_workqueue
1115 * @pwq: pool_workqueue to get
1116 *
1117 * Obtain an extra reference on @pwq.  The caller should guarantee that
1118 * @pwq has positive refcnt and be holding the matching pool->lock.
1119 */
1120static void get_pwq(struct pool_workqueue *pwq)
1121{
1122        lockdep_assert_held(&pwq->pool->lock);
1123        WARN_ON_ONCE(pwq->refcnt <= 0);
1124        pwq->refcnt++;
1125}
1126
1127/**
1128 * put_pwq - put a pool_workqueue reference
1129 * @pwq: pool_workqueue to put
1130 *
1131 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1132 * destruction.  The caller should be holding the matching pool->lock.
1133 */
1134static void put_pwq(struct pool_workqueue *pwq)
1135{
1136        lockdep_assert_held(&pwq->pool->lock);
1137        if (likely(--pwq->refcnt))
1138                return;
1139        if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1140                return;
1141        /*
1142         * @pwq can't be released under pool->lock, bounce to
1143         * pwq_unbound_release_workfn().  This never recurses on the same
1144         * pool->lock as this path is taken only for unbound workqueues and
1145         * the release work item is scheduled on a per-cpu workqueue.  To
1146         * avoid lockdep warning, unbound pool->locks are given lockdep
1147         * subclass of 1 in get_unbound_pool().
1148         */
1149        schedule_work(&pwq->unbound_release_work);
1150}
1151
1152/**
1153 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1154 * @pwq: pool_workqueue to put (can be %NULL)
1155 *
1156 * put_pwq() with locking.  This function also allows %NULL @pwq.
1157 */
1158static void put_pwq_unlocked(struct pool_workqueue *pwq)
1159{
1160        if (pwq) {
1161                /*
1162                 * As both pwqs and pools are RCU protected, the
1163                 * following lock operations are safe.
1164                 */
1165                raw_spin_lock_irq(&pwq->pool->lock);
1166                put_pwq(pwq);
1167                raw_spin_unlock_irq(&pwq->pool->lock);
1168        }
1169}
1170
1171static void pwq_activate_inactive_work(struct work_struct *work)
1172{
1173        struct pool_workqueue *pwq = get_work_pwq(work);
1174
1175        trace_workqueue_activate_work(work);
1176        if (list_empty(&pwq->pool->worklist))
1177                pwq->pool->watchdog_ts = jiffies;
1178        move_linked_works(work, &pwq->pool->worklist, NULL);
1179        __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1180        pwq->nr_active++;
1181}
1182
1183static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1184{
1185        struct work_struct *work = list_first_entry(&pwq->inactive_works,
1186                                                    struct work_struct, entry);
1187
1188        pwq_activate_inactive_work(work);
1189}
1190
1191/**
1192 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1193 * @pwq: pwq of interest
1194 * @work_data: work_data of work which left the queue
1195 *
1196 * A work either has completed or is removed from pending queue,
1197 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1198 *
1199 * CONTEXT:
1200 * raw_spin_lock_irq(pool->lock).
1201 */
1202static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1203{
1204        int color = get_work_color(work_data);
1205
1206        if (!(work_data & WORK_STRUCT_INACTIVE)) {
1207                pwq->nr_active--;
1208                if (!list_empty(&pwq->inactive_works)) {
1209                        /* one down, submit an inactive one */
1210                        if (pwq->nr_active < pwq->max_active)
1211                                pwq_activate_first_inactive(pwq);
1212                }
1213        }
1214
1215        pwq->nr_in_flight[color]--;
1216
1217        /* is flush in progress and are we at the flushing tip? */
1218        if (likely(pwq->flush_color != color))
1219                goto out_put;
1220
1221        /* are there still in-flight works? */
1222        if (pwq->nr_in_flight[color])
1223                goto out_put;
1224
1225        /* this pwq is done, clear flush_color */
1226        pwq->flush_color = -1;
1227
1228        /*
1229         * If this was the last pwq, wake up the first flusher.  It
1230         * will handle the rest.
1231         */
1232        if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1233                complete(&pwq->wq->first_flusher->done);
1234out_put:
1235        put_pwq(pwq);
1236}
1237
1238/**
1239 * try_to_grab_pending - steal work item from worklist and disable irq
1240 * @work: work item to steal
1241 * @is_dwork: @work is a delayed_work
1242 * @flags: place to store irq state
1243 *
1244 * Try to grab PENDING bit of @work.  This function can handle @work in any
1245 * stable state - idle, on timer or on worklist.
1246 *
1247 * Return:
1248 *
1249 *  ========    ================================================================
1250 *  1           if @work was pending and we successfully stole PENDING
1251 *  0           if @work was idle and we claimed PENDING
1252 *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
1253 *  -ENOENT     if someone else is canceling @work, this state may persist
1254 *              for arbitrarily long
1255 *  ========    ================================================================
1256 *
1257 * Note:
1258 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1259 * interrupted while holding PENDING and @work off queue, irq must be
1260 * disabled on entry.  This, combined with delayed_work->timer being
1261 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1262 *
1263 * On successful return, >= 0, irq is disabled and the caller is
1264 * responsible for releasing it using local_irq_restore(*@flags).
1265 *
1266 * This function is safe to call from any context including IRQ handler.
1267 */
1268static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1269                               unsigned long *flags)
1270{
1271        struct worker_pool *pool;
1272        struct pool_workqueue *pwq;
1273
1274        local_irq_save(*flags);
1275
1276        /* try to steal the timer if it exists */
1277        if (is_dwork) {
1278                struct delayed_work *dwork = to_delayed_work(work);
1279
1280                /*
1281                 * dwork->timer is irqsafe.  If del_timer() fails, it's
1282                 * guaranteed that the timer is not queued anywhere and not
1283                 * running on the local CPU.
1284                 */
1285                if (likely(del_timer(&dwork->timer)))
1286                        return 1;
1287        }
1288
1289        /* try to claim PENDING the normal way */
1290        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1291                return 0;
1292
1293        rcu_read_lock();
1294        /*
1295         * The queueing is in progress, or it is already queued. Try to
1296         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1297         */
1298        pool = get_work_pool(work);
1299        if (!pool)
1300                goto fail;
1301
1302        raw_spin_lock(&pool->lock);
1303        /*
1304         * work->data is guaranteed to point to pwq only while the work
1305         * item is queued on pwq->wq, and both updating work->data to point
1306         * to pwq on queueing and to pool on dequeueing are done under
1307         * pwq->pool->lock.  This in turn guarantees that, if work->data
1308         * points to pwq which is associated with a locked pool, the work
1309         * item is currently queued on that pool.
1310         */
1311        pwq = get_work_pwq(work);
1312        if (pwq && pwq->pool == pool) {
1313                debug_work_deactivate(work);
1314
1315                /*
1316                 * A cancelable inactive work item must be in the
1317                 * pwq->inactive_works since a queued barrier can't be
1318                 * canceled (see the comments in insert_wq_barrier()).
1319                 *
1320                 * An inactive work item cannot be grabbed directly because
1321                 * it might have linked barrier work items which, if left
1322                 * on the inactive_works list, will confuse pwq->nr_active
1323                 * management later on and cause stall.  Make sure the work
1324                 * item is activated before grabbing.
1325                 */
1326                if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1327                        pwq_activate_inactive_work(work);
1328
1329                list_del_init(&work->entry);
1330                pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1331
1332                /* work->data points to pwq iff queued, point to pool */
1333                set_work_pool_and_keep_pending(work, pool->id);
1334
1335                raw_spin_unlock(&pool->lock);
1336                rcu_read_unlock();
1337                return 1;
1338        }
1339        raw_spin_unlock(&pool->lock);
1340fail:
1341        rcu_read_unlock();
1342        local_irq_restore(*flags);
1343        if (work_is_canceling(work))
1344                return -ENOENT;
1345        cpu_relax();
1346        return -EAGAIN;
1347}
1348
1349/**
1350 * insert_work - insert a work into a pool
1351 * @pwq: pwq @work belongs to
1352 * @work: work to insert
1353 * @head: insertion point
1354 * @extra_flags: extra WORK_STRUCT_* flags to set
1355 *
1356 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1357 * work_struct flags.
1358 *
1359 * CONTEXT:
1360 * raw_spin_lock_irq(pool->lock).
1361 */
1362static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1363                        struct list_head *head, unsigned int extra_flags)
1364{
1365        struct worker_pool *pool = pwq->pool;
1366
1367        /* record the work call stack in order to print it in KASAN reports */
1368        kasan_record_aux_stack_noalloc(work);
1369
1370        /* we own @work, set data and link */
1371        set_work_pwq(work, pwq, extra_flags);
1372        list_add_tail(&work->entry, head);
1373        get_pwq(pwq);
1374
1375        /*
1376         * Ensure either wq_worker_sleeping() sees the above
1377         * list_add_tail() or we see zero nr_running to avoid workers lying
1378         * around lazily while there are works to be processed.
1379         */
1380        smp_mb();
1381
1382        if (__need_more_worker(pool))
1383                wake_up_worker(pool);
1384}
1385
1386/*
1387 * Test whether @work is being queued from another work executing on the
1388 * same workqueue.
1389 */
1390static bool is_chained_work(struct workqueue_struct *wq)
1391{
1392        struct worker *worker;
1393
1394        worker = current_wq_worker();
1395        /*
1396         * Return %true iff I'm a worker executing a work item on @wq.  If
1397         * I'm @worker, it's safe to dereference it without locking.
1398         */
1399        return worker && worker->current_pwq->wq == wq;
1400}
1401
1402/*
1403 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1404 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1405 * avoid perturbing sensitive tasks.
1406 */
1407static int wq_select_unbound_cpu(int cpu)
1408{
1409        static bool printed_dbg_warning;
1410        int new_cpu;
1411
1412        if (likely(!wq_debug_force_rr_cpu)) {
1413                if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1414                        return cpu;
1415        } else if (!printed_dbg_warning) {
1416                pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1417                printed_dbg_warning = true;
1418        }
1419
1420        if (cpumask_empty(wq_unbound_cpumask))
1421                return cpu;
1422
1423        new_cpu = __this_cpu_read(wq_rr_cpu_last);
1424        new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1425        if (unlikely(new_cpu >= nr_cpu_ids)) {
1426                new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1427                if (unlikely(new_cpu >= nr_cpu_ids))
1428                        return cpu;
1429        }
1430        __this_cpu_write(wq_rr_cpu_last, new_cpu);
1431
1432        return new_cpu;
1433}
1434
1435static void __queue_work(int cpu, struct workqueue_struct *wq,
1436                         struct work_struct *work)
1437{
1438        struct pool_workqueue *pwq;
1439        struct worker_pool *last_pool;
1440        struct list_head *worklist;
1441        unsigned int work_flags;
1442        unsigned int req_cpu = cpu;
1443
1444        /*
1445         * While a work item is PENDING && off queue, a task trying to
1446         * steal the PENDING will busy-loop waiting for it to either get
1447         * queued or lose PENDING.  Grabbing PENDING and queueing should
1448         * happen with IRQ disabled.
1449         */
1450        lockdep_assert_irqs_disabled();
1451
1452
1453        /* if draining, only works from the same workqueue are allowed */
1454        if (unlikely(wq->flags & __WQ_DRAINING) &&
1455            WARN_ON_ONCE(!is_chained_work(wq)))
1456                return;
1457        rcu_read_lock();
1458retry:
1459        /* pwq which will be used unless @work is executing elsewhere */
1460        if (wq->flags & WQ_UNBOUND) {
1461                if (req_cpu == WORK_CPU_UNBOUND)
1462                        cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1463                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1464        } else {
1465                if (req_cpu == WORK_CPU_UNBOUND)
1466                        cpu = raw_smp_processor_id();
1467                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1468        }
1469
1470        /*
1471         * If @work was previously on a different pool, it might still be
1472         * running there, in which case the work needs to be queued on that
1473         * pool to guarantee non-reentrancy.
1474         */
1475        last_pool = get_work_pool(work);
1476        if (last_pool && last_pool != pwq->pool) {
1477                struct worker *worker;
1478
1479                raw_spin_lock(&last_pool->lock);
1480
1481                worker = find_worker_executing_work(last_pool, work);
1482
1483                if (worker && worker->current_pwq->wq == wq) {
1484                        pwq = worker->current_pwq;
1485                } else {
1486                        /* meh... not running there, queue here */
1487                        raw_spin_unlock(&last_pool->lock);
1488                        raw_spin_lock(&pwq->pool->lock);
1489                }
1490        } else {
1491                raw_spin_lock(&pwq->pool->lock);
1492        }
1493
1494        /*
1495         * pwq is determined and locked.  For unbound pools, we could have
1496         * raced with pwq release and it could already be dead.  If its
1497         * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1498         * without another pwq replacing it in the numa_pwq_tbl or while
1499         * work items are executing on it, so the retrying is guaranteed to
1500         * make forward-progress.
1501         */
1502        if (unlikely(!pwq->refcnt)) {
1503                if (wq->flags & WQ_UNBOUND) {
1504                        raw_spin_unlock(&pwq->pool->lock);
1505                        cpu_relax();
1506                        goto retry;
1507                }
1508                /* oops */
1509                WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1510                          wq->name, cpu);
1511        }
1512
1513        /* pwq determined, queue */
1514        trace_workqueue_queue_work(req_cpu, pwq, work);
1515
1516        if (WARN_ON(!list_empty(&work->entry)))
1517                goto out;
1518
1519        pwq->nr_in_flight[pwq->work_color]++;
1520        work_flags = work_color_to_flags(pwq->work_color);
1521
1522        if (likely(pwq->nr_active < pwq->max_active)) {
1523                trace_workqueue_activate_work(work);
1524                pwq->nr_active++;
1525                worklist = &pwq->pool->worklist;
1526                if (list_empty(worklist))
1527                        pwq->pool->watchdog_ts = jiffies;
1528        } else {
1529                work_flags |= WORK_STRUCT_INACTIVE;
1530                worklist = &pwq->inactive_works;
1531        }
1532
1533        debug_work_activate(work);
1534        insert_work(pwq, work, worklist, work_flags);
1535
1536out:
1537        raw_spin_unlock(&pwq->pool->lock);
1538        rcu_read_unlock();
1539}
1540
1541/**
1542 * queue_work_on - queue work on specific cpu
1543 * @cpu: CPU number to execute work on
1544 * @wq: workqueue to use
1545 * @work: work to queue
1546 *
1547 * We queue the work to a specific CPU, the caller must ensure it
1548 * can't go away.  Callers that fail to ensure that the specified
1549 * CPU cannot go away will execute on a randomly chosen CPU.
1550 *
1551 * Return: %false if @work was already on a queue, %true otherwise.
1552 */
1553bool queue_work_on(int cpu, struct workqueue_struct *wq,
1554                   struct work_struct *work)
1555{
1556        bool ret = false;
1557        unsigned long flags;
1558
1559        local_irq_save(flags);
1560
1561        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1562                __queue_work(cpu, wq, work);
1563                ret = true;
1564        }
1565
1566        local_irq_restore(flags);
1567        return ret;
1568}
1569EXPORT_SYMBOL(queue_work_on);
1570
1571/**
1572 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1573 * @node: NUMA node ID that we want to select a CPU from
1574 *
1575 * This function will attempt to find a "random" cpu available on a given
1576 * node. If there are no CPUs available on the given node it will return
1577 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1578 * available CPU if we need to schedule this work.
1579 */
1580static int workqueue_select_cpu_near(int node)
1581{
1582        int cpu;
1583
1584        /* No point in doing this if NUMA isn't enabled for workqueues */
1585        if (!wq_numa_enabled)
1586                return WORK_CPU_UNBOUND;
1587
1588        /* Delay binding to CPU if node is not valid or online */
1589        if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1590                return WORK_CPU_UNBOUND;
1591
1592        /* Use local node/cpu if we are already there */
1593        cpu = raw_smp_processor_id();
1594        if (node == cpu_to_node(cpu))
1595                return cpu;
1596
1597        /* Use "random" otherwise know as "first" online CPU of node */
1598        cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1599
1600        /* If CPU is valid return that, otherwise just defer */
1601        return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1602}
1603
1604/**
1605 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1606 * @node: NUMA node that we are targeting the work for
1607 * @wq: workqueue to use
1608 * @work: work to queue
1609 *
1610 * We queue the work to a "random" CPU within a given NUMA node. The basic
1611 * idea here is to provide a way to somehow associate work with a given
1612 * NUMA node.
1613 *
1614 * This function will only make a best effort attempt at getting this onto
1615 * the right NUMA node. If no node is requested or the requested node is
1616 * offline then we just fall back to standard queue_work behavior.
1617 *
1618 * Currently the "random" CPU ends up being the first available CPU in the
1619 * intersection of cpu_online_mask and the cpumask of the node, unless we
1620 * are running on the node. In that case we just use the current CPU.
1621 *
1622 * Return: %false if @work was already on a queue, %true otherwise.
1623 */
1624bool queue_work_node(int node, struct workqueue_struct *wq,
1625                     struct work_struct *work)
1626{
1627        unsigned long flags;
1628        bool ret = false;
1629
1630        /*
1631         * This current implementation is specific to unbound workqueues.
1632         * Specifically we only return the first available CPU for a given
1633         * node instead of cycling through individual CPUs within the node.
1634         *
1635         * If this is used with a per-cpu workqueue then the logic in
1636         * workqueue_select_cpu_near would need to be updated to allow for
1637         * some round robin type logic.
1638         */
1639        WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1640
1641        local_irq_save(flags);
1642
1643        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1644                int cpu = workqueue_select_cpu_near(node);
1645
1646                __queue_work(cpu, wq, work);
1647                ret = true;
1648        }
1649
1650        local_irq_restore(flags);
1651        return ret;
1652}
1653EXPORT_SYMBOL_GPL(queue_work_node);
1654
1655void delayed_work_timer_fn(struct timer_list *t)
1656{
1657        struct delayed_work *dwork = from_timer(dwork, t, timer);
1658
1659        /* should have been called from irqsafe timer with irq already off */
1660        __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1661}
1662EXPORT_SYMBOL(delayed_work_timer_fn);
1663
1664static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1665                                struct delayed_work *dwork, unsigned long delay)
1666{
1667        struct timer_list *timer = &dwork->timer;
1668        struct work_struct *work = &dwork->work;
1669
1670        WARN_ON_ONCE(!wq);
1671        WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1672        WARN_ON_ONCE(timer_pending(timer));
1673        WARN_ON_ONCE(!list_empty(&work->entry));
1674
1675        /*
1676         * If @delay is 0, queue @dwork->work immediately.  This is for
1677         * both optimization and correctness.  The earliest @timer can
1678         * expire is on the closest next tick and delayed_work users depend
1679         * on that there's no such delay when @delay is 0.
1680         */
1681        if (!delay) {
1682                __queue_work(cpu, wq, &dwork->work);
1683                return;
1684        }
1685
1686        dwork->wq = wq;
1687        dwork->cpu = cpu;
1688        timer->expires = jiffies + delay;
1689
1690        if (unlikely(cpu != WORK_CPU_UNBOUND))
1691                add_timer_on(timer, cpu);
1692        else
1693                add_timer(timer);
1694}
1695
1696/**
1697 * queue_delayed_work_on - queue work on specific CPU after delay
1698 * @cpu: CPU number to execute work on
1699 * @wq: workqueue to use
1700 * @dwork: work to queue
1701 * @delay: number of jiffies to wait before queueing
1702 *
1703 * Return: %false if @work was already on a queue, %true otherwise.  If
1704 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1705 * execution.
1706 */
1707bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1708                           struct delayed_work *dwork, unsigned long delay)
1709{
1710        struct work_struct *work = &dwork->work;
1711        bool ret = false;
1712        unsigned long flags;
1713
1714        /* read the comment in __queue_work() */
1715        local_irq_save(flags);
1716
1717        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1718                __queue_delayed_work(cpu, wq, dwork, delay);
1719                ret = true;
1720        }
1721
1722        local_irq_restore(flags);
1723        return ret;
1724}
1725EXPORT_SYMBOL(queue_delayed_work_on);
1726
1727/**
1728 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1729 * @cpu: CPU number to execute work on
1730 * @wq: workqueue to use
1731 * @dwork: work to queue
1732 * @delay: number of jiffies to wait before queueing
1733 *
1734 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1735 * modify @dwork's timer so that it expires after @delay.  If @delay is
1736 * zero, @work is guaranteed to be scheduled immediately regardless of its
1737 * current state.
1738 *
1739 * Return: %false if @dwork was idle and queued, %true if @dwork was
1740 * pending and its timer was modified.
1741 *
1742 * This function is safe to call from any context including IRQ handler.
1743 * See try_to_grab_pending() for details.
1744 */
1745bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1746                         struct delayed_work *dwork, unsigned long delay)
1747{
1748        unsigned long flags;
1749        int ret;
1750
1751        do {
1752                ret = try_to_grab_pending(&dwork->work, true, &flags);
1753        } while (unlikely(ret == -EAGAIN));
1754
1755        if (likely(ret >= 0)) {
1756                __queue_delayed_work(cpu, wq, dwork, delay);
1757                local_irq_restore(flags);
1758        }
1759
1760        /* -ENOENT from try_to_grab_pending() becomes %true */
1761        return ret;
1762}
1763EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1764
1765static void rcu_work_rcufn(struct rcu_head *rcu)
1766{
1767        struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1768
1769        /* read the comment in __queue_work() */
1770        local_irq_disable();
1771        __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1772        local_irq_enable();
1773}
1774
1775/**
1776 * queue_rcu_work - queue work after a RCU grace period
1777 * @wq: workqueue to use
1778 * @rwork: work to queue
1779 *
1780 * Return: %false if @rwork was already pending, %true otherwise.  Note
1781 * that a full RCU grace period is guaranteed only after a %true return.
1782 * While @rwork is guaranteed to be executed after a %false return, the
1783 * execution may happen before a full RCU grace period has passed.
1784 */
1785bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1786{
1787        struct work_struct *work = &rwork->work;
1788
1789        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1790                rwork->wq = wq;
1791                call_rcu(&rwork->rcu, rcu_work_rcufn);
1792                return true;
1793        }
1794
1795        return false;
1796}
1797EXPORT_SYMBOL(queue_rcu_work);
1798
1799/**
1800 * worker_enter_idle - enter idle state
1801 * @worker: worker which is entering idle state
1802 *
1803 * @worker is entering idle state.  Update stats and idle timer if
1804 * necessary.
1805 *
1806 * LOCKING:
1807 * raw_spin_lock_irq(pool->lock).
1808 */
1809static void worker_enter_idle(struct worker *worker)
1810{
1811        struct worker_pool *pool = worker->pool;
1812
1813        if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1814            WARN_ON_ONCE(!list_empty(&worker->entry) &&
1815                         (worker->hentry.next || worker->hentry.pprev)))
1816                return;
1817
1818        /* can't use worker_set_flags(), also called from create_worker() */
1819        worker->flags |= WORKER_IDLE;
1820        pool->nr_idle++;
1821        worker->last_active = jiffies;
1822
1823        /* idle_list is LIFO */
1824        list_add(&worker->entry, &pool->idle_list);
1825
1826        if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1827                mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1828
1829        /* Sanity check nr_running. */
1830        WARN_ON_ONCE(pool->nr_workers == pool->nr_idle &&
1831                     atomic_read(&pool->nr_running));
1832}
1833
1834/**
1835 * worker_leave_idle - leave idle state
1836 * @worker: worker which is leaving idle state
1837 *
1838 * @worker is leaving idle state.  Update stats.
1839 *
1840 * LOCKING:
1841 * raw_spin_lock_irq(pool->lock).
1842 */
1843static void worker_leave_idle(struct worker *worker)
1844{
1845        struct worker_pool *pool = worker->pool;
1846
1847        if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1848                return;
1849        worker_clr_flags(worker, WORKER_IDLE);
1850        pool->nr_idle--;
1851        list_del_init(&worker->entry);
1852}
1853
1854static struct worker *alloc_worker(int node)
1855{
1856        struct worker *worker;
1857
1858        worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1859        if (worker) {
1860                INIT_LIST_HEAD(&worker->entry);
1861                INIT_LIST_HEAD(&worker->scheduled);
1862                INIT_LIST_HEAD(&worker->node);
1863                /* on creation a worker is in !idle && prep state */
1864                worker->flags = WORKER_PREP;
1865        }
1866        return worker;
1867}
1868
1869/**
1870 * worker_attach_to_pool() - attach a worker to a pool
1871 * @worker: worker to be attached
1872 * @pool: the target pool
1873 *
1874 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1875 * cpu-binding of @worker are kept coordinated with the pool across
1876 * cpu-[un]hotplugs.
1877 */
1878static void worker_attach_to_pool(struct worker *worker,
1879                                   struct worker_pool *pool)
1880{
1881        mutex_lock(&wq_pool_attach_mutex);
1882
1883        /*
1884         * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1885         * stable across this function.  See the comments above the flag
1886         * definition for details.
1887         */
1888        if (pool->flags & POOL_DISASSOCIATED)
1889                worker->flags |= WORKER_UNBOUND;
1890        else
1891                kthread_set_per_cpu(worker->task, pool->cpu);
1892
1893        if (worker->rescue_wq)
1894                set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1895
1896        list_add_tail(&worker->node, &pool->workers);
1897        worker->pool = pool;
1898
1899        mutex_unlock(&wq_pool_attach_mutex);
1900}
1901
1902/**
1903 * worker_detach_from_pool() - detach a worker from its pool
1904 * @worker: worker which is attached to its pool
1905 *
1906 * Undo the attaching which had been done in worker_attach_to_pool().  The
1907 * caller worker shouldn't access to the pool after detached except it has
1908 * other reference to the pool.
1909 */
1910static void worker_detach_from_pool(struct worker *worker)
1911{
1912        struct worker_pool *pool = worker->pool;
1913        struct completion *detach_completion = NULL;
1914
1915        mutex_lock(&wq_pool_attach_mutex);
1916
1917        kthread_set_per_cpu(worker->task, -1);
1918        list_del(&worker->node);
1919        worker->pool = NULL;
1920
1921        if (list_empty(&pool->workers))
1922                detach_completion = pool->detach_completion;
1923        mutex_unlock(&wq_pool_attach_mutex);
1924
1925        /* clear leftover flags without pool->lock after it is detached */
1926        worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1927
1928        if (detach_completion)
1929                complete(detach_completion);
1930}
1931
1932/**
1933 * create_worker - create a new workqueue worker
1934 * @pool: pool the new worker will belong to
1935 *
1936 * Create and start a new worker which is attached to @pool.
1937 *
1938 * CONTEXT:
1939 * Might sleep.  Does GFP_KERNEL allocations.
1940 *
1941 * Return:
1942 * Pointer to the newly created worker.
1943 */
1944static struct worker *create_worker(struct worker_pool *pool)
1945{
1946        struct worker *worker;
1947        int id;
1948        char id_buf[16];
1949
1950        /* ID is needed to determine kthread name */
1951        id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1952        if (id < 0)
1953                return NULL;
1954
1955        worker = alloc_worker(pool->node);
1956        if (!worker)
1957                goto fail;
1958
1959        worker->id = id;
1960
1961        if (pool->cpu >= 0)
1962                snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1963                         pool->attrs->nice < 0  ? "H" : "");
1964        else
1965                snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1966
1967        worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1968                                              "kworker/%s", id_buf);
1969        if (IS_ERR(worker->task))
1970                goto fail;
1971
1972        set_user_nice(worker->task, pool->attrs->nice);
1973        kthread_bind_mask(worker->task, pool->attrs->cpumask);
1974
1975        /* successful, attach the worker to the pool */
1976        worker_attach_to_pool(worker, pool);
1977
1978        /* start the newly created worker */
1979        raw_spin_lock_irq(&pool->lock);
1980        worker->pool->nr_workers++;
1981        worker_enter_idle(worker);
1982        wake_up_process(worker->task);
1983        raw_spin_unlock_irq(&pool->lock);
1984
1985        return worker;
1986
1987fail:
1988        ida_free(&pool->worker_ida, id);
1989        kfree(worker);
1990        return NULL;
1991}
1992
1993/**
1994 * destroy_worker - destroy a workqueue worker
1995 * @worker: worker to be destroyed
1996 *
1997 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1998 * be idle.
1999 *
2000 * CONTEXT:
2001 * raw_spin_lock_irq(pool->lock).
2002 */
2003static void destroy_worker(struct worker *worker)
2004{
2005        struct worker_pool *pool = worker->pool;
2006
2007        lockdep_assert_held(&pool->lock);
2008
2009        /* sanity check frenzy */
2010        if (WARN_ON(worker->current_work) ||
2011            WARN_ON(!list_empty(&worker->scheduled)) ||
2012            WARN_ON(!(worker->flags & WORKER_IDLE)))
2013                return;
2014
2015        pool->nr_workers--;
2016        pool->nr_idle--;
2017
2018        list_del_init(&worker->entry);
2019        worker->flags |= WORKER_DIE;
2020        wake_up_process(worker->task);
2021}
2022
2023static void idle_worker_timeout(struct timer_list *t)
2024{
2025        struct worker_pool *pool = from_timer(pool, t, idle_timer);
2026
2027        raw_spin_lock_irq(&pool->lock);
2028
2029        while (too_many_workers(pool)) {
2030                struct worker *worker;
2031                unsigned long expires;
2032
2033                /* idle_list is kept in LIFO order, check the last one */
2034                worker = list_entry(pool->idle_list.prev, struct worker, entry);
2035                expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2036
2037                if (time_before(jiffies, expires)) {
2038                        mod_timer(&pool->idle_timer, expires);
2039                        break;
2040                }
2041
2042                destroy_worker(worker);
2043        }
2044
2045        raw_spin_unlock_irq(&pool->lock);
2046}
2047
2048static void send_mayday(struct work_struct *work)
2049{
2050        struct pool_workqueue *pwq = get_work_pwq(work);
2051        struct workqueue_struct *wq = pwq->wq;
2052
2053        lockdep_assert_held(&wq_mayday_lock);
2054
2055        if (!wq->rescuer)
2056                return;
2057
2058        /* mayday mayday mayday */
2059        if (list_empty(&pwq->mayday_node)) {
2060                /*
2061                 * If @pwq is for an unbound wq, its base ref may be put at
2062                 * any time due to an attribute change.  Pin @pwq until the
2063                 * rescuer is done with it.
2064                 */
2065                get_pwq(pwq);
2066                list_add_tail(&pwq->mayday_node, &wq->maydays);
2067                wake_up_process(wq->rescuer->task);
2068        }
2069}
2070
2071static void pool_mayday_timeout(struct timer_list *t)
2072{
2073        struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2074        struct work_struct *work;
2075
2076        raw_spin_lock_irq(&pool->lock);
2077        raw_spin_lock(&wq_mayday_lock);         /* for wq->maydays */
2078
2079        if (need_to_create_worker(pool)) {
2080                /*
2081                 * We've been trying to create a new worker but
2082                 * haven't been successful.  We might be hitting an
2083                 * allocation deadlock.  Send distress signals to
2084                 * rescuers.
2085                 */
2086                list_for_each_entry(work, &pool->worklist, entry)
2087                        send_mayday(work);
2088        }
2089
2090        raw_spin_unlock(&wq_mayday_lock);
2091        raw_spin_unlock_irq(&pool->lock);
2092
2093        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2094}
2095
2096/**
2097 * maybe_create_worker - create a new worker if necessary
2098 * @pool: pool to create a new worker for
2099 *
2100 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2101 * have at least one idle worker on return from this function.  If
2102 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2103 * sent to all rescuers with works scheduled on @pool to resolve
2104 * possible allocation deadlock.
2105 *
2106 * On return, need_to_create_worker() is guaranteed to be %false and
2107 * may_start_working() %true.
2108 *
2109 * LOCKING:
2110 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2111 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2112 * manager.
2113 */
2114static void maybe_create_worker(struct worker_pool *pool)
2115__releases(&pool->lock)
2116__acquires(&pool->lock)
2117{
2118restart:
2119        raw_spin_unlock_irq(&pool->lock);
2120
2121        /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2122        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2123
2124        while (true) {
2125                if (create_worker(pool) || !need_to_create_worker(pool))
2126                        break;
2127
2128                schedule_timeout_interruptible(CREATE_COOLDOWN);
2129
2130                if (!need_to_create_worker(pool))
2131                        break;
2132        }
2133
2134        del_timer_sync(&pool->mayday_timer);
2135        raw_spin_lock_irq(&pool->lock);
2136        /*
2137         * This is necessary even after a new worker was just successfully
2138         * created as @pool->lock was dropped and the new worker might have
2139         * already become busy.
2140         */
2141        if (need_to_create_worker(pool))
2142                goto restart;
2143}
2144
2145/**
2146 * manage_workers - manage worker pool
2147 * @worker: self
2148 *
2149 * Assume the manager role and manage the worker pool @worker belongs
2150 * to.  At any given time, there can be only zero or one manager per
2151 * pool.  The exclusion is handled automatically by this function.
2152 *
2153 * The caller can safely start processing works on false return.  On
2154 * true return, it's guaranteed that need_to_create_worker() is false
2155 * and may_start_working() is true.
2156 *
2157 * CONTEXT:
2158 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2159 * multiple times.  Does GFP_KERNEL allocations.
2160 *
2161 * Return:
2162 * %false if the pool doesn't need management and the caller can safely
2163 * start processing works, %true if management function was performed and
2164 * the conditions that the caller verified before calling the function may
2165 * no longer be true.
2166 */
2167static bool manage_workers(struct worker *worker)
2168{
2169        struct worker_pool *pool = worker->pool;
2170
2171        if (pool->flags & POOL_MANAGER_ACTIVE)
2172                return false;
2173
2174        pool->flags |= POOL_MANAGER_ACTIVE;
2175        pool->manager = worker;
2176
2177        maybe_create_worker(pool);
2178
2179        pool->manager = NULL;
2180        pool->flags &= ~POOL_MANAGER_ACTIVE;
2181        rcuwait_wake_up(&manager_wait);
2182        return true;
2183}
2184
2185/**
2186 * process_one_work - process single work
2187 * @worker: self
2188 * @work: work to process
2189 *
2190 * Process @work.  This function contains all the logics necessary to
2191 * process a single work including synchronization against and
2192 * interaction with other workers on the same cpu, queueing and
2193 * flushing.  As long as context requirement is met, any worker can
2194 * call this function to process a work.
2195 *
2196 * CONTEXT:
2197 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2198 */
2199static void process_one_work(struct worker *worker, struct work_struct *work)
2200__releases(&pool->lock)
2201__acquires(&pool->lock)
2202{
2203        struct pool_workqueue *pwq = get_work_pwq(work);
2204        struct worker_pool *pool = worker->pool;
2205        bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2206        unsigned long work_data;
2207        struct worker *collision;
2208#ifdef CONFIG_LOCKDEP
2209        /*
2210         * It is permissible to free the struct work_struct from
2211         * inside the function that is called from it, this we need to
2212         * take into account for lockdep too.  To avoid bogus "held
2213         * lock freed" warnings as well as problems when looking into
2214         * work->lockdep_map, make a copy and use that here.
2215         */
2216        struct lockdep_map lockdep_map;
2217
2218        lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2219#endif
2220        /* ensure we're on the correct CPU */
2221        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2222                     raw_smp_processor_id() != pool->cpu);
2223
2224        /*
2225         * A single work shouldn't be executed concurrently by
2226         * multiple workers on a single cpu.  Check whether anyone is
2227         * already processing the work.  If so, defer the work to the
2228         * currently executing one.
2229         */
2230        collision = find_worker_executing_work(pool, work);
2231        if (unlikely(collision)) {
2232                move_linked_works(work, &collision->scheduled, NULL);
2233                return;
2234        }
2235
2236        /* claim and dequeue */
2237        debug_work_deactivate(work);
2238        hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2239        worker->current_work = work;
2240        worker->current_func = work->func;
2241        worker->current_pwq = pwq;
2242        work_data = *work_data_bits(work);
2243        worker->current_color = get_work_color(work_data);
2244
2245        /*
2246         * Record wq name for cmdline and debug reporting, may get
2247         * overridden through set_worker_desc().
2248         */
2249        strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2250
2251        list_del_init(&work->entry);
2252
2253        /*
2254         * CPU intensive works don't participate in concurrency management.
2255         * They're the scheduler's responsibility.  This takes @worker out
2256         * of concurrency management and the next code block will chain
2257         * execution of the pending work items.
2258         */
2259        if (unlikely(cpu_intensive))
2260                worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2261
2262        /*
2263         * Wake up another worker if necessary.  The condition is always
2264         * false for normal per-cpu workers since nr_running would always
2265         * be >= 1 at this point.  This is used to chain execution of the
2266         * pending work items for WORKER_NOT_RUNNING workers such as the
2267         * UNBOUND and CPU_INTENSIVE ones.
2268         */
2269        if (need_more_worker(pool))
2270                wake_up_worker(pool);
2271
2272        /*
2273         * Record the last pool and clear PENDING which should be the last
2274         * update to @work.  Also, do this inside @pool->lock so that
2275         * PENDING and queued state changes happen together while IRQ is
2276         * disabled.
2277         */
2278        set_work_pool_and_clear_pending(work, pool->id);
2279
2280        raw_spin_unlock_irq(&pool->lock);
2281
2282        lock_map_acquire(&pwq->wq->lockdep_map);
2283        lock_map_acquire(&lockdep_map);
2284        /*
2285         * Strictly speaking we should mark the invariant state without holding
2286         * any locks, that is, before these two lock_map_acquire()'s.
2287         *
2288         * However, that would result in:
2289         *
2290         *   A(W1)
2291         *   WFC(C)
2292         *              A(W1)
2293         *              C(C)
2294         *
2295         * Which would create W1->C->W1 dependencies, even though there is no
2296         * actual deadlock possible. There are two solutions, using a
2297         * read-recursive acquire on the work(queue) 'locks', but this will then
2298         * hit the lockdep limitation on recursive locks, or simply discard
2299         * these locks.
2300         *
2301         * AFAICT there is no possible deadlock scenario between the
2302         * flush_work() and complete() primitives (except for single-threaded
2303         * workqueues), so hiding them isn't a problem.
2304         */
2305        lockdep_invariant_state(true);
2306        trace_workqueue_execute_start(work);
2307        worker->current_func(work);
2308        /*
2309         * While we must be careful to not use "work" after this, the trace
2310         * point will only record its address.
2311         */
2312        trace_workqueue_execute_end(work, worker->current_func);
2313        lock_map_release(&lockdep_map);
2314        lock_map_release(&pwq->wq->lockdep_map);
2315
2316        if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2317                pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2318                       "     last function: %ps\n",
2319                       current->comm, preempt_count(), task_pid_nr(current),
2320                       worker->current_func);
2321                debug_show_held_locks(current);
2322                dump_stack();
2323        }
2324
2325        /*
2326         * The following prevents a kworker from hogging CPU on !PREEMPTION
2327         * kernels, where a requeueing work item waiting for something to
2328         * happen could deadlock with stop_machine as such work item could
2329         * indefinitely requeue itself while all other CPUs are trapped in
2330         * stop_machine. At the same time, report a quiescent RCU state so
2331         * the same condition doesn't freeze RCU.
2332         */
2333        cond_resched();
2334
2335        raw_spin_lock_irq(&pool->lock);
2336
2337        /* clear cpu intensive status */
2338        if (unlikely(cpu_intensive))
2339                worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2340
2341        /* tag the worker for identification in schedule() */
2342        worker->last_func = worker->current_func;
2343
2344        /* we're done with it, release */
2345        hash_del(&worker->hentry);
2346        worker->current_work = NULL;
2347        worker->current_func = NULL;
2348        worker->current_pwq = NULL;
2349        worker->current_color = INT_MAX;
2350        pwq_dec_nr_in_flight(pwq, work_data);
2351}
2352
2353/**
2354 * process_scheduled_works - process scheduled works
2355 * @worker: self
2356 *
2357 * Process all scheduled works.  Please note that the scheduled list
2358 * may change while processing a work, so this function repeatedly
2359 * fetches a work from the top and executes it.
2360 *
2361 * CONTEXT:
2362 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2363 * multiple times.
2364 */
2365static void process_scheduled_works(struct worker *worker)
2366{
2367        while (!list_empty(&worker->scheduled)) {
2368                struct work_struct *work = list_first_entry(&worker->scheduled,
2369                                                struct work_struct, entry);
2370                process_one_work(worker, work);
2371        }
2372}
2373
2374static void set_pf_worker(bool val)
2375{
2376        mutex_lock(&wq_pool_attach_mutex);
2377        if (val)
2378                current->flags |= PF_WQ_WORKER;
2379        else
2380                current->flags &= ~PF_WQ_WORKER;
2381        mutex_unlock(&wq_pool_attach_mutex);
2382}
2383
2384/**
2385 * worker_thread - the worker thread function
2386 * @__worker: self
2387 *
2388 * The worker thread function.  All workers belong to a worker_pool -
2389 * either a per-cpu one or dynamic unbound one.  These workers process all
2390 * work items regardless of their specific target workqueue.  The only
2391 * exception is work items which belong to workqueues with a rescuer which
2392 * will be explained in rescuer_thread().
2393 *
2394 * Return: 0
2395 */
2396static int worker_thread(void *__worker)
2397{
2398        struct worker *worker = __worker;
2399        struct worker_pool *pool = worker->pool;
2400
2401        /* tell the scheduler that this is a workqueue worker */
2402        set_pf_worker(true);
2403woke_up:
2404        raw_spin_lock_irq(&pool->lock);
2405
2406        /* am I supposed to die? */
2407        if (unlikely(worker->flags & WORKER_DIE)) {
2408                raw_spin_unlock_irq(&pool->lock);
2409                WARN_ON_ONCE(!list_empty(&worker->entry));
2410                set_pf_worker(false);
2411
2412                set_task_comm(worker->task, "kworker/dying");
2413                ida_free(&pool->worker_ida, worker->id);
2414                worker_detach_from_pool(worker);
2415                kfree(worker);
2416                return 0;
2417        }
2418
2419        worker_leave_idle(worker);
2420recheck:
2421        /* no more worker necessary? */
2422        if (!need_more_worker(pool))
2423                goto sleep;
2424
2425        /* do we need to manage? */
2426        if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2427                goto recheck;
2428
2429        /*
2430         * ->scheduled list can only be filled while a worker is
2431         * preparing to process a work or actually processing it.
2432         * Make sure nobody diddled with it while I was sleeping.
2433         */
2434        WARN_ON_ONCE(!list_empty(&worker->scheduled));
2435
2436        /*
2437         * Finish PREP stage.  We're guaranteed to have at least one idle
2438         * worker or that someone else has already assumed the manager
2439         * role.  This is where @worker starts participating in concurrency
2440         * management if applicable and concurrency management is restored
2441         * after being rebound.  See rebind_workers() for details.
2442         */
2443        worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2444
2445        do {
2446                struct work_struct *work =
2447                        list_first_entry(&pool->worklist,
2448                                         struct work_struct, entry);
2449
2450                pool->watchdog_ts = jiffies;
2451
2452                if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2453                        /* optimization path, not strictly necessary */
2454                        process_one_work(worker, work);
2455                        if (unlikely(!list_empty(&worker->scheduled)))
2456                                process_scheduled_works(worker);
2457                } else {
2458                        move_linked_works(work, &worker->scheduled, NULL);
2459                        process_scheduled_works(worker);
2460                }
2461        } while (keep_working(pool));
2462
2463        worker_set_flags(worker, WORKER_PREP);
2464sleep:
2465        /*
2466         * pool->lock is held and there's no work to process and no need to
2467         * manage, sleep.  Workers are woken up only while holding
2468         * pool->lock or from local cpu, so setting the current state
2469         * before releasing pool->lock is enough to prevent losing any
2470         * event.
2471         */
2472        worker_enter_idle(worker);
2473        __set_current_state(TASK_IDLE);
2474        raw_spin_unlock_irq(&pool->lock);
2475        schedule();
2476        goto woke_up;
2477}
2478
2479/**
2480 * rescuer_thread - the rescuer thread function
2481 * @__rescuer: self
2482 *
2483 * Workqueue rescuer thread function.  There's one rescuer for each
2484 * workqueue which has WQ_MEM_RECLAIM set.
2485 *
2486 * Regular work processing on a pool may block trying to create a new
2487 * worker which uses GFP_KERNEL allocation which has slight chance of
2488 * developing into deadlock if some works currently on the same queue
2489 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2490 * the problem rescuer solves.
2491 *
2492 * When such condition is possible, the pool summons rescuers of all
2493 * workqueues which have works queued on the pool and let them process
2494 * those works so that forward progress can be guaranteed.
2495 *
2496 * This should happen rarely.
2497 *
2498 * Return: 0
2499 */
2500static int rescuer_thread(void *__rescuer)
2501{
2502        struct worker *rescuer = __rescuer;
2503        struct workqueue_struct *wq = rescuer->rescue_wq;
2504        struct list_head *scheduled = &rescuer->scheduled;
2505        bool should_stop;
2506
2507        set_user_nice(current, RESCUER_NICE_LEVEL);
2508
2509        /*
2510         * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2511         * doesn't participate in concurrency management.
2512         */
2513        set_pf_worker(true);
2514repeat:
2515        set_current_state(TASK_IDLE);
2516
2517        /*
2518         * By the time the rescuer is requested to stop, the workqueue
2519         * shouldn't have any work pending, but @wq->maydays may still have
2520         * pwq(s) queued.  This can happen by non-rescuer workers consuming
2521         * all the work items before the rescuer got to them.  Go through
2522         * @wq->maydays processing before acting on should_stop so that the
2523         * list is always empty on exit.
2524         */
2525        should_stop = kthread_should_stop();
2526
2527        /* see whether any pwq is asking for help */
2528        raw_spin_lock_irq(&wq_mayday_lock);
2529
2530        while (!list_empty(&wq->maydays)) {
2531                struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2532                                        struct pool_workqueue, mayday_node);
2533                struct worker_pool *pool = pwq->pool;
2534                struct work_struct *work, *n;
2535                bool first = true;
2536
2537                __set_current_state(TASK_RUNNING);
2538                list_del_init(&pwq->mayday_node);
2539
2540                raw_spin_unlock_irq(&wq_mayday_lock);
2541
2542                worker_attach_to_pool(rescuer, pool);
2543
2544                raw_spin_lock_irq(&pool->lock);
2545
2546                /*
2547                 * Slurp in all works issued via this workqueue and
2548                 * process'em.
2549                 */
2550                WARN_ON_ONCE(!list_empty(scheduled));
2551                list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2552                        if (get_work_pwq(work) == pwq) {
2553                                if (first)
2554                                        pool->watchdog_ts = jiffies;
2555                                move_linked_works(work, scheduled, &n);
2556                        }
2557                        first = false;
2558                }
2559
2560                if (!list_empty(scheduled)) {
2561                        process_scheduled_works(rescuer);
2562
2563                        /*
2564                         * The above execution of rescued work items could
2565                         * have created more to rescue through
2566                         * pwq_activate_first_inactive() or chained
2567                         * queueing.  Let's put @pwq back on mayday list so
2568                         * that such back-to-back work items, which may be
2569                         * being used to relieve memory pressure, don't
2570                         * incur MAYDAY_INTERVAL delay inbetween.
2571                         */
2572                        if (pwq->nr_active && need_to_create_worker(pool)) {
2573                                raw_spin_lock(&wq_mayday_lock);
2574                                /*
2575                                 * Queue iff we aren't racing destruction
2576                                 * and somebody else hasn't queued it already.
2577                                 */
2578                                if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2579                                        get_pwq(pwq);
2580                                        list_add_tail(&pwq->mayday_node, &wq->maydays);
2581                                }
2582                                raw_spin_unlock(&wq_mayday_lock);
2583                        }
2584                }
2585
2586                /*
2587                 * Put the reference grabbed by send_mayday().  @pool won't
2588                 * go away while we're still attached to it.
2589                 */
2590                put_pwq(pwq);
2591
2592                /*
2593                 * Leave this pool.  If need_more_worker() is %true, notify a
2594                 * regular worker; otherwise, we end up with 0 concurrency
2595                 * and stalling the execution.
2596                 */
2597                if (need_more_worker(pool))
2598                        wake_up_worker(pool);
2599
2600                raw_spin_unlock_irq(&pool->lock);
2601
2602                worker_detach_from_pool(rescuer);
2603
2604                raw_spin_lock_irq(&wq_mayday_lock);
2605        }
2606
2607        raw_spin_unlock_irq(&wq_mayday_lock);
2608
2609        if (should_stop) {
2610                __set_current_state(TASK_RUNNING);
2611                set_pf_worker(false);
2612                return 0;
2613        }
2614
2615        /* rescuers should never participate in concurrency management */
2616        WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2617        schedule();
2618        goto repeat;
2619}
2620
2621/**
2622 * check_flush_dependency - check for flush dependency sanity
2623 * @target_wq: workqueue being flushed
2624 * @target_work: work item being flushed (NULL for workqueue flushes)
2625 *
2626 * %current is trying to flush the whole @target_wq or @target_work on it.
2627 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2628 * reclaiming memory or running on a workqueue which doesn't have
2629 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2630 * a deadlock.
2631 */
2632static void check_flush_dependency(struct workqueue_struct *target_wq,
2633                                   struct work_struct *target_work)
2634{
2635        work_func_t target_func = target_work ? target_work->func : NULL;
2636        struct worker *worker;
2637
2638        if (target_wq->flags & WQ_MEM_RECLAIM)
2639                return;
2640
2641        worker = current_wq_worker();
2642
2643        WARN_ONCE(current->flags & PF_MEMALLOC,
2644                  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2645                  current->pid, current->comm, target_wq->name, target_func);
2646        WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2647                              (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2648                  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2649                  worker->current_pwq->wq->name, worker->current_func,
2650                  target_wq->name, target_func);
2651}
2652
2653struct wq_barrier {
2654        struct work_struct      work;
2655        struct completion       done;
2656        struct task_struct      *task;  /* purely informational */
2657};
2658
2659static void wq_barrier_func(struct work_struct *work)
2660{
2661        struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2662        complete(&barr->done);
2663}
2664
2665/**
2666 * insert_wq_barrier - insert a barrier work
2667 * @pwq: pwq to insert barrier into
2668 * @barr: wq_barrier to insert
2669 * @target: target work to attach @barr to
2670 * @worker: worker currently executing @target, NULL if @target is not executing
2671 *
2672 * @barr is linked to @target such that @barr is completed only after
2673 * @target finishes execution.  Please note that the ordering
2674 * guarantee is observed only with respect to @target and on the local
2675 * cpu.
2676 *
2677 * Currently, a queued barrier can't be canceled.  This is because
2678 * try_to_grab_pending() can't determine whether the work to be
2679 * grabbed is at the head of the queue and thus can't clear LINKED
2680 * flag of the previous work while there must be a valid next work
2681 * after a work with LINKED flag set.
2682 *
2683 * Note that when @worker is non-NULL, @target may be modified
2684 * underneath us, so we can't reliably determine pwq from @target.
2685 *
2686 * CONTEXT:
2687 * raw_spin_lock_irq(pool->lock).
2688 */
2689static void insert_wq_barrier(struct pool_workqueue *pwq,
2690                              struct wq_barrier *barr,
2691                              struct work_struct *target, struct worker *worker)
2692{
2693        unsigned int work_flags = 0;
2694        unsigned int work_color;
2695        struct list_head *head;
2696
2697        /*
2698         * debugobject calls are safe here even with pool->lock locked
2699         * as we know for sure that this will not trigger any of the
2700         * checks and call back into the fixup functions where we
2701         * might deadlock.
2702         */
2703        INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2704        __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2705
2706        init_completion_map(&barr->done, &target->lockdep_map);
2707
2708        barr->task = current;
2709
2710        /* The barrier work item does not participate in pwq->nr_active. */
2711        work_flags |= WORK_STRUCT_INACTIVE;
2712
2713        /*
2714         * If @target is currently being executed, schedule the
2715         * barrier to the worker; otherwise, put it after @target.
2716         */
2717        if (worker) {
2718                head = worker->scheduled.next;
2719                work_color = worker->current_color;
2720        } else {
2721                unsigned long *bits = work_data_bits(target);
2722
2723                head = target->entry.next;
2724                /* there can already be other linked works, inherit and set */
2725                work_flags |= *bits & WORK_STRUCT_LINKED;
2726                work_color = get_work_color(*bits);
2727                __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2728        }
2729
2730        pwq->nr_in_flight[work_color]++;
2731        work_flags |= work_color_to_flags(work_color);
2732
2733        debug_work_activate(&barr->work);
2734        insert_work(pwq, &barr->work, head, work_flags);
2735}
2736
2737/**
2738 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2739 * @wq: workqueue being flushed
2740 * @flush_color: new flush color, < 0 for no-op
2741 * @work_color: new work color, < 0 for no-op
2742 *
2743 * Prepare pwqs for workqueue flushing.
2744 *
2745 * If @flush_color is non-negative, flush_color on all pwqs should be
2746 * -1.  If no pwq has in-flight commands at the specified color, all
2747 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2748 * has in flight commands, its pwq->flush_color is set to
2749 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2750 * wakeup logic is armed and %true is returned.
2751 *
2752 * The caller should have initialized @wq->first_flusher prior to
2753 * calling this function with non-negative @flush_color.  If
2754 * @flush_color is negative, no flush color update is done and %false
2755 * is returned.
2756 *
2757 * If @work_color is non-negative, all pwqs should have the same
2758 * work_color which is previous to @work_color and all will be
2759 * advanced to @work_color.
2760 *
2761 * CONTEXT:
2762 * mutex_lock(wq->mutex).
2763 *
2764 * Return:
2765 * %true if @flush_color >= 0 and there's something to flush.  %false
2766 * otherwise.
2767 */
2768static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2769                                      int flush_color, int work_color)
2770{
2771        bool wait = false;
2772        struct pool_workqueue *pwq;
2773
2774        if (flush_color >= 0) {
2775                WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2776                atomic_set(&wq->nr_pwqs_to_flush, 1);
2777        }
2778
2779        for_each_pwq(pwq, wq) {
2780                struct worker_pool *pool = pwq->pool;
2781
2782                raw_spin_lock_irq(&pool->lock);
2783
2784                if (flush_color >= 0) {
2785                        WARN_ON_ONCE(pwq->flush_color != -1);
2786
2787                        if (pwq->nr_in_flight[flush_color]) {
2788                                pwq->flush_color = flush_color;
2789                                atomic_inc(&wq->nr_pwqs_to_flush);
2790                                wait = true;
2791                        }
2792                }
2793
2794                if (work_color >= 0) {
2795                        WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2796                        pwq->work_color = work_color;
2797                }
2798
2799                raw_spin_unlock_irq(&pool->lock);
2800        }
2801
2802        if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2803                complete(&wq->first_flusher->done);
2804
2805        return wait;
2806}
2807
2808/**
2809 * flush_workqueue - ensure that any scheduled work has run to completion.
2810 * @wq: workqueue to flush
2811 *
2812 * This function sleeps until all work items which were queued on entry
2813 * have finished execution, but it is not livelocked by new incoming ones.
2814 */
2815void flush_workqueue(struct workqueue_struct *wq)
2816{
2817        struct wq_flusher this_flusher = {
2818                .list = LIST_HEAD_INIT(this_flusher.list),
2819                .flush_color = -1,
2820                .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2821        };
2822        int next_color;
2823
2824        if (WARN_ON(!wq_online))
2825                return;
2826
2827        lock_map_acquire(&wq->lockdep_map);
2828        lock_map_release(&wq->lockdep_map);
2829
2830        mutex_lock(&wq->mutex);
2831
2832        /*
2833         * Start-to-wait phase
2834         */
2835        next_color = work_next_color(wq->work_color);
2836
2837        if (next_color != wq->flush_color) {
2838                /*
2839                 * Color space is not full.  The current work_color
2840                 * becomes our flush_color and work_color is advanced
2841                 * by one.
2842                 */
2843                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2844                this_flusher.flush_color = wq->work_color;
2845                wq->work_color = next_color;
2846
2847                if (!wq->first_flusher) {
2848                        /* no flush in progress, become the first flusher */
2849                        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2850
2851                        wq->first_flusher = &this_flusher;
2852
2853                        if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2854                                                       wq->work_color)) {
2855                                /* nothing to flush, done */
2856                                wq->flush_color = next_color;
2857                                wq->first_flusher = NULL;
2858                                goto out_unlock;
2859                        }
2860                } else {
2861                        /* wait in queue */
2862                        WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2863                        list_add_tail(&this_flusher.list, &wq->flusher_queue);
2864                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2865                }
2866        } else {
2867                /*
2868                 * Oops, color space is full, wait on overflow queue.
2869                 * The next flush completion will assign us
2870                 * flush_color and transfer to flusher_queue.
2871                 */
2872                list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2873        }
2874
2875        check_flush_dependency(wq, NULL);
2876
2877        mutex_unlock(&wq->mutex);
2878
2879        wait_for_completion(&this_flusher.done);
2880
2881        /*
2882         * Wake-up-and-cascade phase
2883         *
2884         * First flushers are responsible for cascading flushes and
2885         * handling overflow.  Non-first flushers can simply return.
2886         */
2887        if (READ_ONCE(wq->first_flusher) != &this_flusher)
2888                return;
2889
2890        mutex_lock(&wq->mutex);
2891
2892        /* we might have raced, check again with mutex held */
2893        if (wq->first_flusher != &this_flusher)
2894                goto out_unlock;
2895
2896        WRITE_ONCE(wq->first_flusher, NULL);
2897
2898        WARN_ON_ONCE(!list_empty(&this_flusher.list));
2899        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2900
2901        while (true) {
2902                struct wq_flusher *next, *tmp;
2903
2904                /* complete all the flushers sharing the current flush color */
2905                list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2906                        if (next->flush_color != wq->flush_color)
2907                                break;
2908                        list_del_init(&next->list);
2909                        complete(&next->done);
2910                }
2911
2912                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2913                             wq->flush_color != work_next_color(wq->work_color));
2914
2915                /* this flush_color is finished, advance by one */
2916                wq->flush_color = work_next_color(wq->flush_color);
2917
2918                /* one color has been freed, handle overflow queue */
2919                if (!list_empty(&wq->flusher_overflow)) {
2920                        /*
2921                         * Assign the same color to all overflowed
2922                         * flushers, advance work_color and append to
2923                         * flusher_queue.  This is the start-to-wait
2924                         * phase for these overflowed flushers.
2925                         */
2926                        list_for_each_entry(tmp, &wq->flusher_overflow, list)
2927                                tmp->flush_color = wq->work_color;
2928
2929                        wq->work_color = work_next_color(wq->work_color);
2930
2931                        list_splice_tail_init(&wq->flusher_overflow,
2932                                              &wq->flusher_queue);
2933                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2934                }
2935
2936                if (list_empty(&wq->flusher_queue)) {
2937                        WARN_ON_ONCE(wq->flush_color != wq->work_color);
2938                        break;
2939                }
2940
2941                /*
2942                 * Need to flush more colors.  Make the next flusher
2943                 * the new first flusher and arm pwqs.
2944                 */
2945                WARN_ON_ONCE(wq->flush_color == wq->work_color);
2946                WARN_ON_ONCE(wq->flush_color != next->flush_color);
2947
2948                list_del_init(&next->list);
2949                wq->first_flusher = next;
2950
2951                if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2952                        break;
2953
2954                /*
2955                 * Meh... this color is already done, clear first
2956                 * flusher and repeat cascading.
2957                 */
2958                wq->first_flusher = NULL;
2959        }
2960
2961out_unlock:
2962        mutex_unlock(&wq->mutex);
2963}
2964EXPORT_SYMBOL(flush_workqueue);
2965
2966/**
2967 * drain_workqueue - drain a workqueue
2968 * @wq: workqueue to drain
2969 *
2970 * Wait until the workqueue becomes empty.  While draining is in progress,
2971 * only chain queueing is allowed.  IOW, only currently pending or running
2972 * work items on @wq can queue further work items on it.  @wq is flushed
2973 * repeatedly until it becomes empty.  The number of flushing is determined
2974 * by the depth of chaining and should be relatively short.  Whine if it
2975 * takes too long.
2976 */
2977void drain_workqueue(struct workqueue_struct *wq)
2978{
2979        unsigned int flush_cnt = 0;
2980        struct pool_workqueue *pwq;
2981
2982        /*
2983         * __queue_work() needs to test whether there are drainers, is much
2984         * hotter than drain_workqueue() and already looks at @wq->flags.
2985         * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2986         */
2987        mutex_lock(&wq->mutex);
2988        if (!wq->nr_drainers++)
2989                wq->flags |= __WQ_DRAINING;
2990        mutex_unlock(&wq->mutex);
2991reflush:
2992        flush_workqueue(wq);
2993
2994        mutex_lock(&wq->mutex);
2995
2996        for_each_pwq(pwq, wq) {
2997                bool drained;
2998
2999                raw_spin_lock_irq(&pwq->pool->lock);
3000                drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3001                raw_spin_unlock_irq(&pwq->pool->lock);
3002
3003                if (drained)
3004                        continue;
3005
3006                if (++flush_cnt == 10 ||
3007                    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3008                        pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3009                                wq->name, __func__, flush_cnt);
3010
3011                mutex_unlock(&wq->mutex);
3012                goto reflush;
3013        }
3014
3015        if (!--wq->nr_drainers)
3016                wq->flags &= ~__WQ_DRAINING;
3017        mutex_unlock(&wq->mutex);
3018}
3019EXPORT_SYMBOL_GPL(drain_workqueue);
3020
3021static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3022                             bool from_cancel)
3023{
3024        struct worker *worker = NULL;
3025        struct worker_pool *pool;
3026        struct pool_workqueue *pwq;
3027
3028        might_sleep();
3029
3030        rcu_read_lock();
3031        pool = get_work_pool(work);
3032        if (!pool) {
3033                rcu_read_unlock();
3034                return false;
3035        }
3036
3037        raw_spin_lock_irq(&pool->lock);
3038        /* see the comment in try_to_grab_pending() with the same code */
3039        pwq = get_work_pwq(work);
3040        if (pwq) {
3041                if (unlikely(pwq->pool != pool))
3042                        goto already_gone;
3043        } else {
3044                worker = find_worker_executing_work(pool, work);
3045                if (!worker)
3046                        goto already_gone;
3047                pwq = worker->current_pwq;
3048        }
3049
3050        check_flush_dependency(pwq->wq, work);
3051
3052        insert_wq_barrier(pwq, barr, work, worker);
3053        raw_spin_unlock_irq(&pool->lock);
3054
3055        /*
3056         * Force a lock recursion deadlock when using flush_work() inside a
3057         * single-threaded or rescuer equipped workqueue.
3058         *
3059         * For single threaded workqueues the deadlock happens when the work
3060         * is after the work issuing the flush_work(). For rescuer equipped
3061         * workqueues the deadlock happens when the rescuer stalls, blocking
3062         * forward progress.
3063         */
3064        if (!from_cancel &&
3065            (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3066                lock_map_acquire(&pwq->wq->lockdep_map);
3067                lock_map_release(&pwq->wq->lockdep_map);
3068        }
3069        rcu_read_unlock();
3070        return true;
3071already_gone:
3072        raw_spin_unlock_irq(&pool->lock);
3073        rcu_read_unlock();
3074        return false;
3075}
3076
3077static bool __flush_work(struct work_struct *work, bool from_cancel)
3078{
3079        struct wq_barrier barr;
3080
3081        if (WARN_ON(!wq_online))
3082                return false;
3083
3084        if (WARN_ON(!work->func))
3085                return false;
3086
3087        if (!from_cancel) {
3088                lock_map_acquire(&work->lockdep_map);
3089                lock_map_release(&work->lockdep_map);
3090        }
3091
3092        if (start_flush_work(work, &barr, from_cancel)) {
3093                wait_for_completion(&barr.done);
3094                destroy_work_on_stack(&barr.work);
3095                return true;
3096        } else {
3097                return false;
3098        }
3099}
3100
3101/**
3102 * flush_work - wait for a work to finish executing the last queueing instance
3103 * @work: the work to flush
3104 *
3105 * Wait until @work has finished execution.  @work is guaranteed to be idle
3106 * on return if it hasn't been requeued since flush started.
3107 *
3108 * Return:
3109 * %true if flush_work() waited for the work to finish execution,
3110 * %false if it was already idle.
3111 */
3112bool flush_work(struct work_struct *work)
3113{
3114        return __flush_work(work, false);
3115}
3116EXPORT_SYMBOL_GPL(flush_work);
3117
3118struct cwt_wait {
3119        wait_queue_entry_t              wait;
3120        struct work_struct      *work;
3121};
3122
3123static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3124{
3125        struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3126
3127        if (cwait->work != key)
3128                return 0;
3129        return autoremove_wake_function(wait, mode, sync, key);
3130}
3131
3132static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3133{
3134        static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3135        unsigned long flags;
3136        int ret;
3137
3138        do {
3139                ret = try_to_grab_pending(work, is_dwork, &flags);
3140                /*
3141                 * If someone else is already canceling, wait for it to
3142                 * finish.  flush_work() doesn't work for PREEMPT_NONE
3143                 * because we may get scheduled between @work's completion
3144                 * and the other canceling task resuming and clearing
3145                 * CANCELING - flush_work() will return false immediately
3146                 * as @work is no longer busy, try_to_grab_pending() will
3147                 * return -ENOENT as @work is still being canceled and the
3148                 * other canceling task won't be able to clear CANCELING as
3149                 * we're hogging the CPU.
3150                 *
3151                 * Let's wait for completion using a waitqueue.  As this
3152                 * may lead to the thundering herd problem, use a custom
3153                 * wake function which matches @work along with exclusive
3154                 * wait and wakeup.
3155                 */
3156                if (unlikely(ret == -ENOENT)) {
3157                        struct cwt_wait cwait;
3158
3159                        init_wait(&cwait.wait);
3160                        cwait.wait.func = cwt_wakefn;
3161                        cwait.work = work;
3162
3163                        prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3164                                                  TASK_UNINTERRUPTIBLE);
3165                        if (work_is_canceling(work))
3166                                schedule();
3167                        finish_wait(&cancel_waitq, &cwait.wait);
3168                }
3169        } while (unlikely(ret < 0));
3170
3171        /* tell other tasks trying to grab @work to back off */
3172        mark_work_canceling(work);
3173        local_irq_restore(flags);
3174
3175        /*
3176         * This allows canceling during early boot.  We know that @work
3177         * isn't executing.
3178         */
3179        if (wq_online)
3180                __flush_work(work, true);
3181
3182        clear_work_data(work);
3183
3184        /*
3185         * Paired with prepare_to_wait() above so that either
3186         * waitqueue_active() is visible here or !work_is_canceling() is
3187         * visible there.
3188         */
3189        smp_mb();
3190        if (waitqueue_active(&cancel_waitq))
3191                __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3192
3193        return ret;
3194}
3195
3196/**
3197 * cancel_work_sync - cancel a work and wait for it to finish
3198 * @work: the work to cancel
3199 *
3200 * Cancel @work and wait for its execution to finish.  This function
3201 * can be used even if the work re-queues itself or migrates to
3202 * another workqueue.  On return from this function, @work is
3203 * guaranteed to be not pending or executing on any CPU.
3204 *
3205 * cancel_work_sync(&delayed_work->work) must not be used for
3206 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3207 *
3208 * The caller must ensure that the workqueue on which @work was last
3209 * queued can't be destroyed before this function returns.
3210 *
3211 * Return:
3212 * %true if @work was pending, %false otherwise.
3213 */
3214bool cancel_work_sync(struct work_struct *work)
3215{
3216        return __cancel_work_timer(work, false);
3217}
3218EXPORT_SYMBOL_GPL(cancel_work_sync);
3219
3220/**
3221 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3222 * @dwork: the delayed work to flush
3223 *
3224 * Delayed timer is cancelled and the pending work is queued for
3225 * immediate execution.  Like flush_work(), this function only
3226 * considers the last queueing instance of @dwork.
3227 *
3228 * Return:
3229 * %true if flush_work() waited for the work to finish execution,
3230 * %false if it was already idle.
3231 */
3232bool flush_delayed_work(struct delayed_work *dwork)
3233{
3234        local_irq_disable();
3235        if (del_timer_sync(&dwork->timer))
3236                __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3237        local_irq_enable();
3238        return flush_work(&dwork->work);
3239}
3240EXPORT_SYMBOL(flush_delayed_work);
3241
3242/**
3243 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3244 * @rwork: the rcu work to flush
3245 *
3246 * Return:
3247 * %true if flush_rcu_work() waited for the work to finish execution,
3248 * %false if it was already idle.
3249 */
3250bool flush_rcu_work(struct rcu_work *rwork)
3251{
3252        if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3253                rcu_barrier();
3254                flush_work(&rwork->work);
3255                return true;
3256        } else {
3257                return flush_work(&rwork->work);
3258        }
3259}
3260EXPORT_SYMBOL(flush_rcu_work);
3261
3262static bool __cancel_work(struct work_struct *work, bool is_dwork)
3263{
3264        unsigned long flags;
3265        int ret;
3266
3267        do {
3268                ret = try_to_grab_pending(work, is_dwork, &flags);
3269        } while (unlikely(ret == -EAGAIN));
3270
3271        if (unlikely(ret < 0))
3272                return false;
3273
3274        set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3275        local_irq_restore(flags);
3276        return ret;
3277}
3278
3279/**
3280 * cancel_delayed_work - cancel a delayed work
3281 * @dwork: delayed_work to cancel
3282 *
3283 * Kill off a pending delayed_work.
3284 *
3285 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3286 * pending.
3287 *
3288 * Note:
3289 * The work callback function may still be running on return, unless
3290 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3291 * use cancel_delayed_work_sync() to wait on it.
3292 *
3293 * This function is safe to call from any context including IRQ handler.
3294 */
3295bool cancel_delayed_work(struct delayed_work *dwork)
3296{
3297        return __cancel_work(&dwork->work, true);
3298}
3299EXPORT_SYMBOL(cancel_delayed_work);
3300
3301/**
3302 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3303 * @dwork: the delayed work cancel
3304 *
3305 * This is cancel_work_sync() for delayed works.
3306 *
3307 * Return:
3308 * %true if @dwork was pending, %false otherwise.
3309 */
3310bool cancel_delayed_work_sync(struct delayed_work *dwork)
3311{
3312        return __cancel_work_timer(&dwork->work, true);
3313}
3314EXPORT_SYMBOL(cancel_delayed_work_sync);
3315
3316/**
3317 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3318 * @func: the function to call
3319 *
3320 * schedule_on_each_cpu() executes @func on each online CPU using the
3321 * system workqueue and blocks until all CPUs have completed.
3322 * schedule_on_each_cpu() is very slow.
3323 *
3324 * Return:
3325 * 0 on success, -errno on failure.
3326 */
3327int schedule_on_each_cpu(work_func_t func)
3328{
3329        int cpu;
3330        struct work_struct __percpu *works;
3331
3332        works = alloc_percpu(struct work_struct);
3333        if (!works)
3334                return -ENOMEM;
3335
3336        cpus_read_lock();
3337
3338        for_each_online_cpu(cpu) {
3339                struct work_struct *work = per_cpu_ptr(works, cpu);
3340
3341                INIT_WORK(work, func);
3342                schedule_work_on(cpu, work);
3343        }
3344
3345        for_each_online_cpu(cpu)
3346                flush_work(per_cpu_ptr(works, cpu));
3347
3348        cpus_read_unlock();
3349        free_percpu(works);
3350        return 0;
3351}
3352
3353/**
3354 * execute_in_process_context - reliably execute the routine with user context
3355 * @fn:         the function to execute
3356 * @ew:         guaranteed storage for the execute work structure (must
3357 *              be available when the work executes)
3358 *
3359 * Executes the function immediately if process context is available,
3360 * otherwise schedules the function for delayed execution.
3361 *
3362 * Return:      0 - function was executed
3363 *              1 - function was scheduled for execution
3364 */
3365int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3366{
3367        if (!in_interrupt()) {
3368                fn(&ew->work);
3369                return 0;
3370        }
3371
3372        INIT_WORK(&ew->work, fn);
3373        schedule_work(&ew->work);
3374
3375        return 1;
3376}
3377EXPORT_SYMBOL_GPL(execute_in_process_context);
3378
3379/**
3380 * free_workqueue_attrs - free a workqueue_attrs
3381 * @attrs: workqueue_attrs to free
3382 *
3383 * Undo alloc_workqueue_attrs().
3384 */
3385void free_workqueue_attrs(struct workqueue_attrs *attrs)
3386{
3387        if (attrs) {
3388                free_cpumask_var(attrs->cpumask);
3389                kfree(attrs);
3390        }
3391}
3392
3393/**
3394 * alloc_workqueue_attrs - allocate a workqueue_attrs
3395 *
3396 * Allocate a new workqueue_attrs, initialize with default settings and
3397 * return it.
3398 *
3399 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3400 */
3401struct workqueue_attrs *alloc_workqueue_attrs(void)
3402{
3403        struct workqueue_attrs *attrs;
3404
3405        attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3406        if (!attrs)
3407                goto fail;
3408        if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3409                goto fail;
3410
3411        cpumask_copy(attrs->cpumask, cpu_possible_mask);
3412        return attrs;
3413fail:
3414        free_workqueue_attrs(attrs);
3415        return NULL;
3416}
3417
3418static void copy_workqueue_attrs(struct workqueue_attrs *to,
3419                                 const struct workqueue_attrs *from)
3420{
3421        to->nice = from->nice;
3422        cpumask_copy(to->cpumask, from->cpumask);
3423        /*
3424         * Unlike hash and equality test, this function doesn't ignore
3425         * ->no_numa as it is used for both pool and wq attrs.  Instead,
3426         * get_unbound_pool() explicitly clears ->no_numa after copying.
3427         */
3428        to->no_numa = from->no_numa;
3429}
3430
3431/* hash value of the content of @attr */
3432static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3433{
3434        u32 hash = 0;
3435
3436        hash = jhash_1word(attrs->nice, hash);
3437        hash = jhash(cpumask_bits(attrs->cpumask),
3438                     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3439        return hash;
3440}
3441
3442/* content equality test */
3443static bool wqattrs_equal(const struct workqueue_attrs *a,
3444                          const struct workqueue_attrs *b)
3445{
3446        if (a->nice != b->nice)
3447                return false;
3448        if (!cpumask_equal(a->cpumask, b->cpumask))
3449                return false;
3450        return true;
3451}
3452
3453/**
3454 * init_worker_pool - initialize a newly zalloc'd worker_pool
3455 * @pool: worker_pool to initialize
3456 *
3457 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3458 *
3459 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3460 * inside @pool proper are initialized and put_unbound_pool() can be called
3461 * on @pool safely to release it.
3462 */
3463static int init_worker_pool(struct worker_pool *pool)
3464{
3465        raw_spin_lock_init(&pool->lock);
3466        pool->id = -1;
3467        pool->cpu = -1;
3468        pool->node = NUMA_NO_NODE;
3469        pool->flags |= POOL_DISASSOCIATED;
3470        pool->watchdog_ts = jiffies;
3471        INIT_LIST_HEAD(&pool->worklist);
3472        INIT_LIST_HEAD(&pool->idle_list);
3473        hash_init(pool->busy_hash);
3474
3475        timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3476
3477        timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3478
3479        INIT_LIST_HEAD(&pool->workers);
3480
3481        ida_init(&pool->worker_ida);
3482        INIT_HLIST_NODE(&pool->hash_node);
3483        pool->refcnt = 1;
3484
3485        /* shouldn't fail above this point */
3486        pool->attrs = alloc_workqueue_attrs();
3487        if (!pool->attrs)
3488                return -ENOMEM;
3489        return 0;
3490}
3491
3492#ifdef CONFIG_LOCKDEP
3493static void wq_init_lockdep(struct workqueue_struct *wq)
3494{
3495        char *lock_name;
3496
3497        lockdep_register_key(&wq->key);
3498        lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3499        if (!lock_name)
3500                lock_name = wq->name;
3501
3502        wq->lock_name = lock_name;
3503        lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3504}
3505
3506static void wq_unregister_lockdep(struct workqueue_struct *wq)
3507{
3508        lockdep_unregister_key(&wq->key);
3509}
3510
3511static void wq_free_lockdep(struct workqueue_struct *wq)
3512{
3513        if (wq->lock_name != wq->name)
3514                kfree(wq->lock_name);
3515}
3516#else
3517static void wq_init_lockdep(struct workqueue_struct *wq)
3518{
3519}
3520
3521static void wq_unregister_lockdep(struct workqueue_struct *wq)
3522{
3523}
3524
3525static void wq_free_lockdep(struct workqueue_struct *wq)
3526{
3527}
3528#endif
3529
3530static void rcu_free_wq(struct rcu_head *rcu)
3531{
3532        struct workqueue_struct *wq =
3533                container_of(rcu, struct workqueue_struct, rcu);
3534
3535        wq_free_lockdep(wq);
3536
3537        if (!(wq->flags & WQ_UNBOUND))
3538                free_percpu(wq->cpu_pwqs);
3539        else
3540                free_workqueue_attrs(wq->unbound_attrs);
3541
3542        kfree(wq);
3543}
3544
3545static void rcu_free_pool(struct rcu_head *rcu)
3546{
3547        struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3548
3549        ida_destroy(&pool->worker_ida);
3550        free_workqueue_attrs(pool->attrs);
3551        kfree(pool);
3552}
3553
3554/* This returns with the lock held on success (pool manager is inactive). */
3555static bool wq_manager_inactive(struct worker_pool *pool)
3556{
3557        raw_spin_lock_irq(&pool->lock);
3558
3559        if (pool->flags & POOL_MANAGER_ACTIVE) {
3560                raw_spin_unlock_irq(&pool->lock);
3561                return false;
3562        }
3563        return true;
3564}
3565
3566/**
3567 * put_unbound_pool - put a worker_pool
3568 * @pool: worker_pool to put
3569 *
3570 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3571 * safe manner.  get_unbound_pool() calls this function on its failure path
3572 * and this function should be able to release pools which went through,
3573 * successfully or not, init_worker_pool().
3574 *
3575 * Should be called with wq_pool_mutex held.
3576 */
3577static void put_unbound_pool(struct worker_pool *pool)
3578{
3579        DECLARE_COMPLETION_ONSTACK(detach_completion);
3580        struct worker *worker;
3581
3582        lockdep_assert_held(&wq_pool_mutex);
3583
3584        if (--pool->refcnt)
3585                return;
3586
3587        /* sanity checks */
3588        if (WARN_ON(!(pool->cpu < 0)) ||
3589            WARN_ON(!list_empty(&pool->worklist)))
3590                return;
3591
3592        /* release id and unhash */
3593        if (pool->id >= 0)
3594                idr_remove(&worker_pool_idr, pool->id);
3595        hash_del(&pool->hash_node);
3596
3597        /*
3598         * Become the manager and destroy all workers.  This prevents
3599         * @pool's workers from blocking on attach_mutex.  We're the last
3600         * manager and @pool gets freed with the flag set.
3601         * Because of how wq_manager_inactive() works, we will hold the
3602         * spinlock after a successful wait.
3603         */
3604        rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3605                           TASK_UNINTERRUPTIBLE);
3606        pool->flags |= POOL_MANAGER_ACTIVE;
3607
3608        while ((worker = first_idle_worker(pool)))
3609                destroy_worker(worker);
3610        WARN_ON(pool->nr_workers || pool->nr_idle);
3611        raw_spin_unlock_irq(&pool->lock);
3612
3613        mutex_lock(&wq_pool_attach_mutex);
3614        if (!list_empty(&pool->workers))
3615                pool->detach_completion = &detach_completion;
3616        mutex_unlock(&wq_pool_attach_mutex);
3617
3618        if (pool->detach_completion)
3619                wait_for_completion(pool->detach_completion);
3620
3621        /* shut down the timers */
3622        del_timer_sync(&pool->idle_timer);
3623        del_timer_sync(&pool->mayday_timer);
3624
3625        /* RCU protected to allow dereferences from get_work_pool() */
3626        call_rcu(&pool->rcu, rcu_free_pool);
3627}
3628
3629/**
3630 * get_unbound_pool - get a worker_pool with the specified attributes
3631 * @attrs: the attributes of the worker_pool to get
3632 *
3633 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3634 * reference count and return it.  If there already is a matching
3635 * worker_pool, it will be used; otherwise, this function attempts to
3636 * create a new one.
3637 *
3638 * Should be called with wq_pool_mutex held.
3639 *
3640 * Return: On success, a worker_pool with the same attributes as @attrs.
3641 * On failure, %NULL.
3642 */
3643static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3644{
3645        u32 hash = wqattrs_hash(attrs);
3646        struct worker_pool *pool;
3647        int node;
3648        int target_node = NUMA_NO_NODE;
3649
3650        lockdep_assert_held(&wq_pool_mutex);
3651
3652        /* do we already have a matching pool? */
3653        hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3654                if (wqattrs_equal(pool->attrs, attrs)) {
3655                        pool->refcnt++;
3656                        return pool;
3657                }
3658        }
3659
3660        /* if cpumask is contained inside a NUMA node, we belong to that node */
3661        if (wq_numa_enabled) {
3662                for_each_node(node) {
3663                        if (cpumask_subset(attrs->cpumask,
3664                                           wq_numa_possible_cpumask[node])) {
3665                                target_node = node;
3666                                break;
3667                        }
3668                }
3669        }
3670
3671        /* nope, create a new one */
3672        pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3673        if (!pool || init_worker_pool(pool) < 0)
3674                goto fail;
3675
3676        lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
3677        copy_workqueue_attrs(pool->attrs, attrs);
3678        pool->node = target_node;
3679
3680        /*
3681         * no_numa isn't a worker_pool attribute, always clear it.  See
3682         * 'struct workqueue_attrs' comments for detail.
3683         */
3684        pool->attrs->no_numa = false;
3685
3686        if (worker_pool_assign_id(pool) < 0)
3687                goto fail;
3688
3689        /* create and start the initial worker */
3690        if (wq_online && !create_worker(pool))
3691                goto fail;
3692
3693        /* install */
3694        hash_add(unbound_pool_hash, &pool->hash_node, hash);
3695
3696        return pool;
3697fail:
3698        if (pool)
3699                put_unbound_pool(pool);
3700        return NULL;
3701}
3702
3703static void rcu_free_pwq(struct rcu_head *rcu)
3704{
3705        kmem_cache_free(pwq_cache,
3706                        container_of(rcu, struct pool_workqueue, rcu));
3707}
3708
3709/*
3710 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3711 * and needs to be destroyed.
3712 */
3713static void pwq_unbound_release_workfn(struct work_struct *work)
3714{
3715        struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3716                                                  unbound_release_work);
3717        struct workqueue_struct *wq = pwq->wq;
3718        struct worker_pool *pool = pwq->pool;
3719        bool is_last = false;
3720
3721        /*
3722         * when @pwq is not linked, it doesn't hold any reference to the
3723         * @wq, and @wq is invalid to access.
3724         */
3725        if (!list_empty(&pwq->pwqs_node)) {
3726                if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3727                        return;
3728
3729                mutex_lock(&wq->mutex);
3730                list_del_rcu(&pwq->pwqs_node);
3731                is_last = list_empty(&wq->pwqs);
3732                mutex_unlock(&wq->mutex);
3733        }
3734
3735        mutex_lock(&wq_pool_mutex);
3736        put_unbound_pool(pool);
3737        mutex_unlock(&wq_pool_mutex);
3738
3739        call_rcu(&pwq->rcu, rcu_free_pwq);
3740
3741        /*
3742         * If we're the last pwq going away, @wq is already dead and no one
3743         * is gonna access it anymore.  Schedule RCU free.
3744         */
3745        if (is_last) {
3746                wq_unregister_lockdep(wq);
3747                call_rcu(&wq->rcu, rcu_free_wq);
3748        }
3749}
3750
3751/**
3752 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3753 * @pwq: target pool_workqueue
3754 *
3755 * If @pwq isn't freezing, set @pwq->max_active to the associated
3756 * workqueue's saved_max_active and activate inactive work items
3757 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3758 */
3759static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3760{
3761        struct workqueue_struct *wq = pwq->wq;
3762        bool freezable = wq->flags & WQ_FREEZABLE;
3763        unsigned long flags;
3764
3765        /* for @wq->saved_max_active */
3766        lockdep_assert_held(&wq->mutex);
3767
3768        /* fast exit for non-freezable wqs */
3769        if (!freezable && pwq->max_active == wq->saved_max_active)
3770                return;
3771
3772        /* this function can be called during early boot w/ irq disabled */
3773        raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3774
3775        /*
3776         * During [un]freezing, the caller is responsible for ensuring that
3777         * this function is called at least once after @workqueue_freezing
3778         * is updated and visible.
3779         */
3780        if (!freezable || !workqueue_freezing) {
3781                bool kick = false;
3782
3783                pwq->max_active = wq->saved_max_active;
3784
3785                while (!list_empty(&pwq->inactive_works) &&
3786                       pwq->nr_active < pwq->max_active) {
3787                        pwq_activate_first_inactive(pwq);
3788                        kick = true;
3789                }
3790
3791                /*
3792                 * Need to kick a worker after thawed or an unbound wq's
3793                 * max_active is bumped. In realtime scenarios, always kicking a
3794                 * worker will cause interference on the isolated cpu cores, so
3795                 * let's kick iff work items were activated.
3796                 */
3797                if (kick)
3798                        wake_up_worker(pwq->pool);
3799        } else {
3800                pwq->max_active = 0;
3801        }
3802
3803        raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3804}
3805
3806/* initialize newly allocated @pwq which is associated with @wq and @pool */
3807static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3808                     struct worker_pool *pool)
3809{
3810        BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3811
3812        memset(pwq, 0, sizeof(*pwq));
3813
3814        pwq->pool = pool;
3815        pwq->wq = wq;
3816        pwq->flush_color = -1;
3817        pwq->refcnt = 1;
3818        INIT_LIST_HEAD(&pwq->inactive_works);
3819        INIT_LIST_HEAD(&pwq->pwqs_node);
3820        INIT_LIST_HEAD(&pwq->mayday_node);
3821        INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3822}
3823
3824/* sync @pwq with the current state of its associated wq and link it */
3825static void link_pwq(struct pool_workqueue *pwq)
3826{
3827        struct workqueue_struct *wq = pwq->wq;
3828
3829        lockdep_assert_held(&wq->mutex);
3830
3831        /* may be called multiple times, ignore if already linked */
3832        if (!list_empty(&pwq->pwqs_node))
3833                return;
3834
3835        /* set the matching work_color */
3836        pwq->work_color = wq->work_color;
3837
3838        /* sync max_active to the current setting */
3839        pwq_adjust_max_active(pwq);
3840
3841        /* link in @pwq */
3842        list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3843}
3844
3845/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3846static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3847                                        const struct workqueue_attrs *attrs)
3848{
3849        struct worker_pool *pool;
3850        struct pool_workqueue *pwq;
3851
3852        lockdep_assert_held(&wq_pool_mutex);
3853
3854        pool = get_unbound_pool(attrs);
3855        if (!pool)
3856                return NULL;
3857
3858        pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3859        if (!pwq) {
3860                put_unbound_pool(pool);
3861                return NULL;
3862        }
3863
3864        init_pwq(pwq, wq, pool);
3865        return pwq;
3866}
3867
3868/**
3869 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3870 * @attrs: the wq_attrs of the default pwq of the target workqueue
3871 * @node: the target NUMA node
3872 * @cpu_going_down: if >= 0, the CPU to consider as offline
3873 * @cpumask: outarg, the resulting cpumask
3874 *
3875 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3876 * @cpu_going_down is >= 0, that cpu is considered offline during
3877 * calculation.  The result is stored in @cpumask.
3878 *
3879 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3880 * enabled and @node has online CPUs requested by @attrs, the returned
3881 * cpumask is the intersection of the possible CPUs of @node and
3882 * @attrs->cpumask.
3883 *
3884 * The caller is responsible for ensuring that the cpumask of @node stays
3885 * stable.
3886 *
3887 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3888 * %false if equal.
3889 */
3890static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3891                                 int cpu_going_down, cpumask_t *cpumask)
3892{
3893        if (!wq_numa_enabled || attrs->no_numa)
3894                goto use_dfl;
3895
3896        /* does @node have any online CPUs @attrs wants? */
3897        cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3898        if (cpu_going_down >= 0)
3899                cpumask_clear_cpu(cpu_going_down, cpumask);
3900
3901        if (cpumask_empty(cpumask))
3902                goto use_dfl;
3903
3904        /* yeap, return possible CPUs in @node that @attrs wants */
3905        cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3906
3907        if (cpumask_empty(cpumask)) {
3908                pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3909                                "possible intersect\n");
3910                return false;
3911        }
3912
3913        return !cpumask_equal(cpumask, attrs->cpumask);
3914
3915use_dfl:
3916        cpumask_copy(cpumask, attrs->cpumask);
3917        return false;
3918}
3919
3920/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3921static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3922                                                   int node,
3923                                                   struct pool_workqueue *pwq)
3924{
3925        struct pool_workqueue *old_pwq;
3926
3927        lockdep_assert_held(&wq_pool_mutex);
3928        lockdep_assert_held(&wq->mutex);
3929
3930        /* link_pwq() can handle duplicate calls */
3931        link_pwq(pwq);
3932
3933        old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3934        rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3935        return old_pwq;
3936}
3937
3938/* context to store the prepared attrs & pwqs before applying */
3939struct apply_wqattrs_ctx {
3940        struct workqueue_struct *wq;            /* target workqueue */
3941        struct workqueue_attrs  *attrs;         /* attrs to apply */
3942        struct list_head        list;           /* queued for batching commit */
3943        struct pool_workqueue   *dfl_pwq;
3944        struct pool_workqueue   *pwq_tbl[];
3945};
3946
3947/* free the resources after success or abort */
3948static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3949{
3950        if (ctx) {
3951                int node;
3952
3953                for_each_node(node)
3954                        put_pwq_unlocked(ctx->pwq_tbl[node]);
3955                put_pwq_unlocked(ctx->dfl_pwq);
3956
3957                free_workqueue_attrs(ctx->attrs);
3958
3959                kfree(ctx);
3960        }
3961}
3962
3963/* allocate the attrs and pwqs for later installation */
3964static struct apply_wqattrs_ctx *
3965apply_wqattrs_prepare(struct workqueue_struct *wq,
3966                      const struct workqueue_attrs *attrs)
3967{
3968        struct apply_wqattrs_ctx *ctx;
3969        struct workqueue_attrs *new_attrs, *tmp_attrs;
3970        int node;
3971
3972        lockdep_assert_held(&wq_pool_mutex);
3973
3974        ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3975
3976        new_attrs = alloc_workqueue_attrs();
3977        tmp_attrs = alloc_workqueue_attrs();
3978        if (!ctx || !new_attrs || !tmp_attrs)
3979                goto out_free;
3980
3981        /*
3982         * Calculate the attrs of the default pwq.
3983         * If the user configured cpumask doesn't overlap with the
3984         * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3985         */
3986        copy_workqueue_attrs(new_attrs, attrs);
3987        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3988        if (unlikely(cpumask_empty(new_attrs->cpumask)))
3989                cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3990
3991        /*
3992         * We may create multiple pwqs with differing cpumasks.  Make a
3993         * copy of @new_attrs which will be modified and used to obtain
3994         * pools.
3995         */
3996        copy_workqueue_attrs(tmp_attrs, new_attrs);
3997
3998        /*
3999         * If something goes wrong during CPU up/down, we'll fall back to
4000         * the default pwq covering whole @attrs->cpumask.  Always create
4001         * it even if we don't use it immediately.
4002         */
4003        ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4004        if (!ctx->dfl_pwq)
4005                goto out_free;
4006
4007        for_each_node(node) {
4008                if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4009                        ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4010                        if (!ctx->pwq_tbl[node])
4011                                goto out_free;
4012                } else {
4013                        ctx->dfl_pwq->refcnt++;
4014                        ctx->pwq_tbl[node] = ctx->dfl_pwq;
4015                }
4016        }
4017
4018        /* save the user configured attrs and sanitize it. */
4019        copy_workqueue_attrs(new_attrs, attrs);
4020        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4021        ctx->attrs = new_attrs;
4022
4023        ctx->wq = wq;
4024        free_workqueue_attrs(tmp_attrs);
4025        return ctx;
4026
4027out_free:
4028        free_workqueue_attrs(tmp_attrs);
4029        free_workqueue_attrs(new_attrs);
4030        apply_wqattrs_cleanup(ctx);
4031        return NULL;
4032}
4033
4034/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4035static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4036{
4037        int node;
4038
4039        /* all pwqs have been created successfully, let's install'em */
4040        mutex_lock(&ctx->wq->mutex);
4041
4042        copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4043
4044        /* save the previous pwq and install the new one */
4045        for_each_node(node)
4046                ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4047                                                          ctx->pwq_tbl[node]);
4048
4049        /* @dfl_pwq might not have been used, ensure it's linked */
4050        link_pwq(ctx->dfl_pwq);
4051        swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4052
4053        mutex_unlock(&ctx->wq->mutex);
4054}
4055
4056static void apply_wqattrs_lock(void)
4057{
4058        /* CPUs should stay stable across pwq creations and installations */
4059        cpus_read_lock();
4060        mutex_lock(&wq_pool_mutex);
4061}
4062
4063static void apply_wqattrs_unlock(void)
4064{
4065        mutex_unlock(&wq_pool_mutex);
4066        cpus_read_unlock();
4067}
4068
4069static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4070                                        const struct workqueue_attrs *attrs)
4071{
4072        struct apply_wqattrs_ctx *ctx;
4073
4074        /* only unbound workqueues can change attributes */
4075        if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4076                return -EINVAL;
4077
4078        /* creating multiple pwqs breaks ordering guarantee */
4079        if (!list_empty(&wq->pwqs)) {
4080                if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4081                        return -EINVAL;
4082
4083                wq->flags &= ~__WQ_ORDERED;
4084        }
4085
4086        ctx = apply_wqattrs_prepare(wq, attrs);
4087        if (!ctx)
4088                return -ENOMEM;
4089
4090        /* the ctx has been prepared successfully, let's commit it */
4091        apply_wqattrs_commit(ctx);
4092        apply_wqattrs_cleanup(ctx);
4093
4094        return 0;
4095}
4096
4097/**
4098 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4099 * @wq: the target workqueue
4100 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4101 *
4102 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4103 * machines, this function maps a separate pwq to each NUMA node with
4104 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4105 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4106 * items finish.  Note that a work item which repeatedly requeues itself
4107 * back-to-back will stay on its current pwq.
4108 *
4109 * Performs GFP_KERNEL allocations.
4110 *
4111 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4112 *
4113 * Return: 0 on success and -errno on failure.
4114 */
4115int apply_workqueue_attrs(struct workqueue_struct *wq,
4116                          const struct workqueue_attrs *attrs)
4117{
4118        int ret;
4119
4120        lockdep_assert_cpus_held();
4121
4122        mutex_lock(&wq_pool_mutex);
4123        ret = apply_workqueue_attrs_locked(wq, attrs);
4124        mutex_unlock(&wq_pool_mutex);
4125
4126        return ret;
4127}
4128
4129/**
4130 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4131 * @wq: the target workqueue
4132 * @cpu: the CPU coming up or going down
4133 * @online: whether @cpu is coming up or going down
4134 *
4135 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4136 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4137 * @wq accordingly.
4138 *
4139 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4140 * falls back to @wq->dfl_pwq which may not be optimal but is always
4141 * correct.
4142 *
4143 * Note that when the last allowed CPU of a NUMA node goes offline for a
4144 * workqueue with a cpumask spanning multiple nodes, the workers which were
4145 * already executing the work items for the workqueue will lose their CPU
4146 * affinity and may execute on any CPU.  This is similar to how per-cpu
4147 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4148 * affinity, it's the user's responsibility to flush the work item from
4149 * CPU_DOWN_PREPARE.
4150 */
4151static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4152                                   bool online)
4153{
4154        int node = cpu_to_node(cpu);
4155        int cpu_off = online ? -1 : cpu;
4156        struct pool_workqueue *old_pwq = NULL, *pwq;
4157        struct workqueue_attrs *target_attrs;
4158        cpumask_t *cpumask;
4159
4160        lockdep_assert_held(&wq_pool_mutex);
4161
4162        if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4163            wq->unbound_attrs->no_numa)
4164                return;
4165
4166        /*
4167         * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4168         * Let's use a preallocated one.  The following buf is protected by
4169         * CPU hotplug exclusion.
4170         */
4171        target_attrs = wq_update_unbound_numa_attrs_buf;
4172        cpumask = target_attrs->cpumask;
4173
4174        copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4175        pwq = unbound_pwq_by_node(wq, node);
4176
4177        /*
4178         * Let's determine what needs to be done.  If the target cpumask is
4179         * different from the default pwq's, we need to compare it to @pwq's
4180         * and create a new one if they don't match.  If the target cpumask
4181         * equals the default pwq's, the default pwq should be used.
4182         */
4183        if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4184                if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4185                        return;
4186        } else {
4187                goto use_dfl_pwq;
4188        }
4189
4190        /* create a new pwq */
4191        pwq = alloc_unbound_pwq(wq, target_attrs);
4192        if (!pwq) {
4193                pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4194                        wq->name);
4195                goto use_dfl_pwq;
4196        }
4197
4198        /* Install the new pwq. */
4199        mutex_lock(&wq->mutex);
4200        old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4201        goto out_unlock;
4202
4203use_dfl_pwq:
4204        mutex_lock(&wq->mutex);
4205        raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4206        get_pwq(wq->dfl_pwq);
4207        raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4208        old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4209out_unlock:
4210        mutex_unlock(&wq->mutex);
4211        put_pwq_unlocked(old_pwq);
4212}
4213
4214static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4215{
4216        bool highpri = wq->flags & WQ_HIGHPRI;
4217        int cpu, ret;
4218
4219        if (!(wq->flags & WQ_UNBOUND)) {
4220                wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4221                if (!wq->cpu_pwqs)
4222                        return -ENOMEM;
4223
4224                for_each_possible_cpu(cpu) {
4225                        struct pool_workqueue *pwq =
4226                                per_cpu_ptr(wq->cpu_pwqs, cpu);
4227                        struct worker_pool *cpu_pools =
4228                                per_cpu(cpu_worker_pools, cpu);
4229
4230                        init_pwq(pwq, wq, &cpu_pools[highpri]);
4231
4232                        mutex_lock(&wq->mutex);
4233                        link_pwq(pwq);
4234                        mutex_unlock(&wq->mutex);
4235                }
4236                return 0;
4237        }
4238
4239        cpus_read_lock();
4240        if (wq->flags & __WQ_ORDERED) {
4241                ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4242                /* there should only be single pwq for ordering guarantee */
4243                WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4244                              wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4245                     "ordering guarantee broken for workqueue %s\n", wq->name);
4246        } else {
4247                ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4248        }
4249        cpus_read_unlock();
4250
4251        return ret;
4252}
4253
4254static int wq_clamp_max_active(int max_active, unsigned int flags,
4255                               const char *name)
4256{
4257        int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4258
4259        if (max_active < 1 || max_active > lim)
4260                pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4261                        max_active, name, 1, lim);
4262
4263        return clamp_val(max_active, 1, lim);
4264}
4265
4266/*
4267 * Workqueues which may be used during memory reclaim should have a rescuer
4268 * to guarantee forward progress.
4269 */
4270static int init_rescuer(struct workqueue_struct *wq)
4271{
4272        struct worker *rescuer;
4273        int ret;
4274
4275        if (!(wq->flags & WQ_MEM_RECLAIM))
4276                return 0;
4277
4278        rescuer = alloc_worker(NUMA_NO_NODE);
4279        if (!rescuer)
4280                return -ENOMEM;
4281
4282        rescuer->rescue_wq = wq;
4283        rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4284        if (IS_ERR(rescuer->task)) {
4285                ret = PTR_ERR(rescuer->task);
4286                kfree(rescuer);
4287                return ret;
4288        }
4289
4290        wq->rescuer = rescuer;
4291        kthread_bind_mask(rescuer->task, cpu_possible_mask);
4292        wake_up_process(rescuer->task);
4293
4294        return 0;
4295}
4296
4297__printf(1, 4)
4298struct workqueue_struct *alloc_workqueue(const char *fmt,
4299                                         unsigned int flags,
4300                                         int max_active, ...)
4301{
4302        size_t tbl_size = 0;
4303        va_list args;
4304        struct workqueue_struct *wq;
4305        struct pool_workqueue *pwq;
4306
4307        /*
4308         * Unbound && max_active == 1 used to imply ordered, which is no
4309         * longer the case on NUMA machines due to per-node pools.  While
4310         * alloc_ordered_workqueue() is the right way to create an ordered
4311         * workqueue, keep the previous behavior to avoid subtle breakages
4312         * on NUMA.
4313         */
4314        if ((flags & WQ_UNBOUND) && max_active == 1)
4315                flags |= __WQ_ORDERED;
4316
4317        /* see the comment above the definition of WQ_POWER_EFFICIENT */
4318        if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4319                flags |= WQ_UNBOUND;
4320
4321        /* allocate wq and format name */
4322        if (flags & WQ_UNBOUND)
4323                tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4324
4325        wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4326        if (!wq)
4327                return NULL;
4328
4329        if (flags & WQ_UNBOUND) {
4330                wq->unbound_attrs = alloc_workqueue_attrs();
4331                if (!wq->unbound_attrs)
4332                        goto err_free_wq;
4333        }
4334
4335        va_start(args, max_active);
4336        vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4337        va_end(args);
4338
4339        max_active = max_active ?: WQ_DFL_ACTIVE;
4340        max_active = wq_clamp_max_active(max_active, flags, wq->name);
4341
4342        /* init wq */
4343        wq->flags = flags;
4344        wq->saved_max_active = max_active;
4345        mutex_init(&wq->mutex);
4346        atomic_set(&wq->nr_pwqs_to_flush, 0);
4347        INIT_LIST_HEAD(&wq->pwqs);
4348        INIT_LIST_HEAD(&wq->flusher_queue);
4349        INIT_LIST_HEAD(&wq->flusher_overflow);
4350        INIT_LIST_HEAD(&wq->maydays);
4351
4352        wq_init_lockdep(wq);
4353        INIT_LIST_HEAD(&wq->list);
4354
4355        if (alloc_and_link_pwqs(wq) < 0)
4356                goto err_unreg_lockdep;
4357
4358        if (wq_online && init_rescuer(wq) < 0)
4359                goto err_destroy;
4360
4361        if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4362                goto err_destroy;
4363
4364        /*
4365         * wq_pool_mutex protects global freeze state and workqueues list.
4366         * Grab it, adjust max_active and add the new @wq to workqueues
4367         * list.
4368         */
4369        mutex_lock(&wq_pool_mutex);
4370
4371        mutex_lock(&wq->mutex);
4372        for_each_pwq(pwq, wq)
4373                pwq_adjust_max_active(pwq);
4374        mutex_unlock(&wq->mutex);
4375
4376        list_add_tail_rcu(&wq->list, &workqueues);
4377
4378        mutex_unlock(&wq_pool_mutex);
4379
4380        return wq;
4381
4382err_unreg_lockdep:
4383        wq_unregister_lockdep(wq);
4384        wq_free_lockdep(wq);
4385err_free_wq:
4386        free_workqueue_attrs(wq->unbound_attrs);
4387        kfree(wq);
4388        return NULL;
4389err_destroy:
4390        destroy_workqueue(wq);
4391        return NULL;
4392}
4393EXPORT_SYMBOL_GPL(alloc_workqueue);
4394
4395static bool pwq_busy(struct pool_workqueue *pwq)
4396{
4397        int i;
4398
4399        for (i = 0; i < WORK_NR_COLORS; i++)
4400                if (pwq->nr_in_flight[i])
4401                        return true;
4402
4403        if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4404                return true;
4405        if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4406                return true;
4407
4408        return false;
4409}
4410
4411/**
4412 * destroy_workqueue - safely terminate a workqueue
4413 * @wq: target workqueue
4414 *
4415 * Safely destroy a workqueue. All work currently pending will be done first.
4416 */
4417void destroy_workqueue(struct workqueue_struct *wq)
4418{
4419        struct pool_workqueue *pwq;
4420        int node;
4421
4422        /*
4423         * Remove it from sysfs first so that sanity check failure doesn't
4424         * lead to sysfs name conflicts.
4425         */
4426        workqueue_sysfs_unregister(wq);
4427
4428        /* drain it before proceeding with destruction */
4429        drain_workqueue(wq);
4430
4431        /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4432        if (wq->rescuer) {
4433                struct worker *rescuer = wq->rescuer;
4434
4435                /* this prevents new queueing */
4436                raw_spin_lock_irq(&wq_mayday_lock);
4437                wq->rescuer = NULL;
4438                raw_spin_unlock_irq(&wq_mayday_lock);
4439
4440                /* rescuer will empty maydays list before exiting */
4441                kthread_stop(rescuer->task);
4442                kfree(rescuer);
4443        }
4444
4445        /*
4446         * Sanity checks - grab all the locks so that we wait for all
4447         * in-flight operations which may do put_pwq().
4448         */
4449        mutex_lock(&wq_pool_mutex);
4450        mutex_lock(&wq->mutex);
4451        for_each_pwq(pwq, wq) {
4452                raw_spin_lock_irq(&pwq->pool->lock);
4453                if (WARN_ON(pwq_busy(pwq))) {
4454                        pr_warn("%s: %s has the following busy pwq\n",
4455                                __func__, wq->name);
4456                        show_pwq(pwq);
4457                        raw_spin_unlock_irq(&pwq->pool->lock);
4458                        mutex_unlock(&wq->mutex);
4459                        mutex_unlock(&wq_pool_mutex);
4460                        show_one_workqueue(wq);
4461                        return;
4462                }
4463                raw_spin_unlock_irq(&pwq->pool->lock);
4464        }
4465        mutex_unlock(&wq->mutex);
4466
4467        /*
4468         * wq list is used to freeze wq, remove from list after
4469         * flushing is complete in case freeze races us.
4470         */
4471        list_del_rcu(&wq->list);
4472        mutex_unlock(&wq_pool_mutex);
4473
4474        if (!(wq->flags & WQ_UNBOUND)) {
4475                wq_unregister_lockdep(wq);
4476                /*
4477                 * The base ref is never dropped on per-cpu pwqs.  Directly
4478                 * schedule RCU free.
4479                 */
4480                call_rcu(&wq->rcu, rcu_free_wq);
4481        } else {
4482                /*
4483                 * We're the sole accessor of @wq at this point.  Directly
4484                 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4485                 * @wq will be freed when the last pwq is released.
4486                 */
4487                for_each_node(node) {
4488                        pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4489                        RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4490                        put_pwq_unlocked(pwq);
4491                }
4492
4493                /*
4494                 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4495                 * put.  Don't access it afterwards.
4496                 */
4497                pwq = wq->dfl_pwq;
4498                wq->dfl_pwq = NULL;
4499                put_pwq_unlocked(pwq);
4500        }
4501}
4502EXPORT_SYMBOL_GPL(destroy_workqueue);
4503
4504/**
4505 * workqueue_set_max_active - adjust max_active of a workqueue
4506 * @wq: target workqueue
4507 * @max_active: new max_active value.
4508 *
4509 * Set max_active of @wq to @max_active.
4510 *
4511 * CONTEXT:
4512 * Don't call from IRQ context.
4513 */
4514void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4515{
4516        struct pool_workqueue *pwq;
4517
4518        /* disallow meddling with max_active for ordered workqueues */
4519        if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4520                return;
4521
4522        max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4523
4524        mutex_lock(&wq->mutex);
4525
4526        wq->flags &= ~__WQ_ORDERED;
4527        wq->saved_max_active = max_active;
4528
4529        for_each_pwq(pwq, wq)
4530                pwq_adjust_max_active(pwq);
4531
4532        mutex_unlock(&wq->mutex);
4533}
4534EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4535
4536/**
4537 * current_work - retrieve %current task's work struct
4538 *
4539 * Determine if %current task is a workqueue worker and what it's working on.
4540 * Useful to find out the context that the %current task is running in.
4541 *
4542 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4543 */
4544struct work_struct *current_work(void)
4545{
4546        struct worker *worker = current_wq_worker();
4547
4548        return worker ? worker->current_work : NULL;
4549}
4550EXPORT_SYMBOL(current_work);
4551
4552/**
4553 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4554 *
4555 * Determine whether %current is a workqueue rescuer.  Can be used from
4556 * work functions to determine whether it's being run off the rescuer task.
4557 *
4558 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4559 */
4560bool current_is_workqueue_rescuer(void)
4561{
4562        struct worker *worker = current_wq_worker();
4563
4564        return worker && worker->rescue_wq;
4565}
4566
4567/**
4568 * workqueue_congested - test whether a workqueue is congested
4569 * @cpu: CPU in question
4570 * @wq: target workqueue
4571 *
4572 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4573 * no synchronization around this function and the test result is
4574 * unreliable and only useful as advisory hints or for debugging.
4575 *
4576 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4577 * Note that both per-cpu and unbound workqueues may be associated with
4578 * multiple pool_workqueues which have separate congested states.  A
4579 * workqueue being congested on one CPU doesn't mean the workqueue is also
4580 * contested on other CPUs / NUMA nodes.
4581 *
4582 * Return:
4583 * %true if congested, %false otherwise.
4584 */
4585bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4586{
4587        struct pool_workqueue *pwq;
4588        bool ret;
4589
4590        rcu_read_lock();
4591        preempt_disable();
4592
4593        if (cpu == WORK_CPU_UNBOUND)
4594                cpu = smp_processor_id();
4595
4596        if (!(wq->flags & WQ_UNBOUND))
4597                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4598        else
4599                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4600
4601        ret = !list_empty(&pwq->inactive_works);
4602        preempt_enable();
4603        rcu_read_unlock();
4604
4605        return ret;
4606}
4607EXPORT_SYMBOL_GPL(workqueue_congested);
4608
4609/**
4610 * work_busy - test whether a work is currently pending or running
4611 * @work: the work to be tested
4612 *
4613 * Test whether @work is currently pending or running.  There is no
4614 * synchronization around this function and the test result is
4615 * unreliable and only useful as advisory hints or for debugging.
4616 *
4617 * Return:
4618 * OR'd bitmask of WORK_BUSY_* bits.
4619 */
4620unsigned int work_busy(struct work_struct *work)
4621{
4622        struct worker_pool *pool;
4623        unsigned long flags;
4624        unsigned int ret = 0;
4625
4626        if (work_pending(work))
4627                ret |= WORK_BUSY_PENDING;
4628
4629        rcu_read_lock();
4630        pool = get_work_pool(work);
4631        if (pool) {
4632                raw_spin_lock_irqsave(&pool->lock, flags);
4633                if (find_worker_executing_work(pool, work))
4634                        ret |= WORK_BUSY_RUNNING;
4635                raw_spin_unlock_irqrestore(&pool->lock, flags);
4636        }
4637        rcu_read_unlock();
4638
4639        return ret;
4640}
4641EXPORT_SYMBOL_GPL(work_busy);
4642
4643/**
4644 * set_worker_desc - set description for the current work item
4645 * @fmt: printf-style format string
4646 * @...: arguments for the format string
4647 *
4648 * This function can be called by a running work function to describe what
4649 * the work item is about.  If the worker task gets dumped, this
4650 * information will be printed out together to help debugging.  The
4651 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4652 */
4653void set_worker_desc(const char *fmt, ...)
4654{
4655        struct worker *worker = current_wq_worker();
4656        va_list args;
4657
4658        if (worker) {
4659                va_start(args, fmt);
4660                vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4661                va_end(args);
4662        }
4663}
4664EXPORT_SYMBOL_GPL(set_worker_desc);
4665
4666/**
4667 * print_worker_info - print out worker information and description
4668 * @log_lvl: the log level to use when printing
4669 * @task: target task
4670 *
4671 * If @task is a worker and currently executing a work item, print out the
4672 * name of the workqueue being serviced and worker description set with
4673 * set_worker_desc() by the currently executing work item.
4674 *
4675 * This function can be safely called on any task as long as the
4676 * task_struct itself is accessible.  While safe, this function isn't
4677 * synchronized and may print out mixups or garbages of limited length.
4678 */
4679void print_worker_info(const char *log_lvl, struct task_struct *task)
4680{
4681        work_func_t *fn = NULL;
4682        char name[WQ_NAME_LEN] = { };
4683        char desc[WORKER_DESC_LEN] = { };
4684        struct pool_workqueue *pwq = NULL;
4685        struct workqueue_struct *wq = NULL;
4686        struct worker *worker;
4687
4688        if (!(task->flags & PF_WQ_WORKER))
4689                return;
4690
4691        /*
4692         * This function is called without any synchronization and @task
4693         * could be in any state.  Be careful with dereferences.
4694         */
4695        worker = kthread_probe_data(task);
4696
4697        /*
4698         * Carefully copy the associated workqueue's workfn, name and desc.
4699         * Keep the original last '\0' in case the original is garbage.
4700         */
4701        copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4702        copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4703        copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4704        copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4705        copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4706
4707        if (fn || name[0] || desc[0]) {
4708                printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4709                if (strcmp(name, desc))
4710                        pr_cont(" (%s)", desc);
4711                pr_cont("\n");
4712        }
4713}
4714
4715static void pr_cont_pool_info(struct worker_pool *pool)
4716{
4717        pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4718        if (pool->node != NUMA_NO_NODE)
4719                pr_cont(" node=%d", pool->node);
4720        pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4721}
4722
4723static void pr_cont_work(bool comma, struct work_struct *work)
4724{
4725        if (work->func == wq_barrier_func) {
4726                struct wq_barrier *barr;
4727
4728                barr = container_of(work, struct wq_barrier, work);
4729
4730                pr_cont("%s BAR(%d)", comma ? "," : "",
4731                        task_pid_nr(barr->task));
4732        } else {
4733                pr_cont("%s %ps", comma ? "," : "", work->func);
4734        }
4735}
4736
4737static void show_pwq(struct pool_workqueue *pwq)
4738{
4739        struct worker_pool *pool = pwq->pool;
4740        struct work_struct *work;
4741        struct worker *worker;
4742        bool has_in_flight = false, has_pending = false;
4743        int bkt;
4744
4745        pr_info("  pwq %d:", pool->id);
4746        pr_cont_pool_info(pool);
4747
4748        pr_cont(" active=%d/%d refcnt=%d%s\n",
4749                pwq->nr_active, pwq->max_active, pwq->refcnt,
4750                !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4751
4752        hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4753                if (worker->current_pwq == pwq) {
4754                        has_in_flight = true;
4755                        break;
4756                }
4757        }
4758        if (has_in_flight) {
4759                bool comma = false;
4760
4761                pr_info("    in-flight:");
4762                hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4763                        if (worker->current_pwq != pwq)
4764                                continue;
4765
4766                        pr_cont("%s %d%s:%ps", comma ? "," : "",
4767                                task_pid_nr(worker->task),
4768                                worker->rescue_wq ? "(RESCUER)" : "",
4769                                worker->current_func);
4770                        list_for_each_entry(work, &worker->scheduled, entry)
4771                                pr_cont_work(false, work);
4772                        comma = true;
4773                }
4774                pr_cont("\n");
4775        }
4776
4777        list_for_each_entry(work, &pool->worklist, entry) {
4778                if (get_work_pwq(work) == pwq) {
4779                        has_pending = true;
4780                        break;
4781                }
4782        }
4783        if (has_pending) {
4784                bool comma = false;
4785
4786                pr_info("    pending:");
4787                list_for_each_entry(work, &pool->worklist, entry) {
4788                        if (get_work_pwq(work) != pwq)
4789                                continue;
4790
4791                        pr_cont_work(comma, work);
4792                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4793                }
4794                pr_cont("\n");
4795        }
4796
4797        if (!list_empty(&pwq->inactive_works)) {
4798                bool comma = false;
4799
4800                pr_info("    inactive:");
4801                list_for_each_entry(work, &pwq->inactive_works, entry) {
4802                        pr_cont_work(comma, work);
4803                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4804                }
4805                pr_cont("\n");
4806        }
4807}
4808
4809/**
4810 * show_one_workqueue - dump state of specified workqueue
4811 * @wq: workqueue whose state will be printed
4812 */
4813void show_one_workqueue(struct workqueue_struct *wq)
4814{
4815        struct pool_workqueue *pwq;
4816        bool idle = true;
4817        unsigned long flags;
4818
4819        for_each_pwq(pwq, wq) {
4820                if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4821                        idle = false;
4822                        break;
4823                }
4824        }
4825        if (idle) /* Nothing to print for idle workqueue */
4826                return;
4827
4828        pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4829
4830        for_each_pwq(pwq, wq) {
4831                raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4832                if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4833                        /*
4834                         * Defer printing to avoid deadlocks in console
4835                         * drivers that queue work while holding locks
4836                         * also taken in their write paths.
4837                         */
4838                        printk_deferred_enter();
4839                        show_pwq(pwq);
4840                        printk_deferred_exit();
4841                }
4842                raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4843                /*
4844                 * We could be printing a lot from atomic context, e.g.
4845                 * sysrq-t -> show_all_workqueues(). Avoid triggering
4846                 * hard lockup.
4847                 */
4848                touch_nmi_watchdog();
4849        }
4850
4851}
4852
4853/**
4854 * show_one_worker_pool - dump state of specified worker pool
4855 * @pool: worker pool whose state will be printed
4856 */
4857static void show_one_worker_pool(struct worker_pool *pool)
4858{
4859        struct worker *worker;
4860        bool first = true;
4861        unsigned long flags;
4862
4863        raw_spin_lock_irqsave(&pool->lock, flags);
4864        if (pool->nr_workers == pool->nr_idle)
4865                goto next_pool;
4866        /*
4867         * Defer printing to avoid deadlocks in console drivers that
4868         * queue work while holding locks also taken in their write
4869         * paths.
4870         */
4871        printk_deferred_enter();
4872        pr_info("pool %d:", pool->id);
4873        pr_cont_pool_info(pool);
4874        pr_cont(" hung=%us workers=%d",
4875                jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4876                pool->nr_workers);
4877        if (pool->manager)
4878                pr_cont(" manager: %d",
4879                        task_pid_nr(pool->manager->task));
4880        list_for_each_entry(worker, &pool->idle_list, entry) {
4881                pr_cont(" %s%d", first ? "idle: " : "",
4882                        task_pid_nr(worker->task));
4883                first = false;
4884        }
4885        pr_cont("\n");
4886        printk_deferred_exit();
4887next_pool:
4888        raw_spin_unlock_irqrestore(&pool->lock, flags);
4889        /*
4890         * We could be printing a lot from atomic context, e.g.
4891         * sysrq-t -> show_all_workqueues(). Avoid triggering
4892         * hard lockup.
4893         */
4894        touch_nmi_watchdog();
4895
4896}
4897
4898/**
4899 * show_all_workqueues - dump workqueue state
4900 *
4901 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4902 * all busy workqueues and pools.
4903 */
4904void show_all_workqueues(void)
4905{
4906        struct workqueue_struct *wq;
4907        struct worker_pool *pool;
4908        int pi;
4909
4910        rcu_read_lock();
4911
4912        pr_info("Showing busy workqueues and worker pools:\n");
4913
4914        list_for_each_entry_rcu(wq, &workqueues, list)
4915                show_one_workqueue(wq);
4916
4917        for_each_pool(pool, pi)
4918                show_one_worker_pool(pool);
4919
4920        rcu_read_unlock();
4921}
4922
4923/* used to show worker information through /proc/PID/{comm,stat,status} */
4924void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4925{
4926        int off;
4927
4928        /* always show the actual comm */
4929        off = strscpy(buf, task->comm, size);
4930        if (off < 0)
4931                return;
4932
4933        /* stabilize PF_WQ_WORKER and worker pool association */
4934        mutex_lock(&wq_pool_attach_mutex);
4935
4936        if (task->flags & PF_WQ_WORKER) {
4937                struct worker *worker = kthread_data(task);
4938                struct worker_pool *pool = worker->pool;
4939
4940                if (pool) {
4941                        raw_spin_lock_irq(&pool->lock);
4942                        /*
4943                         * ->desc tracks information (wq name or
4944                         * set_worker_desc()) for the latest execution.  If
4945                         * current, prepend '+', otherwise '-'.
4946                         */
4947                        if (worker->desc[0] != '\0') {
4948                                if (worker->current_work)
4949                                        scnprintf(buf + off, size - off, "+%s",
4950                                                  worker->desc);
4951                                else
4952                                        scnprintf(buf + off, size - off, "-%s",
4953                                                  worker->desc);
4954                        }
4955                        raw_spin_unlock_irq(&pool->lock);
4956                }
4957        }
4958
4959        mutex_unlock(&wq_pool_attach_mutex);
4960}
4961
4962#ifdef CONFIG_SMP
4963
4964/*
4965 * CPU hotplug.
4966 *
4967 * There are two challenges in supporting CPU hotplug.  Firstly, there
4968 * are a lot of assumptions on strong associations among work, pwq and
4969 * pool which make migrating pending and scheduled works very
4970 * difficult to implement without impacting hot paths.  Secondly,
4971 * worker pools serve mix of short, long and very long running works making
4972 * blocked draining impractical.
4973 *
4974 * This is solved by allowing the pools to be disassociated from the CPU
4975 * running as an unbound one and allowing it to be reattached later if the
4976 * cpu comes back online.
4977 */
4978
4979static void unbind_workers(int cpu)
4980{
4981        struct worker_pool *pool;
4982        struct worker *worker;
4983
4984        for_each_cpu_worker_pool(pool, cpu) {
4985                mutex_lock(&wq_pool_attach_mutex);
4986                raw_spin_lock_irq(&pool->lock);
4987
4988                /*
4989                 * We've blocked all attach/detach operations. Make all workers
4990                 * unbound and set DISASSOCIATED.  Before this, all workers
4991                 * must be on the cpu.  After this, they may become diasporas.
4992                 * And the preemption disabled section in their sched callbacks
4993                 * are guaranteed to see WORKER_UNBOUND since the code here
4994                 * is on the same cpu.
4995                 */
4996                for_each_pool_worker(worker, pool)
4997                        worker->flags |= WORKER_UNBOUND;
4998
4999                pool->flags |= POOL_DISASSOCIATED;
5000
5001                /*
5002                 * The handling of nr_running in sched callbacks are disabled
5003                 * now.  Zap nr_running.  After this, nr_running stays zero and
5004                 * need_more_worker() and keep_working() are always true as
5005                 * long as the worklist is not empty.  This pool now behaves as
5006                 * an unbound (in terms of concurrency management) pool which
5007                 * are served by workers tied to the pool.
5008                 */
5009                atomic_set(&pool->nr_running, 0);
5010
5011                /*
5012                 * With concurrency management just turned off, a busy
5013                 * worker blocking could lead to lengthy stalls.  Kick off
5014                 * unbound chain execution of currently pending work items.
5015                 */
5016                wake_up_worker(pool);
5017
5018                raw_spin_unlock_irq(&pool->lock);
5019
5020                for_each_pool_worker(worker, pool) {
5021                        kthread_set_per_cpu(worker->task, -1);
5022                        WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5023                }
5024
5025                mutex_unlock(&wq_pool_attach_mutex);
5026        }
5027}
5028
5029/**
5030 * rebind_workers - rebind all workers of a pool to the associated CPU
5031 * @pool: pool of interest
5032 *
5033 * @pool->cpu is coming online.  Rebind all workers to the CPU.
5034 */
5035static void rebind_workers(struct worker_pool *pool)
5036{
5037        struct worker *worker;
5038
5039        lockdep_assert_held(&wq_pool_attach_mutex);
5040
5041        /*
5042         * Restore CPU affinity of all workers.  As all idle workers should
5043         * be on the run-queue of the associated CPU before any local
5044         * wake-ups for concurrency management happen, restore CPU affinity
5045         * of all workers first and then clear UNBOUND.  As we're called
5046         * from CPU_ONLINE, the following shouldn't fail.
5047         */
5048        for_each_pool_worker(worker, pool) {
5049                kthread_set_per_cpu(worker->task, pool->cpu);
5050                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5051                                                  pool->attrs->cpumask) < 0);
5052        }
5053
5054        raw_spin_lock_irq(&pool->lock);
5055
5056        pool->flags &= ~POOL_DISASSOCIATED;
5057
5058        for_each_pool_worker(worker, pool) {
5059                unsigned int worker_flags = worker->flags;
5060
5061                /*
5062                 * We want to clear UNBOUND but can't directly call
5063                 * worker_clr_flags() or adjust nr_running.  Atomically
5064                 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5065                 * @worker will clear REBOUND using worker_clr_flags() when
5066                 * it initiates the next execution cycle thus restoring
5067                 * concurrency management.  Note that when or whether
5068                 * @worker clears REBOUND doesn't affect correctness.
5069                 *
5070                 * WRITE_ONCE() is necessary because @worker->flags may be
5071                 * tested without holding any lock in
5072                 * wq_worker_running().  Without it, NOT_RUNNING test may
5073                 * fail incorrectly leading to premature concurrency
5074                 * management operations.
5075                 */
5076                WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5077                worker_flags |= WORKER_REBOUND;
5078                worker_flags &= ~WORKER_UNBOUND;
5079                WRITE_ONCE(worker->flags, worker_flags);
5080        }
5081
5082        raw_spin_unlock_irq(&pool->lock);
5083}
5084
5085/**
5086 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5087 * @pool: unbound pool of interest
5088 * @cpu: the CPU which is coming up
5089 *
5090 * An unbound pool may end up with a cpumask which doesn't have any online
5091 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5092 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5093 * online CPU before, cpus_allowed of all its workers should be restored.
5094 */
5095static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5096{
5097        static cpumask_t cpumask;
5098        struct worker *worker;
5099
5100        lockdep_assert_held(&wq_pool_attach_mutex);
5101
5102        /* is @cpu allowed for @pool? */
5103        if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5104                return;
5105
5106        cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5107
5108        /* as we're called from CPU_ONLINE, the following shouldn't fail */
5109        for_each_pool_worker(worker, pool)
5110                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5111}
5112
5113int workqueue_prepare_cpu(unsigned int cpu)
5114{
5115        struct worker_pool *pool;
5116
5117        for_each_cpu_worker_pool(pool, cpu) {
5118                if (pool->nr_workers)
5119                        continue;
5120                if (!create_worker(pool))
5121                        return -ENOMEM;
5122        }
5123        return 0;
5124}
5125
5126int workqueue_online_cpu(unsigned int cpu)
5127{
5128        struct worker_pool *pool;
5129        struct workqueue_struct *wq;
5130        int pi;
5131
5132        mutex_lock(&wq_pool_mutex);
5133
5134        for_each_pool(pool, pi) {
5135                mutex_lock(&wq_pool_attach_mutex);
5136
5137                if (pool->cpu == cpu)
5138                        rebind_workers(pool);
5139                else if (pool->cpu < 0)
5140                        restore_unbound_workers_cpumask(pool, cpu);
5141
5142                mutex_unlock(&wq_pool_attach_mutex);
5143        }
5144
5145        /* update NUMA affinity of unbound workqueues */
5146        list_for_each_entry(wq, &workqueues, list)
5147                wq_update_unbound_numa(wq, cpu, true);
5148
5149        mutex_unlock(&wq_pool_mutex);
5150        return 0;
5151}
5152
5153int workqueue_offline_cpu(unsigned int cpu)
5154{
5155        struct workqueue_struct *wq;
5156
5157        /* unbinding per-cpu workers should happen on the local CPU */
5158        if (WARN_ON(cpu != smp_processor_id()))
5159                return -1;
5160
5161        unbind_workers(cpu);
5162
5163        /* update NUMA affinity of unbound workqueues */
5164        mutex_lock(&wq_pool_mutex);
5165        list_for_each_entry(wq, &workqueues, list)
5166                wq_update_unbound_numa(wq, cpu, false);
5167        mutex_unlock(&wq_pool_mutex);
5168
5169        return 0;
5170}
5171
5172struct work_for_cpu {
5173        struct work_struct work;
5174        long (*fn)(void *);
5175        void *arg;
5176        long ret;
5177};
5178
5179static void work_for_cpu_fn(struct work_struct *work)
5180{
5181        struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5182
5183        wfc->ret = wfc->fn(wfc->arg);
5184}
5185
5186/**
5187 * work_on_cpu - run a function in thread context on a particular cpu
5188 * @cpu: the cpu to run on
5189 * @fn: the function to run
5190 * @arg: the function arg
5191 *
5192 * It is up to the caller to ensure that the cpu doesn't go offline.
5193 * The caller must not hold any locks which would prevent @fn from completing.
5194 *
5195 * Return: The value @fn returns.
5196 */
5197long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5198{
5199        struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5200
5201        INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5202        schedule_work_on(cpu, &wfc.work);
5203        flush_work(&wfc.work);
5204        destroy_work_on_stack(&wfc.work);
5205        return wfc.ret;
5206}
5207EXPORT_SYMBOL_GPL(work_on_cpu);
5208
5209/**
5210 * work_on_cpu_safe - run a function in thread context on a particular cpu
5211 * @cpu: the cpu to run on
5212 * @fn:  the function to run
5213 * @arg: the function argument
5214 *
5215 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5216 * any locks which would prevent @fn from completing.
5217 *
5218 * Return: The value @fn returns.
5219 */
5220long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5221{
5222        long ret = -ENODEV;
5223
5224        cpus_read_lock();
5225        if (cpu_online(cpu))
5226                ret = work_on_cpu(cpu, fn, arg);
5227        cpus_read_unlock();
5228        return ret;
5229}
5230EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5231#endif /* CONFIG_SMP */
5232
5233#ifdef CONFIG_FREEZER
5234
5235/**
5236 * freeze_workqueues_begin - begin freezing workqueues
5237 *
5238 * Start freezing workqueues.  After this function returns, all freezable
5239 * workqueues will queue new works to their inactive_works list instead of
5240 * pool->worklist.
5241 *
5242 * CONTEXT:
5243 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5244 */
5245void freeze_workqueues_begin(void)
5246{
5247        struct workqueue_struct *wq;
5248        struct pool_workqueue *pwq;
5249
5250        mutex_lock(&wq_pool_mutex);
5251
5252        WARN_ON_ONCE(workqueue_freezing);
5253        workqueue_freezing = true;
5254
5255        list_for_each_entry(wq, &workqueues, list) {
5256                mutex_lock(&wq->mutex);
5257                for_each_pwq(pwq, wq)
5258                        pwq_adjust_max_active(pwq);
5259                mutex_unlock(&wq->mutex);
5260        }
5261
5262        mutex_unlock(&wq_pool_mutex);
5263}
5264
5265/**
5266 * freeze_workqueues_busy - are freezable workqueues still busy?
5267 *
5268 * Check whether freezing is complete.  This function must be called
5269 * between freeze_workqueues_begin() and thaw_workqueues().
5270 *
5271 * CONTEXT:
5272 * Grabs and releases wq_pool_mutex.
5273 *
5274 * Return:
5275 * %true if some freezable workqueues are still busy.  %false if freezing
5276 * is complete.
5277 */
5278bool freeze_workqueues_busy(void)
5279{
5280        bool busy = false;
5281        struct workqueue_struct *wq;
5282        struct pool_workqueue *pwq;
5283
5284        mutex_lock(&wq_pool_mutex);
5285
5286        WARN_ON_ONCE(!workqueue_freezing);
5287
5288        list_for_each_entry(wq, &workqueues, list) {
5289                if (!(wq->flags & WQ_FREEZABLE))
5290                        continue;
5291                /*
5292                 * nr_active is monotonically decreasing.  It's safe
5293                 * to peek without lock.
5294                 */
5295                rcu_read_lock();
5296                for_each_pwq(pwq, wq) {
5297                        WARN_ON_ONCE(pwq->nr_active < 0);
5298                        if (pwq->nr_active) {
5299                                busy = true;
5300                                rcu_read_unlock();
5301                                goto out_unlock;
5302                        }
5303                }
5304                rcu_read_unlock();
5305        }
5306out_unlock:
5307        mutex_unlock(&wq_pool_mutex);
5308        return busy;
5309}
5310
5311/**
5312 * thaw_workqueues - thaw workqueues
5313 *
5314 * Thaw workqueues.  Normal queueing is restored and all collected
5315 * frozen works are transferred to their respective pool worklists.
5316 *
5317 * CONTEXT:
5318 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5319 */
5320void thaw_workqueues(void)
5321{
5322        struct workqueue_struct *wq;
5323        struct pool_workqueue *pwq;
5324
5325        mutex_lock(&wq_pool_mutex);
5326
5327        if (!workqueue_freezing)
5328                goto out_unlock;
5329
5330        workqueue_freezing = false;
5331
5332        /* restore max_active and repopulate worklist */
5333        list_for_each_entry(wq, &workqueues, list) {
5334                mutex_lock(&wq->mutex);
5335                for_each_pwq(pwq, wq)
5336                        pwq_adjust_max_active(pwq);
5337                mutex_unlock(&wq->mutex);
5338        }
5339
5340out_unlock:
5341        mutex_unlock(&wq_pool_mutex);
5342}
5343#endif /* CONFIG_FREEZER */
5344
5345static int workqueue_apply_unbound_cpumask(void)
5346{
5347        LIST_HEAD(ctxs);
5348        int ret = 0;
5349        struct workqueue_struct *wq;
5350        struct apply_wqattrs_ctx *ctx, *n;
5351
5352        lockdep_assert_held(&wq_pool_mutex);
5353
5354        list_for_each_entry(wq, &workqueues, list) {
5355                if (!(wq->flags & WQ_UNBOUND))
5356                        continue;
5357                /* creating multiple pwqs breaks ordering guarantee */
5358                if (wq->flags & __WQ_ORDERED)
5359                        continue;
5360
5361                ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5362                if (!ctx) {
5363                        ret = -ENOMEM;
5364                        break;
5365                }
5366
5367                list_add_tail(&ctx->list, &ctxs);
5368        }
5369
5370        list_for_each_entry_safe(ctx, n, &ctxs, list) {
5371                if (!ret)
5372                        apply_wqattrs_commit(ctx);
5373                apply_wqattrs_cleanup(ctx);
5374        }
5375
5376        return ret;
5377}
5378
5379/**
5380 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5381 *  @cpumask: the cpumask to set
5382 *
5383 *  The low-level workqueues cpumask is a global cpumask that limits
5384 *  the affinity of all unbound workqueues.  This function check the @cpumask
5385 *  and apply it to all unbound workqueues and updates all pwqs of them.
5386 *
5387 *  Return:     0       - Success
5388 *              -EINVAL - Invalid @cpumask
5389 *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
5390 */
5391int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5392{
5393        int ret = -EINVAL;
5394        cpumask_var_t saved_cpumask;
5395
5396        /*
5397         * Not excluding isolated cpus on purpose.
5398         * If the user wishes to include them, we allow that.
5399         */
5400        cpumask_and(cpumask, cpumask, cpu_possible_mask);
5401        if (!cpumask_empty(cpumask)) {
5402                apply_wqattrs_lock();
5403                if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5404                        ret = 0;
5405                        goto out_unlock;
5406                }
5407
5408                if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5409                        ret = -ENOMEM;
5410                        goto out_unlock;
5411                }
5412
5413                /* save the old wq_unbound_cpumask. */
5414                cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5415
5416                /* update wq_unbound_cpumask at first and apply it to wqs. */
5417                cpumask_copy(wq_unbound_cpumask, cpumask);
5418                ret = workqueue_apply_unbound_cpumask();
5419
5420                /* restore the wq_unbound_cpumask when failed. */
5421                if (ret < 0)
5422                        cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5423
5424                free_cpumask_var(saved_cpumask);
5425out_unlock:
5426                apply_wqattrs_unlock();
5427        }
5428
5429        return ret;
5430}
5431
5432#ifdef CONFIG_SYSFS
5433/*
5434 * Workqueues with WQ_SYSFS flag set is visible to userland via
5435 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5436 * following attributes.
5437 *
5438 *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
5439 *  max_active  RW int  : maximum number of in-flight work items
5440 *
5441 * Unbound workqueues have the following extra attributes.
5442 *
5443 *  pool_ids    RO int  : the associated pool IDs for each node
5444 *  nice        RW int  : nice value of the workers
5445 *  cpumask     RW mask : bitmask of allowed CPUs for the workers
5446 *  numa        RW bool : whether enable NUMA affinity
5447 */
5448struct wq_device {
5449        struct workqueue_struct         *wq;
5450        struct device                   dev;
5451};
5452
5453static struct workqueue_struct *dev_to_wq(struct device *dev)
5454{
5455        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5456
5457        return wq_dev->wq;
5458}
5459
5460static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5461                            char *buf)
5462{
5463        struct workqueue_struct *wq = dev_to_wq(dev);
5464
5465        return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5466}
5467static DEVICE_ATTR_RO(per_cpu);
5468
5469static ssize_t max_active_show(struct device *dev,
5470                               struct device_attribute *attr, char *buf)
5471{
5472        struct workqueue_struct *wq = dev_to_wq(dev);
5473
5474        return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5475}
5476
5477static ssize_t max_active_store(struct device *dev,
5478                                struct device_attribute *attr, const char *buf,
5479                                size_t count)
5480{
5481        struct workqueue_struct *wq = dev_to_wq(dev);
5482        int val;
5483
5484        if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5485                return -EINVAL;
5486
5487        workqueue_set_max_active(wq, val);
5488        return count;
5489}
5490static DEVICE_ATTR_RW(max_active);
5491
5492static struct attribute *wq_sysfs_attrs[] = {
5493        &dev_attr_per_cpu.attr,
5494        &dev_attr_max_active.attr,
5495        NULL,
5496};
5497ATTRIBUTE_GROUPS(wq_sysfs);
5498
5499static ssize_t wq_pool_ids_show(struct device *dev,
5500                                struct device_attribute *attr, char *buf)
5501{
5502        struct workqueue_struct *wq = dev_to_wq(dev);
5503        const char *delim = "";
5504        int node, written = 0;
5505
5506        cpus_read_lock();
5507        rcu_read_lock();
5508        for_each_node(node) {
5509                written += scnprintf(buf + written, PAGE_SIZE - written,
5510                                     "%s%d:%d", delim, node,
5511                                     unbound_pwq_by_node(wq, node)->pool->id);
5512                delim = " ";
5513        }
5514        written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5515        rcu_read_unlock();
5516        cpus_read_unlock();
5517
5518        return written;
5519}
5520
5521static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5522                            char *buf)
5523{
5524        struct workqueue_struct *wq = dev_to_wq(dev);
5525        int written;
5526
5527        mutex_lock(&wq->mutex);
5528        written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5529        mutex_unlock(&wq->mutex);
5530
5531        return written;
5532}
5533
5534/* prepare workqueue_attrs for sysfs store operations */
5535static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5536{
5537        struct workqueue_attrs *attrs;
5538
5539        lockdep_assert_held(&wq_pool_mutex);
5540
5541        attrs = alloc_workqueue_attrs();
5542        if (!attrs)
5543                return NULL;
5544
5545        copy_workqueue_attrs(attrs, wq->unbound_attrs);
5546        return attrs;
5547}
5548
5549static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5550                             const char *buf, size_t count)
5551{
5552        struct workqueue_struct *wq = dev_to_wq(dev);
5553        struct workqueue_attrs *attrs;
5554        int ret = -ENOMEM;
5555
5556        apply_wqattrs_lock();
5557
5558        attrs = wq_sysfs_prep_attrs(wq);
5559        if (!attrs)
5560                goto out_unlock;
5561
5562        if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5563            attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5564                ret = apply_workqueue_attrs_locked(wq, attrs);
5565        else
5566                ret = -EINVAL;
5567
5568out_unlock:
5569        apply_wqattrs_unlock();
5570        free_workqueue_attrs(attrs);
5571        return ret ?: count;
5572}
5573
5574static ssize_t wq_cpumask_show(struct device *dev,
5575                               struct device_attribute *attr, char *buf)
5576{
5577        struct workqueue_struct *wq = dev_to_wq(dev);
5578        int written;
5579
5580        mutex_lock(&wq->mutex);
5581        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5582                            cpumask_pr_args(wq->unbound_attrs->cpumask));
5583        mutex_unlock(&wq->mutex);
5584        return written;
5585}
5586
5587static ssize_t wq_cpumask_store(struct device *dev,
5588                                struct device_attribute *attr,
5589                                const char *buf, size_t count)
5590{
5591        struct workqueue_struct *wq = dev_to_wq(dev);
5592        struct workqueue_attrs *attrs;
5593        int ret = -ENOMEM;
5594
5595        apply_wqattrs_lock();
5596
5597        attrs = wq_sysfs_prep_attrs(wq);
5598        if (!attrs)
5599                goto out_unlock;
5600
5601        ret = cpumask_parse(buf, attrs->cpumask);
5602        if (!ret)
5603                ret = apply_workqueue_attrs_locked(wq, attrs);
5604
5605out_unlock:
5606        apply_wqattrs_unlock();
5607        free_workqueue_attrs(attrs);
5608        return ret ?: count;
5609}
5610
5611static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5612                            char *buf)
5613{
5614        struct workqueue_struct *wq = dev_to_wq(dev);
5615        int written;
5616
5617        mutex_lock(&wq->mutex);
5618        written = scnprintf(buf, PAGE_SIZE, "%d\n",
5619                            !wq->unbound_attrs->no_numa);
5620        mutex_unlock(&wq->mutex);
5621
5622        return written;
5623}
5624
5625static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5626                             const char *buf, size_t count)
5627{
5628        struct workqueue_struct *wq = dev_to_wq(dev);
5629        struct workqueue_attrs *attrs;
5630        int v, ret = -ENOMEM;
5631
5632        apply_wqattrs_lock();
5633
5634        attrs = wq_sysfs_prep_attrs(wq);
5635        if (!attrs)
5636                goto out_unlock;
5637
5638        ret = -EINVAL;
5639        if (sscanf(buf, "%d", &v) == 1) {
5640                attrs->no_numa = !v;
5641                ret = apply_workqueue_attrs_locked(wq, attrs);
5642        }
5643
5644out_unlock:
5645        apply_wqattrs_unlock();
5646        free_workqueue_attrs(attrs);
5647        return ret ?: count;
5648}
5649
5650static struct device_attribute wq_sysfs_unbound_attrs[] = {
5651        __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5652        __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5653        __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5654        __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5655        __ATTR_NULL,
5656};
5657
5658static struct bus_type wq_subsys = {
5659        .name                           = "workqueue",
5660        .dev_groups                     = wq_sysfs_groups,
5661};
5662
5663static ssize_t wq_unbound_cpumask_show(struct device *dev,
5664                struct device_attribute *attr, char *buf)
5665{
5666        int written;
5667
5668        mutex_lock(&wq_pool_mutex);
5669        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5670                            cpumask_pr_args(wq_unbound_cpumask));
5671        mutex_unlock(&wq_pool_mutex);
5672
5673        return written;
5674}
5675
5676static ssize_t wq_unbound_cpumask_store(struct device *dev,
5677                struct device_attribute *attr, const char *buf, size_t count)
5678{
5679        cpumask_var_t cpumask;
5680        int ret;
5681
5682        if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5683                return -ENOMEM;
5684
5685        ret = cpumask_parse(buf, cpumask);
5686        if (!ret)
5687                ret = workqueue_set_unbound_cpumask(cpumask);
5688
5689        free_cpumask_var(cpumask);
5690        return ret ? ret : count;
5691}
5692
5693static struct device_attribute wq_sysfs_cpumask_attr =
5694        __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5695               wq_unbound_cpumask_store);
5696
5697static int __init wq_sysfs_init(void)
5698{
5699        int err;
5700
5701        err = subsys_virtual_register(&wq_subsys, NULL);
5702        if (err)
5703                return err;
5704
5705        return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5706}
5707core_initcall(wq_sysfs_init);
5708
5709static void wq_device_release(struct device *dev)
5710{
5711        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5712
5713        kfree(wq_dev);
5714}
5715
5716/**
5717 * workqueue_sysfs_register - make a workqueue visible in sysfs
5718 * @wq: the workqueue to register
5719 *
5720 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5721 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5722 * which is the preferred method.
5723 *
5724 * Workqueue user should use this function directly iff it wants to apply
5725 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5726 * apply_workqueue_attrs() may race against userland updating the
5727 * attributes.
5728 *
5729 * Return: 0 on success, -errno on failure.
5730 */
5731int workqueue_sysfs_register(struct workqueue_struct *wq)
5732{
5733        struct wq_device *wq_dev;
5734        int ret;
5735
5736        /*
5737         * Adjusting max_active or creating new pwqs by applying
5738         * attributes breaks ordering guarantee.  Disallow exposing ordered
5739         * workqueues.
5740         */
5741        if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5742                return -EINVAL;
5743
5744        wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5745        if (!wq_dev)
5746                return -ENOMEM;
5747
5748        wq_dev->wq = wq;
5749        wq_dev->dev.bus = &wq_subsys;
5750        wq_dev->dev.release = wq_device_release;
5751        dev_set_name(&wq_dev->dev, "%s", wq->name);
5752
5753        /*
5754         * unbound_attrs are created separately.  Suppress uevent until
5755         * everything is ready.
5756         */
5757        dev_set_uevent_suppress(&wq_dev->dev, true);
5758
5759        ret = device_register(&wq_dev->dev);
5760        if (ret) {
5761                put_device(&wq_dev->dev);
5762                wq->wq_dev = NULL;
5763                return ret;
5764        }
5765
5766        if (wq->flags & WQ_UNBOUND) {
5767                struct device_attribute *attr;
5768
5769                for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5770                        ret = device_create_file(&wq_dev->dev, attr);
5771                        if (ret) {
5772                                device_unregister(&wq_dev->dev);
5773                                wq->wq_dev = NULL;
5774                                return ret;
5775                        }
5776                }
5777        }
5778
5779        dev_set_uevent_suppress(&wq_dev->dev, false);
5780        kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5781        return 0;
5782}
5783
5784/**
5785 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5786 * @wq: the workqueue to unregister
5787 *
5788 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5789 */
5790static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5791{
5792        struct wq_device *wq_dev = wq->wq_dev;
5793
5794        if (!wq->wq_dev)
5795                return;
5796
5797        wq->wq_dev = NULL;
5798        device_unregister(&wq_dev->dev);
5799}
5800#else   /* CONFIG_SYSFS */
5801static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
5802#endif  /* CONFIG_SYSFS */
5803
5804/*
5805 * Workqueue watchdog.
5806 *
5807 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5808 * flush dependency, a concurrency managed work item which stays RUNNING
5809 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5810 * usual warning mechanisms don't trigger and internal workqueue state is
5811 * largely opaque.
5812 *
5813 * Workqueue watchdog monitors all worker pools periodically and dumps
5814 * state if some pools failed to make forward progress for a while where
5815 * forward progress is defined as the first item on ->worklist changing.
5816 *
5817 * This mechanism is controlled through the kernel parameter
5818 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5819 * corresponding sysfs parameter file.
5820 */
5821#ifdef CONFIG_WQ_WATCHDOG
5822
5823static unsigned long wq_watchdog_thresh = 30;
5824static struct timer_list wq_watchdog_timer;
5825
5826static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5827static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5828
5829static void wq_watchdog_reset_touched(void)
5830{
5831        int cpu;
5832
5833        wq_watchdog_touched = jiffies;
5834        for_each_possible_cpu(cpu)
5835                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5836}
5837
5838static void wq_watchdog_timer_fn(struct timer_list *unused)
5839{
5840        unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5841        bool lockup_detected = false;
5842        unsigned long now = jiffies;
5843        struct worker_pool *pool;
5844        int pi;
5845
5846        if (!thresh)
5847                return;
5848
5849        rcu_read_lock();
5850
5851        for_each_pool(pool, pi) {
5852                unsigned long pool_ts, touched, ts;
5853
5854                if (list_empty(&pool->worklist))
5855                        continue;
5856
5857                /*
5858                 * If a virtual machine is stopped by the host it can look to
5859                 * the watchdog like a stall.
5860                 */
5861                kvm_check_and_clear_guest_paused();
5862
5863                /* get the latest of pool and touched timestamps */
5864                if (pool->cpu >= 0)
5865                        touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5866                else
5867                        touched = READ_ONCE(wq_watchdog_touched);
5868                pool_ts = READ_ONCE(pool->watchdog_ts);
5869
5870                if (time_after(pool_ts, touched))
5871                        ts = pool_ts;
5872                else
5873                        ts = touched;
5874
5875                /* did we stall? */
5876                if (time_after(now, ts + thresh)) {
5877                        lockup_detected = true;
5878                        pr_emerg("BUG: workqueue lockup - pool");
5879                        pr_cont_pool_info(pool);
5880                        pr_cont(" stuck for %us!\n",
5881                                jiffies_to_msecs(now - pool_ts) / 1000);
5882                }
5883        }
5884
5885        rcu_read_unlock();
5886
5887        if (lockup_detected)
5888                show_all_workqueues();
5889
5890        wq_watchdog_reset_touched();
5891        mod_timer(&wq_watchdog_timer, jiffies + thresh);
5892}
5893
5894notrace void wq_watchdog_touch(int cpu)
5895{
5896        if (cpu >= 0)
5897                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5898
5899        wq_watchdog_touched = jiffies;
5900}
5901
5902static void wq_watchdog_set_thresh(unsigned long thresh)
5903{
5904        wq_watchdog_thresh = 0;
5905        del_timer_sync(&wq_watchdog_timer);
5906
5907        if (thresh) {
5908                wq_watchdog_thresh = thresh;
5909                wq_watchdog_reset_touched();
5910                mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5911        }
5912}
5913
5914static int wq_watchdog_param_set_thresh(const char *val,
5915                                        const struct kernel_param *kp)
5916{
5917        unsigned long thresh;
5918        int ret;
5919
5920        ret = kstrtoul(val, 0, &thresh);
5921        if (ret)
5922                return ret;
5923
5924        if (system_wq)
5925                wq_watchdog_set_thresh(thresh);
5926        else
5927                wq_watchdog_thresh = thresh;
5928
5929        return 0;
5930}
5931
5932static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5933        .set    = wq_watchdog_param_set_thresh,
5934        .get    = param_get_ulong,
5935};
5936
5937module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5938                0644);
5939
5940static void wq_watchdog_init(void)
5941{
5942        timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5943        wq_watchdog_set_thresh(wq_watchdog_thresh);
5944}
5945
5946#else   /* CONFIG_WQ_WATCHDOG */
5947
5948static inline void wq_watchdog_init(void) { }
5949
5950#endif  /* CONFIG_WQ_WATCHDOG */
5951
5952static void __init wq_numa_init(void)
5953{
5954        cpumask_var_t *tbl;
5955        int node, cpu;
5956
5957        if (num_possible_nodes() <= 1)
5958                return;
5959
5960        if (wq_disable_numa) {
5961                pr_info("workqueue: NUMA affinity support disabled\n");
5962                return;
5963        }
5964
5965        for_each_possible_cpu(cpu) {
5966                if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5967                        pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5968                        return;
5969                }
5970        }
5971
5972        wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5973        BUG_ON(!wq_update_unbound_numa_attrs_buf);
5974
5975        /*
5976         * We want masks of possible CPUs of each node which isn't readily
5977         * available.  Build one from cpu_to_node() which should have been
5978         * fully initialized by now.
5979         */
5980        tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5981        BUG_ON(!tbl);
5982
5983        for_each_node(node)
5984                BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5985                                node_online(node) ? node : NUMA_NO_NODE));
5986
5987        for_each_possible_cpu(cpu) {
5988                node = cpu_to_node(cpu);
5989                cpumask_set_cpu(cpu, tbl[node]);
5990        }
5991
5992        wq_numa_possible_cpumask = tbl;
5993        wq_numa_enabled = true;
5994}
5995
5996/**
5997 * workqueue_init_early - early init for workqueue subsystem
5998 *
5999 * This is the first half of two-staged workqueue subsystem initialization
6000 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6001 * idr are up.  It sets up all the data structures and system workqueues
6002 * and allows early boot code to create workqueues and queue/cancel work
6003 * items.  Actual work item execution starts only after kthreads can be
6004 * created and scheduled right before early initcalls.
6005 */
6006void __init workqueue_init_early(void)
6007{
6008        int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6009        int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
6010        int i, cpu;
6011
6012        BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6013
6014        BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6015        cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6016
6017        pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6018
6019        /* initialize CPU pools */
6020        for_each_possible_cpu(cpu) {
6021                struct worker_pool *pool;
6022
6023                i = 0;
6024                for_each_cpu_worker_pool(pool, cpu) {
6025                        BUG_ON(init_worker_pool(pool));
6026                        pool->cpu = cpu;
6027                        cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6028                        pool->attrs->nice = std_nice[i++];
6029                        pool->node = cpu_to_node(cpu);
6030
6031                        /* alloc pool ID */
6032                        mutex_lock(&wq_pool_mutex);
6033                        BUG_ON(worker_pool_assign_id(pool));
6034                        mutex_unlock(&wq_pool_mutex);
6035                }
6036        }
6037
6038        /* create default unbound and ordered wq attrs */
6039        for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6040                struct workqueue_attrs *attrs;
6041
6042                BUG_ON(!(attrs = alloc_workqueue_attrs()));
6043                attrs->nice = std_nice[i];
6044                unbound_std_wq_attrs[i] = attrs;
6045
6046                /*
6047                 * An ordered wq should have only one pwq as ordering is
6048                 * guaranteed by max_active which is enforced by pwqs.
6049                 * Turn off NUMA so that dfl_pwq is used for all nodes.
6050                 */
6051                BUG_ON(!(attrs = alloc_workqueue_attrs()));
6052                attrs->nice = std_nice[i];
6053                attrs->no_numa = true;
6054                ordered_wq_attrs[i] = attrs;
6055        }
6056
6057        system_wq = alloc_workqueue("events", 0, 0);
6058        system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6059        system_long_wq = alloc_workqueue("events_long", 0, 0);
6060        system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6061                                            WQ_UNBOUND_MAX_ACTIVE);
6062        system_freezable_wq = alloc_workqueue("events_freezable",
6063                                              WQ_FREEZABLE, 0);
6064        system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6065                                              WQ_POWER_EFFICIENT, 0);
6066        system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6067                                              WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6068                                              0);
6069        BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6070               !system_unbound_wq || !system_freezable_wq ||
6071               !system_power_efficient_wq ||
6072               !system_freezable_power_efficient_wq);
6073}
6074
6075/**
6076 * workqueue_init - bring workqueue subsystem fully online
6077 *
6078 * This is the latter half of two-staged workqueue subsystem initialization
6079 * and invoked as soon as kthreads can be created and scheduled.
6080 * Workqueues have been created and work items queued on them, but there
6081 * are no kworkers executing the work items yet.  Populate the worker pools
6082 * with the initial workers and enable future kworker creations.
6083 */
6084void __init workqueue_init(void)
6085{
6086        struct workqueue_struct *wq;
6087        struct worker_pool *pool;
6088        int cpu, bkt;
6089
6090        /*
6091         * It'd be simpler to initialize NUMA in workqueue_init_early() but
6092         * CPU to node mapping may not be available that early on some
6093         * archs such as power and arm64.  As per-cpu pools created
6094         * previously could be missing node hint and unbound pools NUMA
6095         * affinity, fix them up.
6096         *
6097         * Also, while iterating workqueues, create rescuers if requested.
6098         */
6099        wq_numa_init();
6100
6101        mutex_lock(&wq_pool_mutex);
6102
6103        for_each_possible_cpu(cpu) {
6104                for_each_cpu_worker_pool(pool, cpu) {
6105                        pool->node = cpu_to_node(cpu);
6106                }
6107        }
6108
6109        list_for_each_entry(wq, &workqueues, list) {
6110                wq_update_unbound_numa(wq, smp_processor_id(), true);
6111                WARN(init_rescuer(wq),
6112                     "workqueue: failed to create early rescuer for %s",
6113                     wq->name);
6114        }
6115
6116        mutex_unlock(&wq_pool_mutex);
6117
6118        /* create the initial workers */
6119        for_each_online_cpu(cpu) {
6120                for_each_cpu_worker_pool(pool, cpu) {
6121                        pool->flags &= ~POOL_DISASSOCIATED;
6122                        BUG_ON(!create_worker(pool));
6123                }
6124        }
6125
6126        hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6127                BUG_ON(!create_worker(pool));
6128
6129        wq_online = true;
6130        wq_watchdog_init();
6131}
6132