linux/mm/hugetlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33#include <linux/migrate.h>
  34
  35#include <asm/page.h>
  36#include <asm/pgalloc.h>
  37#include <asm/tlb.h>
  38
  39#include <linux/io.h>
  40#include <linux/hugetlb.h>
  41#include <linux/hugetlb_cgroup.h>
  42#include <linux/node.h>
  43#include <linux/page_owner.h>
  44#include "internal.h"
  45#include "hugetlb_vmemmap.h"
  46
  47int hugetlb_max_hstate __read_mostly;
  48unsigned int default_hstate_idx;
  49struct hstate hstates[HUGE_MAX_HSTATE];
  50
  51#ifdef CONFIG_CMA
  52static struct cma *hugetlb_cma[MAX_NUMNODES];
  53static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
  54static bool hugetlb_cma_page(struct page *page, unsigned int order)
  55{
  56        return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
  57                                1 << order);
  58}
  59#else
  60static bool hugetlb_cma_page(struct page *page, unsigned int order)
  61{
  62        return false;
  63}
  64#endif
  65static unsigned long hugetlb_cma_size __initdata;
  66
  67/*
  68 * Minimum page order among possible hugepage sizes, set to a proper value
  69 * at boot time.
  70 */
  71static unsigned int minimum_order __read_mostly = UINT_MAX;
  72
  73__initdata LIST_HEAD(huge_boot_pages);
  74
  75/* for command line parsing */
  76static struct hstate * __initdata parsed_hstate;
  77static unsigned long __initdata default_hstate_max_huge_pages;
  78static bool __initdata parsed_valid_hugepagesz = true;
  79static bool __initdata parsed_default_hugepagesz;
  80static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
  81
  82/*
  83 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  84 * free_huge_pages, and surplus_huge_pages.
  85 */
  86DEFINE_SPINLOCK(hugetlb_lock);
  87
  88/*
  89 * Serializes faults on the same logical page.  This is used to
  90 * prevent spurious OOMs when the hugepage pool is fully utilized.
  91 */
  92static int num_fault_mutexes;
  93struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  94
  95/* Forward declaration */
  96static int hugetlb_acct_memory(struct hstate *h, long delta);
  97
  98static inline bool subpool_is_free(struct hugepage_subpool *spool)
  99{
 100        if (spool->count)
 101                return false;
 102        if (spool->max_hpages != -1)
 103                return spool->used_hpages == 0;
 104        if (spool->min_hpages != -1)
 105                return spool->rsv_hpages == spool->min_hpages;
 106
 107        return true;
 108}
 109
 110static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
 111                                                unsigned long irq_flags)
 112{
 113        spin_unlock_irqrestore(&spool->lock, irq_flags);
 114
 115        /* If no pages are used, and no other handles to the subpool
 116         * remain, give up any reservations based on minimum size and
 117         * free the subpool */
 118        if (subpool_is_free(spool)) {
 119                if (spool->min_hpages != -1)
 120                        hugetlb_acct_memory(spool->hstate,
 121                                                -spool->min_hpages);
 122                kfree(spool);
 123        }
 124}
 125
 126struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 127                                                long min_hpages)
 128{
 129        struct hugepage_subpool *spool;
 130
 131        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 132        if (!spool)
 133                return NULL;
 134
 135        spin_lock_init(&spool->lock);
 136        spool->count = 1;
 137        spool->max_hpages = max_hpages;
 138        spool->hstate = h;
 139        spool->min_hpages = min_hpages;
 140
 141        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 142                kfree(spool);
 143                return NULL;
 144        }
 145        spool->rsv_hpages = min_hpages;
 146
 147        return spool;
 148}
 149
 150void hugepage_put_subpool(struct hugepage_subpool *spool)
 151{
 152        unsigned long flags;
 153
 154        spin_lock_irqsave(&spool->lock, flags);
 155        BUG_ON(!spool->count);
 156        spool->count--;
 157        unlock_or_release_subpool(spool, flags);
 158}
 159
 160/*
 161 * Subpool accounting for allocating and reserving pages.
 162 * Return -ENOMEM if there are not enough resources to satisfy the
 163 * request.  Otherwise, return the number of pages by which the
 164 * global pools must be adjusted (upward).  The returned value may
 165 * only be different than the passed value (delta) in the case where
 166 * a subpool minimum size must be maintained.
 167 */
 168static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 169                                      long delta)
 170{
 171        long ret = delta;
 172
 173        if (!spool)
 174                return ret;
 175
 176        spin_lock_irq(&spool->lock);
 177
 178        if (spool->max_hpages != -1) {          /* maximum size accounting */
 179                if ((spool->used_hpages + delta) <= spool->max_hpages)
 180                        spool->used_hpages += delta;
 181                else {
 182                        ret = -ENOMEM;
 183                        goto unlock_ret;
 184                }
 185        }
 186
 187        /* minimum size accounting */
 188        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 189                if (delta > spool->rsv_hpages) {
 190                        /*
 191                         * Asking for more reserves than those already taken on
 192                         * behalf of subpool.  Return difference.
 193                         */
 194                        ret = delta - spool->rsv_hpages;
 195                        spool->rsv_hpages = 0;
 196                } else {
 197                        ret = 0;        /* reserves already accounted for */
 198                        spool->rsv_hpages -= delta;
 199                }
 200        }
 201
 202unlock_ret:
 203        spin_unlock_irq(&spool->lock);
 204        return ret;
 205}
 206
 207/*
 208 * Subpool accounting for freeing and unreserving pages.
 209 * Return the number of global page reservations that must be dropped.
 210 * The return value may only be different than the passed value (delta)
 211 * in the case where a subpool minimum size must be maintained.
 212 */
 213static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 214                                       long delta)
 215{
 216        long ret = delta;
 217        unsigned long flags;
 218
 219        if (!spool)
 220                return delta;
 221
 222        spin_lock_irqsave(&spool->lock, flags);
 223
 224        if (spool->max_hpages != -1)            /* maximum size accounting */
 225                spool->used_hpages -= delta;
 226
 227         /* minimum size accounting */
 228        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 229                if (spool->rsv_hpages + delta <= spool->min_hpages)
 230                        ret = 0;
 231                else
 232                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 233
 234                spool->rsv_hpages += delta;
 235                if (spool->rsv_hpages > spool->min_hpages)
 236                        spool->rsv_hpages = spool->min_hpages;
 237        }
 238
 239        /*
 240         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 241         * quota reference, free it now.
 242         */
 243        unlock_or_release_subpool(spool, flags);
 244
 245        return ret;
 246}
 247
 248static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 249{
 250        return HUGETLBFS_SB(inode->i_sb)->spool;
 251}
 252
 253static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 254{
 255        return subpool_inode(file_inode(vma->vm_file));
 256}
 257
 258/* Helper that removes a struct file_region from the resv_map cache and returns
 259 * it for use.
 260 */
 261static struct file_region *
 262get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 263{
 264        struct file_region *nrg = NULL;
 265
 266        VM_BUG_ON(resv->region_cache_count <= 0);
 267
 268        resv->region_cache_count--;
 269        nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 270        list_del(&nrg->link);
 271
 272        nrg->from = from;
 273        nrg->to = to;
 274
 275        return nrg;
 276}
 277
 278static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 279                                              struct file_region *rg)
 280{
 281#ifdef CONFIG_CGROUP_HUGETLB
 282        nrg->reservation_counter = rg->reservation_counter;
 283        nrg->css = rg->css;
 284        if (rg->css)
 285                css_get(rg->css);
 286#endif
 287}
 288
 289/* Helper that records hugetlb_cgroup uncharge info. */
 290static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 291                                                struct hstate *h,
 292                                                struct resv_map *resv,
 293                                                struct file_region *nrg)
 294{
 295#ifdef CONFIG_CGROUP_HUGETLB
 296        if (h_cg) {
 297                nrg->reservation_counter =
 298                        &h_cg->rsvd_hugepage[hstate_index(h)];
 299                nrg->css = &h_cg->css;
 300                /*
 301                 * The caller will hold exactly one h_cg->css reference for the
 302                 * whole contiguous reservation region. But this area might be
 303                 * scattered when there are already some file_regions reside in
 304                 * it. As a result, many file_regions may share only one css
 305                 * reference. In order to ensure that one file_region must hold
 306                 * exactly one h_cg->css reference, we should do css_get for
 307                 * each file_region and leave the reference held by caller
 308                 * untouched.
 309                 */
 310                css_get(&h_cg->css);
 311                if (!resv->pages_per_hpage)
 312                        resv->pages_per_hpage = pages_per_huge_page(h);
 313                /* pages_per_hpage should be the same for all entries in
 314                 * a resv_map.
 315                 */
 316                VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 317        } else {
 318                nrg->reservation_counter = NULL;
 319                nrg->css = NULL;
 320        }
 321#endif
 322}
 323
 324static void put_uncharge_info(struct file_region *rg)
 325{
 326#ifdef CONFIG_CGROUP_HUGETLB
 327        if (rg->css)
 328                css_put(rg->css);
 329#endif
 330}
 331
 332static bool has_same_uncharge_info(struct file_region *rg,
 333                                   struct file_region *org)
 334{
 335#ifdef CONFIG_CGROUP_HUGETLB
 336        return rg->reservation_counter == org->reservation_counter &&
 337               rg->css == org->css;
 338
 339#else
 340        return true;
 341#endif
 342}
 343
 344static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 345{
 346        struct file_region *nrg = NULL, *prg = NULL;
 347
 348        prg = list_prev_entry(rg, link);
 349        if (&prg->link != &resv->regions && prg->to == rg->from &&
 350            has_same_uncharge_info(prg, rg)) {
 351                prg->to = rg->to;
 352
 353                list_del(&rg->link);
 354                put_uncharge_info(rg);
 355                kfree(rg);
 356
 357                rg = prg;
 358        }
 359
 360        nrg = list_next_entry(rg, link);
 361        if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 362            has_same_uncharge_info(nrg, rg)) {
 363                nrg->from = rg->from;
 364
 365                list_del(&rg->link);
 366                put_uncharge_info(rg);
 367                kfree(rg);
 368        }
 369}
 370
 371static inline long
 372hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
 373                     long to, struct hstate *h, struct hugetlb_cgroup *cg,
 374                     long *regions_needed)
 375{
 376        struct file_region *nrg;
 377
 378        if (!regions_needed) {
 379                nrg = get_file_region_entry_from_cache(map, from, to);
 380                record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
 381                list_add(&nrg->link, rg->link.prev);
 382                coalesce_file_region(map, nrg);
 383        } else
 384                *regions_needed += 1;
 385
 386        return to - from;
 387}
 388
 389/*
 390 * Must be called with resv->lock held.
 391 *
 392 * Calling this with regions_needed != NULL will count the number of pages
 393 * to be added but will not modify the linked list. And regions_needed will
 394 * indicate the number of file_regions needed in the cache to carry out to add
 395 * the regions for this range.
 396 */
 397static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 398                                     struct hugetlb_cgroup *h_cg,
 399                                     struct hstate *h, long *regions_needed)
 400{
 401        long add = 0;
 402        struct list_head *head = &resv->regions;
 403        long last_accounted_offset = f;
 404        struct file_region *rg = NULL, *trg = NULL;
 405
 406        if (regions_needed)
 407                *regions_needed = 0;
 408
 409        /* In this loop, we essentially handle an entry for the range
 410         * [last_accounted_offset, rg->from), at every iteration, with some
 411         * bounds checking.
 412         */
 413        list_for_each_entry_safe(rg, trg, head, link) {
 414                /* Skip irrelevant regions that start before our range. */
 415                if (rg->from < f) {
 416                        /* If this region ends after the last accounted offset,
 417                         * then we need to update last_accounted_offset.
 418                         */
 419                        if (rg->to > last_accounted_offset)
 420                                last_accounted_offset = rg->to;
 421                        continue;
 422                }
 423
 424                /* When we find a region that starts beyond our range, we've
 425                 * finished.
 426                 */
 427                if (rg->from >= t)
 428                        break;
 429
 430                /* Add an entry for last_accounted_offset -> rg->from, and
 431                 * update last_accounted_offset.
 432                 */
 433                if (rg->from > last_accounted_offset)
 434                        add += hugetlb_resv_map_add(resv, rg,
 435                                                    last_accounted_offset,
 436                                                    rg->from, h, h_cg,
 437                                                    regions_needed);
 438
 439                last_accounted_offset = rg->to;
 440        }
 441
 442        /* Handle the case where our range extends beyond
 443         * last_accounted_offset.
 444         */
 445        if (last_accounted_offset < t)
 446                add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
 447                                            t, h, h_cg, regions_needed);
 448
 449        return add;
 450}
 451
 452/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 453 */
 454static int allocate_file_region_entries(struct resv_map *resv,
 455                                        int regions_needed)
 456        __must_hold(&resv->lock)
 457{
 458        struct list_head allocated_regions;
 459        int to_allocate = 0, i = 0;
 460        struct file_region *trg = NULL, *rg = NULL;
 461
 462        VM_BUG_ON(regions_needed < 0);
 463
 464        INIT_LIST_HEAD(&allocated_regions);
 465
 466        /*
 467         * Check for sufficient descriptors in the cache to accommodate
 468         * the number of in progress add operations plus regions_needed.
 469         *
 470         * This is a while loop because when we drop the lock, some other call
 471         * to region_add or region_del may have consumed some region_entries,
 472         * so we keep looping here until we finally have enough entries for
 473         * (adds_in_progress + regions_needed).
 474         */
 475        while (resv->region_cache_count <
 476               (resv->adds_in_progress + regions_needed)) {
 477                to_allocate = resv->adds_in_progress + regions_needed -
 478                              resv->region_cache_count;
 479
 480                /* At this point, we should have enough entries in the cache
 481                 * for all the existing adds_in_progress. We should only be
 482                 * needing to allocate for regions_needed.
 483                 */
 484                VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 485
 486                spin_unlock(&resv->lock);
 487                for (i = 0; i < to_allocate; i++) {
 488                        trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 489                        if (!trg)
 490                                goto out_of_memory;
 491                        list_add(&trg->link, &allocated_regions);
 492                }
 493
 494                spin_lock(&resv->lock);
 495
 496                list_splice(&allocated_regions, &resv->region_cache);
 497                resv->region_cache_count += to_allocate;
 498        }
 499
 500        return 0;
 501
 502out_of_memory:
 503        list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 504                list_del(&rg->link);
 505                kfree(rg);
 506        }
 507        return -ENOMEM;
 508}
 509
 510/*
 511 * Add the huge page range represented by [f, t) to the reserve
 512 * map.  Regions will be taken from the cache to fill in this range.
 513 * Sufficient regions should exist in the cache due to the previous
 514 * call to region_chg with the same range, but in some cases the cache will not
 515 * have sufficient entries due to races with other code doing region_add or
 516 * region_del.  The extra needed entries will be allocated.
 517 *
 518 * regions_needed is the out value provided by a previous call to region_chg.
 519 *
 520 * Return the number of new huge pages added to the map.  This number is greater
 521 * than or equal to zero.  If file_region entries needed to be allocated for
 522 * this operation and we were not able to allocate, it returns -ENOMEM.
 523 * region_add of regions of length 1 never allocate file_regions and cannot
 524 * fail; region_chg will always allocate at least 1 entry and a region_add for
 525 * 1 page will only require at most 1 entry.
 526 */
 527static long region_add(struct resv_map *resv, long f, long t,
 528                       long in_regions_needed, struct hstate *h,
 529                       struct hugetlb_cgroup *h_cg)
 530{
 531        long add = 0, actual_regions_needed = 0;
 532
 533        spin_lock(&resv->lock);
 534retry:
 535
 536        /* Count how many regions are actually needed to execute this add. */
 537        add_reservation_in_range(resv, f, t, NULL, NULL,
 538                                 &actual_regions_needed);
 539
 540        /*
 541         * Check for sufficient descriptors in the cache to accommodate
 542         * this add operation. Note that actual_regions_needed may be greater
 543         * than in_regions_needed, as the resv_map may have been modified since
 544         * the region_chg call. In this case, we need to make sure that we
 545         * allocate extra entries, such that we have enough for all the
 546         * existing adds_in_progress, plus the excess needed for this
 547         * operation.
 548         */
 549        if (actual_regions_needed > in_regions_needed &&
 550            resv->region_cache_count <
 551                    resv->adds_in_progress +
 552                            (actual_regions_needed - in_regions_needed)) {
 553                /* region_add operation of range 1 should never need to
 554                 * allocate file_region entries.
 555                 */
 556                VM_BUG_ON(t - f <= 1);
 557
 558                if (allocate_file_region_entries(
 559                            resv, actual_regions_needed - in_regions_needed)) {
 560                        return -ENOMEM;
 561                }
 562
 563                goto retry;
 564        }
 565
 566        add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 567
 568        resv->adds_in_progress -= in_regions_needed;
 569
 570        spin_unlock(&resv->lock);
 571        return add;
 572}
 573
 574/*
 575 * Examine the existing reserve map and determine how many
 576 * huge pages in the specified range [f, t) are NOT currently
 577 * represented.  This routine is called before a subsequent
 578 * call to region_add that will actually modify the reserve
 579 * map to add the specified range [f, t).  region_chg does
 580 * not change the number of huge pages represented by the
 581 * map.  A number of new file_region structures is added to the cache as a
 582 * placeholder, for the subsequent region_add call to use. At least 1
 583 * file_region structure is added.
 584 *
 585 * out_regions_needed is the number of regions added to the
 586 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 587 * to region_add or region_abort for proper accounting.
 588 *
 589 * Returns the number of huge pages that need to be added to the existing
 590 * reservation map for the range [f, t).  This number is greater or equal to
 591 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 592 * is needed and can not be allocated.
 593 */
 594static long region_chg(struct resv_map *resv, long f, long t,
 595                       long *out_regions_needed)
 596{
 597        long chg = 0;
 598
 599        spin_lock(&resv->lock);
 600
 601        /* Count how many hugepages in this range are NOT represented. */
 602        chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 603                                       out_regions_needed);
 604
 605        if (*out_regions_needed == 0)
 606                *out_regions_needed = 1;
 607
 608        if (allocate_file_region_entries(resv, *out_regions_needed))
 609                return -ENOMEM;
 610
 611        resv->adds_in_progress += *out_regions_needed;
 612
 613        spin_unlock(&resv->lock);
 614        return chg;
 615}
 616
 617/*
 618 * Abort the in progress add operation.  The adds_in_progress field
 619 * of the resv_map keeps track of the operations in progress between
 620 * calls to region_chg and region_add.  Operations are sometimes
 621 * aborted after the call to region_chg.  In such cases, region_abort
 622 * is called to decrement the adds_in_progress counter. regions_needed
 623 * is the value returned by the region_chg call, it is used to decrement
 624 * the adds_in_progress counter.
 625 *
 626 * NOTE: The range arguments [f, t) are not needed or used in this
 627 * routine.  They are kept to make reading the calling code easier as
 628 * arguments will match the associated region_chg call.
 629 */
 630static void region_abort(struct resv_map *resv, long f, long t,
 631                         long regions_needed)
 632{
 633        spin_lock(&resv->lock);
 634        VM_BUG_ON(!resv->region_cache_count);
 635        resv->adds_in_progress -= regions_needed;
 636        spin_unlock(&resv->lock);
 637}
 638
 639/*
 640 * Delete the specified range [f, t) from the reserve map.  If the
 641 * t parameter is LONG_MAX, this indicates that ALL regions after f
 642 * should be deleted.  Locate the regions which intersect [f, t)
 643 * and either trim, delete or split the existing regions.
 644 *
 645 * Returns the number of huge pages deleted from the reserve map.
 646 * In the normal case, the return value is zero or more.  In the
 647 * case where a region must be split, a new region descriptor must
 648 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 649 * NOTE: If the parameter t == LONG_MAX, then we will never split
 650 * a region and possibly return -ENOMEM.  Callers specifying
 651 * t == LONG_MAX do not need to check for -ENOMEM error.
 652 */
 653static long region_del(struct resv_map *resv, long f, long t)
 654{
 655        struct list_head *head = &resv->regions;
 656        struct file_region *rg, *trg;
 657        struct file_region *nrg = NULL;
 658        long del = 0;
 659
 660retry:
 661        spin_lock(&resv->lock);
 662        list_for_each_entry_safe(rg, trg, head, link) {
 663                /*
 664                 * Skip regions before the range to be deleted.  file_region
 665                 * ranges are normally of the form [from, to).  However, there
 666                 * may be a "placeholder" entry in the map which is of the form
 667                 * (from, to) with from == to.  Check for placeholder entries
 668                 * at the beginning of the range to be deleted.
 669                 */
 670                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 671                        continue;
 672
 673                if (rg->from >= t)
 674                        break;
 675
 676                if (f > rg->from && t < rg->to) { /* Must split region */
 677                        /*
 678                         * Check for an entry in the cache before dropping
 679                         * lock and attempting allocation.
 680                         */
 681                        if (!nrg &&
 682                            resv->region_cache_count > resv->adds_in_progress) {
 683                                nrg = list_first_entry(&resv->region_cache,
 684                                                        struct file_region,
 685                                                        link);
 686                                list_del(&nrg->link);
 687                                resv->region_cache_count--;
 688                        }
 689
 690                        if (!nrg) {
 691                                spin_unlock(&resv->lock);
 692                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 693                                if (!nrg)
 694                                        return -ENOMEM;
 695                                goto retry;
 696                        }
 697
 698                        del += t - f;
 699                        hugetlb_cgroup_uncharge_file_region(
 700                                resv, rg, t - f, false);
 701
 702                        /* New entry for end of split region */
 703                        nrg->from = t;
 704                        nrg->to = rg->to;
 705
 706                        copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 707
 708                        INIT_LIST_HEAD(&nrg->link);
 709
 710                        /* Original entry is trimmed */
 711                        rg->to = f;
 712
 713                        list_add(&nrg->link, &rg->link);
 714                        nrg = NULL;
 715                        break;
 716                }
 717
 718                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 719                        del += rg->to - rg->from;
 720                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 721                                                            rg->to - rg->from, true);
 722                        list_del(&rg->link);
 723                        kfree(rg);
 724                        continue;
 725                }
 726
 727                if (f <= rg->from) {    /* Trim beginning of region */
 728                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 729                                                            t - rg->from, false);
 730
 731                        del += t - rg->from;
 732                        rg->from = t;
 733                } else {                /* Trim end of region */
 734                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 735                                                            rg->to - f, false);
 736
 737                        del += rg->to - f;
 738                        rg->to = f;
 739                }
 740        }
 741
 742        spin_unlock(&resv->lock);
 743        kfree(nrg);
 744        return del;
 745}
 746
 747/*
 748 * A rare out of memory error was encountered which prevented removal of
 749 * the reserve map region for a page.  The huge page itself was free'ed
 750 * and removed from the page cache.  This routine will adjust the subpool
 751 * usage count, and the global reserve count if needed.  By incrementing
 752 * these counts, the reserve map entry which could not be deleted will
 753 * appear as a "reserved" entry instead of simply dangling with incorrect
 754 * counts.
 755 */
 756void hugetlb_fix_reserve_counts(struct inode *inode)
 757{
 758        struct hugepage_subpool *spool = subpool_inode(inode);
 759        long rsv_adjust;
 760        bool reserved = false;
 761
 762        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 763        if (rsv_adjust > 0) {
 764                struct hstate *h = hstate_inode(inode);
 765
 766                if (!hugetlb_acct_memory(h, 1))
 767                        reserved = true;
 768        } else if (!rsv_adjust) {
 769                reserved = true;
 770        }
 771
 772        if (!reserved)
 773                pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
 774}
 775
 776/*
 777 * Count and return the number of huge pages in the reserve map
 778 * that intersect with the range [f, t).
 779 */
 780static long region_count(struct resv_map *resv, long f, long t)
 781{
 782        struct list_head *head = &resv->regions;
 783        struct file_region *rg;
 784        long chg = 0;
 785
 786        spin_lock(&resv->lock);
 787        /* Locate each segment we overlap with, and count that overlap. */
 788        list_for_each_entry(rg, head, link) {
 789                long seg_from;
 790                long seg_to;
 791
 792                if (rg->to <= f)
 793                        continue;
 794                if (rg->from >= t)
 795                        break;
 796
 797                seg_from = max(rg->from, f);
 798                seg_to = min(rg->to, t);
 799
 800                chg += seg_to - seg_from;
 801        }
 802        spin_unlock(&resv->lock);
 803
 804        return chg;
 805}
 806
 807/*
 808 * Convert the address within this vma to the page offset within
 809 * the mapping, in pagecache page units; huge pages here.
 810 */
 811static pgoff_t vma_hugecache_offset(struct hstate *h,
 812                        struct vm_area_struct *vma, unsigned long address)
 813{
 814        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 815                        (vma->vm_pgoff >> huge_page_order(h));
 816}
 817
 818pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 819                                     unsigned long address)
 820{
 821        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 822}
 823EXPORT_SYMBOL_GPL(linear_hugepage_index);
 824
 825/*
 826 * Return the size of the pages allocated when backing a VMA. In the majority
 827 * cases this will be same size as used by the page table entries.
 828 */
 829unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 830{
 831        if (vma->vm_ops && vma->vm_ops->pagesize)
 832                return vma->vm_ops->pagesize(vma);
 833        return PAGE_SIZE;
 834}
 835EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 836
 837/*
 838 * Return the page size being used by the MMU to back a VMA. In the majority
 839 * of cases, the page size used by the kernel matches the MMU size. On
 840 * architectures where it differs, an architecture-specific 'strong'
 841 * version of this symbol is required.
 842 */
 843__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 844{
 845        return vma_kernel_pagesize(vma);
 846}
 847
 848/*
 849 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 850 * bits of the reservation map pointer, which are always clear due to
 851 * alignment.
 852 */
 853#define HPAGE_RESV_OWNER    (1UL << 0)
 854#define HPAGE_RESV_UNMAPPED (1UL << 1)
 855#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 856
 857/*
 858 * These helpers are used to track how many pages are reserved for
 859 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 860 * is guaranteed to have their future faults succeed.
 861 *
 862 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 863 * the reserve counters are updated with the hugetlb_lock held. It is safe
 864 * to reset the VMA at fork() time as it is not in use yet and there is no
 865 * chance of the global counters getting corrupted as a result of the values.
 866 *
 867 * The private mapping reservation is represented in a subtly different
 868 * manner to a shared mapping.  A shared mapping has a region map associated
 869 * with the underlying file, this region map represents the backing file
 870 * pages which have ever had a reservation assigned which this persists even
 871 * after the page is instantiated.  A private mapping has a region map
 872 * associated with the original mmap which is attached to all VMAs which
 873 * reference it, this region map represents those offsets which have consumed
 874 * reservation ie. where pages have been instantiated.
 875 */
 876static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 877{
 878        return (unsigned long)vma->vm_private_data;
 879}
 880
 881static void set_vma_private_data(struct vm_area_struct *vma,
 882                                                        unsigned long value)
 883{
 884        vma->vm_private_data = (void *)value;
 885}
 886
 887static void
 888resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 889                                          struct hugetlb_cgroup *h_cg,
 890                                          struct hstate *h)
 891{
 892#ifdef CONFIG_CGROUP_HUGETLB
 893        if (!h_cg || !h) {
 894                resv_map->reservation_counter = NULL;
 895                resv_map->pages_per_hpage = 0;
 896                resv_map->css = NULL;
 897        } else {
 898                resv_map->reservation_counter =
 899                        &h_cg->rsvd_hugepage[hstate_index(h)];
 900                resv_map->pages_per_hpage = pages_per_huge_page(h);
 901                resv_map->css = &h_cg->css;
 902        }
 903#endif
 904}
 905
 906struct resv_map *resv_map_alloc(void)
 907{
 908        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 909        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 910
 911        if (!resv_map || !rg) {
 912                kfree(resv_map);
 913                kfree(rg);
 914                return NULL;
 915        }
 916
 917        kref_init(&resv_map->refs);
 918        spin_lock_init(&resv_map->lock);
 919        INIT_LIST_HEAD(&resv_map->regions);
 920
 921        resv_map->adds_in_progress = 0;
 922        /*
 923         * Initialize these to 0. On shared mappings, 0's here indicate these
 924         * fields don't do cgroup accounting. On private mappings, these will be
 925         * re-initialized to the proper values, to indicate that hugetlb cgroup
 926         * reservations are to be un-charged from here.
 927         */
 928        resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 929
 930        INIT_LIST_HEAD(&resv_map->region_cache);
 931        list_add(&rg->link, &resv_map->region_cache);
 932        resv_map->region_cache_count = 1;
 933
 934        return resv_map;
 935}
 936
 937void resv_map_release(struct kref *ref)
 938{
 939        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 940        struct list_head *head = &resv_map->region_cache;
 941        struct file_region *rg, *trg;
 942
 943        /* Clear out any active regions before we release the map. */
 944        region_del(resv_map, 0, LONG_MAX);
 945
 946        /* ... and any entries left in the cache */
 947        list_for_each_entry_safe(rg, trg, head, link) {
 948                list_del(&rg->link);
 949                kfree(rg);
 950        }
 951
 952        VM_BUG_ON(resv_map->adds_in_progress);
 953
 954        kfree(resv_map);
 955}
 956
 957static inline struct resv_map *inode_resv_map(struct inode *inode)
 958{
 959        /*
 960         * At inode evict time, i_mapping may not point to the original
 961         * address space within the inode.  This original address space
 962         * contains the pointer to the resv_map.  So, always use the
 963         * address space embedded within the inode.
 964         * The VERY common case is inode->mapping == &inode->i_data but,
 965         * this may not be true for device special inodes.
 966         */
 967        return (struct resv_map *)(&inode->i_data)->private_data;
 968}
 969
 970static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 971{
 972        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 973        if (vma->vm_flags & VM_MAYSHARE) {
 974                struct address_space *mapping = vma->vm_file->f_mapping;
 975                struct inode *inode = mapping->host;
 976
 977                return inode_resv_map(inode);
 978
 979        } else {
 980                return (struct resv_map *)(get_vma_private_data(vma) &
 981                                                        ~HPAGE_RESV_MASK);
 982        }
 983}
 984
 985static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 986{
 987        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 988        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 989
 990        set_vma_private_data(vma, (get_vma_private_data(vma) &
 991                                HPAGE_RESV_MASK) | (unsigned long)map);
 992}
 993
 994static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 995{
 996        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 997        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 998
 999        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1000}
1001
1002static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1003{
1004        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005
1006        return (get_vma_private_data(vma) & flag) != 0;
1007}
1008
1009/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1010void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1011{
1012        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1013        if (!(vma->vm_flags & VM_MAYSHARE))
1014                vma->vm_private_data = (void *)0;
1015}
1016
1017/*
1018 * Reset and decrement one ref on hugepage private reservation.
1019 * Called with mm->mmap_sem writer semaphore held.
1020 * This function should be only used by move_vma() and operate on
1021 * same sized vma. It should never come here with last ref on the
1022 * reservation.
1023 */
1024void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1025{
1026        /*
1027         * Clear the old hugetlb private page reservation.
1028         * It has already been transferred to new_vma.
1029         *
1030         * During a mremap() operation of a hugetlb vma we call move_vma()
1031         * which copies vma into new_vma and unmaps vma. After the copy
1032         * operation both new_vma and vma share a reference to the resv_map
1033         * struct, and at that point vma is about to be unmapped. We don't
1034         * want to return the reservation to the pool at unmap of vma because
1035         * the reservation still lives on in new_vma, so simply decrement the
1036         * ref here and remove the resv_map reference from this vma.
1037         */
1038        struct resv_map *reservations = vma_resv_map(vma);
1039
1040        if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041                resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1042                kref_put(&reservations->refs, resv_map_release);
1043        }
1044
1045        reset_vma_resv_huge_pages(vma);
1046}
1047
1048/* Returns true if the VMA has associated reserve pages */
1049static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1050{
1051        if (vma->vm_flags & VM_NORESERVE) {
1052                /*
1053                 * This address is already reserved by other process(chg == 0),
1054                 * so, we should decrement reserved count. Without decrementing,
1055                 * reserve count remains after releasing inode, because this
1056                 * allocated page will go into page cache and is regarded as
1057                 * coming from reserved pool in releasing step.  Currently, we
1058                 * don't have any other solution to deal with this situation
1059                 * properly, so add work-around here.
1060                 */
1061                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1062                        return true;
1063                else
1064                        return false;
1065        }
1066
1067        /* Shared mappings always use reserves */
1068        if (vma->vm_flags & VM_MAYSHARE) {
1069                /*
1070                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1071                 * be a region map for all pages.  The only situation where
1072                 * there is no region map is if a hole was punched via
1073                 * fallocate.  In this case, there really are no reserves to
1074                 * use.  This situation is indicated if chg != 0.
1075                 */
1076                if (chg)
1077                        return false;
1078                else
1079                        return true;
1080        }
1081
1082        /*
1083         * Only the process that called mmap() has reserves for
1084         * private mappings.
1085         */
1086        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087                /*
1088                 * Like the shared case above, a hole punch or truncate
1089                 * could have been performed on the private mapping.
1090                 * Examine the value of chg to determine if reserves
1091                 * actually exist or were previously consumed.
1092                 * Very Subtle - The value of chg comes from a previous
1093                 * call to vma_needs_reserves().  The reserve map for
1094                 * private mappings has different (opposite) semantics
1095                 * than that of shared mappings.  vma_needs_reserves()
1096                 * has already taken this difference in semantics into
1097                 * account.  Therefore, the meaning of chg is the same
1098                 * as in the shared case above.  Code could easily be
1099                 * combined, but keeping it separate draws attention to
1100                 * subtle differences.
1101                 */
1102                if (chg)
1103                        return false;
1104                else
1105                        return true;
1106        }
1107
1108        return false;
1109}
1110
1111static void enqueue_huge_page(struct hstate *h, struct page *page)
1112{
1113        int nid = page_to_nid(page);
1114
1115        lockdep_assert_held(&hugetlb_lock);
1116        VM_BUG_ON_PAGE(page_count(page), page);
1117
1118        list_move(&page->lru, &h->hugepage_freelists[nid]);
1119        h->free_huge_pages++;
1120        h->free_huge_pages_node[nid]++;
1121        SetHPageFreed(page);
1122}
1123
1124static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1125{
1126        struct page *page;
1127        bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1128
1129        lockdep_assert_held(&hugetlb_lock);
1130        list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1131                if (pin && !is_pinnable_page(page))
1132                        continue;
1133
1134                if (PageHWPoison(page))
1135                        continue;
1136
1137                list_move(&page->lru, &h->hugepage_activelist);
1138                set_page_refcounted(page);
1139                ClearHPageFreed(page);
1140                h->free_huge_pages--;
1141                h->free_huge_pages_node[nid]--;
1142                return page;
1143        }
1144
1145        return NULL;
1146}
1147
1148static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1149                nodemask_t *nmask)
1150{
1151        unsigned int cpuset_mems_cookie;
1152        struct zonelist *zonelist;
1153        struct zone *zone;
1154        struct zoneref *z;
1155        int node = NUMA_NO_NODE;
1156
1157        zonelist = node_zonelist(nid, gfp_mask);
1158
1159retry_cpuset:
1160        cpuset_mems_cookie = read_mems_allowed_begin();
1161        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1162                struct page *page;
1163
1164                if (!cpuset_zone_allowed(zone, gfp_mask))
1165                        continue;
1166                /*
1167                 * no need to ask again on the same node. Pool is node rather than
1168                 * zone aware
1169                 */
1170                if (zone_to_nid(zone) == node)
1171                        continue;
1172                node = zone_to_nid(zone);
1173
1174                page = dequeue_huge_page_node_exact(h, node);
1175                if (page)
1176                        return page;
1177        }
1178        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1179                goto retry_cpuset;
1180
1181        return NULL;
1182}
1183
1184static struct page *dequeue_huge_page_vma(struct hstate *h,
1185                                struct vm_area_struct *vma,
1186                                unsigned long address, int avoid_reserve,
1187                                long chg)
1188{
1189        struct page *page = NULL;
1190        struct mempolicy *mpol;
1191        gfp_t gfp_mask;
1192        nodemask_t *nodemask;
1193        int nid;
1194
1195        /*
1196         * A child process with MAP_PRIVATE mappings created by their parent
1197         * have no page reserves. This check ensures that reservations are
1198         * not "stolen". The child may still get SIGKILLed
1199         */
1200        if (!vma_has_reserves(vma, chg) &&
1201                        h->free_huge_pages - h->resv_huge_pages == 0)
1202                goto err;
1203
1204        /* If reserves cannot be used, ensure enough pages are in the pool */
1205        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1206                goto err;
1207
1208        gfp_mask = htlb_alloc_mask(h);
1209        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1210
1211        if (mpol_is_preferred_many(mpol)) {
1212                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1213
1214                /* Fallback to all nodes if page==NULL */
1215                nodemask = NULL;
1216        }
1217
1218        if (!page)
1219                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220
1221        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1222                SetHPageRestoreReserve(page);
1223                h->resv_huge_pages--;
1224        }
1225
1226        mpol_cond_put(mpol);
1227        return page;
1228
1229err:
1230        return NULL;
1231}
1232
1233/*
1234 * common helper functions for hstate_next_node_to_{alloc|free}.
1235 * We may have allocated or freed a huge page based on a different
1236 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1237 * be outside of *nodes_allowed.  Ensure that we use an allowed
1238 * node for alloc or free.
1239 */
1240static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1241{
1242        nid = next_node_in(nid, *nodes_allowed);
1243        VM_BUG_ON(nid >= MAX_NUMNODES);
1244
1245        return nid;
1246}
1247
1248static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1249{
1250        if (!node_isset(nid, *nodes_allowed))
1251                nid = next_node_allowed(nid, nodes_allowed);
1252        return nid;
1253}
1254
1255/*
1256 * returns the previously saved node ["this node"] from which to
1257 * allocate a persistent huge page for the pool and advance the
1258 * next node from which to allocate, handling wrap at end of node
1259 * mask.
1260 */
1261static int hstate_next_node_to_alloc(struct hstate *h,
1262                                        nodemask_t *nodes_allowed)
1263{
1264        int nid;
1265
1266        VM_BUG_ON(!nodes_allowed);
1267
1268        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1269        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1270
1271        return nid;
1272}
1273
1274/*
1275 * helper for remove_pool_huge_page() - return the previously saved
1276 * node ["this node"] from which to free a huge page.  Advance the
1277 * next node id whether or not we find a free huge page to free so
1278 * that the next attempt to free addresses the next node.
1279 */
1280static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1281{
1282        int nid;
1283
1284        VM_BUG_ON(!nodes_allowed);
1285
1286        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1287        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1288
1289        return nid;
1290}
1291
1292#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1293        for (nr_nodes = nodes_weight(*mask);                            \
1294                nr_nodes > 0 &&                                         \
1295                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1296                nr_nodes--)
1297
1298#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1299        for (nr_nodes = nodes_weight(*mask);                            \
1300                nr_nodes > 0 &&                                         \
1301                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1302                nr_nodes--)
1303
1304/* used to demote non-gigantic_huge pages as well */
1305static void __destroy_compound_gigantic_page(struct page *page,
1306                                        unsigned int order, bool demote)
1307{
1308        int i;
1309        int nr_pages = 1 << order;
1310        struct page *p = page + 1;
1311
1312        atomic_set(compound_mapcount_ptr(page), 0);
1313        atomic_set(compound_pincount_ptr(page), 0);
1314
1315        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1316                p->mapping = NULL;
1317                clear_compound_head(p);
1318                if (!demote)
1319                        set_page_refcounted(p);
1320        }
1321
1322        set_compound_order(page, 0);
1323        page[1].compound_nr = 0;
1324        __ClearPageHead(page);
1325}
1326
1327static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1328                                        unsigned int order)
1329{
1330        __destroy_compound_gigantic_page(page, order, true);
1331}
1332
1333#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1334static void destroy_compound_gigantic_page(struct page *page,
1335                                        unsigned int order)
1336{
1337        __destroy_compound_gigantic_page(page, order, false);
1338}
1339
1340static void free_gigantic_page(struct page *page, unsigned int order)
1341{
1342        /*
1343         * If the page isn't allocated using the cma allocator,
1344         * cma_release() returns false.
1345         */
1346#ifdef CONFIG_CMA
1347        if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1348                return;
1349#endif
1350
1351        free_contig_range(page_to_pfn(page), 1 << order);
1352}
1353
1354#ifdef CONFIG_CONTIG_ALLOC
1355static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1356                int nid, nodemask_t *nodemask)
1357{
1358        unsigned long nr_pages = pages_per_huge_page(h);
1359        if (nid == NUMA_NO_NODE)
1360                nid = numa_mem_id();
1361
1362#ifdef CONFIG_CMA
1363        {
1364                struct page *page;
1365                int node;
1366
1367                if (hugetlb_cma[nid]) {
1368                        page = cma_alloc(hugetlb_cma[nid], nr_pages,
1369                                        huge_page_order(h), true);
1370                        if (page)
1371                                return page;
1372                }
1373
1374                if (!(gfp_mask & __GFP_THISNODE)) {
1375                        for_each_node_mask(node, *nodemask) {
1376                                if (node == nid || !hugetlb_cma[node])
1377                                        continue;
1378
1379                                page = cma_alloc(hugetlb_cma[node], nr_pages,
1380                                                huge_page_order(h), true);
1381                                if (page)
1382                                        return page;
1383                        }
1384                }
1385        }
1386#endif
1387
1388        return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1389}
1390
1391#else /* !CONFIG_CONTIG_ALLOC */
1392static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1393                                        int nid, nodemask_t *nodemask)
1394{
1395        return NULL;
1396}
1397#endif /* CONFIG_CONTIG_ALLOC */
1398
1399#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1400static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1401                                        int nid, nodemask_t *nodemask)
1402{
1403        return NULL;
1404}
1405static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1406static inline void destroy_compound_gigantic_page(struct page *page,
1407                                                unsigned int order) { }
1408#endif
1409
1410/*
1411 * Remove hugetlb page from lists, and update dtor so that page appears
1412 * as just a compound page.
1413 *
1414 * A reference is held on the page, except in the case of demote.
1415 *
1416 * Must be called with hugetlb lock held.
1417 */
1418static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1419                                                        bool adjust_surplus,
1420                                                        bool demote)
1421{
1422        int nid = page_to_nid(page);
1423
1424        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1425        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1426
1427        lockdep_assert_held(&hugetlb_lock);
1428        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1429                return;
1430
1431        list_del(&page->lru);
1432
1433        if (HPageFreed(page)) {
1434                h->free_huge_pages--;
1435                h->free_huge_pages_node[nid]--;
1436        }
1437        if (adjust_surplus) {
1438                h->surplus_huge_pages--;
1439                h->surplus_huge_pages_node[nid]--;
1440        }
1441
1442        /*
1443         * Very subtle
1444         *
1445         * For non-gigantic pages set the destructor to the normal compound
1446         * page dtor.  This is needed in case someone takes an additional
1447         * temporary ref to the page, and freeing is delayed until they drop
1448         * their reference.
1449         *
1450         * For gigantic pages set the destructor to the null dtor.  This
1451         * destructor will never be called.  Before freeing the gigantic
1452         * page destroy_compound_gigantic_page will turn the compound page
1453         * into a simple group of pages.  After this the destructor does not
1454         * apply.
1455         *
1456         * This handles the case where more than one ref is held when and
1457         * after update_and_free_page is called.
1458         *
1459         * In the case of demote we do not ref count the page as it will soon
1460         * be turned into a page of smaller size.
1461         */
1462        if (!demote)
1463                set_page_refcounted(page);
1464        if (hstate_is_gigantic(h))
1465                set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1466        else
1467                set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1468
1469        h->nr_huge_pages--;
1470        h->nr_huge_pages_node[nid]--;
1471}
1472
1473static void remove_hugetlb_page(struct hstate *h, struct page *page,
1474                                                        bool adjust_surplus)
1475{
1476        __remove_hugetlb_page(h, page, adjust_surplus, false);
1477}
1478
1479static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1480                                                        bool adjust_surplus)
1481{
1482        __remove_hugetlb_page(h, page, adjust_surplus, true);
1483}
1484
1485static void add_hugetlb_page(struct hstate *h, struct page *page,
1486                             bool adjust_surplus)
1487{
1488        int zeroed;
1489        int nid = page_to_nid(page);
1490
1491        VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1492
1493        lockdep_assert_held(&hugetlb_lock);
1494
1495        INIT_LIST_HEAD(&page->lru);
1496        h->nr_huge_pages++;
1497        h->nr_huge_pages_node[nid]++;
1498
1499        if (adjust_surplus) {
1500                h->surplus_huge_pages++;
1501                h->surplus_huge_pages_node[nid]++;
1502        }
1503
1504        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1505        set_page_private(page, 0);
1506        SetHPageVmemmapOptimized(page);
1507
1508        /*
1509         * This page is about to be managed by the hugetlb allocator and
1510         * should have no users.  Drop our reference, and check for others
1511         * just in case.
1512         */
1513        zeroed = put_page_testzero(page);
1514        if (!zeroed)
1515                /*
1516                 * It is VERY unlikely soneone else has taken a ref on
1517                 * the page.  In this case, we simply return as the
1518                 * hugetlb destructor (free_huge_page) will be called
1519                 * when this other ref is dropped.
1520                 */
1521                return;
1522
1523        arch_clear_hugepage_flags(page);
1524        enqueue_huge_page(h, page);
1525}
1526
1527static void __update_and_free_page(struct hstate *h, struct page *page)
1528{
1529        int i;
1530        struct page *subpage = page;
1531
1532        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1533                return;
1534
1535        if (alloc_huge_page_vmemmap(h, page)) {
1536                spin_lock_irq(&hugetlb_lock);
1537                /*
1538                 * If we cannot allocate vmemmap pages, just refuse to free the
1539                 * page and put the page back on the hugetlb free list and treat
1540                 * as a surplus page.
1541                 */
1542                add_hugetlb_page(h, page, true);
1543                spin_unlock_irq(&hugetlb_lock);
1544                return;
1545        }
1546
1547        for (i = 0; i < pages_per_huge_page(h);
1548             i++, subpage = mem_map_next(subpage, page, i)) {
1549                subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1550                                1 << PG_referenced | 1 << PG_dirty |
1551                                1 << PG_active | 1 << PG_private |
1552                                1 << PG_writeback);
1553        }
1554
1555        /*
1556         * Non-gigantic pages demoted from CMA allocated gigantic pages
1557         * need to be given back to CMA in free_gigantic_page.
1558         */
1559        if (hstate_is_gigantic(h) ||
1560            hugetlb_cma_page(page, huge_page_order(h))) {
1561                destroy_compound_gigantic_page(page, huge_page_order(h));
1562                free_gigantic_page(page, huge_page_order(h));
1563        } else {
1564                __free_pages(page, huge_page_order(h));
1565        }
1566}
1567
1568/*
1569 * As update_and_free_page() can be called under any context, so we cannot
1570 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1571 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1572 * the vmemmap pages.
1573 *
1574 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1575 * freed and frees them one-by-one. As the page->mapping pointer is going
1576 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1577 * structure of a lockless linked list of huge pages to be freed.
1578 */
1579static LLIST_HEAD(hpage_freelist);
1580
1581static void free_hpage_workfn(struct work_struct *work)
1582{
1583        struct llist_node *node;
1584
1585        node = llist_del_all(&hpage_freelist);
1586
1587        while (node) {
1588                struct page *page;
1589                struct hstate *h;
1590
1591                page = container_of((struct address_space **)node,
1592                                     struct page, mapping);
1593                node = node->next;
1594                page->mapping = NULL;
1595                /*
1596                 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1597                 * is going to trigger because a previous call to
1598                 * remove_hugetlb_page() will set_compound_page_dtor(page,
1599                 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1600                 */
1601                h = size_to_hstate(page_size(page));
1602
1603                __update_and_free_page(h, page);
1604
1605                cond_resched();
1606        }
1607}
1608static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1609
1610static inline void flush_free_hpage_work(struct hstate *h)
1611{
1612        if (free_vmemmap_pages_per_hpage(h))
1613                flush_work(&free_hpage_work);
1614}
1615
1616static void update_and_free_page(struct hstate *h, struct page *page,
1617                                 bool atomic)
1618{
1619        if (!HPageVmemmapOptimized(page) || !atomic) {
1620                __update_and_free_page(h, page);
1621                return;
1622        }
1623
1624        /*
1625         * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1626         *
1627         * Only call schedule_work() if hpage_freelist is previously
1628         * empty. Otherwise, schedule_work() had been called but the workfn
1629         * hasn't retrieved the list yet.
1630         */
1631        if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1632                schedule_work(&free_hpage_work);
1633}
1634
1635static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1636{
1637        struct page *page, *t_page;
1638
1639        list_for_each_entry_safe(page, t_page, list, lru) {
1640                update_and_free_page(h, page, false);
1641                cond_resched();
1642        }
1643}
1644
1645struct hstate *size_to_hstate(unsigned long size)
1646{
1647        struct hstate *h;
1648
1649        for_each_hstate(h) {
1650                if (huge_page_size(h) == size)
1651                        return h;
1652        }
1653        return NULL;
1654}
1655
1656void free_huge_page(struct page *page)
1657{
1658        /*
1659         * Can't pass hstate in here because it is called from the
1660         * compound page destructor.
1661         */
1662        struct hstate *h = page_hstate(page);
1663        int nid = page_to_nid(page);
1664        struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1665        bool restore_reserve;
1666        unsigned long flags;
1667
1668        VM_BUG_ON_PAGE(page_count(page), page);
1669        VM_BUG_ON_PAGE(page_mapcount(page), page);
1670
1671        hugetlb_set_page_subpool(page, NULL);
1672        page->mapping = NULL;
1673        restore_reserve = HPageRestoreReserve(page);
1674        ClearHPageRestoreReserve(page);
1675
1676        /*
1677         * If HPageRestoreReserve was set on page, page allocation consumed a
1678         * reservation.  If the page was associated with a subpool, there
1679         * would have been a page reserved in the subpool before allocation
1680         * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1681         * reservation, do not call hugepage_subpool_put_pages() as this will
1682         * remove the reserved page from the subpool.
1683         */
1684        if (!restore_reserve) {
1685                /*
1686                 * A return code of zero implies that the subpool will be
1687                 * under its minimum size if the reservation is not restored
1688                 * after page is free.  Therefore, force restore_reserve
1689                 * operation.
1690                 */
1691                if (hugepage_subpool_put_pages(spool, 1) == 0)
1692                        restore_reserve = true;
1693        }
1694
1695        spin_lock_irqsave(&hugetlb_lock, flags);
1696        ClearHPageMigratable(page);
1697        hugetlb_cgroup_uncharge_page(hstate_index(h),
1698                                     pages_per_huge_page(h), page);
1699        hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1700                                          pages_per_huge_page(h), page);
1701        if (restore_reserve)
1702                h->resv_huge_pages++;
1703
1704        if (HPageTemporary(page)) {
1705                remove_hugetlb_page(h, page, false);
1706                spin_unlock_irqrestore(&hugetlb_lock, flags);
1707                update_and_free_page(h, page, true);
1708        } else if (h->surplus_huge_pages_node[nid]) {
1709                /* remove the page from active list */
1710                remove_hugetlb_page(h, page, true);
1711                spin_unlock_irqrestore(&hugetlb_lock, flags);
1712                update_and_free_page(h, page, true);
1713        } else {
1714                arch_clear_hugepage_flags(page);
1715                enqueue_huge_page(h, page);
1716                spin_unlock_irqrestore(&hugetlb_lock, flags);
1717        }
1718}
1719
1720/*
1721 * Must be called with the hugetlb lock held
1722 */
1723static void __prep_account_new_huge_page(struct hstate *h, int nid)
1724{
1725        lockdep_assert_held(&hugetlb_lock);
1726        h->nr_huge_pages++;
1727        h->nr_huge_pages_node[nid]++;
1728}
1729
1730static void __prep_new_huge_page(struct hstate *h, struct page *page)
1731{
1732        free_huge_page_vmemmap(h, page);
1733        INIT_LIST_HEAD(&page->lru);
1734        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1735        hugetlb_set_page_subpool(page, NULL);
1736        set_hugetlb_cgroup(page, NULL);
1737        set_hugetlb_cgroup_rsvd(page, NULL);
1738}
1739
1740static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1741{
1742        __prep_new_huge_page(h, page);
1743        spin_lock_irq(&hugetlb_lock);
1744        __prep_account_new_huge_page(h, nid);
1745        spin_unlock_irq(&hugetlb_lock);
1746}
1747
1748static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1749                                                                bool demote)
1750{
1751        int i, j;
1752        int nr_pages = 1 << order;
1753        struct page *p = page + 1;
1754
1755        /* we rely on prep_new_huge_page to set the destructor */
1756        set_compound_order(page, order);
1757        __ClearPageReserved(page);
1758        __SetPageHead(page);
1759        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1760                /*
1761                 * For gigantic hugepages allocated through bootmem at
1762                 * boot, it's safer to be consistent with the not-gigantic
1763                 * hugepages and clear the PG_reserved bit from all tail pages
1764                 * too.  Otherwise drivers using get_user_pages() to access tail
1765                 * pages may get the reference counting wrong if they see
1766                 * PG_reserved set on a tail page (despite the head page not
1767                 * having PG_reserved set).  Enforcing this consistency between
1768                 * head and tail pages allows drivers to optimize away a check
1769                 * on the head page when they need know if put_page() is needed
1770                 * after get_user_pages().
1771                 */
1772                __ClearPageReserved(p);
1773                /*
1774                 * Subtle and very unlikely
1775                 *
1776                 * Gigantic 'page allocators' such as memblock or cma will
1777                 * return a set of pages with each page ref counted.  We need
1778                 * to turn this set of pages into a compound page with tail
1779                 * page ref counts set to zero.  Code such as speculative page
1780                 * cache adding could take a ref on a 'to be' tail page.
1781                 * We need to respect any increased ref count, and only set
1782                 * the ref count to zero if count is currently 1.  If count
1783                 * is not 1, we return an error.  An error return indicates
1784                 * the set of pages can not be converted to a gigantic page.
1785                 * The caller who allocated the pages should then discard the
1786                 * pages using the appropriate free interface.
1787                 *
1788                 * In the case of demote, the ref count will be zero.
1789                 */
1790                if (!demote) {
1791                        if (!page_ref_freeze(p, 1)) {
1792                                pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1793                                goto out_error;
1794                        }
1795                } else {
1796                        VM_BUG_ON_PAGE(page_count(p), p);
1797                }
1798                set_compound_head(p, page);
1799        }
1800        atomic_set(compound_mapcount_ptr(page), -1);
1801        atomic_set(compound_pincount_ptr(page), 0);
1802        return true;
1803
1804out_error:
1805        /* undo tail page modifications made above */
1806        p = page + 1;
1807        for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1808                clear_compound_head(p);
1809                set_page_refcounted(p);
1810        }
1811        /* need to clear PG_reserved on remaining tail pages  */
1812        for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1813                __ClearPageReserved(p);
1814        set_compound_order(page, 0);
1815        page[1].compound_nr = 0;
1816        __ClearPageHead(page);
1817        return false;
1818}
1819
1820static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1821{
1822        return __prep_compound_gigantic_page(page, order, false);
1823}
1824
1825static bool prep_compound_gigantic_page_for_demote(struct page *page,
1826                                                        unsigned int order)
1827{
1828        return __prep_compound_gigantic_page(page, order, true);
1829}
1830
1831/*
1832 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1833 * transparent huge pages.  See the PageTransHuge() documentation for more
1834 * details.
1835 */
1836int PageHuge(struct page *page)
1837{
1838        if (!PageCompound(page))
1839                return 0;
1840
1841        page = compound_head(page);
1842        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1843}
1844EXPORT_SYMBOL_GPL(PageHuge);
1845
1846/*
1847 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1848 * normal or transparent huge pages.
1849 */
1850int PageHeadHuge(struct page *page_head)
1851{
1852        if (!PageHead(page_head))
1853                return 0;
1854
1855        return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1856}
1857
1858/*
1859 * Find and lock address space (mapping) in write mode.
1860 *
1861 * Upon entry, the page is locked which means that page_mapping() is
1862 * stable.  Due to locking order, we can only trylock_write.  If we can
1863 * not get the lock, simply return NULL to caller.
1864 */
1865struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1866{
1867        struct address_space *mapping = page_mapping(hpage);
1868
1869        if (!mapping)
1870                return mapping;
1871
1872        if (i_mmap_trylock_write(mapping))
1873                return mapping;
1874
1875        return NULL;
1876}
1877
1878pgoff_t hugetlb_basepage_index(struct page *page)
1879{
1880        struct page *page_head = compound_head(page);
1881        pgoff_t index = page_index(page_head);
1882        unsigned long compound_idx;
1883
1884        if (compound_order(page_head) >= MAX_ORDER)
1885                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1886        else
1887                compound_idx = page - page_head;
1888
1889        return (index << compound_order(page_head)) + compound_idx;
1890}
1891
1892static struct page *alloc_buddy_huge_page(struct hstate *h,
1893                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1894                nodemask_t *node_alloc_noretry)
1895{
1896        int order = huge_page_order(h);
1897        struct page *page;
1898        bool alloc_try_hard = true;
1899
1900        /*
1901         * By default we always try hard to allocate the page with
1902         * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1903         * a loop (to adjust global huge page counts) and previous allocation
1904         * failed, do not continue to try hard on the same node.  Use the
1905         * node_alloc_noretry bitmap to manage this state information.
1906         */
1907        if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1908                alloc_try_hard = false;
1909        gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1910        if (alloc_try_hard)
1911                gfp_mask |= __GFP_RETRY_MAYFAIL;
1912        if (nid == NUMA_NO_NODE)
1913                nid = numa_mem_id();
1914        page = __alloc_pages(gfp_mask, order, nid, nmask);
1915        if (page)
1916                __count_vm_event(HTLB_BUDDY_PGALLOC);
1917        else
1918                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1919
1920        /*
1921         * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1922         * indicates an overall state change.  Clear bit so that we resume
1923         * normal 'try hard' allocations.
1924         */
1925        if (node_alloc_noretry && page && !alloc_try_hard)
1926                node_clear(nid, *node_alloc_noretry);
1927
1928        /*
1929         * If we tried hard to get a page but failed, set bit so that
1930         * subsequent attempts will not try as hard until there is an
1931         * overall state change.
1932         */
1933        if (node_alloc_noretry && !page && alloc_try_hard)
1934                node_set(nid, *node_alloc_noretry);
1935
1936        return page;
1937}
1938
1939/*
1940 * Common helper to allocate a fresh hugetlb page. All specific allocators
1941 * should use this function to get new hugetlb pages
1942 */
1943static struct page *alloc_fresh_huge_page(struct hstate *h,
1944                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1945                nodemask_t *node_alloc_noretry)
1946{
1947        struct page *page;
1948        bool retry = false;
1949
1950retry:
1951        if (hstate_is_gigantic(h))
1952                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1953        else
1954                page = alloc_buddy_huge_page(h, gfp_mask,
1955                                nid, nmask, node_alloc_noretry);
1956        if (!page)
1957                return NULL;
1958
1959        if (hstate_is_gigantic(h)) {
1960                if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1961                        /*
1962                         * Rare failure to convert pages to compound page.
1963                         * Free pages and try again - ONCE!
1964                         */
1965                        free_gigantic_page(page, huge_page_order(h));
1966                        if (!retry) {
1967                                retry = true;
1968                                goto retry;
1969                        }
1970                        return NULL;
1971                }
1972        }
1973        prep_new_huge_page(h, page, page_to_nid(page));
1974
1975        return page;
1976}
1977
1978/*
1979 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1980 * manner.
1981 */
1982static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1983                                nodemask_t *node_alloc_noretry)
1984{
1985        struct page *page;
1986        int nr_nodes, node;
1987        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1988
1989        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1990                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1991                                                node_alloc_noretry);
1992                if (page)
1993                        break;
1994        }
1995
1996        if (!page)
1997                return 0;
1998
1999        put_page(page); /* free it into the hugepage allocator */
2000
2001        return 1;
2002}
2003
2004/*
2005 * Remove huge page from pool from next node to free.  Attempt to keep
2006 * persistent huge pages more or less balanced over allowed nodes.
2007 * This routine only 'removes' the hugetlb page.  The caller must make
2008 * an additional call to free the page to low level allocators.
2009 * Called with hugetlb_lock locked.
2010 */
2011static struct page *remove_pool_huge_page(struct hstate *h,
2012                                                nodemask_t *nodes_allowed,
2013                                                 bool acct_surplus)
2014{
2015        int nr_nodes, node;
2016        struct page *page = NULL;
2017
2018        lockdep_assert_held(&hugetlb_lock);
2019        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2020                /*
2021                 * If we're returning unused surplus pages, only examine
2022                 * nodes with surplus pages.
2023                 */
2024                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2025                    !list_empty(&h->hugepage_freelists[node])) {
2026                        page = list_entry(h->hugepage_freelists[node].next,
2027                                          struct page, lru);
2028                        remove_hugetlb_page(h, page, acct_surplus);
2029                        break;
2030                }
2031        }
2032
2033        return page;
2034}
2035
2036/*
2037 * Dissolve a given free hugepage into free buddy pages. This function does
2038 * nothing for in-use hugepages and non-hugepages.
2039 * This function returns values like below:
2040 *
2041 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2042 *           when the system is under memory pressure and the feature of
2043 *           freeing unused vmemmap pages associated with each hugetlb page
2044 *           is enabled.
2045 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2046 *           (allocated or reserved.)
2047 *       0:  successfully dissolved free hugepages or the page is not a
2048 *           hugepage (considered as already dissolved)
2049 */
2050int dissolve_free_huge_page(struct page *page)
2051{
2052        int rc = -EBUSY;
2053
2054retry:
2055        /* Not to disrupt normal path by vainly holding hugetlb_lock */
2056        if (!PageHuge(page))
2057                return 0;
2058
2059        spin_lock_irq(&hugetlb_lock);
2060        if (!PageHuge(page)) {
2061                rc = 0;
2062                goto out;
2063        }
2064
2065        if (!page_count(page)) {
2066                struct page *head = compound_head(page);
2067                struct hstate *h = page_hstate(head);
2068                if (h->free_huge_pages - h->resv_huge_pages == 0)
2069                        goto out;
2070
2071                /*
2072                 * We should make sure that the page is already on the free list
2073                 * when it is dissolved.
2074                 */
2075                if (unlikely(!HPageFreed(head))) {
2076                        spin_unlock_irq(&hugetlb_lock);
2077                        cond_resched();
2078
2079                        /*
2080                         * Theoretically, we should return -EBUSY when we
2081                         * encounter this race. In fact, we have a chance
2082                         * to successfully dissolve the page if we do a
2083                         * retry. Because the race window is quite small.
2084                         * If we seize this opportunity, it is an optimization
2085                         * for increasing the success rate of dissolving page.
2086                         */
2087                        goto retry;
2088                }
2089
2090                remove_hugetlb_page(h, head, false);
2091                h->max_huge_pages--;
2092                spin_unlock_irq(&hugetlb_lock);
2093
2094                /*
2095                 * Normally update_and_free_page will allocate required vmemmmap
2096                 * before freeing the page.  update_and_free_page will fail to
2097                 * free the page if it can not allocate required vmemmap.  We
2098                 * need to adjust max_huge_pages if the page is not freed.
2099                 * Attempt to allocate vmemmmap here so that we can take
2100                 * appropriate action on failure.
2101                 */
2102                rc = alloc_huge_page_vmemmap(h, head);
2103                if (!rc) {
2104                        /*
2105                         * Move PageHWPoison flag from head page to the raw
2106                         * error page, which makes any subpages rather than
2107                         * the error page reusable.
2108                         */
2109                        if (PageHWPoison(head) && page != head) {
2110                                SetPageHWPoison(page);
2111                                ClearPageHWPoison(head);
2112                        }
2113                        update_and_free_page(h, head, false);
2114                } else {
2115                        spin_lock_irq(&hugetlb_lock);
2116                        add_hugetlb_page(h, head, false);
2117                        h->max_huge_pages++;
2118                        spin_unlock_irq(&hugetlb_lock);
2119                }
2120
2121                return rc;
2122        }
2123out:
2124        spin_unlock_irq(&hugetlb_lock);
2125        return rc;
2126}
2127
2128/*
2129 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2130 * make specified memory blocks removable from the system.
2131 * Note that this will dissolve a free gigantic hugepage completely, if any
2132 * part of it lies within the given range.
2133 * Also note that if dissolve_free_huge_page() returns with an error, all
2134 * free hugepages that were dissolved before that error are lost.
2135 */
2136int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2137{
2138        unsigned long pfn;
2139        struct page *page;
2140        int rc = 0;
2141
2142        if (!hugepages_supported())
2143                return rc;
2144
2145        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2146                page = pfn_to_page(pfn);
2147                rc = dissolve_free_huge_page(page);
2148                if (rc)
2149                        break;
2150        }
2151
2152        return rc;
2153}
2154
2155/*
2156 * Allocates a fresh surplus page from the page allocator.
2157 */
2158static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2159                int nid, nodemask_t *nmask, bool zero_ref)
2160{
2161        struct page *page = NULL;
2162        bool retry = false;
2163
2164        if (hstate_is_gigantic(h))
2165                return NULL;
2166
2167        spin_lock_irq(&hugetlb_lock);
2168        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2169                goto out_unlock;
2170        spin_unlock_irq(&hugetlb_lock);
2171
2172retry:
2173        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2174        if (!page)
2175                return NULL;
2176
2177        spin_lock_irq(&hugetlb_lock);
2178        /*
2179         * We could have raced with the pool size change.
2180         * Double check that and simply deallocate the new page
2181         * if we would end up overcommiting the surpluses. Abuse
2182         * temporary page to workaround the nasty free_huge_page
2183         * codeflow
2184         */
2185        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2186                SetHPageTemporary(page);
2187                spin_unlock_irq(&hugetlb_lock);
2188                put_page(page);
2189                return NULL;
2190        }
2191
2192        if (zero_ref) {
2193                /*
2194                 * Caller requires a page with zero ref count.
2195                 * We will drop ref count here.  If someone else is holding
2196                 * a ref, the page will be freed when they drop it.  Abuse
2197                 * temporary page flag to accomplish this.
2198                 */
2199                SetHPageTemporary(page);
2200                if (!put_page_testzero(page)) {
2201                        /*
2202                         * Unexpected inflated ref count on freshly allocated
2203                         * huge.  Retry once.
2204                         */
2205                        pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2206                        spin_unlock_irq(&hugetlb_lock);
2207                        if (retry)
2208                                return NULL;
2209
2210                        retry = true;
2211                        goto retry;
2212                }
2213                ClearHPageTemporary(page);
2214        }
2215
2216        h->surplus_huge_pages++;
2217        h->surplus_huge_pages_node[page_to_nid(page)]++;
2218
2219out_unlock:
2220        spin_unlock_irq(&hugetlb_lock);
2221
2222        return page;
2223}
2224
2225static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2226                                     int nid, nodemask_t *nmask)
2227{
2228        struct page *page;
2229
2230        if (hstate_is_gigantic(h))
2231                return NULL;
2232
2233        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2234        if (!page)
2235                return NULL;
2236
2237        /*
2238         * We do not account these pages as surplus because they are only
2239         * temporary and will be released properly on the last reference
2240         */
2241        SetHPageTemporary(page);
2242
2243        return page;
2244}
2245
2246/*
2247 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2248 */
2249static
2250struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2251                struct vm_area_struct *vma, unsigned long addr)
2252{
2253        struct page *page = NULL;
2254        struct mempolicy *mpol;
2255        gfp_t gfp_mask = htlb_alloc_mask(h);
2256        int nid;
2257        nodemask_t *nodemask;
2258
2259        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2260        if (mpol_is_preferred_many(mpol)) {
2261                gfp_t gfp = gfp_mask | __GFP_NOWARN;
2262
2263                gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2264                page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2265
2266                /* Fallback to all nodes if page==NULL */
2267                nodemask = NULL;
2268        }
2269
2270        if (!page)
2271                page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2272        mpol_cond_put(mpol);
2273        return page;
2274}
2275
2276/* page migration callback function */
2277struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2278                nodemask_t *nmask, gfp_t gfp_mask)
2279{
2280        spin_lock_irq(&hugetlb_lock);
2281        if (h->free_huge_pages - h->resv_huge_pages > 0) {
2282                struct page *page;
2283
2284                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2285                if (page) {
2286                        spin_unlock_irq(&hugetlb_lock);
2287                        return page;
2288                }
2289        }
2290        spin_unlock_irq(&hugetlb_lock);
2291
2292        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2293}
2294
2295/* mempolicy aware migration callback */
2296struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2297                unsigned long address)
2298{
2299        struct mempolicy *mpol;
2300        nodemask_t *nodemask;
2301        struct page *page;
2302        gfp_t gfp_mask;
2303        int node;
2304
2305        gfp_mask = htlb_alloc_mask(h);
2306        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2307        page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2308        mpol_cond_put(mpol);
2309
2310        return page;
2311}
2312
2313/*
2314 * Increase the hugetlb pool such that it can accommodate a reservation
2315 * of size 'delta'.
2316 */
2317static int gather_surplus_pages(struct hstate *h, long delta)
2318        __must_hold(&hugetlb_lock)
2319{
2320        struct list_head surplus_list;
2321        struct page *page, *tmp;
2322        int ret;
2323        long i;
2324        long needed, allocated;
2325        bool alloc_ok = true;
2326
2327        lockdep_assert_held(&hugetlb_lock);
2328        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2329        if (needed <= 0) {
2330                h->resv_huge_pages += delta;
2331                return 0;
2332        }
2333
2334        allocated = 0;
2335        INIT_LIST_HEAD(&surplus_list);
2336
2337        ret = -ENOMEM;
2338retry:
2339        spin_unlock_irq(&hugetlb_lock);
2340        for (i = 0; i < needed; i++) {
2341                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2342                                NUMA_NO_NODE, NULL, true);
2343                if (!page) {
2344                        alloc_ok = false;
2345                        break;
2346                }
2347                list_add(&page->lru, &surplus_list);
2348                cond_resched();
2349        }
2350        allocated += i;
2351
2352        /*
2353         * After retaking hugetlb_lock, we need to recalculate 'needed'
2354         * because either resv_huge_pages or free_huge_pages may have changed.
2355         */
2356        spin_lock_irq(&hugetlb_lock);
2357        needed = (h->resv_huge_pages + delta) -
2358                        (h->free_huge_pages + allocated);
2359        if (needed > 0) {
2360                if (alloc_ok)
2361                        goto retry;
2362                /*
2363                 * We were not able to allocate enough pages to
2364                 * satisfy the entire reservation so we free what
2365                 * we've allocated so far.
2366                 */
2367                goto free;
2368        }
2369        /*
2370         * The surplus_list now contains _at_least_ the number of extra pages
2371         * needed to accommodate the reservation.  Add the appropriate number
2372         * of pages to the hugetlb pool and free the extras back to the buddy
2373         * allocator.  Commit the entire reservation here to prevent another
2374         * process from stealing the pages as they are added to the pool but
2375         * before they are reserved.
2376         */
2377        needed += allocated;
2378        h->resv_huge_pages += delta;
2379        ret = 0;
2380
2381        /* Free the needed pages to the hugetlb pool */
2382        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2383                if ((--needed) < 0)
2384                        break;
2385                /* Add the page to the hugetlb allocator */
2386                enqueue_huge_page(h, page);
2387        }
2388free:
2389        spin_unlock_irq(&hugetlb_lock);
2390
2391        /*
2392         * Free unnecessary surplus pages to the buddy allocator.
2393         * Pages have no ref count, call free_huge_page directly.
2394         */
2395        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2396                free_huge_page(page);
2397        spin_lock_irq(&hugetlb_lock);
2398
2399        return ret;
2400}
2401
2402/*
2403 * This routine has two main purposes:
2404 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2405 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2406 *    to the associated reservation map.
2407 * 2) Free any unused surplus pages that may have been allocated to satisfy
2408 *    the reservation.  As many as unused_resv_pages may be freed.
2409 */
2410static void return_unused_surplus_pages(struct hstate *h,
2411                                        unsigned long unused_resv_pages)
2412{
2413        unsigned long nr_pages;
2414        struct page *page;
2415        LIST_HEAD(page_list);
2416
2417        lockdep_assert_held(&hugetlb_lock);
2418        /* Uncommit the reservation */
2419        h->resv_huge_pages -= unused_resv_pages;
2420
2421        /* Cannot return gigantic pages currently */
2422        if (hstate_is_gigantic(h))
2423                goto out;
2424
2425        /*
2426         * Part (or even all) of the reservation could have been backed
2427         * by pre-allocated pages. Only free surplus pages.
2428         */
2429        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2430
2431        /*
2432         * We want to release as many surplus pages as possible, spread
2433         * evenly across all nodes with memory. Iterate across these nodes
2434         * until we can no longer free unreserved surplus pages. This occurs
2435         * when the nodes with surplus pages have no free pages.
2436         * remove_pool_huge_page() will balance the freed pages across the
2437         * on-line nodes with memory and will handle the hstate accounting.
2438         */
2439        while (nr_pages--) {
2440                page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2441                if (!page)
2442                        goto out;
2443
2444                list_add(&page->lru, &page_list);
2445        }
2446
2447out:
2448        spin_unlock_irq(&hugetlb_lock);
2449        update_and_free_pages_bulk(h, &page_list);
2450        spin_lock_irq(&hugetlb_lock);
2451}
2452
2453
2454/*
2455 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2456 * are used by the huge page allocation routines to manage reservations.
2457 *
2458 * vma_needs_reservation is called to determine if the huge page at addr
2459 * within the vma has an associated reservation.  If a reservation is
2460 * needed, the value 1 is returned.  The caller is then responsible for
2461 * managing the global reservation and subpool usage counts.  After
2462 * the huge page has been allocated, vma_commit_reservation is called
2463 * to add the page to the reservation map.  If the page allocation fails,
2464 * the reservation must be ended instead of committed.  vma_end_reservation
2465 * is called in such cases.
2466 *
2467 * In the normal case, vma_commit_reservation returns the same value
2468 * as the preceding vma_needs_reservation call.  The only time this
2469 * is not the case is if a reserve map was changed between calls.  It
2470 * is the responsibility of the caller to notice the difference and
2471 * take appropriate action.
2472 *
2473 * vma_add_reservation is used in error paths where a reservation must
2474 * be restored when a newly allocated huge page must be freed.  It is
2475 * to be called after calling vma_needs_reservation to determine if a
2476 * reservation exists.
2477 *
2478 * vma_del_reservation is used in error paths where an entry in the reserve
2479 * map was created during huge page allocation and must be removed.  It is to
2480 * be called after calling vma_needs_reservation to determine if a reservation
2481 * exists.
2482 */
2483enum vma_resv_mode {
2484        VMA_NEEDS_RESV,
2485        VMA_COMMIT_RESV,
2486        VMA_END_RESV,
2487        VMA_ADD_RESV,
2488        VMA_DEL_RESV,
2489};
2490static long __vma_reservation_common(struct hstate *h,
2491                                struct vm_area_struct *vma, unsigned long addr,
2492                                enum vma_resv_mode mode)
2493{
2494        struct resv_map *resv;
2495        pgoff_t idx;
2496        long ret;
2497        long dummy_out_regions_needed;
2498
2499        resv = vma_resv_map(vma);
2500        if (!resv)
2501                return 1;
2502
2503        idx = vma_hugecache_offset(h, vma, addr);
2504        switch (mode) {
2505        case VMA_NEEDS_RESV:
2506                ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2507                /* We assume that vma_reservation_* routines always operate on
2508                 * 1 page, and that adding to resv map a 1 page entry can only
2509                 * ever require 1 region.
2510                 */
2511                VM_BUG_ON(dummy_out_regions_needed != 1);
2512                break;
2513        case VMA_COMMIT_RESV:
2514                ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2515                /* region_add calls of range 1 should never fail. */
2516                VM_BUG_ON(ret < 0);
2517                break;
2518        case VMA_END_RESV:
2519                region_abort(resv, idx, idx + 1, 1);
2520                ret = 0;
2521                break;
2522        case VMA_ADD_RESV:
2523                if (vma->vm_flags & VM_MAYSHARE) {
2524                        ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2525                        /* region_add calls of range 1 should never fail. */
2526                        VM_BUG_ON(ret < 0);
2527                } else {
2528                        region_abort(resv, idx, idx + 1, 1);
2529                        ret = region_del(resv, idx, idx + 1);
2530                }
2531                break;
2532        case VMA_DEL_RESV:
2533                if (vma->vm_flags & VM_MAYSHARE) {
2534                        region_abort(resv, idx, idx + 1, 1);
2535                        ret = region_del(resv, idx, idx + 1);
2536                } else {
2537                        ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2538                        /* region_add calls of range 1 should never fail. */
2539                        VM_BUG_ON(ret < 0);
2540                }
2541                break;
2542        default:
2543                BUG();
2544        }
2545
2546        if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2547                return ret;
2548        /*
2549         * We know private mapping must have HPAGE_RESV_OWNER set.
2550         *
2551         * In most cases, reserves always exist for private mappings.
2552         * However, a file associated with mapping could have been
2553         * hole punched or truncated after reserves were consumed.
2554         * As subsequent fault on such a range will not use reserves.
2555         * Subtle - The reserve map for private mappings has the
2556         * opposite meaning than that of shared mappings.  If NO
2557         * entry is in the reserve map, it means a reservation exists.
2558         * If an entry exists in the reserve map, it means the
2559         * reservation has already been consumed.  As a result, the
2560         * return value of this routine is the opposite of the
2561         * value returned from reserve map manipulation routines above.
2562         */
2563        if (ret > 0)
2564                return 0;
2565        if (ret == 0)
2566                return 1;
2567        return ret;
2568}
2569
2570static long vma_needs_reservation(struct hstate *h,
2571                        struct vm_area_struct *vma, unsigned long addr)
2572{
2573        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2574}
2575
2576static long vma_commit_reservation(struct hstate *h,
2577                        struct vm_area_struct *vma, unsigned long addr)
2578{
2579        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2580}
2581
2582static void vma_end_reservation(struct hstate *h,
2583                        struct vm_area_struct *vma, unsigned long addr)
2584{
2585        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2586}
2587
2588static long vma_add_reservation(struct hstate *h,
2589                        struct vm_area_struct *vma, unsigned long addr)
2590{
2591        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2592}
2593
2594static long vma_del_reservation(struct hstate *h,
2595                        struct vm_area_struct *vma, unsigned long addr)
2596{
2597        return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2598}
2599
2600/*
2601 * This routine is called to restore reservation information on error paths.
2602 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2603 * the hugetlb mutex should remain held when calling this routine.
2604 *
2605 * It handles two specific cases:
2606 * 1) A reservation was in place and the page consumed the reservation.
2607 *    HPageRestoreReserve is set in the page.
2608 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2609 *    not set.  However, alloc_huge_page always updates the reserve map.
2610 *
2611 * In case 1, free_huge_page later in the error path will increment the
2612 * global reserve count.  But, free_huge_page does not have enough context
2613 * to adjust the reservation map.  This case deals primarily with private
2614 * mappings.  Adjust the reserve map here to be consistent with global
2615 * reserve count adjustments to be made by free_huge_page.  Make sure the
2616 * reserve map indicates there is a reservation present.
2617 *
2618 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2619 */
2620void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2621                        unsigned long address, struct page *page)
2622{
2623        long rc = vma_needs_reservation(h, vma, address);
2624
2625        if (HPageRestoreReserve(page)) {
2626                if (unlikely(rc < 0))
2627                        /*
2628                         * Rare out of memory condition in reserve map
2629                         * manipulation.  Clear HPageRestoreReserve so that
2630                         * global reserve count will not be incremented
2631                         * by free_huge_page.  This will make it appear
2632                         * as though the reservation for this page was
2633                         * consumed.  This may prevent the task from
2634                         * faulting in the page at a later time.  This
2635                         * is better than inconsistent global huge page
2636                         * accounting of reserve counts.
2637                         */
2638                        ClearHPageRestoreReserve(page);
2639                else if (rc)
2640                        (void)vma_add_reservation(h, vma, address);
2641                else
2642                        vma_end_reservation(h, vma, address);
2643        } else {
2644                if (!rc) {
2645                        /*
2646                         * This indicates there is an entry in the reserve map
2647                         * not added by alloc_huge_page.  We know it was added
2648                         * before the alloc_huge_page call, otherwise
2649                         * HPageRestoreReserve would be set on the page.
2650                         * Remove the entry so that a subsequent allocation
2651                         * does not consume a reservation.
2652                         */
2653                        rc = vma_del_reservation(h, vma, address);
2654                        if (rc < 0)
2655                                /*
2656                                 * VERY rare out of memory condition.  Since
2657                                 * we can not delete the entry, set
2658                                 * HPageRestoreReserve so that the reserve
2659                                 * count will be incremented when the page
2660                                 * is freed.  This reserve will be consumed
2661                                 * on a subsequent allocation.
2662                                 */
2663                                SetHPageRestoreReserve(page);
2664                } else if (rc < 0) {
2665                        /*
2666                         * Rare out of memory condition from
2667                         * vma_needs_reservation call.  Memory allocation is
2668                         * only attempted if a new entry is needed.  Therefore,
2669                         * this implies there is not an entry in the
2670                         * reserve map.
2671                         *
2672                         * For shared mappings, no entry in the map indicates
2673                         * no reservation.  We are done.
2674                         */
2675                        if (!(vma->vm_flags & VM_MAYSHARE))
2676                                /*
2677                                 * For private mappings, no entry indicates
2678                                 * a reservation is present.  Since we can
2679                                 * not add an entry, set SetHPageRestoreReserve
2680                                 * on the page so reserve count will be
2681                                 * incremented when freed.  This reserve will
2682                                 * be consumed on a subsequent allocation.
2683                                 */
2684                                SetHPageRestoreReserve(page);
2685                } else
2686                        /*
2687                         * No reservation present, do nothing
2688                         */
2689                         vma_end_reservation(h, vma, address);
2690        }
2691}
2692
2693/*
2694 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2695 * @h: struct hstate old page belongs to
2696 * @old_page: Old page to dissolve
2697 * @list: List to isolate the page in case we need to
2698 * Returns 0 on success, otherwise negated error.
2699 */
2700static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2701                                        struct list_head *list)
2702{
2703        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2704        int nid = page_to_nid(old_page);
2705        bool alloc_retry = false;
2706        struct page *new_page;
2707        int ret = 0;
2708
2709        /*
2710         * Before dissolving the page, we need to allocate a new one for the
2711         * pool to remain stable.  Here, we allocate the page and 'prep' it
2712         * by doing everything but actually updating counters and adding to
2713         * the pool.  This simplifies and let us do most of the processing
2714         * under the lock.
2715         */
2716alloc_retry:
2717        new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2718        if (!new_page)
2719                return -ENOMEM;
2720        /*
2721         * If all goes well, this page will be directly added to the free
2722         * list in the pool.  For this the ref count needs to be zero.
2723         * Attempt to drop now, and retry once if needed.  It is VERY
2724         * unlikely there is another ref on the page.
2725         *
2726         * If someone else has a reference to the page, it will be freed
2727         * when they drop their ref.  Abuse temporary page flag to accomplish
2728         * this.  Retry once if there is an inflated ref count.
2729         */
2730        SetHPageTemporary(new_page);
2731        if (!put_page_testzero(new_page)) {
2732                if (alloc_retry)
2733                        return -EBUSY;
2734
2735                alloc_retry = true;
2736                goto alloc_retry;
2737        }
2738        ClearHPageTemporary(new_page);
2739
2740        __prep_new_huge_page(h, new_page);
2741
2742retry:
2743        spin_lock_irq(&hugetlb_lock);
2744        if (!PageHuge(old_page)) {
2745                /*
2746                 * Freed from under us. Drop new_page too.
2747                 */
2748                goto free_new;
2749        } else if (page_count(old_page)) {
2750                /*
2751                 * Someone has grabbed the page, try to isolate it here.
2752                 * Fail with -EBUSY if not possible.
2753                 */
2754                spin_unlock_irq(&hugetlb_lock);
2755                if (!isolate_huge_page(old_page, list))
2756                        ret = -EBUSY;
2757                spin_lock_irq(&hugetlb_lock);
2758                goto free_new;
2759        } else if (!HPageFreed(old_page)) {
2760                /*
2761                 * Page's refcount is 0 but it has not been enqueued in the
2762                 * freelist yet. Race window is small, so we can succeed here if
2763                 * we retry.
2764                 */
2765                spin_unlock_irq(&hugetlb_lock);
2766                cond_resched();
2767                goto retry;
2768        } else {
2769                /*
2770                 * Ok, old_page is still a genuine free hugepage. Remove it from
2771                 * the freelist and decrease the counters. These will be
2772                 * incremented again when calling __prep_account_new_huge_page()
2773                 * and enqueue_huge_page() for new_page. The counters will remain
2774                 * stable since this happens under the lock.
2775                 */
2776                remove_hugetlb_page(h, old_page, false);
2777
2778                /*
2779                 * Ref count on new page is already zero as it was dropped
2780                 * earlier.  It can be directly added to the pool free list.
2781                 */
2782                __prep_account_new_huge_page(h, nid);
2783                enqueue_huge_page(h, new_page);
2784
2785                /*
2786                 * Pages have been replaced, we can safely free the old one.
2787                 */
2788                spin_unlock_irq(&hugetlb_lock);
2789                update_and_free_page(h, old_page, false);
2790        }
2791
2792        return ret;
2793
2794free_new:
2795        spin_unlock_irq(&hugetlb_lock);
2796        /* Page has a zero ref count, but needs a ref to be freed */
2797        set_page_refcounted(new_page);
2798        update_and_free_page(h, new_page, false);
2799
2800        return ret;
2801}
2802
2803int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2804{
2805        struct hstate *h;
2806        struct page *head;
2807        int ret = -EBUSY;
2808
2809        /*
2810         * The page might have been dissolved from under our feet, so make sure
2811         * to carefully check the state under the lock.
2812         * Return success when racing as if we dissolved the page ourselves.
2813         */
2814        spin_lock_irq(&hugetlb_lock);
2815        if (PageHuge(page)) {
2816                head = compound_head(page);
2817                h = page_hstate(head);
2818        } else {
2819                spin_unlock_irq(&hugetlb_lock);
2820                return 0;
2821        }
2822        spin_unlock_irq(&hugetlb_lock);
2823
2824        /*
2825         * Fence off gigantic pages as there is a cyclic dependency between
2826         * alloc_contig_range and them. Return -ENOMEM as this has the effect
2827         * of bailing out right away without further retrying.
2828         */
2829        if (hstate_is_gigantic(h))
2830                return -ENOMEM;
2831
2832        if (page_count(head) && isolate_huge_page(head, list))
2833                ret = 0;
2834        else if (!page_count(head))
2835                ret = alloc_and_dissolve_huge_page(h, head, list);
2836
2837        return ret;
2838}
2839
2840struct page *alloc_huge_page(struct vm_area_struct *vma,
2841                                    unsigned long addr, int avoid_reserve)
2842{
2843        struct hugepage_subpool *spool = subpool_vma(vma);
2844        struct hstate *h = hstate_vma(vma);
2845        struct page *page;
2846        long map_chg, map_commit;
2847        long gbl_chg;
2848        int ret, idx;
2849        struct hugetlb_cgroup *h_cg;
2850        bool deferred_reserve;
2851
2852        idx = hstate_index(h);
2853        /*
2854         * Examine the region/reserve map to determine if the process
2855         * has a reservation for the page to be allocated.  A return
2856         * code of zero indicates a reservation exists (no change).
2857         */
2858        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2859        if (map_chg < 0)
2860                return ERR_PTR(-ENOMEM);
2861
2862        /*
2863         * Processes that did not create the mapping will have no
2864         * reserves as indicated by the region/reserve map. Check
2865         * that the allocation will not exceed the subpool limit.
2866         * Allocations for MAP_NORESERVE mappings also need to be
2867         * checked against any subpool limit.
2868         */
2869        if (map_chg || avoid_reserve) {
2870                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2871                if (gbl_chg < 0) {
2872                        vma_end_reservation(h, vma, addr);
2873                        return ERR_PTR(-ENOSPC);
2874                }
2875
2876                /*
2877                 * Even though there was no reservation in the region/reserve
2878                 * map, there could be reservations associated with the
2879                 * subpool that can be used.  This would be indicated if the
2880                 * return value of hugepage_subpool_get_pages() is zero.
2881                 * However, if avoid_reserve is specified we still avoid even
2882                 * the subpool reservations.
2883                 */
2884                if (avoid_reserve)
2885                        gbl_chg = 1;
2886        }
2887
2888        /* If this allocation is not consuming a reservation, charge it now.
2889         */
2890        deferred_reserve = map_chg || avoid_reserve;
2891        if (deferred_reserve) {
2892                ret = hugetlb_cgroup_charge_cgroup_rsvd(
2893                        idx, pages_per_huge_page(h), &h_cg);
2894                if (ret)
2895                        goto out_subpool_put;
2896        }
2897
2898        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2899        if (ret)
2900                goto out_uncharge_cgroup_reservation;
2901
2902        spin_lock_irq(&hugetlb_lock);
2903        /*
2904         * glb_chg is passed to indicate whether or not a page must be taken
2905         * from the global free pool (global change).  gbl_chg == 0 indicates
2906         * a reservation exists for the allocation.
2907         */
2908        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2909        if (!page) {
2910                spin_unlock_irq(&hugetlb_lock);
2911                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2912                if (!page)
2913                        goto out_uncharge_cgroup;
2914                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2915                        SetHPageRestoreReserve(page);
2916                        h->resv_huge_pages--;
2917                }
2918                spin_lock_irq(&hugetlb_lock);
2919                list_add(&page->lru, &h->hugepage_activelist);
2920                /* Fall through */
2921        }
2922        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2923        /* If allocation is not consuming a reservation, also store the
2924         * hugetlb_cgroup pointer on the page.
2925         */
2926        if (deferred_reserve) {
2927                hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2928                                                  h_cg, page);
2929        }
2930
2931        spin_unlock_irq(&hugetlb_lock);
2932
2933        hugetlb_set_page_subpool(page, spool);
2934
2935        map_commit = vma_commit_reservation(h, vma, addr);
2936        if (unlikely(map_chg > map_commit)) {
2937                /*
2938                 * The page was added to the reservation map between
2939                 * vma_needs_reservation and vma_commit_reservation.
2940                 * This indicates a race with hugetlb_reserve_pages.
2941                 * Adjust for the subpool count incremented above AND
2942                 * in hugetlb_reserve_pages for the same page.  Also,
2943                 * the reservation count added in hugetlb_reserve_pages
2944                 * no longer applies.
2945                 */
2946                long rsv_adjust;
2947
2948                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2949                hugetlb_acct_memory(h, -rsv_adjust);
2950                if (deferred_reserve)
2951                        hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2952                                        pages_per_huge_page(h), page);
2953        }
2954        return page;
2955
2956out_uncharge_cgroup:
2957        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2958out_uncharge_cgroup_reservation:
2959        if (deferred_reserve)
2960                hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2961                                                    h_cg);
2962out_subpool_put:
2963        if (map_chg || avoid_reserve)
2964                hugepage_subpool_put_pages(spool, 1);
2965        vma_end_reservation(h, vma, addr);
2966        return ERR_PTR(-ENOSPC);
2967}
2968
2969int alloc_bootmem_huge_page(struct hstate *h, int nid)
2970        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2971int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2972{
2973        struct huge_bootmem_page *m = NULL; /* initialize for clang */
2974        int nr_nodes, node;
2975
2976        if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
2977                return 0;
2978        /* do node specific alloc */
2979        if (nid != NUMA_NO_NODE) {
2980                m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2981                                0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2982                if (!m)
2983                        return 0;
2984                goto found;
2985        }
2986        /* allocate from next node when distributing huge pages */
2987        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2988                m = memblock_alloc_try_nid_raw(
2989                                huge_page_size(h), huge_page_size(h),
2990                                0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2991                /*
2992                 * Use the beginning of the huge page to store the
2993                 * huge_bootmem_page struct (until gather_bootmem
2994                 * puts them into the mem_map).
2995                 */
2996                if (!m)
2997                        return 0;
2998                goto found;
2999        }
3000
3001found:
3002        /* Put them into a private list first because mem_map is not up yet */
3003        INIT_LIST_HEAD(&m->list);
3004        list_add(&m->list, &huge_boot_pages);
3005        m->hstate = h;
3006        return 1;
3007}
3008
3009/*
3010 * Put bootmem huge pages into the standard lists after mem_map is up.
3011 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3012 */
3013static void __init gather_bootmem_prealloc(void)
3014{
3015        struct huge_bootmem_page *m;
3016
3017        list_for_each_entry(m, &huge_boot_pages, list) {
3018                struct page *page = virt_to_page(m);
3019                struct hstate *h = m->hstate;
3020
3021                VM_BUG_ON(!hstate_is_gigantic(h));
3022                WARN_ON(page_count(page) != 1);
3023                if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3024                        WARN_ON(PageReserved(page));
3025                        prep_new_huge_page(h, page, page_to_nid(page));
3026                        put_page(page); /* add to the hugepage allocator */
3027                } else {
3028                        /* VERY unlikely inflated ref count on a tail page */
3029                        free_gigantic_page(page, huge_page_order(h));
3030                }
3031
3032                /*
3033                 * We need to restore the 'stolen' pages to totalram_pages
3034                 * in order to fix confusing memory reports from free(1) and
3035                 * other side-effects, like CommitLimit going negative.
3036                 */
3037                adjust_managed_page_count(page, pages_per_huge_page(h));
3038                cond_resched();
3039        }
3040}
3041static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3042{
3043        unsigned long i;
3044        char buf[32];
3045
3046        for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3047                if (hstate_is_gigantic(h)) {
3048                        if (!alloc_bootmem_huge_page(h, nid))
3049                                break;
3050                } else {
3051                        struct page *page;
3052                        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3053
3054                        page = alloc_fresh_huge_page(h, gfp_mask, nid,
3055                                        &node_states[N_MEMORY], NULL);
3056                        if (!page)
3057                                break;
3058                        put_page(page); /* free it into the hugepage allocator */
3059                }
3060                cond_resched();
3061        }
3062        if (i == h->max_huge_pages_node[nid])
3063                return;
3064
3065        string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3066        pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3067                h->max_huge_pages_node[nid], buf, nid, i);
3068        h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3069        h->max_huge_pages_node[nid] = i;
3070}
3071
3072static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3073{
3074        unsigned long i;
3075        nodemask_t *node_alloc_noretry;
3076        bool node_specific_alloc = false;
3077
3078        /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3079        if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3080                pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3081                return;
3082        }
3083
3084        /* do node specific alloc */
3085        for (i = 0; i < nr_online_nodes; i++) {
3086                if (h->max_huge_pages_node[i] > 0) {
3087                        hugetlb_hstate_alloc_pages_onenode(h, i);
3088                        node_specific_alloc = true;
3089                }
3090        }
3091
3092        if (node_specific_alloc)
3093                return;
3094
3095        /* below will do all node balanced alloc */
3096        if (!hstate_is_gigantic(h)) {
3097                /*
3098                 * Bit mask controlling how hard we retry per-node allocations.
3099                 * Ignore errors as lower level routines can deal with
3100                 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3101                 * time, we are likely in bigger trouble.
3102                 */
3103                node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3104                                                GFP_KERNEL);
3105        } else {
3106                /* allocations done at boot time */
3107                node_alloc_noretry = NULL;
3108        }
3109
3110        /* bit mask controlling how hard we retry per-node allocations */
3111        if (node_alloc_noretry)
3112                nodes_clear(*node_alloc_noretry);
3113
3114        for (i = 0; i < h->max_huge_pages; ++i) {
3115                if (hstate_is_gigantic(h)) {
3116                        if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3117                                break;
3118                } else if (!alloc_pool_huge_page(h,
3119                                         &node_states[N_MEMORY],
3120                                         node_alloc_noretry))
3121                        break;
3122                cond_resched();
3123        }
3124        if (i < h->max_huge_pages) {
3125                char buf[32];
3126
3127                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3128                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3129                        h->max_huge_pages, buf, i);
3130                h->max_huge_pages = i;
3131        }
3132        kfree(node_alloc_noretry);
3133}
3134
3135static void __init hugetlb_init_hstates(void)
3136{
3137        struct hstate *h, *h2;
3138
3139        for_each_hstate(h) {
3140                if (minimum_order > huge_page_order(h))
3141                        minimum_order = huge_page_order(h);
3142
3143                /* oversize hugepages were init'ed in early boot */
3144                if (!hstate_is_gigantic(h))
3145                        hugetlb_hstate_alloc_pages(h);
3146
3147                /*
3148                 * Set demote order for each hstate.  Note that
3149                 * h->demote_order is initially 0.
3150                 * - We can not demote gigantic pages if runtime freeing
3151                 *   is not supported, so skip this.
3152                 * - If CMA allocation is possible, we can not demote
3153                 *   HUGETLB_PAGE_ORDER or smaller size pages.
3154                 */
3155                if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3156                        continue;
3157                if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3158                        continue;
3159                for_each_hstate(h2) {
3160                        if (h2 == h)
3161                                continue;
3162                        if (h2->order < h->order &&
3163                            h2->order > h->demote_order)
3164                                h->demote_order = h2->order;
3165                }
3166        }
3167        VM_BUG_ON(minimum_order == UINT_MAX);
3168}
3169
3170static void __init report_hugepages(void)
3171{
3172        struct hstate *h;
3173
3174        for_each_hstate(h) {
3175                char buf[32];
3176
3177                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3178                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3179                        buf, h->free_huge_pages);
3180        }
3181}
3182
3183#ifdef CONFIG_HIGHMEM
3184static void try_to_free_low(struct hstate *h, unsigned long count,
3185                                                nodemask_t *nodes_allowed)
3186{
3187        int i;
3188        LIST_HEAD(page_list);
3189
3190        lockdep_assert_held(&hugetlb_lock);
3191        if (hstate_is_gigantic(h))
3192                return;
3193
3194        /*
3195         * Collect pages to be freed on a list, and free after dropping lock
3196         */
3197        for_each_node_mask(i, *nodes_allowed) {
3198                struct page *page, *next;
3199                struct list_head *freel = &h->hugepage_freelists[i];
3200                list_for_each_entry_safe(page, next, freel, lru) {
3201                        if (count >= h->nr_huge_pages)
3202                                goto out;
3203                        if (PageHighMem(page))
3204                                continue;
3205                        remove_hugetlb_page(h, page, false);
3206                        list_add(&page->lru, &page_list);
3207                }
3208        }
3209
3210out:
3211        spin_unlock_irq(&hugetlb_lock);
3212        update_and_free_pages_bulk(h, &page_list);
3213        spin_lock_irq(&hugetlb_lock);
3214}
3215#else
3216static inline void try_to_free_low(struct hstate *h, unsigned long count,
3217                                                nodemask_t *nodes_allowed)
3218{
3219}
3220#endif
3221
3222/*
3223 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3224 * balanced by operating on them in a round-robin fashion.
3225 * Returns 1 if an adjustment was made.
3226 */
3227static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3228                                int delta)
3229{
3230        int nr_nodes, node;
3231
3232        lockdep_assert_held(&hugetlb_lock);
3233        VM_BUG_ON(delta != -1 && delta != 1);
3234
3235        if (delta < 0) {
3236                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3237                        if (h->surplus_huge_pages_node[node])
3238                                goto found;
3239                }
3240        } else {
3241                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3242                        if (h->surplus_huge_pages_node[node] <
3243                                        h->nr_huge_pages_node[node])
3244                                goto found;
3245                }
3246        }
3247        return 0;
3248
3249found:
3250        h->surplus_huge_pages += delta;
3251        h->surplus_huge_pages_node[node] += delta;
3252        return 1;
3253}
3254
3255#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3256static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3257                              nodemask_t *nodes_allowed)
3258{
3259        unsigned long min_count, ret;
3260        struct page *page;
3261        LIST_HEAD(page_list);
3262        NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3263
3264        /*
3265         * Bit mask controlling how hard we retry per-node allocations.
3266         * If we can not allocate the bit mask, do not attempt to allocate
3267         * the requested huge pages.
3268         */
3269        if (node_alloc_noretry)
3270                nodes_clear(*node_alloc_noretry);
3271        else
3272                return -ENOMEM;
3273
3274        /*
3275         * resize_lock mutex prevents concurrent adjustments to number of
3276         * pages in hstate via the proc/sysfs interfaces.
3277         */
3278        mutex_lock(&h->resize_lock);
3279        flush_free_hpage_work(h);
3280        spin_lock_irq(&hugetlb_lock);
3281
3282        /*
3283         * Check for a node specific request.
3284         * Changing node specific huge page count may require a corresponding
3285         * change to the global count.  In any case, the passed node mask
3286         * (nodes_allowed) will restrict alloc/free to the specified node.
3287         */
3288        if (nid != NUMA_NO_NODE) {
3289                unsigned long old_count = count;
3290
3291                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3292                /*
3293                 * User may have specified a large count value which caused the
3294                 * above calculation to overflow.  In this case, they wanted
3295                 * to allocate as many huge pages as possible.  Set count to
3296                 * largest possible value to align with their intention.
3297                 */
3298                if (count < old_count)
3299                        count = ULONG_MAX;
3300        }
3301
3302        /*
3303         * Gigantic pages runtime allocation depend on the capability for large
3304         * page range allocation.
3305         * If the system does not provide this feature, return an error when
3306         * the user tries to allocate gigantic pages but let the user free the
3307         * boottime allocated gigantic pages.
3308         */
3309        if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3310                if (count > persistent_huge_pages(h)) {
3311                        spin_unlock_irq(&hugetlb_lock);
3312                        mutex_unlock(&h->resize_lock);
3313                        NODEMASK_FREE(node_alloc_noretry);
3314                        return -EINVAL;
3315                }
3316                /* Fall through to decrease pool */
3317        }
3318
3319        /*
3320         * Increase the pool size
3321         * First take pages out of surplus state.  Then make up the
3322         * remaining difference by allocating fresh huge pages.
3323         *
3324         * We might race with alloc_surplus_huge_page() here and be unable
3325         * to convert a surplus huge page to a normal huge page. That is
3326         * not critical, though, it just means the overall size of the
3327         * pool might be one hugepage larger than it needs to be, but
3328         * within all the constraints specified by the sysctls.
3329         */
3330        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3331                if (!adjust_pool_surplus(h, nodes_allowed, -1))
3332                        break;
3333        }
3334
3335        while (count > persistent_huge_pages(h)) {
3336                /*
3337                 * If this allocation races such that we no longer need the
3338                 * page, free_huge_page will handle it by freeing the page
3339                 * and reducing the surplus.
3340                 */
3341                spin_unlock_irq(&hugetlb_lock);
3342
3343                /* yield cpu to avoid soft lockup */
3344                cond_resched();
3345
3346                ret = alloc_pool_huge_page(h, nodes_allowed,
3347                                                node_alloc_noretry);
3348                spin_lock_irq(&hugetlb_lock);
3349                if (!ret)
3350                        goto out;
3351
3352                /* Bail for signals. Probably ctrl-c from user */
3353                if (signal_pending(current))
3354                        goto out;
3355        }
3356
3357        /*
3358         * Decrease the pool size
3359         * First return free pages to the buddy allocator (being careful
3360         * to keep enough around to satisfy reservations).  Then place
3361         * pages into surplus state as needed so the pool will shrink
3362         * to the desired size as pages become free.
3363         *
3364         * By placing pages into the surplus state independent of the
3365         * overcommit value, we are allowing the surplus pool size to
3366         * exceed overcommit. There are few sane options here. Since
3367         * alloc_surplus_huge_page() is checking the global counter,
3368         * though, we'll note that we're not allowed to exceed surplus
3369         * and won't grow the pool anywhere else. Not until one of the
3370         * sysctls are changed, or the surplus pages go out of use.
3371         */
3372        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3373        min_count = max(count, min_count);
3374        try_to_free_low(h, min_count, nodes_allowed);
3375
3376        /*
3377         * Collect pages to be removed on list without dropping lock
3378         */
3379        while (min_count < persistent_huge_pages(h)) {
3380                page = remove_pool_huge_page(h, nodes_allowed, 0);
3381                if (!page)
3382                        break;
3383
3384                list_add(&page->lru, &page_list);
3385        }
3386        /* free the pages after dropping lock */
3387        spin_unlock_irq(&hugetlb_lock);
3388        update_and_free_pages_bulk(h, &page_list);
3389        flush_free_hpage_work(h);
3390        spin_lock_irq(&hugetlb_lock);
3391
3392        while (count < persistent_huge_pages(h)) {
3393                if (!adjust_pool_surplus(h, nodes_allowed, 1))
3394                        break;
3395        }
3396out:
3397        h->max_huge_pages = persistent_huge_pages(h);
3398        spin_unlock_irq(&hugetlb_lock);
3399        mutex_unlock(&h->resize_lock);
3400
3401        NODEMASK_FREE(node_alloc_noretry);
3402
3403        return 0;
3404}
3405
3406static int demote_free_huge_page(struct hstate *h, struct page *page)
3407{
3408        int i, nid = page_to_nid(page);
3409        struct hstate *target_hstate;
3410        int rc = 0;
3411
3412        target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3413
3414        remove_hugetlb_page_for_demote(h, page, false);
3415        spin_unlock_irq(&hugetlb_lock);
3416
3417        rc = alloc_huge_page_vmemmap(h, page);
3418        if (rc) {
3419                /* Allocation of vmemmmap failed, we can not demote page */
3420                spin_lock_irq(&hugetlb_lock);
3421                set_page_refcounted(page);
3422                add_hugetlb_page(h, page, false);
3423                return rc;
3424        }
3425
3426        /*
3427         * Use destroy_compound_hugetlb_page_for_demote for all huge page
3428         * sizes as it will not ref count pages.
3429         */
3430        destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3431
3432        /*
3433         * Taking target hstate mutex synchronizes with set_max_huge_pages.
3434         * Without the mutex, pages added to target hstate could be marked
3435         * as surplus.
3436         *
3437         * Note that we already hold h->resize_lock.  To prevent deadlock,
3438         * use the convention of always taking larger size hstate mutex first.
3439         */
3440        mutex_lock(&target_hstate->resize_lock);
3441        for (i = 0; i < pages_per_huge_page(h);
3442                                i += pages_per_huge_page(target_hstate)) {
3443                if (hstate_is_gigantic(target_hstate))
3444                        prep_compound_gigantic_page_for_demote(page + i,
3445                                                        target_hstate->order);
3446                else
3447                        prep_compound_page(page + i, target_hstate->order);
3448                set_page_private(page + i, 0);
3449                set_page_refcounted(page + i);
3450                prep_new_huge_page(target_hstate, page + i, nid);
3451                put_page(page + i);
3452        }
3453        mutex_unlock(&target_hstate->resize_lock);
3454
3455        spin_lock_irq(&hugetlb_lock);
3456
3457        /*
3458         * Not absolutely necessary, but for consistency update max_huge_pages
3459         * based on pool changes for the demoted page.
3460         */
3461        h->max_huge_pages--;
3462        target_hstate->max_huge_pages += pages_per_huge_page(h);
3463
3464        return rc;
3465}
3466
3467static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3468        __must_hold(&hugetlb_lock)
3469{
3470        int nr_nodes, node;
3471        struct page *page;
3472        int rc = 0;
3473
3474        lockdep_assert_held(&hugetlb_lock);
3475
3476        /* We should never get here if no demote order */
3477        if (!h->demote_order) {
3478                pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3479                return -EINVAL;         /* internal error */
3480        }
3481
3482        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3483                if (!list_empty(&h->hugepage_freelists[node])) {
3484                        page = list_entry(h->hugepage_freelists[node].next,
3485                                        struct page, lru);
3486                        rc = demote_free_huge_page(h, page);
3487                        break;
3488                }
3489        }
3490
3491        return rc;
3492}
3493
3494#define HSTATE_ATTR_RO(_name) \
3495        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3496
3497#define HSTATE_ATTR_WO(_name) \
3498        static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3499
3500#define HSTATE_ATTR(_name) \
3501        static struct kobj_attribute _name##_attr = \
3502                __ATTR(_name, 0644, _name##_show, _name##_store)
3503
3504static struct kobject *hugepages_kobj;
3505static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3506
3507static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3508
3509static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3510{
3511        int i;
3512
3513        for (i = 0; i < HUGE_MAX_HSTATE; i++)
3514                if (hstate_kobjs[i] == kobj) {
3515                        if (nidp)
3516                                *nidp = NUMA_NO_NODE;
3517                        return &hstates[i];
3518                }
3519
3520        return kobj_to_node_hstate(kobj, nidp);
3521}
3522
3523static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3524                                        struct kobj_attribute *attr, char *buf)
3525{
3526        struct hstate *h;
3527        unsigned long nr_huge_pages;
3528        int nid;
3529
3530        h = kobj_to_hstate(kobj, &nid);
3531        if (nid == NUMA_NO_NODE)
3532                nr_huge_pages = h->nr_huge_pages;
3533        else
3534                nr_huge_pages = h->nr_huge_pages_node[nid];
3535
3536        return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3537}
3538
3539static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3540                                           struct hstate *h, int nid,
3541                                           unsigned long count, size_t len)
3542{
3543        int err;
3544        nodemask_t nodes_allowed, *n_mask;
3545
3546        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3547                return -EINVAL;
3548
3549        if (nid == NUMA_NO_NODE) {
3550                /*
3551                 * global hstate attribute
3552                 */
3553                if (!(obey_mempolicy &&
3554                                init_nodemask_of_mempolicy(&nodes_allowed)))
3555                        n_mask = &node_states[N_MEMORY];
3556                else
3557                        n_mask = &nodes_allowed;
3558        } else {
3559                /*
3560                 * Node specific request.  count adjustment happens in
3561                 * set_max_huge_pages() after acquiring hugetlb_lock.
3562                 */
3563                init_nodemask_of_node(&nodes_allowed, nid);
3564                n_mask = &nodes_allowed;
3565        }
3566
3567        err = set_max_huge_pages(h, count, nid, n_mask);
3568
3569        return err ? err : len;
3570}
3571
3572static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3573                                         struct kobject *kobj, const char *buf,
3574                                         size_t len)
3575{
3576        struct hstate *h;
3577        unsigned long count;
3578        int nid;
3579        int err;
3580
3581        err = kstrtoul(buf, 10, &count);
3582        if (err)
3583                return err;
3584
3585        h = kobj_to_hstate(kobj, &nid);
3586        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3587}
3588
3589static ssize_t nr_hugepages_show(struct kobject *kobj,
3590                                       struct kobj_attribute *attr, char *buf)
3591{
3592        return nr_hugepages_show_common(kobj, attr, buf);
3593}
3594
3595static ssize_t nr_hugepages_store(struct kobject *kobj,
3596               struct kobj_attribute *attr, const char *buf, size_t len)
3597{
3598        return nr_hugepages_store_common(false, kobj, buf, len);
3599}
3600HSTATE_ATTR(nr_hugepages);
3601
3602#ifdef CONFIG_NUMA
3603
3604/*
3605 * hstate attribute for optionally mempolicy-based constraint on persistent
3606 * huge page alloc/free.
3607 */
3608static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3609                                           struct kobj_attribute *attr,
3610                                           char *buf)
3611{
3612        return nr_hugepages_show_common(kobj, attr, buf);
3613}
3614
3615static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3616               struct kobj_attribute *attr, const char *buf, size_t len)
3617{
3618        return nr_hugepages_store_common(true, kobj, buf, len);
3619}
3620HSTATE_ATTR(nr_hugepages_mempolicy);
3621#endif
3622
3623
3624static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3625                                        struct kobj_attribute *attr, char *buf)
3626{
3627        struct hstate *h = kobj_to_hstate(kobj, NULL);
3628        return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3629}
3630
3631static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3632                struct kobj_attribute *attr, const char *buf, size_t count)
3633{
3634        int err;
3635        unsigned long input;
3636        struct hstate *h = kobj_to_hstate(kobj, NULL);
3637
3638        if (hstate_is_gigantic(h))
3639                return -EINVAL;
3640
3641        err = kstrtoul(buf, 10, &input);
3642        if (err)
3643                return err;
3644
3645        spin_lock_irq(&hugetlb_lock);
3646        h->nr_overcommit_huge_pages = input;
3647        spin_unlock_irq(&hugetlb_lock);
3648
3649        return count;
3650}
3651HSTATE_ATTR(nr_overcommit_hugepages);
3652
3653static ssize_t free_hugepages_show(struct kobject *kobj,
3654                                        struct kobj_attribute *attr, char *buf)
3655{
3656        struct hstate *h;
3657        unsigned long free_huge_pages;
3658        int nid;
3659
3660        h = kobj_to_hstate(kobj, &nid);
3661        if (nid == NUMA_NO_NODE)
3662                free_huge_pages = h->free_huge_pages;
3663        else
3664                free_huge_pages = h->free_huge_pages_node[nid];
3665
3666        return sysfs_emit(buf, "%lu\n", free_huge_pages);
3667}
3668HSTATE_ATTR_RO(free_hugepages);
3669
3670static ssize_t resv_hugepages_show(struct kobject *kobj,
3671                                        struct kobj_attribute *attr, char *buf)
3672{
3673        struct hstate *h = kobj_to_hstate(kobj, NULL);
3674        return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3675}
3676HSTATE_ATTR_RO(resv_hugepages);
3677
3678static ssize_t surplus_hugepages_show(struct kobject *kobj,
3679                                        struct kobj_attribute *attr, char *buf)
3680{
3681        struct hstate *h;
3682        unsigned long surplus_huge_pages;
3683        int nid;
3684
3685        h = kobj_to_hstate(kobj, &nid);
3686        if (nid == NUMA_NO_NODE)
3687                surplus_huge_pages = h->surplus_huge_pages;
3688        else
3689                surplus_huge_pages = h->surplus_huge_pages_node[nid];
3690
3691        return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3692}
3693HSTATE_ATTR_RO(surplus_hugepages);
3694
3695static ssize_t demote_store(struct kobject *kobj,
3696               struct kobj_attribute *attr, const char *buf, size_t len)
3697{
3698        unsigned long nr_demote;
3699        unsigned long nr_available;
3700        nodemask_t nodes_allowed, *n_mask;
3701        struct hstate *h;
3702        int err = 0;
3703        int nid;
3704
3705        err = kstrtoul(buf, 10, &nr_demote);
3706        if (err)
3707                return err;
3708        h = kobj_to_hstate(kobj, &nid);
3709
3710        if (nid != NUMA_NO_NODE) {
3711                init_nodemask_of_node(&nodes_allowed, nid);
3712                n_mask = &nodes_allowed;
3713        } else {
3714                n_mask = &node_states[N_MEMORY];
3715        }
3716
3717        /* Synchronize with other sysfs operations modifying huge pages */
3718        mutex_lock(&h->resize_lock);
3719        spin_lock_irq(&hugetlb_lock);
3720
3721        while (nr_demote) {
3722                /*
3723                 * Check for available pages to demote each time thorough the
3724                 * loop as demote_pool_huge_page will drop hugetlb_lock.
3725                 */
3726                if (nid != NUMA_NO_NODE)
3727                        nr_available = h->free_huge_pages_node[nid];
3728                else
3729                        nr_available = h->free_huge_pages;
3730                nr_available -= h->resv_huge_pages;
3731                if (!nr_available)
3732                        break;
3733
3734                err = demote_pool_huge_page(h, n_mask);
3735                if (err)
3736                        break;
3737
3738                nr_demote--;
3739        }
3740
3741        spin_unlock_irq(&hugetlb_lock);
3742        mutex_unlock(&h->resize_lock);
3743
3744        if (err)
3745                return err;
3746        return len;
3747}
3748HSTATE_ATTR_WO(demote);
3749
3750static ssize_t demote_size_show(struct kobject *kobj,
3751                                        struct kobj_attribute *attr, char *buf)
3752{
3753        int nid;
3754        struct hstate *h = kobj_to_hstate(kobj, &nid);
3755        unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3756
3757        return sysfs_emit(buf, "%lukB\n", demote_size);
3758}
3759
3760static ssize_t demote_size_store(struct kobject *kobj,
3761                                        struct kobj_attribute *attr,
3762                                        const char *buf, size_t count)
3763{
3764        struct hstate *h, *demote_hstate;
3765        unsigned long demote_size;
3766        unsigned int demote_order;
3767        int nid;
3768
3769        demote_size = (unsigned long)memparse(buf, NULL);
3770
3771        demote_hstate = size_to_hstate(demote_size);
3772        if (!demote_hstate)
3773                return -EINVAL;
3774        demote_order = demote_hstate->order;
3775        if (demote_order < HUGETLB_PAGE_ORDER)
3776                return -EINVAL;
3777
3778        /* demote order must be smaller than hstate order */
3779        h = kobj_to_hstate(kobj, &nid);
3780        if (demote_order >= h->order)
3781                return -EINVAL;
3782
3783        /* resize_lock synchronizes access to demote size and writes */
3784        mutex_lock(&h->resize_lock);
3785        h->demote_order = demote_order;
3786        mutex_unlock(&h->resize_lock);
3787
3788        return count;
3789}
3790HSTATE_ATTR(demote_size);
3791
3792static struct attribute *hstate_attrs[] = {
3793        &nr_hugepages_attr.attr,
3794        &nr_overcommit_hugepages_attr.attr,
3795        &free_hugepages_attr.attr,
3796        &resv_hugepages_attr.attr,
3797        &surplus_hugepages_attr.attr,
3798#ifdef CONFIG_NUMA
3799        &nr_hugepages_mempolicy_attr.attr,
3800#endif
3801        NULL,
3802};
3803
3804static const struct attribute_group hstate_attr_group = {
3805        .attrs = hstate_attrs,
3806};
3807
3808static struct attribute *hstate_demote_attrs[] = {
3809        &demote_size_attr.attr,
3810        &demote_attr.attr,
3811        NULL,
3812};
3813
3814static const struct attribute_group hstate_demote_attr_group = {
3815        .attrs = hstate_demote_attrs,
3816};
3817
3818static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3819                                    struct kobject **hstate_kobjs,
3820                                    const struct attribute_group *hstate_attr_group)
3821{
3822        int retval;
3823        int hi = hstate_index(h);
3824
3825        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3826        if (!hstate_kobjs[hi])
3827                return -ENOMEM;
3828
3829        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3830        if (retval) {
3831                kobject_put(hstate_kobjs[hi]);
3832                hstate_kobjs[hi] = NULL;
3833        }
3834
3835        if (h->demote_order) {
3836                if (sysfs_create_group(hstate_kobjs[hi],
3837                                        &hstate_demote_attr_group))
3838                        pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3839        }
3840
3841        return retval;
3842}
3843
3844static void __init hugetlb_sysfs_init(void)
3845{
3846        struct hstate *h;
3847        int err;
3848
3849        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3850        if (!hugepages_kobj)
3851                return;
3852
3853        for_each_hstate(h) {
3854                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3855                                         hstate_kobjs, &hstate_attr_group);
3856                if (err)
3857                        pr_err("HugeTLB: Unable to add hstate %s", h->name);
3858        }
3859}
3860
3861#ifdef CONFIG_NUMA
3862
3863/*
3864 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3865 * with node devices in node_devices[] using a parallel array.  The array
3866 * index of a node device or _hstate == node id.
3867 * This is here to avoid any static dependency of the node device driver, in
3868 * the base kernel, on the hugetlb module.
3869 */
3870struct node_hstate {
3871        struct kobject          *hugepages_kobj;
3872        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3873};
3874static struct node_hstate node_hstates[MAX_NUMNODES];
3875
3876/*
3877 * A subset of global hstate attributes for node devices
3878 */
3879static struct attribute *per_node_hstate_attrs[] = {
3880        &nr_hugepages_attr.attr,
3881        &free_hugepages_attr.attr,
3882        &surplus_hugepages_attr.attr,
3883        NULL,
3884};
3885
3886static const struct attribute_group per_node_hstate_attr_group = {
3887        .attrs = per_node_hstate_attrs,
3888};
3889
3890/*
3891 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3892 * Returns node id via non-NULL nidp.
3893 */
3894static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3895{
3896        int nid;
3897
3898        for (nid = 0; nid < nr_node_ids; nid++) {
3899                struct node_hstate *nhs = &node_hstates[nid];
3900                int i;
3901                for (i = 0; i < HUGE_MAX_HSTATE; i++)
3902                        if (nhs->hstate_kobjs[i] == kobj) {
3903                                if (nidp)
3904                                        *nidp = nid;
3905                                return &hstates[i];
3906                        }
3907        }
3908
3909        BUG();
3910        return NULL;
3911}
3912
3913/*
3914 * Unregister hstate attributes from a single node device.
3915 * No-op if no hstate attributes attached.
3916 */
3917static void hugetlb_unregister_node(struct node *node)
3918{
3919        struct hstate *h;
3920        struct node_hstate *nhs = &node_hstates[node->dev.id];
3921
3922        if (!nhs->hugepages_kobj)
3923                return;         /* no hstate attributes */
3924
3925        for_each_hstate(h) {
3926                int idx = hstate_index(h);
3927                if (nhs->hstate_kobjs[idx]) {
3928                        kobject_put(nhs->hstate_kobjs[idx]);
3929                        nhs->hstate_kobjs[idx] = NULL;
3930                }
3931        }
3932
3933        kobject_put(nhs->hugepages_kobj);
3934        nhs->hugepages_kobj = NULL;
3935}
3936
3937
3938/*
3939 * Register hstate attributes for a single node device.
3940 * No-op if attributes already registered.
3941 */
3942static void hugetlb_register_node(struct node *node)
3943{
3944        struct hstate *h;
3945        struct node_hstate *nhs = &node_hstates[node->dev.id];
3946        int err;
3947
3948        if (nhs->hugepages_kobj)
3949                return;         /* already allocated */
3950
3951        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3952                                                        &node->dev.kobj);
3953        if (!nhs->hugepages_kobj)
3954                return;
3955
3956        for_each_hstate(h) {
3957                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3958                                                nhs->hstate_kobjs,
3959                                                &per_node_hstate_attr_group);
3960                if (err) {
3961                        pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3962                                h->name, node->dev.id);
3963                        hugetlb_unregister_node(node);
3964                        break;
3965                }
3966        }
3967}
3968
3969/*
3970 * hugetlb init time:  register hstate attributes for all registered node
3971 * devices of nodes that have memory.  All on-line nodes should have
3972 * registered their associated device by this time.
3973 */
3974static void __init hugetlb_register_all_nodes(void)
3975{
3976        int nid;
3977
3978        for_each_node_state(nid, N_MEMORY) {
3979                struct node *node = node_devices[nid];
3980                if (node->dev.id == nid)
3981                        hugetlb_register_node(node);
3982        }
3983
3984        /*
3985         * Let the node device driver know we're here so it can
3986         * [un]register hstate attributes on node hotplug.
3987         */
3988        register_hugetlbfs_with_node(hugetlb_register_node,
3989                                     hugetlb_unregister_node);
3990}
3991#else   /* !CONFIG_NUMA */
3992
3993static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3994{
3995        BUG();
3996        if (nidp)
3997                *nidp = -1;
3998        return NULL;
3999}
4000
4001static void hugetlb_register_all_nodes(void) { }
4002
4003#endif
4004
4005static int __init hugetlb_init(void)
4006{
4007        int i;
4008
4009        BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4010                        __NR_HPAGEFLAGS);
4011
4012        if (!hugepages_supported()) {
4013                if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4014                        pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4015                return 0;
4016        }
4017
4018        /*
4019         * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4020         * architectures depend on setup being done here.
4021         */
4022        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4023        if (!parsed_default_hugepagesz) {
4024                /*
4025                 * If we did not parse a default huge page size, set
4026                 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4027                 * number of huge pages for this default size was implicitly
4028                 * specified, set that here as well.
4029                 * Note that the implicit setting will overwrite an explicit
4030                 * setting.  A warning will be printed in this case.
4031                 */
4032                default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4033                if (default_hstate_max_huge_pages) {
4034                        if (default_hstate.max_huge_pages) {
4035                                char buf[32];
4036
4037                                string_get_size(huge_page_size(&default_hstate),
4038                                        1, STRING_UNITS_2, buf, 32);
4039                                pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4040                                        default_hstate.max_huge_pages, buf);
4041                                pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4042                                        default_hstate_max_huge_pages);
4043                        }
4044                        default_hstate.max_huge_pages =
4045                                default_hstate_max_huge_pages;
4046
4047                        for (i = 0; i < nr_online_nodes; i++)
4048                                default_hstate.max_huge_pages_node[i] =
4049                                        default_hugepages_in_node[i];
4050                }
4051        }
4052
4053        hugetlb_cma_check();
4054        hugetlb_init_hstates();
4055        gather_bootmem_prealloc();
4056        report_hugepages();
4057
4058        hugetlb_sysfs_init();
4059        hugetlb_register_all_nodes();
4060        hugetlb_cgroup_file_init();
4061
4062#ifdef CONFIG_SMP
4063        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4064#else
4065        num_fault_mutexes = 1;
4066#endif
4067        hugetlb_fault_mutex_table =
4068                kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4069                              GFP_KERNEL);
4070        BUG_ON(!hugetlb_fault_mutex_table);
4071
4072        for (i = 0; i < num_fault_mutexes; i++)
4073                mutex_init(&hugetlb_fault_mutex_table[i]);
4074        return 0;
4075}
4076subsys_initcall(hugetlb_init);
4077
4078/* Overwritten by architectures with more huge page sizes */
4079bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4080{
4081        return size == HPAGE_SIZE;
4082}
4083
4084void __init hugetlb_add_hstate(unsigned int order)
4085{
4086        struct hstate *h;
4087        unsigned long i;
4088
4089        if (size_to_hstate(PAGE_SIZE << order)) {
4090                return;
4091        }
4092        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4093        BUG_ON(order == 0);
4094        h = &hstates[hugetlb_max_hstate++];
4095        mutex_init(&h->resize_lock);
4096        h->order = order;
4097        h->mask = ~(huge_page_size(h) - 1);
4098        for (i = 0; i < MAX_NUMNODES; ++i)
4099                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4100        INIT_LIST_HEAD(&h->hugepage_activelist);
4101        h->next_nid_to_alloc = first_memory_node;
4102        h->next_nid_to_free = first_memory_node;
4103        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4104                                        huge_page_size(h)/1024);
4105        hugetlb_vmemmap_init(h);
4106
4107        parsed_hstate = h;
4108}
4109
4110bool __init __weak hugetlb_node_alloc_supported(void)
4111{
4112        return true;
4113}
4114/*
4115 * hugepages command line processing
4116 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4117 * specification.  If not, ignore the hugepages value.  hugepages can also
4118 * be the first huge page command line  option in which case it implicitly
4119 * specifies the number of huge pages for the default size.
4120 */
4121static int __init hugepages_setup(char *s)
4122{
4123        unsigned long *mhp;
4124        static unsigned long *last_mhp;
4125        int node = NUMA_NO_NODE;
4126        int count;
4127        unsigned long tmp;
4128        char *p = s;
4129
4130        if (!parsed_valid_hugepagesz) {
4131                pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4132                parsed_valid_hugepagesz = true;
4133                return 0;
4134        }
4135
4136        /*
4137         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4138         * yet, so this hugepages= parameter goes to the "default hstate".
4139         * Otherwise, it goes with the previously parsed hugepagesz or
4140         * default_hugepagesz.
4141         */
4142        else if (!hugetlb_max_hstate)
4143                mhp = &default_hstate_max_huge_pages;
4144        else
4145                mhp = &parsed_hstate->max_huge_pages;
4146
4147        if (mhp == last_mhp) {
4148                pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4149                return 0;
4150        }
4151
4152        while (*p) {
4153                count = 0;
4154                if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4155                        goto invalid;
4156                /* Parameter is node format */
4157                if (p[count] == ':') {
4158                        if (!hugetlb_node_alloc_supported()) {
4159                                pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4160                                return 0;
4161                        }
4162                        if (tmp >= nr_online_nodes)
4163                                goto invalid;
4164                        node = tmp;
4165                        p += count + 1;
4166                        /* Parse hugepages */
4167                        if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4168                                goto invalid;
4169                        if (!hugetlb_max_hstate)
4170                                default_hugepages_in_node[node] = tmp;
4171                        else
4172                                parsed_hstate->max_huge_pages_node[node] = tmp;
4173                        *mhp += tmp;
4174                        /* Go to parse next node*/
4175                        if (p[count] == ',')
4176                                p += count + 1;
4177                        else
4178                                break;
4179                } else {
4180                        if (p != s)
4181                                goto invalid;
4182                        *mhp = tmp;
4183                        break;
4184                }
4185        }
4186
4187        /*
4188         * Global state is always initialized later in hugetlb_init.
4189         * But we need to allocate gigantic hstates here early to still
4190         * use the bootmem allocator.
4191         */
4192        if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4193                hugetlb_hstate_alloc_pages(parsed_hstate);
4194
4195        last_mhp = mhp;
4196
4197        return 1;
4198
4199invalid:
4200        pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4201        return 0;
4202}
4203__setup("hugepages=", hugepages_setup);
4204
4205/*
4206 * hugepagesz command line processing
4207 * A specific huge page size can only be specified once with hugepagesz.
4208 * hugepagesz is followed by hugepages on the command line.  The global
4209 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4210 * hugepagesz argument was valid.
4211 */
4212static int __init hugepagesz_setup(char *s)
4213{
4214        unsigned long size;
4215        struct hstate *h;
4216
4217        parsed_valid_hugepagesz = false;
4218        size = (unsigned long)memparse(s, NULL);
4219
4220        if (!arch_hugetlb_valid_size(size)) {
4221                pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4222                return 0;
4223        }
4224
4225        h = size_to_hstate(size);
4226        if (h) {
4227                /*
4228                 * hstate for this size already exists.  This is normally
4229                 * an error, but is allowed if the existing hstate is the
4230                 * default hstate.  More specifically, it is only allowed if
4231                 * the number of huge pages for the default hstate was not
4232                 * previously specified.
4233                 */
4234                if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4235                    default_hstate.max_huge_pages) {
4236                        pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4237                        return 0;
4238                }
4239
4240                /*
4241                 * No need to call hugetlb_add_hstate() as hstate already
4242                 * exists.  But, do set parsed_hstate so that a following
4243                 * hugepages= parameter will be applied to this hstate.
4244                 */
4245                parsed_hstate = h;
4246                parsed_valid_hugepagesz = true;
4247                return 1;
4248        }
4249
4250        hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4251        parsed_valid_hugepagesz = true;
4252        return 1;
4253}
4254__setup("hugepagesz=", hugepagesz_setup);
4255
4256/*
4257 * default_hugepagesz command line input
4258 * Only one instance of default_hugepagesz allowed on command line.
4259 */
4260static int __init default_hugepagesz_setup(char *s)
4261{
4262        unsigned long size;
4263        int i;
4264
4265        parsed_valid_hugepagesz = false;
4266        if (parsed_default_hugepagesz) {
4267                pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4268                return 0;
4269        }
4270
4271        size = (unsigned long)memparse(s, NULL);
4272
4273        if (!arch_hugetlb_valid_size(size)) {
4274                pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4275                return 0;
4276        }
4277
4278        hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279        parsed_valid_hugepagesz = true;
4280        parsed_default_hugepagesz = true;
4281        default_hstate_idx = hstate_index(size_to_hstate(size));
4282
4283        /*
4284         * The number of default huge pages (for this size) could have been
4285         * specified as the first hugetlb parameter: hugepages=X.  If so,
4286         * then default_hstate_max_huge_pages is set.  If the default huge
4287         * page size is gigantic (>= MAX_ORDER), then the pages must be
4288         * allocated here from bootmem allocator.
4289         */
4290        if (default_hstate_max_huge_pages) {
4291                default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4292                for (i = 0; i < nr_online_nodes; i++)
4293                        default_hstate.max_huge_pages_node[i] =
4294                                default_hugepages_in_node[i];
4295                if (hstate_is_gigantic(&default_hstate))
4296                        hugetlb_hstate_alloc_pages(&default_hstate);
4297                default_hstate_max_huge_pages = 0;
4298        }
4299
4300        return 1;
4301}
4302__setup("default_hugepagesz=", default_hugepagesz_setup);
4303
4304static unsigned int allowed_mems_nr(struct hstate *h)
4305{
4306        int node;
4307        unsigned int nr = 0;
4308        nodemask_t *mpol_allowed;
4309        unsigned int *array = h->free_huge_pages_node;
4310        gfp_t gfp_mask = htlb_alloc_mask(h);
4311
4312        mpol_allowed = policy_nodemask_current(gfp_mask);
4313
4314        for_each_node_mask(node, cpuset_current_mems_allowed) {
4315                if (!mpol_allowed || node_isset(node, *mpol_allowed))
4316                        nr += array[node];
4317        }
4318
4319        return nr;
4320}
4321
4322#ifdef CONFIG_SYSCTL
4323static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4324                                          void *buffer, size_t *length,
4325                                          loff_t *ppos, unsigned long *out)
4326{
4327        struct ctl_table dup_table;
4328
4329        /*
4330         * In order to avoid races with __do_proc_doulongvec_minmax(), we
4331         * can duplicate the @table and alter the duplicate of it.
4332         */
4333        dup_table = *table;
4334        dup_table.data = out;
4335
4336        return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4337}
4338
4339static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4340                         struct ctl_table *table, int write,
4341                         void *buffer, size_t *length, loff_t *ppos)
4342{
4343        struct hstate *h = &default_hstate;
4344        unsigned long tmp = h->max_huge_pages;
4345        int ret;
4346
4347        if (!hugepages_supported())
4348                return -EOPNOTSUPP;
4349
4350        ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4351                                             &tmp);
4352        if (ret)
4353                goto out;
4354
4355        if (write)
4356                ret = __nr_hugepages_store_common(obey_mempolicy, h,
4357                                                  NUMA_NO_NODE, tmp, *length);
4358out:
4359        return ret;
4360}
4361
4362int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4363                          void *buffer, size_t *length, loff_t *ppos)
4364{
4365
4366        return hugetlb_sysctl_handler_common(false, table, write,
4367                                                        buffer, length, ppos);
4368}
4369
4370#ifdef CONFIG_NUMA
4371int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4372                          void *buffer, size_t *length, loff_t *ppos)
4373{
4374        return hugetlb_sysctl_handler_common(true, table, write,
4375                                                        buffer, length, ppos);
4376}
4377#endif /* CONFIG_NUMA */
4378
4379int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4380                void *buffer, size_t *length, loff_t *ppos)
4381{
4382        struct hstate *h = &default_hstate;
4383        unsigned long tmp;
4384        int ret;
4385
4386        if (!hugepages_supported())
4387                return -EOPNOTSUPP;
4388
4389        tmp = h->nr_overcommit_huge_pages;
4390
4391        if (write && hstate_is_gigantic(h))
4392                return -EINVAL;
4393
4394        ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4395                                             &tmp);
4396        if (ret)
4397                goto out;
4398
4399        if (write) {
4400                spin_lock_irq(&hugetlb_lock);
4401                h->nr_overcommit_huge_pages = tmp;
4402                spin_unlock_irq(&hugetlb_lock);
4403        }
4404out:
4405        return ret;
4406}
4407
4408#endif /* CONFIG_SYSCTL */
4409
4410void hugetlb_report_meminfo(struct seq_file *m)
4411{
4412        struct hstate *h;
4413        unsigned long total = 0;
4414
4415        if (!hugepages_supported())
4416                return;
4417
4418        for_each_hstate(h) {
4419                unsigned long count = h->nr_huge_pages;
4420
4421                total += huge_page_size(h) * count;
4422
4423                if (h == &default_hstate)
4424                        seq_printf(m,
4425                                   "HugePages_Total:   %5lu\n"
4426                                   "HugePages_Free:    %5lu\n"
4427                                   "HugePages_Rsvd:    %5lu\n"
4428                                   "HugePages_Surp:    %5lu\n"
4429                                   "Hugepagesize:   %8lu kB\n",
4430                                   count,
4431                                   h->free_huge_pages,
4432                                   h->resv_huge_pages,
4433                                   h->surplus_huge_pages,
4434                                   huge_page_size(h) / SZ_1K);
4435        }
4436
4437        seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4438}
4439
4440int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4441{
4442        struct hstate *h = &default_hstate;
4443
4444        if (!hugepages_supported())
4445                return 0;
4446
4447        return sysfs_emit_at(buf, len,
4448                             "Node %d HugePages_Total: %5u\n"
4449                             "Node %d HugePages_Free:  %5u\n"
4450                             "Node %d HugePages_Surp:  %5u\n",
4451                             nid, h->nr_huge_pages_node[nid],
4452                             nid, h->free_huge_pages_node[nid],
4453                             nid, h->surplus_huge_pages_node[nid]);
4454}
4455
4456void hugetlb_show_meminfo(void)
4457{
4458        struct hstate *h;
4459        int nid;
4460
4461        if (!hugepages_supported())
4462                return;
4463
4464        for_each_node_state(nid, N_MEMORY)
4465                for_each_hstate(h)
4466                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4467                                nid,
4468                                h->nr_huge_pages_node[nid],
4469                                h->free_huge_pages_node[nid],
4470                                h->surplus_huge_pages_node[nid],
4471                                huge_page_size(h) / SZ_1K);
4472}
4473
4474void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4475{
4476        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4477                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4478}
4479
4480/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4481unsigned long hugetlb_total_pages(void)
4482{
4483        struct hstate *h;
4484        unsigned long nr_total_pages = 0;
4485
4486        for_each_hstate(h)
4487                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4488        return nr_total_pages;
4489}
4490
4491static int hugetlb_acct_memory(struct hstate *h, long delta)
4492{
4493        int ret = -ENOMEM;
4494
4495        if (!delta)
4496                return 0;
4497
4498        spin_lock_irq(&hugetlb_lock);
4499        /*
4500         * When cpuset is configured, it breaks the strict hugetlb page
4501         * reservation as the accounting is done on a global variable. Such
4502         * reservation is completely rubbish in the presence of cpuset because
4503         * the reservation is not checked against page availability for the
4504         * current cpuset. Application can still potentially OOM'ed by kernel
4505         * with lack of free htlb page in cpuset that the task is in.
4506         * Attempt to enforce strict accounting with cpuset is almost
4507         * impossible (or too ugly) because cpuset is too fluid that
4508         * task or memory node can be dynamically moved between cpusets.
4509         *
4510         * The change of semantics for shared hugetlb mapping with cpuset is
4511         * undesirable. However, in order to preserve some of the semantics,
4512         * we fall back to check against current free page availability as
4513         * a best attempt and hopefully to minimize the impact of changing
4514         * semantics that cpuset has.
4515         *
4516         * Apart from cpuset, we also have memory policy mechanism that
4517         * also determines from which node the kernel will allocate memory
4518         * in a NUMA system. So similar to cpuset, we also should consider
4519         * the memory policy of the current task. Similar to the description
4520         * above.
4521         */
4522        if (delta > 0) {
4523                if (gather_surplus_pages(h, delta) < 0)
4524                        goto out;
4525
4526                if (delta > allowed_mems_nr(h)) {
4527                        return_unused_surplus_pages(h, delta);
4528                        goto out;
4529                }
4530        }
4531
4532        ret = 0;
4533        if (delta < 0)
4534                return_unused_surplus_pages(h, (unsigned long) -delta);
4535
4536out:
4537        spin_unlock_irq(&hugetlb_lock);
4538        return ret;
4539}
4540
4541static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4542{
4543        struct resv_map *resv = vma_resv_map(vma);
4544
4545        /*
4546         * This new VMA should share its siblings reservation map if present.
4547         * The VMA will only ever have a valid reservation map pointer where
4548         * it is being copied for another still existing VMA.  As that VMA
4549         * has a reference to the reservation map it cannot disappear until
4550         * after this open call completes.  It is therefore safe to take a
4551         * new reference here without additional locking.
4552         */
4553        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4554                resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4555                kref_get(&resv->refs);
4556        }
4557}
4558
4559static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4560{
4561        struct hstate *h = hstate_vma(vma);
4562        struct resv_map *resv = vma_resv_map(vma);
4563        struct hugepage_subpool *spool = subpool_vma(vma);
4564        unsigned long reserve, start, end;
4565        long gbl_reserve;
4566
4567        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4568                return;
4569
4570        start = vma_hugecache_offset(h, vma, vma->vm_start);
4571        end = vma_hugecache_offset(h, vma, vma->vm_end);
4572
4573        reserve = (end - start) - region_count(resv, start, end);
4574        hugetlb_cgroup_uncharge_counter(resv, start, end);
4575        if (reserve) {
4576                /*
4577                 * Decrement reserve counts.  The global reserve count may be
4578                 * adjusted if the subpool has a minimum size.
4579                 */
4580                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4581                hugetlb_acct_memory(h, -gbl_reserve);
4582        }
4583
4584        kref_put(&resv->refs, resv_map_release);
4585}
4586
4587static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4588{
4589        if (addr & ~(huge_page_mask(hstate_vma(vma))))
4590                return -EINVAL;
4591        return 0;
4592}
4593
4594static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4595{
4596        return huge_page_size(hstate_vma(vma));
4597}
4598
4599/*
4600 * We cannot handle pagefaults against hugetlb pages at all.  They cause
4601 * handle_mm_fault() to try to instantiate regular-sized pages in the
4602 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4603 * this far.
4604 */
4605static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4606{
4607        BUG();
4608        return 0;
4609}
4610
4611/*
4612 * When a new function is introduced to vm_operations_struct and added
4613 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4614 * This is because under System V memory model, mappings created via
4615 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4616 * their original vm_ops are overwritten with shm_vm_ops.
4617 */
4618const struct vm_operations_struct hugetlb_vm_ops = {
4619        .fault = hugetlb_vm_op_fault,
4620        .open = hugetlb_vm_op_open,
4621        .close = hugetlb_vm_op_close,
4622        .may_split = hugetlb_vm_op_split,
4623        .pagesize = hugetlb_vm_op_pagesize,
4624};
4625
4626static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4627                                int writable)
4628{
4629        pte_t entry;
4630        unsigned int shift = huge_page_shift(hstate_vma(vma));
4631
4632        if (writable) {
4633                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4634                                         vma->vm_page_prot)));
4635        } else {
4636                entry = huge_pte_wrprotect(mk_huge_pte(page,
4637                                           vma->vm_page_prot));
4638        }
4639        entry = pte_mkyoung(entry);
4640        entry = pte_mkhuge(entry);
4641        entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4642
4643        return entry;
4644}
4645
4646static void set_huge_ptep_writable(struct vm_area_struct *vma,
4647                                   unsigned long address, pte_t *ptep)
4648{
4649        pte_t entry;
4650
4651        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4652        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4653                update_mmu_cache(vma, address, ptep);
4654}
4655
4656bool is_hugetlb_entry_migration(pte_t pte)
4657{
4658        swp_entry_t swp;
4659
4660        if (huge_pte_none(pte) || pte_present(pte))
4661                return false;
4662        swp = pte_to_swp_entry(pte);
4663        if (is_migration_entry(swp))
4664                return true;
4665        else
4666                return false;
4667}
4668
4669static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4670{
4671        swp_entry_t swp;
4672
4673        if (huge_pte_none(pte) || pte_present(pte))
4674                return false;
4675        swp = pte_to_swp_entry(pte);
4676        if (is_hwpoison_entry(swp))
4677                return true;
4678        else
4679                return false;
4680}
4681
4682static void
4683hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4684                     struct page *new_page)
4685{
4686        __SetPageUptodate(new_page);
4687        hugepage_add_new_anon_rmap(new_page, vma, addr);
4688        set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4689        hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4690        ClearHPageRestoreReserve(new_page);
4691        SetHPageMigratable(new_page);
4692}
4693
4694int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4695                            struct vm_area_struct *vma)
4696{
4697        pte_t *src_pte, *dst_pte, entry, dst_entry;
4698        struct page *ptepage;
4699        unsigned long addr;
4700        bool cow = is_cow_mapping(vma->vm_flags);
4701        struct hstate *h = hstate_vma(vma);
4702        unsigned long sz = huge_page_size(h);
4703        unsigned long npages = pages_per_huge_page(h);
4704        struct address_space *mapping = vma->vm_file->f_mapping;
4705        struct mmu_notifier_range range;
4706        int ret = 0;
4707
4708        if (cow) {
4709                mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4710                                        vma->vm_start,
4711                                        vma->vm_end);
4712                mmu_notifier_invalidate_range_start(&range);
4713        } else {
4714                /*
4715                 * For shared mappings i_mmap_rwsem must be held to call
4716                 * huge_pte_alloc, otherwise the returned ptep could go
4717                 * away if part of a shared pmd and another thread calls
4718                 * huge_pmd_unshare.
4719                 */
4720                i_mmap_lock_read(mapping);
4721        }
4722
4723        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4724                spinlock_t *src_ptl, *dst_ptl;
4725                src_pte = huge_pte_offset(src, addr, sz);
4726                if (!src_pte)
4727                        continue;
4728                dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4729                if (!dst_pte) {
4730                        ret = -ENOMEM;
4731                        break;
4732                }
4733
4734                /*
4735                 * If the pagetables are shared don't copy or take references.
4736                 * dst_pte == src_pte is the common case of src/dest sharing.
4737                 *
4738                 * However, src could have 'unshared' and dst shares with
4739                 * another vma.  If dst_pte !none, this implies sharing.
4740                 * Check here before taking page table lock, and once again
4741                 * after taking the lock below.
4742                 */
4743                dst_entry = huge_ptep_get(dst_pte);
4744                if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4745                        continue;
4746
4747                dst_ptl = huge_pte_lock(h, dst, dst_pte);
4748                src_ptl = huge_pte_lockptr(h, src, src_pte);
4749                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4750                entry = huge_ptep_get(src_pte);
4751                dst_entry = huge_ptep_get(dst_pte);
4752again:
4753                if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4754                        /*
4755                         * Skip if src entry none.  Also, skip in the
4756                         * unlikely case dst entry !none as this implies
4757                         * sharing with another vma.
4758                         */
4759                        ;
4760                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4761                                    is_hugetlb_entry_hwpoisoned(entry))) {
4762                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
4763
4764                        if (is_writable_migration_entry(swp_entry) && cow) {
4765                                /*
4766                                 * COW mappings require pages in both
4767                                 * parent and child to be set to read.
4768                                 */
4769                                swp_entry = make_readable_migration_entry(
4770                                                        swp_offset(swp_entry));
4771                                entry = swp_entry_to_pte(swp_entry);
4772                                set_huge_swap_pte_at(src, addr, src_pte,
4773                                                     entry, sz);
4774                        }
4775                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4776                } else {
4777                        entry = huge_ptep_get(src_pte);
4778                        ptepage = pte_page(entry);
4779                        get_page(ptepage);
4780
4781                        /*
4782                         * This is a rare case where we see pinned hugetlb
4783                         * pages while they're prone to COW.  We need to do the
4784                         * COW earlier during fork.
4785                         *
4786                         * When pre-allocating the page or copying data, we
4787                         * need to be without the pgtable locks since we could
4788                         * sleep during the process.
4789                         */
4790                        if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4791                                pte_t src_pte_old = entry;
4792                                struct page *new;
4793
4794                                spin_unlock(src_ptl);
4795                                spin_unlock(dst_ptl);
4796                                /* Do not use reserve as it's private owned */
4797                                new = alloc_huge_page(vma, addr, 1);
4798                                if (IS_ERR(new)) {
4799                                        put_page(ptepage);
4800                                        ret = PTR_ERR(new);
4801                                        break;
4802                                }
4803                                copy_user_huge_page(new, ptepage, addr, vma,
4804                                                    npages);
4805                                put_page(ptepage);
4806
4807                                /* Install the new huge page if src pte stable */
4808                                dst_ptl = huge_pte_lock(h, dst, dst_pte);
4809                                src_ptl = huge_pte_lockptr(h, src, src_pte);
4810                                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4811                                entry = huge_ptep_get(src_pte);
4812                                if (!pte_same(src_pte_old, entry)) {
4813                                        restore_reserve_on_error(h, vma, addr,
4814                                                                new);
4815                                        put_page(new);
4816                                        /* dst_entry won't change as in child */
4817                                        goto again;
4818                                }
4819                                hugetlb_install_page(vma, dst_pte, addr, new);
4820                                spin_unlock(src_ptl);
4821                                spin_unlock(dst_ptl);
4822                                continue;
4823                        }
4824
4825                        if (cow) {
4826                                /*
4827                                 * No need to notify as we are downgrading page
4828                                 * table protection not changing it to point
4829                                 * to a new page.
4830                                 *
4831                                 * See Documentation/vm/mmu_notifier.rst
4832                                 */
4833                                huge_ptep_set_wrprotect(src, addr, src_pte);
4834                                entry = huge_pte_wrprotect(entry);
4835                        }
4836
4837                        page_dup_rmap(ptepage, true);
4838                        set_huge_pte_at(dst, addr, dst_pte, entry);
4839                        hugetlb_count_add(npages, dst);
4840                }
4841                spin_unlock(src_ptl);
4842                spin_unlock(dst_ptl);
4843        }
4844
4845        if (cow)
4846                mmu_notifier_invalidate_range_end(&range);
4847        else
4848                i_mmap_unlock_read(mapping);
4849
4850        return ret;
4851}
4852
4853static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4854                          unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4855{
4856        struct hstate *h = hstate_vma(vma);
4857        struct mm_struct *mm = vma->vm_mm;
4858        spinlock_t *src_ptl, *dst_ptl;
4859        pte_t pte;
4860
4861        dst_ptl = huge_pte_lock(h, mm, dst_pte);
4862        src_ptl = huge_pte_lockptr(h, mm, src_pte);
4863
4864        /*
4865         * We don't have to worry about the ordering of src and dst ptlocks
4866         * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4867         */
4868        if (src_ptl != dst_ptl)
4869                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4870
4871        pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4872        set_huge_pte_at(mm, new_addr, dst_pte, pte);
4873
4874        if (src_ptl != dst_ptl)
4875                spin_unlock(src_ptl);
4876        spin_unlock(dst_ptl);
4877}
4878
4879int move_hugetlb_page_tables(struct vm_area_struct *vma,
4880                             struct vm_area_struct *new_vma,
4881                             unsigned long old_addr, unsigned long new_addr,
4882                             unsigned long len)
4883{
4884        struct hstate *h = hstate_vma(vma);
4885        struct address_space *mapping = vma->vm_file->f_mapping;
4886        unsigned long sz = huge_page_size(h);
4887        struct mm_struct *mm = vma->vm_mm;
4888        unsigned long old_end = old_addr + len;
4889        unsigned long old_addr_copy;
4890        pte_t *src_pte, *dst_pte;
4891        struct mmu_notifier_range range;
4892
4893        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4894                                old_end);
4895        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4896        mmu_notifier_invalidate_range_start(&range);
4897        /* Prevent race with file truncation */
4898        i_mmap_lock_write(mapping);
4899        for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4900                src_pte = huge_pte_offset(mm, old_addr, sz);
4901                if (!src_pte)
4902                        continue;
4903                if (huge_pte_none(huge_ptep_get(src_pte)))
4904                        continue;
4905
4906                /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4907                 * arg may be modified. Pass a copy instead to preserve the
4908                 * value in old_addr.
4909                 */
4910                old_addr_copy = old_addr;
4911
4912                if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4913                        continue;
4914
4915                dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4916                if (!dst_pte)
4917                        break;
4918
4919                move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4920        }
4921        flush_tlb_range(vma, old_end - len, old_end);
4922        mmu_notifier_invalidate_range_end(&range);
4923        i_mmap_unlock_write(mapping);
4924
4925        return len + old_addr - old_end;
4926}
4927
4928static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4929                                   unsigned long start, unsigned long end,
4930                                   struct page *ref_page)
4931{
4932        struct mm_struct *mm = vma->vm_mm;
4933        unsigned long address;
4934        pte_t *ptep;
4935        pte_t pte;
4936        spinlock_t *ptl;
4937        struct page *page;
4938        struct hstate *h = hstate_vma(vma);
4939        unsigned long sz = huge_page_size(h);
4940        struct mmu_notifier_range range;
4941        bool force_flush = false;
4942
4943        WARN_ON(!is_vm_hugetlb_page(vma));
4944        BUG_ON(start & ~huge_page_mask(h));
4945        BUG_ON(end & ~huge_page_mask(h));
4946
4947        /*
4948         * This is a hugetlb vma, all the pte entries should point
4949         * to huge page.
4950         */
4951        tlb_change_page_size(tlb, sz);
4952        tlb_start_vma(tlb, vma);
4953
4954        /*
4955         * If sharing possible, alert mmu notifiers of worst case.
4956         */
4957        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4958                                end);
4959        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4960        mmu_notifier_invalidate_range_start(&range);
4961        address = start;
4962        for (; address < end; address += sz) {
4963                ptep = huge_pte_offset(mm, address, sz);
4964                if (!ptep)
4965                        continue;
4966
4967                ptl = huge_pte_lock(h, mm, ptep);
4968                if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4969                        spin_unlock(ptl);
4970                        tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4971                        force_flush = true;
4972                        continue;
4973                }
4974
4975                pte = huge_ptep_get(ptep);
4976                if (huge_pte_none(pte)) {
4977                        spin_unlock(ptl);
4978                        continue;
4979                }
4980
4981                /*
4982                 * Migrating hugepage or HWPoisoned hugepage is already
4983                 * unmapped and its refcount is dropped, so just clear pte here.
4984                 */
4985                if (unlikely(!pte_present(pte))) {
4986                        huge_pte_clear(mm, address, ptep, sz);
4987                        spin_unlock(ptl);
4988                        continue;
4989                }
4990
4991                page = pte_page(pte);
4992                /*
4993                 * If a reference page is supplied, it is because a specific
4994                 * page is being unmapped, not a range. Ensure the page we
4995                 * are about to unmap is the actual page of interest.
4996                 */
4997                if (ref_page) {
4998                        if (page != ref_page) {
4999                                spin_unlock(ptl);
5000                                continue;
5001                        }
5002                        /*
5003                         * Mark the VMA as having unmapped its page so that
5004                         * future faults in this VMA will fail rather than
5005                         * looking like data was lost
5006                         */
5007                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5008                }
5009
5010                pte = huge_ptep_get_and_clear(mm, address, ptep);
5011                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5012                if (huge_pte_dirty(pte))
5013                        set_page_dirty(page);
5014
5015                hugetlb_count_sub(pages_per_huge_page(h), mm);
5016                page_remove_rmap(page, true);
5017
5018                spin_unlock(ptl);
5019                tlb_remove_page_size(tlb, page, huge_page_size(h));
5020                /*
5021                 * Bail out after unmapping reference page if supplied
5022                 */
5023                if (ref_page)
5024                        break;
5025        }
5026        mmu_notifier_invalidate_range_end(&range);
5027        tlb_end_vma(tlb, vma);
5028
5029        /*
5030         * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5031         * could defer the flush until now, since by holding i_mmap_rwsem we
5032         * guaranteed that the last refernece would not be dropped. But we must
5033         * do the flushing before we return, as otherwise i_mmap_rwsem will be
5034         * dropped and the last reference to the shared PMDs page might be
5035         * dropped as well.
5036         *
5037         * In theory we could defer the freeing of the PMD pages as well, but
5038         * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5039         * detect sharing, so we cannot defer the release of the page either.
5040         * Instead, do flush now.
5041         */
5042        if (force_flush)
5043                tlb_flush_mmu_tlbonly(tlb);
5044}
5045
5046void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5047                          struct vm_area_struct *vma, unsigned long start,
5048                          unsigned long end, struct page *ref_page)
5049{
5050        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
5051
5052        /*
5053         * Clear this flag so that x86's huge_pmd_share page_table_shareable
5054         * test will fail on a vma being torn down, and not grab a page table
5055         * on its way out.  We're lucky that the flag has such an appropriate
5056         * name, and can in fact be safely cleared here. We could clear it
5057         * before the __unmap_hugepage_range above, but all that's necessary
5058         * is to clear it before releasing the i_mmap_rwsem. This works
5059         * because in the context this is called, the VMA is about to be
5060         * destroyed and the i_mmap_rwsem is held.
5061         */
5062        vma->vm_flags &= ~VM_MAYSHARE;
5063}
5064
5065void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5066                          unsigned long end, struct page *ref_page)
5067{
5068        struct mmu_gather tlb;
5069
5070        tlb_gather_mmu(&tlb, vma->vm_mm);
5071        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5072        tlb_finish_mmu(&tlb);
5073}
5074
5075/*
5076 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5077 * mapping it owns the reserve page for. The intention is to unmap the page
5078 * from other VMAs and let the children be SIGKILLed if they are faulting the
5079 * same region.
5080 */
5081static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5082                              struct page *page, unsigned long address)
5083{
5084        struct hstate *h = hstate_vma(vma);
5085        struct vm_area_struct *iter_vma;
5086        struct address_space *mapping;
5087        pgoff_t pgoff;
5088
5089        /*
5090         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5091         * from page cache lookup which is in HPAGE_SIZE units.
5092         */
5093        address = address & huge_page_mask(h);
5094        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5095                        vma->vm_pgoff;
5096        mapping = vma->vm_file->f_mapping;
5097
5098        /*
5099         * Take the mapping lock for the duration of the table walk. As
5100         * this mapping should be shared between all the VMAs,
5101         * __unmap_hugepage_range() is called as the lock is already held
5102         */
5103        i_mmap_lock_write(mapping);
5104        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5105                /* Do not unmap the current VMA */
5106                if (iter_vma == vma)
5107                        continue;
5108
5109                /*
5110                 * Shared VMAs have their own reserves and do not affect
5111                 * MAP_PRIVATE accounting but it is possible that a shared
5112                 * VMA is using the same page so check and skip such VMAs.
5113                 */
5114                if (iter_vma->vm_flags & VM_MAYSHARE)
5115                        continue;
5116
5117                /*
5118                 * Unmap the page from other VMAs without their own reserves.
5119                 * They get marked to be SIGKILLed if they fault in these
5120                 * areas. This is because a future no-page fault on this VMA
5121                 * could insert a zeroed page instead of the data existing
5122                 * from the time of fork. This would look like data corruption
5123                 */
5124                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5125                        unmap_hugepage_range(iter_vma, address,
5126                                             address + huge_page_size(h), page);
5127        }
5128        i_mmap_unlock_write(mapping);
5129}
5130
5131/*
5132 * Hugetlb_cow() should be called with page lock of the original hugepage held.
5133 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5134 * cannot race with other handlers or page migration.
5135 * Keep the pte_same checks anyway to make transition from the mutex easier.
5136 */
5137static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5138                       unsigned long address, pte_t *ptep,
5139                       struct page *pagecache_page, spinlock_t *ptl)
5140{
5141        pte_t pte;
5142        struct hstate *h = hstate_vma(vma);
5143        struct page *old_page, *new_page;
5144        int outside_reserve = 0;
5145        vm_fault_t ret = 0;
5146        unsigned long haddr = address & huge_page_mask(h);
5147        struct mmu_notifier_range range;
5148
5149        pte = huge_ptep_get(ptep);
5150        old_page = pte_page(pte);
5151
5152retry_avoidcopy:
5153        /* If no-one else is actually using this page, avoid the copy
5154         * and just make the page writable */
5155        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5156                page_move_anon_rmap(old_page, vma);
5157                set_huge_ptep_writable(vma, haddr, ptep);
5158                return 0;
5159        }
5160
5161        /*
5162         * If the process that created a MAP_PRIVATE mapping is about to
5163         * perform a COW due to a shared page count, attempt to satisfy
5164         * the allocation without using the existing reserves. The pagecache
5165         * page is used to determine if the reserve at this address was
5166         * consumed or not. If reserves were used, a partial faulted mapping
5167         * at the time of fork() could consume its reserves on COW instead
5168         * of the full address range.
5169         */
5170        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5171                        old_page != pagecache_page)
5172                outside_reserve = 1;
5173
5174        get_page(old_page);
5175
5176        /*
5177         * Drop page table lock as buddy allocator may be called. It will
5178         * be acquired again before returning to the caller, as expected.
5179         */
5180        spin_unlock(ptl);
5181        new_page = alloc_huge_page(vma, haddr, outside_reserve);
5182
5183        if (IS_ERR(new_page)) {
5184                /*
5185                 * If a process owning a MAP_PRIVATE mapping fails to COW,
5186                 * it is due to references held by a child and an insufficient
5187                 * huge page pool. To guarantee the original mappers
5188                 * reliability, unmap the page from child processes. The child
5189                 * may get SIGKILLed if it later faults.
5190                 */
5191                if (outside_reserve) {
5192                        struct address_space *mapping = vma->vm_file->f_mapping;
5193                        pgoff_t idx;
5194                        u32 hash;
5195
5196                        put_page(old_page);
5197                        BUG_ON(huge_pte_none(pte));
5198                        /*
5199                         * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5200                         * unmapping.  unmapping needs to hold i_mmap_rwsem
5201                         * in write mode.  Dropping i_mmap_rwsem in read mode
5202                         * here is OK as COW mappings do not interact with
5203                         * PMD sharing.
5204                         *
5205                         * Reacquire both after unmap operation.
5206                         */
5207                        idx = vma_hugecache_offset(h, vma, haddr);
5208                        hash = hugetlb_fault_mutex_hash(mapping, idx);
5209                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5210                        i_mmap_unlock_read(mapping);
5211
5212                        unmap_ref_private(mm, vma, old_page, haddr);
5213
5214                        i_mmap_lock_read(mapping);
5215                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
5216                        spin_lock(ptl);
5217                        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5218                        if (likely(ptep &&
5219                                   pte_same(huge_ptep_get(ptep), pte)))
5220                                goto retry_avoidcopy;
5221                        /*
5222                         * race occurs while re-acquiring page table
5223                         * lock, and our job is done.
5224                         */
5225                        return 0;
5226                }
5227
5228                ret = vmf_error(PTR_ERR(new_page));
5229                goto out_release_old;
5230        }
5231
5232        /*
5233         * When the original hugepage is shared one, it does not have
5234         * anon_vma prepared.
5235         */
5236        if (unlikely(anon_vma_prepare(vma))) {
5237                ret = VM_FAULT_OOM;
5238                goto out_release_all;
5239        }
5240
5241        copy_user_huge_page(new_page, old_page, address, vma,
5242                            pages_per_huge_page(h));
5243        __SetPageUptodate(new_page);
5244
5245        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5246                                haddr + huge_page_size(h));
5247        mmu_notifier_invalidate_range_start(&range);
5248
5249        /*
5250         * Retake the page table lock to check for racing updates
5251         * before the page tables are altered
5252         */
5253        spin_lock(ptl);
5254        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5255        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5256                ClearHPageRestoreReserve(new_page);
5257
5258                /* Break COW */
5259                huge_ptep_clear_flush(vma, haddr, ptep);
5260                mmu_notifier_invalidate_range(mm, range.start, range.end);
5261                page_remove_rmap(old_page, true);
5262                hugepage_add_new_anon_rmap(new_page, vma, haddr);
5263                set_huge_pte_at(mm, haddr, ptep,
5264                                make_huge_pte(vma, new_page, 1));
5265                SetHPageMigratable(new_page);
5266                /* Make the old page be freed below */
5267                new_page = old_page;
5268        }
5269        spin_unlock(ptl);
5270        mmu_notifier_invalidate_range_end(&range);
5271out_release_all:
5272        /* No restore in case of successful pagetable update (Break COW) */
5273        if (new_page != old_page)
5274                restore_reserve_on_error(h, vma, haddr, new_page);
5275        put_page(new_page);
5276out_release_old:
5277        put_page(old_page);
5278
5279        spin_lock(ptl); /* Caller expects lock to be held */
5280        return ret;
5281}
5282
5283/* Return the pagecache page at a given address within a VMA */
5284static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5285                        struct vm_area_struct *vma, unsigned long address)
5286{
5287        struct address_space *mapping;
5288        pgoff_t idx;
5289
5290        mapping = vma->vm_file->f_mapping;
5291        idx = vma_hugecache_offset(h, vma, address);
5292
5293        return find_lock_page(mapping, idx);
5294}
5295
5296/*
5297 * Return whether there is a pagecache page to back given address within VMA.
5298 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5299 */
5300static bool hugetlbfs_pagecache_present(struct hstate *h,
5301                        struct vm_area_struct *vma, unsigned long address)
5302{
5303        struct address_space *mapping;
5304        pgoff_t idx;
5305        struct page *page;
5306
5307        mapping = vma->vm_file->f_mapping;
5308        idx = vma_hugecache_offset(h, vma, address);
5309
5310        page = find_get_page(mapping, idx);
5311        if (page)
5312                put_page(page);
5313        return page != NULL;
5314}
5315
5316int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5317                           pgoff_t idx)
5318{
5319        struct inode *inode = mapping->host;
5320        struct hstate *h = hstate_inode(inode);
5321        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5322
5323        if (err)
5324                return err;
5325        ClearHPageRestoreReserve(page);
5326
5327        /*
5328         * set page dirty so that it will not be removed from cache/file
5329         * by non-hugetlbfs specific code paths.
5330         */
5331        set_page_dirty(page);
5332
5333        spin_lock(&inode->i_lock);
5334        inode->i_blocks += blocks_per_huge_page(h);
5335        spin_unlock(&inode->i_lock);
5336        return 0;
5337}
5338
5339static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5340                                                  struct address_space *mapping,
5341                                                  pgoff_t idx,
5342                                                  unsigned int flags,
5343                                                  unsigned long haddr,
5344                                                  unsigned long reason)
5345{
5346        vm_fault_t ret;
5347        u32 hash;
5348        struct vm_fault vmf = {
5349                .vma = vma,
5350                .address = haddr,
5351                .flags = flags,
5352
5353                /*
5354                 * Hard to debug if it ends up being
5355                 * used by a callee that assumes
5356                 * something about the other
5357                 * uninitialized fields... same as in
5358                 * memory.c
5359                 */
5360        };
5361
5362        /*
5363         * hugetlb_fault_mutex and i_mmap_rwsem must be
5364         * dropped before handling userfault.  Reacquire
5365         * after handling fault to make calling code simpler.
5366         */
5367        hash = hugetlb_fault_mutex_hash(mapping, idx);
5368        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5369        i_mmap_unlock_read(mapping);
5370        ret = handle_userfault(&vmf, reason);
5371        i_mmap_lock_read(mapping);
5372        mutex_lock(&hugetlb_fault_mutex_table[hash]);
5373
5374        return ret;
5375}
5376
5377static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5378                        struct vm_area_struct *vma,
5379                        struct address_space *mapping, pgoff_t idx,
5380                        unsigned long address, pte_t *ptep, unsigned int flags)
5381{
5382        struct hstate *h = hstate_vma(vma);
5383        vm_fault_t ret = VM_FAULT_SIGBUS;
5384        int anon_rmap = 0;
5385        unsigned long size;
5386        struct page *page;
5387        pte_t new_pte;
5388        spinlock_t *ptl;
5389        unsigned long haddr = address & huge_page_mask(h);
5390        bool new_page, new_pagecache_page = false;
5391
5392        /*
5393         * Currently, we are forced to kill the process in the event the
5394         * original mapper has unmapped pages from the child due to a failed
5395         * COW. Warn that such a situation has occurred as it may not be obvious
5396         */
5397        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5398                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5399                           current->pid);
5400                return ret;
5401        }
5402
5403        /*
5404         * We can not race with truncation due to holding i_mmap_rwsem.
5405         * i_size is modified when holding i_mmap_rwsem, so check here
5406         * once for faults beyond end of file.
5407         */
5408        size = i_size_read(mapping->host) >> huge_page_shift(h);
5409        if (idx >= size)
5410                goto out;
5411
5412retry:
5413        new_page = false;
5414        page = find_lock_page(mapping, idx);
5415        if (!page) {
5416                /* Check for page in userfault range */
5417                if (userfaultfd_missing(vma)) {
5418                        ret = hugetlb_handle_userfault(vma, mapping, idx,
5419                                                       flags, haddr,
5420                                                       VM_UFFD_MISSING);
5421                        goto out;
5422                }
5423
5424                page = alloc_huge_page(vma, haddr, 0);
5425                if (IS_ERR(page)) {
5426                        /*
5427                         * Returning error will result in faulting task being
5428                         * sent SIGBUS.  The hugetlb fault mutex prevents two
5429                         * tasks from racing to fault in the same page which
5430                         * could result in false unable to allocate errors.
5431                         * Page migration does not take the fault mutex, but
5432                         * does a clear then write of pte's under page table
5433                         * lock.  Page fault code could race with migration,
5434                         * notice the clear pte and try to allocate a page
5435                         * here.  Before returning error, get ptl and make
5436                         * sure there really is no pte entry.
5437                         */
5438                        ptl = huge_pte_lock(h, mm, ptep);
5439                        ret = 0;
5440                        if (huge_pte_none(huge_ptep_get(ptep)))
5441                                ret = vmf_error(PTR_ERR(page));
5442                        spin_unlock(ptl);
5443                        goto out;
5444                }
5445                clear_huge_page(page, address, pages_per_huge_page(h));
5446                __SetPageUptodate(page);
5447                new_page = true;
5448
5449                if (vma->vm_flags & VM_MAYSHARE) {
5450                        int err = huge_add_to_page_cache(page, mapping, idx);
5451                        if (err) {
5452                                put_page(page);
5453                                if (err == -EEXIST)
5454                                        goto retry;
5455                                goto out;
5456                        }
5457                        new_pagecache_page = true;
5458                } else {
5459                        lock_page(page);
5460                        if (unlikely(anon_vma_prepare(vma))) {
5461                                ret = VM_FAULT_OOM;
5462                                goto backout_unlocked;
5463                        }
5464                        anon_rmap = 1;
5465                }
5466        } else {
5467                /*
5468                 * If memory error occurs between mmap() and fault, some process
5469                 * don't have hwpoisoned swap entry for errored virtual address.
5470                 * So we need to block hugepage fault by PG_hwpoison bit check.
5471                 */
5472                if (unlikely(PageHWPoison(page))) {
5473                        ret = VM_FAULT_HWPOISON_LARGE |
5474                                VM_FAULT_SET_HINDEX(hstate_index(h));
5475                        goto backout_unlocked;
5476                }
5477
5478                /* Check for page in userfault range. */
5479                if (userfaultfd_minor(vma)) {
5480                        unlock_page(page);
5481                        put_page(page);
5482                        ret = hugetlb_handle_userfault(vma, mapping, idx,
5483                                                       flags, haddr,
5484                                                       VM_UFFD_MINOR);
5485                        goto out;
5486                }
5487        }
5488
5489        /*
5490         * If we are going to COW a private mapping later, we examine the
5491         * pending reservations for this page now. This will ensure that
5492         * any allocations necessary to record that reservation occur outside
5493         * the spinlock.
5494         */
5495        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5496                if (vma_needs_reservation(h, vma, haddr) < 0) {
5497                        ret = VM_FAULT_OOM;
5498                        goto backout_unlocked;
5499                }
5500                /* Just decrements count, does not deallocate */
5501                vma_end_reservation(h, vma, haddr);
5502        }
5503
5504        ptl = huge_pte_lock(h, mm, ptep);
5505        ret = 0;
5506        if (!huge_pte_none(huge_ptep_get(ptep)))
5507                goto backout;
5508
5509        if (anon_rmap) {
5510                ClearHPageRestoreReserve(page);
5511                hugepage_add_new_anon_rmap(page, vma, haddr);
5512        } else
5513                page_dup_rmap(page, true);
5514        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5515                                && (vma->vm_flags & VM_SHARED)));
5516        set_huge_pte_at(mm, haddr, ptep, new_pte);
5517
5518        hugetlb_count_add(pages_per_huge_page(h), mm);
5519        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5520                /* Optimization, do the COW without a second fault */
5521                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5522        }
5523
5524        spin_unlock(ptl);
5525
5526        /*
5527         * Only set HPageMigratable in newly allocated pages.  Existing pages
5528         * found in the pagecache may not have HPageMigratableset if they have
5529         * been isolated for migration.
5530         */
5531        if (new_page)
5532                SetHPageMigratable(page);
5533
5534        unlock_page(page);
5535out:
5536        return ret;
5537
5538backout:
5539        spin_unlock(ptl);
5540backout_unlocked:
5541        unlock_page(page);
5542        /* restore reserve for newly allocated pages not in page cache */
5543        if (new_page && !new_pagecache_page)
5544                restore_reserve_on_error(h, vma, haddr, page);
5545        put_page(page);
5546        goto out;
5547}
5548
5549#ifdef CONFIG_SMP
5550u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5551{
5552        unsigned long key[2];
5553        u32 hash;
5554
5555        key[0] = (unsigned long) mapping;
5556        key[1] = idx;
5557
5558        hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5559
5560        return hash & (num_fault_mutexes - 1);
5561}
5562#else
5563/*
5564 * For uniprocessor systems we always use a single mutex, so just
5565 * return 0 and avoid the hashing overhead.
5566 */
5567u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5568{
5569        return 0;
5570}
5571#endif
5572
5573vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5574                        unsigned long address, unsigned int flags)
5575{
5576        pte_t *ptep, entry;
5577        spinlock_t *ptl;
5578        vm_fault_t ret;
5579        u32 hash;
5580        pgoff_t idx;
5581        struct page *page = NULL;
5582        struct page *pagecache_page = NULL;
5583        struct hstate *h = hstate_vma(vma);
5584        struct address_space *mapping;
5585        int need_wait_lock = 0;
5586        unsigned long haddr = address & huge_page_mask(h);
5587
5588        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5589        if (ptep) {
5590                /*
5591                 * Since we hold no locks, ptep could be stale.  That is
5592                 * OK as we are only making decisions based on content and
5593                 * not actually modifying content here.
5594                 */
5595                entry = huge_ptep_get(ptep);
5596                if (unlikely(is_hugetlb_entry_migration(entry))) {
5597                        migration_entry_wait_huge(vma, mm, ptep);
5598                        return 0;
5599                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5600                        return VM_FAULT_HWPOISON_LARGE |
5601                                VM_FAULT_SET_HINDEX(hstate_index(h));
5602        }
5603
5604        /*
5605         * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5606         * until finished with ptep.  This serves two purposes:
5607         * 1) It prevents huge_pmd_unshare from being called elsewhere
5608         *    and making the ptep no longer valid.
5609         * 2) It synchronizes us with i_size modifications during truncation.
5610         *
5611         * ptep could have already be assigned via huge_pte_offset.  That
5612         * is OK, as huge_pte_alloc will return the same value unless
5613         * something has changed.
5614         */
5615        mapping = vma->vm_file->f_mapping;
5616        i_mmap_lock_read(mapping);
5617        ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5618        if (!ptep) {
5619                i_mmap_unlock_read(mapping);
5620                return VM_FAULT_OOM;
5621        }
5622
5623        /*
5624         * Serialize hugepage allocation and instantiation, so that we don't
5625         * get spurious allocation failures if two CPUs race to instantiate
5626         * the same page in the page cache.
5627         */
5628        idx = vma_hugecache_offset(h, vma, haddr);
5629        hash = hugetlb_fault_mutex_hash(mapping, idx);
5630        mutex_lock(&hugetlb_fault_mutex_table[hash]);
5631
5632        entry = huge_ptep_get(ptep);
5633        if (huge_pte_none(entry)) {
5634                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5635                goto out_mutex;
5636        }
5637
5638        ret = 0;
5639
5640        /*
5641         * entry could be a migration/hwpoison entry at this point, so this
5642         * check prevents the kernel from going below assuming that we have
5643         * an active hugepage in pagecache. This goto expects the 2nd page
5644         * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5645         * properly handle it.
5646         */
5647        if (!pte_present(entry))
5648                goto out_mutex;
5649
5650        /*
5651         * If we are going to COW the mapping later, we examine the pending
5652         * reservations for this page now. This will ensure that any
5653         * allocations necessary to record that reservation occur outside the
5654         * spinlock. For private mappings, we also lookup the pagecache
5655         * page now as it is used to determine if a reservation has been
5656         * consumed.
5657         */
5658        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5659                if (vma_needs_reservation(h, vma, haddr) < 0) {
5660                        ret = VM_FAULT_OOM;
5661                        goto out_mutex;
5662                }
5663                /* Just decrements count, does not deallocate */
5664                vma_end_reservation(h, vma, haddr);
5665
5666                if (!(vma->vm_flags & VM_MAYSHARE))
5667                        pagecache_page = hugetlbfs_pagecache_page(h,
5668                                                                vma, haddr);
5669        }
5670
5671        ptl = huge_pte_lock(h, mm, ptep);
5672
5673        /* Check for a racing update before calling hugetlb_cow */
5674        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5675                goto out_ptl;
5676
5677        /*
5678         * hugetlb_cow() requires page locks of pte_page(entry) and
5679         * pagecache_page, so here we need take the former one
5680         * when page != pagecache_page or !pagecache_page.
5681         */
5682        page = pte_page(entry);
5683        if (page != pagecache_page)
5684                if (!trylock_page(page)) {
5685                        need_wait_lock = 1;
5686                        goto out_ptl;
5687                }
5688
5689        get_page(page);
5690
5691        if (flags & FAULT_FLAG_WRITE) {
5692                if (!huge_pte_write(entry)) {
5693                        ret = hugetlb_cow(mm, vma, address, ptep,
5694                                          pagecache_page, ptl);
5695                        goto out_put_page;
5696                }
5697                entry = huge_pte_mkdirty(entry);
5698        }
5699        entry = pte_mkyoung(entry);
5700        if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5701                                                flags & FAULT_FLAG_WRITE))
5702                update_mmu_cache(vma, haddr, ptep);
5703out_put_page:
5704        if (page != pagecache_page)
5705                unlock_page(page);
5706        put_page(page);
5707out_ptl:
5708        spin_unlock(ptl);
5709
5710        if (pagecache_page) {
5711                unlock_page(pagecache_page);
5712                put_page(pagecache_page);
5713        }
5714out_mutex:
5715        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5716        i_mmap_unlock_read(mapping);
5717        /*
5718         * Generally it's safe to hold refcount during waiting page lock. But
5719         * here we just wait to defer the next page fault to avoid busy loop and
5720         * the page is not used after unlocked before returning from the current
5721         * page fault. So we are safe from accessing freed page, even if we wait
5722         * here without taking refcount.
5723         */
5724        if (need_wait_lock)
5725                wait_on_page_locked(page);
5726        return ret;
5727}
5728
5729#ifdef CONFIG_USERFAULTFD
5730/*
5731 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5732 * modifications for huge pages.
5733 */
5734int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5735                            pte_t *dst_pte,
5736                            struct vm_area_struct *dst_vma,
5737                            unsigned long dst_addr,
5738                            unsigned long src_addr,
5739                            enum mcopy_atomic_mode mode,
5740                            struct page **pagep)
5741{
5742        bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5743        struct hstate *h = hstate_vma(dst_vma);
5744        struct address_space *mapping = dst_vma->vm_file->f_mapping;
5745        pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5746        unsigned long size;
5747        int vm_shared = dst_vma->vm_flags & VM_SHARED;
5748        pte_t _dst_pte;
5749        spinlock_t *ptl;
5750        int ret = -ENOMEM;
5751        struct page *page;
5752        int writable;
5753        bool page_in_pagecache = false;
5754
5755        if (is_continue) {
5756                ret = -EFAULT;
5757                page = find_lock_page(mapping, idx);
5758                if (!page)
5759                        goto out;
5760                page_in_pagecache = true;
5761        } else if (!*pagep) {
5762                /* If a page already exists, then it's UFFDIO_COPY for
5763                 * a non-missing case. Return -EEXIST.
5764                 */
5765                if (vm_shared &&
5766                    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5767                        ret = -EEXIST;
5768                        goto out;
5769                }
5770
5771                page = alloc_huge_page(dst_vma, dst_addr, 0);
5772                if (IS_ERR(page)) {
5773                        ret = -ENOMEM;
5774                        goto out;
5775                }
5776
5777                ret = copy_huge_page_from_user(page,
5778                                                (const void __user *) src_addr,
5779                                                pages_per_huge_page(h), false);
5780
5781                /* fallback to copy_from_user outside mmap_lock */
5782                if (unlikely(ret)) {
5783                        ret = -ENOENT;
5784                        /* Free the allocated page which may have
5785                         * consumed a reservation.
5786                         */
5787                        restore_reserve_on_error(h, dst_vma, dst_addr, page);
5788                        put_page(page);
5789
5790                        /* Allocate a temporary page to hold the copied
5791                         * contents.
5792                         */
5793                        page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5794                        if (!page) {
5795                                ret = -ENOMEM;
5796                                goto out;
5797                        }
5798                        *pagep = page;
5799                        /* Set the outparam pagep and return to the caller to
5800                         * copy the contents outside the lock. Don't free the
5801                         * page.
5802                         */
5803                        goto out;
5804                }
5805        } else {
5806                if (vm_shared &&
5807                    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5808                        put_page(*pagep);
5809                        ret = -EEXIST;
5810                        *pagep = NULL;
5811                        goto out;
5812                }
5813
5814                page = alloc_huge_page(dst_vma, dst_addr, 0);
5815                if (IS_ERR(page)) {
5816                        ret = -ENOMEM;
5817                        *pagep = NULL;
5818                        goto out;
5819                }
5820                folio_copy(page_folio(page), page_folio(*pagep));
5821                put_page(*pagep);
5822                *pagep = NULL;
5823        }
5824
5825        /*
5826         * The memory barrier inside __SetPageUptodate makes sure that
5827         * preceding stores to the page contents become visible before
5828         * the set_pte_at() write.
5829         */
5830        __SetPageUptodate(page);
5831
5832        /* Add shared, newly allocated pages to the page cache. */
5833        if (vm_shared && !is_continue) {
5834                size = i_size_read(mapping->host) >> huge_page_shift(h);
5835                ret = -EFAULT;
5836                if (idx >= size)
5837                        goto out_release_nounlock;
5838
5839                /*
5840                 * Serialization between remove_inode_hugepages() and
5841                 * huge_add_to_page_cache() below happens through the
5842                 * hugetlb_fault_mutex_table that here must be hold by
5843                 * the caller.
5844                 */
5845                ret = huge_add_to_page_cache(page, mapping, idx);
5846                if (ret)
5847                        goto out_release_nounlock;
5848                page_in_pagecache = true;
5849        }
5850
5851        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5852        spin_lock(ptl);
5853
5854        /*
5855         * Recheck the i_size after holding PT lock to make sure not
5856         * to leave any page mapped (as page_mapped()) beyond the end
5857         * of the i_size (remove_inode_hugepages() is strict about
5858         * enforcing that). If we bail out here, we'll also leave a
5859         * page in the radix tree in the vm_shared case beyond the end
5860         * of the i_size, but remove_inode_hugepages() will take care
5861         * of it as soon as we drop the hugetlb_fault_mutex_table.
5862         */
5863        size = i_size_read(mapping->host) >> huge_page_shift(h);
5864        ret = -EFAULT;
5865        if (idx >= size)
5866                goto out_release_unlock;
5867
5868        ret = -EEXIST;
5869        if (!huge_pte_none(huge_ptep_get(dst_pte)))
5870                goto out_release_unlock;
5871
5872        if (vm_shared) {
5873                page_dup_rmap(page, true);
5874        } else {
5875                ClearHPageRestoreReserve(page);
5876                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5877        }
5878
5879        /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5880        if (is_continue && !vm_shared)
5881                writable = 0;
5882        else
5883                writable = dst_vma->vm_flags & VM_WRITE;
5884
5885        _dst_pte = make_huge_pte(dst_vma, page, writable);
5886        if (writable)
5887                _dst_pte = huge_pte_mkdirty(_dst_pte);
5888        _dst_pte = pte_mkyoung(_dst_pte);
5889
5890        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5891
5892        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5893                                        dst_vma->vm_flags & VM_WRITE);
5894        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5895
5896        /* No need to invalidate - it was non-present before */
5897        update_mmu_cache(dst_vma, dst_addr, dst_pte);
5898
5899        spin_unlock(ptl);
5900        if (!is_continue)
5901                SetHPageMigratable(page);
5902        if (vm_shared || is_continue)
5903                unlock_page(page);
5904        ret = 0;
5905out:
5906        return ret;
5907out_release_unlock:
5908        spin_unlock(ptl);
5909        if (vm_shared || is_continue)
5910                unlock_page(page);
5911out_release_nounlock:
5912        if (!page_in_pagecache)
5913                restore_reserve_on_error(h, dst_vma, dst_addr, page);
5914        put_page(page);
5915        goto out;
5916}
5917#endif /* CONFIG_USERFAULTFD */
5918
5919static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5920                                 int refs, struct page **pages,
5921                                 struct vm_area_struct **vmas)
5922{
5923        int nr;
5924
5925        for (nr = 0; nr < refs; nr++) {
5926                if (likely(pages))
5927                        pages[nr] = mem_map_offset(page, nr);
5928                if (vmas)
5929                        vmas[nr] = vma;
5930        }
5931}
5932
5933long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5934                         struct page **pages, struct vm_area_struct **vmas,
5935                         unsigned long *position, unsigned long *nr_pages,
5936                         long i, unsigned int flags, int *locked)
5937{
5938        unsigned long pfn_offset;
5939        unsigned long vaddr = *position;
5940        unsigned long remainder = *nr_pages;
5941        struct hstate *h = hstate_vma(vma);
5942        int err = -EFAULT, refs;
5943
5944        while (vaddr < vma->vm_end && remainder) {
5945                pte_t *pte;
5946                spinlock_t *ptl = NULL;
5947                int absent;
5948                struct page *page;
5949
5950                /*
5951                 * If we have a pending SIGKILL, don't keep faulting pages and
5952                 * potentially allocating memory.
5953                 */
5954                if (fatal_signal_pending(current)) {
5955                        remainder = 0;
5956                        break;
5957                }
5958
5959                /*
5960                 * Some archs (sparc64, sh*) have multiple pte_ts to
5961                 * each hugepage.  We have to make sure we get the
5962                 * first, for the page indexing below to work.
5963                 *
5964                 * Note that page table lock is not held when pte is null.
5965                 */
5966                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5967                                      huge_page_size(h));
5968                if (pte)
5969                        ptl = huge_pte_lock(h, mm, pte);
5970                absent = !pte || huge_pte_none(huge_ptep_get(pte));
5971
5972                /*
5973                 * When coredumping, it suits get_dump_page if we just return
5974                 * an error where there's an empty slot with no huge pagecache
5975                 * to back it.  This way, we avoid allocating a hugepage, and
5976                 * the sparse dumpfile avoids allocating disk blocks, but its
5977                 * huge holes still show up with zeroes where they need to be.
5978                 */
5979                if (absent && (flags & FOLL_DUMP) &&
5980                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5981                        if (pte)
5982                                spin_unlock(ptl);
5983                        remainder = 0;
5984                        break;
5985                }
5986
5987                /*
5988                 * We need call hugetlb_fault for both hugepages under migration
5989                 * (in which case hugetlb_fault waits for the migration,) and
5990                 * hwpoisoned hugepages (in which case we need to prevent the
5991                 * caller from accessing to them.) In order to do this, we use
5992                 * here is_swap_pte instead of is_hugetlb_entry_migration and
5993                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5994                 * both cases, and because we can't follow correct pages
5995                 * directly from any kind of swap entries.
5996                 */
5997                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5998                    ((flags & FOLL_WRITE) &&
5999                      !huge_pte_write(huge_ptep_get(pte)))) {
6000                        vm_fault_t ret;
6001                        unsigned int fault_flags = 0;
6002
6003                        if (pte)
6004                                spin_unlock(ptl);
6005                        if (flags & FOLL_WRITE)
6006                                fault_flags |= FAULT_FLAG_WRITE;
6007                        if (locked)
6008                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6009                                        FAULT_FLAG_KILLABLE;
6010                        if (flags & FOLL_NOWAIT)
6011                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6012                                        FAULT_FLAG_RETRY_NOWAIT;
6013                        if (flags & FOLL_TRIED) {
6014                                /*
6015                                 * Note: FAULT_FLAG_ALLOW_RETRY and
6016                                 * FAULT_FLAG_TRIED can co-exist
6017                                 */
6018                                fault_flags |= FAULT_FLAG_TRIED;
6019                        }
6020                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6021                        if (ret & VM_FAULT_ERROR) {
6022                                err = vm_fault_to_errno(ret, flags);
6023                                remainder = 0;
6024                                break;
6025                        }
6026                        if (ret & VM_FAULT_RETRY) {
6027                                if (locked &&
6028                                    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6029                                        *locked = 0;
6030                                *nr_pages = 0;
6031                                /*
6032                                 * VM_FAULT_RETRY must not return an
6033                                 * error, it will return zero
6034                                 * instead.
6035                                 *
6036                                 * No need to update "position" as the
6037                                 * caller will not check it after
6038                                 * *nr_pages is set to 0.
6039                                 */
6040                                return i;
6041                        }
6042                        continue;
6043                }
6044
6045                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6046                page = pte_page(huge_ptep_get(pte));
6047
6048                /*
6049                 * If subpage information not requested, update counters
6050                 * and skip the same_page loop below.
6051                 */
6052                if (!pages && !vmas && !pfn_offset &&
6053                    (vaddr + huge_page_size(h) < vma->vm_end) &&
6054                    (remainder >= pages_per_huge_page(h))) {
6055                        vaddr += huge_page_size(h);
6056                        remainder -= pages_per_huge_page(h);
6057                        i += pages_per_huge_page(h);
6058                        spin_unlock(ptl);
6059                        continue;
6060                }
6061
6062                /* vaddr may not be aligned to PAGE_SIZE */
6063                refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6064                    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6065
6066                if (pages || vmas)
6067                        record_subpages_vmas(mem_map_offset(page, pfn_offset),
6068                                             vma, refs,
6069                                             likely(pages) ? pages + i : NULL,
6070                                             vmas ? vmas + i : NULL);
6071
6072                if (pages) {
6073                        /*
6074                         * try_grab_compound_head() should always succeed here,
6075                         * because: a) we hold the ptl lock, and b) we've just
6076                         * checked that the huge page is present in the page
6077                         * tables. If the huge page is present, then the tail
6078                         * pages must also be present. The ptl prevents the
6079                         * head page and tail pages from being rearranged in
6080                         * any way. So this page must be available at this
6081                         * point, unless the page refcount overflowed:
6082                         */
6083                        if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
6084                                                                 refs,
6085                                                                 flags))) {
6086                                spin_unlock(ptl);
6087                                remainder = 0;
6088                                err = -ENOMEM;
6089                                break;
6090                        }
6091                }
6092
6093                vaddr += (refs << PAGE_SHIFT);
6094                remainder -= refs;
6095                i += refs;
6096
6097                spin_unlock(ptl);
6098        }
6099        *nr_pages = remainder;
6100        /*
6101         * setting position is actually required only if remainder is
6102         * not zero but it's faster not to add a "if (remainder)"
6103         * branch.
6104         */
6105        *position = vaddr;
6106
6107        return i ? i : err;
6108}
6109
6110unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6111                unsigned long address, unsigned long end, pgprot_t newprot)
6112{
6113        struct mm_struct *mm = vma->vm_mm;
6114        unsigned long start = address;
6115        pte_t *ptep;
6116        pte_t pte;
6117        struct hstate *h = hstate_vma(vma);
6118        unsigned long pages = 0;
6119        bool shared_pmd = false;
6120        struct mmu_notifier_range range;
6121
6122        /*
6123         * In the case of shared PMDs, the area to flush could be beyond
6124         * start/end.  Set range.start/range.end to cover the maximum possible
6125         * range if PMD sharing is possible.
6126         */
6127        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6128                                0, vma, mm, start, end);
6129        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6130
6131        BUG_ON(address >= end);
6132        flush_cache_range(vma, range.start, range.end);
6133
6134        mmu_notifier_invalidate_range_start(&range);
6135        i_mmap_lock_write(vma->vm_file->f_mapping);
6136        for (; address < end; address += huge_page_size(h)) {
6137                spinlock_t *ptl;
6138                ptep = huge_pte_offset(mm, address, huge_page_size(h));
6139                if (!ptep)
6140                        continue;
6141                ptl = huge_pte_lock(h, mm, ptep);
6142                if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6143                        pages++;
6144                        spin_unlock(ptl);
6145                        shared_pmd = true;
6146                        continue;
6147                }
6148                pte = huge_ptep_get(ptep);
6149                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6150                        spin_unlock(ptl);
6151                        continue;
6152                }
6153                if (unlikely(is_hugetlb_entry_migration(pte))) {
6154                        swp_entry_t entry = pte_to_swp_entry(pte);
6155
6156                        if (is_writable_migration_entry(entry)) {
6157                                pte_t newpte;
6158
6159                                entry = make_readable_migration_entry(
6160                                                        swp_offset(entry));
6161                                newpte = swp_entry_to_pte(entry);
6162                                set_huge_swap_pte_at(mm, address, ptep,
6163                                                     newpte, huge_page_size(h));
6164                                pages++;
6165                        }
6166                        spin_unlock(ptl);
6167                        continue;
6168                }
6169                if (!huge_pte_none(pte)) {
6170                        pte_t old_pte;
6171                        unsigned int shift = huge_page_shift(hstate_vma(vma));
6172
6173                        old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6174                        pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
6175                        pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6176                        huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6177                        pages++;
6178                }
6179                spin_unlock(ptl);
6180        }
6181        /*
6182         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6183         * may have cleared our pud entry and done put_page on the page table:
6184         * once we release i_mmap_rwsem, another task can do the final put_page
6185         * and that page table be reused and filled with junk.  If we actually
6186         * did unshare a page of pmds, flush the range corresponding to the pud.
6187         */
6188        if (shared_pmd)
6189                flush_hugetlb_tlb_range(vma, range.start, range.end);
6190        else
6191                flush_hugetlb_tlb_range(vma, start, end);
6192        /*
6193         * No need to call mmu_notifier_invalidate_range() we are downgrading
6194         * page table protection not changing it to point to a new page.
6195         *
6196         * See Documentation/vm/mmu_notifier.rst
6197         */
6198        i_mmap_unlock_write(vma->vm_file->f_mapping);
6199        mmu_notifier_invalidate_range_end(&range);
6200
6201        return pages << h->order;
6202}
6203
6204/* Return true if reservation was successful, false otherwise.  */
6205bool hugetlb_reserve_pages(struct inode *inode,
6206                                        long from, long to,
6207                                        struct vm_area_struct *vma,
6208                                        vm_flags_t vm_flags)
6209{
6210        long chg, add = -1;
6211        struct hstate *h = hstate_inode(inode);
6212        struct hugepage_subpool *spool = subpool_inode(inode);
6213        struct resv_map *resv_map;
6214        struct hugetlb_cgroup *h_cg = NULL;
6215        long gbl_reserve, regions_needed = 0;
6216
6217        /* This should never happen */
6218        if (from > to) {
6219                VM_WARN(1, "%s called with a negative range\n", __func__);
6220                return false;
6221        }
6222
6223        /*
6224         * Only apply hugepage reservation if asked. At fault time, an
6225         * attempt will be made for VM_NORESERVE to allocate a page
6226         * without using reserves
6227         */
6228        if (vm_flags & VM_NORESERVE)
6229                return true;
6230
6231        /*
6232         * Shared mappings base their reservation on the number of pages that
6233         * are already allocated on behalf of the file. Private mappings need
6234         * to reserve the full area even if read-only as mprotect() may be
6235         * called to make the mapping read-write. Assume !vma is a shm mapping
6236         */
6237        if (!vma || vma->vm_flags & VM_MAYSHARE) {
6238                /*
6239                 * resv_map can not be NULL as hugetlb_reserve_pages is only
6240                 * called for inodes for which resv_maps were created (see
6241                 * hugetlbfs_get_inode).
6242                 */
6243                resv_map = inode_resv_map(inode);
6244
6245                chg = region_chg(resv_map, from, to, &regions_needed);
6246
6247        } else {
6248                /* Private mapping. */
6249                resv_map = resv_map_alloc();
6250                if (!resv_map)
6251                        return false;
6252
6253                chg = to - from;
6254
6255                set_vma_resv_map(vma, resv_map);
6256                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6257        }
6258
6259        if (chg < 0)
6260                goto out_err;
6261
6262        if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6263                                chg * pages_per_huge_page(h), &h_cg) < 0)
6264                goto out_err;
6265
6266        if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6267                /* For private mappings, the hugetlb_cgroup uncharge info hangs
6268                 * of the resv_map.
6269                 */
6270                resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6271        }
6272
6273        /*
6274         * There must be enough pages in the subpool for the mapping. If
6275         * the subpool has a minimum size, there may be some global
6276         * reservations already in place (gbl_reserve).
6277         */
6278        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6279        if (gbl_reserve < 0)
6280                goto out_uncharge_cgroup;
6281
6282        /*
6283         * Check enough hugepages are available for the reservation.
6284         * Hand the pages back to the subpool if there are not
6285         */
6286        if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6287                goto out_put_pages;
6288
6289        /*
6290         * Account for the reservations made. Shared mappings record regions
6291         * that have reservations as they are shared by multiple VMAs.
6292         * When the last VMA disappears, the region map says how much
6293         * the reservation was and the page cache tells how much of
6294         * the reservation was consumed. Private mappings are per-VMA and
6295         * only the consumed reservations are tracked. When the VMA
6296         * disappears, the original reservation is the VMA size and the
6297         * consumed reservations are stored in the map. Hence, nothing
6298         * else has to be done for private mappings here
6299         */
6300        if (!vma || vma->vm_flags & VM_MAYSHARE) {
6301                add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6302
6303                if (unlikely(add < 0)) {
6304                        hugetlb_acct_memory(h, -gbl_reserve);
6305                        goto out_put_pages;
6306                } else if (unlikely(chg > add)) {
6307                        /*
6308                         * pages in this range were added to the reserve
6309                         * map between region_chg and region_add.  This
6310                         * indicates a race with alloc_huge_page.  Adjust
6311                         * the subpool and reserve counts modified above
6312                         * based on the difference.
6313                         */
6314                        long rsv_adjust;
6315
6316                        /*
6317                         * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6318                         * reference to h_cg->css. See comment below for detail.
6319                         */
6320                        hugetlb_cgroup_uncharge_cgroup_rsvd(
6321                                hstate_index(h),
6322                                (chg - add) * pages_per_huge_page(h), h_cg);
6323
6324                        rsv_adjust = hugepage_subpool_put_pages(spool,
6325                                                                chg - add);
6326                        hugetlb_acct_memory(h, -rsv_adjust);
6327                } else if (h_cg) {
6328                        /*
6329                         * The file_regions will hold their own reference to
6330                         * h_cg->css. So we should release the reference held
6331                         * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6332                         * done.
6333                         */
6334                        hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6335                }
6336        }
6337        return true;
6338
6339out_put_pages:
6340        /* put back original number of pages, chg */
6341        (void)hugepage_subpool_put_pages(spool, chg);
6342out_uncharge_cgroup:
6343        hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6344                                            chg * pages_per_huge_page(h), h_cg);
6345out_err:
6346        if (!vma || vma->vm_flags & VM_MAYSHARE)
6347                /* Only call region_abort if the region_chg succeeded but the
6348                 * region_add failed or didn't run.
6349                 */
6350                if (chg >= 0 && add < 0)
6351                        region_abort(resv_map, from, to, regions_needed);
6352        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6353                kref_put(&resv_map->refs, resv_map_release);
6354        return false;
6355}
6356
6357long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6358                                                                long freed)
6359{
6360        struct hstate *h = hstate_inode(inode);
6361        struct resv_map *resv_map = inode_resv_map(inode);
6362        long chg = 0;
6363        struct hugepage_subpool *spool = subpool_inode(inode);
6364        long gbl_reserve;
6365
6366        /*
6367         * Since this routine can be called in the evict inode path for all
6368         * hugetlbfs inodes, resv_map could be NULL.
6369         */
6370        if (resv_map) {
6371                chg = region_del(resv_map, start, end);
6372                /*
6373                 * region_del() can fail in the rare case where a region
6374                 * must be split and another region descriptor can not be
6375                 * allocated.  If end == LONG_MAX, it will not fail.
6376                 */
6377                if (chg < 0)
6378                        return chg;
6379        }
6380
6381        spin_lock(&inode->i_lock);
6382        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6383        spin_unlock(&inode->i_lock);
6384
6385        /*
6386         * If the subpool has a minimum size, the number of global
6387         * reservations to be released may be adjusted.
6388         *
6389         * Note that !resv_map implies freed == 0. So (chg - freed)
6390         * won't go negative.
6391         */
6392        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6393        hugetlb_acct_memory(h, -gbl_reserve);
6394
6395        return 0;
6396}
6397
6398#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6399static unsigned long page_table_shareable(struct vm_area_struct *svma,
6400                                struct vm_area_struct *vma,
6401                                unsigned long addr, pgoff_t idx)
6402{
6403        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6404                                svma->vm_start;
6405        unsigned long sbase = saddr & PUD_MASK;
6406        unsigned long s_end = sbase + PUD_SIZE;
6407
6408        /* Allow segments to share if only one is marked locked */
6409        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6410        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6411
6412        /*
6413         * match the virtual addresses, permission and the alignment of the
6414         * page table page.
6415         */
6416        if (pmd_index(addr) != pmd_index(saddr) ||
6417            vm_flags != svm_flags ||
6418            !range_in_vma(svma, sbase, s_end))
6419                return 0;
6420
6421        return saddr;
6422}
6423
6424static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6425{
6426        unsigned long base = addr & PUD_MASK;
6427        unsigned long end = base + PUD_SIZE;
6428
6429        /*
6430         * check on proper vm_flags and page table alignment
6431         */
6432        if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6433                return true;
6434        return false;
6435}
6436
6437bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6438{
6439#ifdef CONFIG_USERFAULTFD
6440        if (uffd_disable_huge_pmd_share(vma))
6441                return false;
6442#endif
6443        return vma_shareable(vma, addr);
6444}
6445
6446/*
6447 * Determine if start,end range within vma could be mapped by shared pmd.
6448 * If yes, adjust start and end to cover range associated with possible
6449 * shared pmd mappings.
6450 */
6451void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6452                                unsigned long *start, unsigned long *end)
6453{
6454        unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6455                v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6456
6457        /*
6458         * vma needs to span at least one aligned PUD size, and the range
6459         * must be at least partially within in.
6460         */
6461        if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6462                (*end <= v_start) || (*start >= v_end))
6463                return;
6464
6465        /* Extend the range to be PUD aligned for a worst case scenario */
6466        if (*start > v_start)
6467                *start = ALIGN_DOWN(*start, PUD_SIZE);
6468
6469        if (*end < v_end)
6470                *end = ALIGN(*end, PUD_SIZE);
6471}
6472
6473/*
6474 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6475 * and returns the corresponding pte. While this is not necessary for the
6476 * !shared pmd case because we can allocate the pmd later as well, it makes the
6477 * code much cleaner.
6478 *
6479 * This routine must be called with i_mmap_rwsem held in at least read mode if
6480 * sharing is possible.  For hugetlbfs, this prevents removal of any page
6481 * table entries associated with the address space.  This is important as we
6482 * are setting up sharing based on existing page table entries (mappings).
6483 */
6484pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6485                      unsigned long addr, pud_t *pud)
6486{
6487        struct address_space *mapping = vma->vm_file->f_mapping;
6488        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6489                        vma->vm_pgoff;
6490        struct vm_area_struct *svma;
6491        unsigned long saddr;
6492        pte_t *spte = NULL;
6493        pte_t *pte;
6494        spinlock_t *ptl;
6495
6496        i_mmap_assert_locked(mapping);
6497        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6498                if (svma == vma)
6499                        continue;
6500
6501                saddr = page_table_shareable(svma, vma, addr, idx);
6502                if (saddr) {
6503                        spte = huge_pte_offset(svma->vm_mm, saddr,
6504                                               vma_mmu_pagesize(svma));
6505                        if (spte) {
6506                                get_page(virt_to_page(spte));
6507                                break;
6508                        }
6509                }
6510        }
6511
6512        if (!spte)
6513                goto out;
6514
6515        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6516        if (pud_none(*pud)) {
6517                pud_populate(mm, pud,
6518                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
6519                mm_inc_nr_pmds(mm);
6520        } else {
6521                put_page(virt_to_page(spte));
6522        }
6523        spin_unlock(ptl);
6524out:
6525        pte = (pte_t *)pmd_alloc(mm, pud, addr);
6526        return pte;
6527}
6528
6529/*
6530 * unmap huge page backed by shared pte.
6531 *
6532 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6533 * indicated by page_count > 1, unmap is achieved by clearing pud and
6534 * decrementing the ref count. If count == 1, the pte page is not shared.
6535 *
6536 * Called with page table lock held and i_mmap_rwsem held in write mode.
6537 *
6538 * returns: 1 successfully unmapped a shared pte page
6539 *          0 the underlying pte page is not shared, or it is the last user
6540 */
6541int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6542                                        unsigned long *addr, pte_t *ptep)
6543{
6544        pgd_t *pgd = pgd_offset(mm, *addr);
6545        p4d_t *p4d = p4d_offset(pgd, *addr);
6546        pud_t *pud = pud_offset(p4d, *addr);
6547
6548        i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6549        BUG_ON(page_count(virt_to_page(ptep)) == 0);
6550        if (page_count(virt_to_page(ptep)) == 1)
6551                return 0;
6552
6553        pud_clear(pud);
6554        put_page(virt_to_page(ptep));
6555        mm_dec_nr_pmds(mm);
6556        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6557        return 1;
6558}
6559
6560#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6561pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6562                      unsigned long addr, pud_t *pud)
6563{
6564        return NULL;
6565}
6566
6567int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6568                                unsigned long *addr, pte_t *ptep)
6569{
6570        return 0;
6571}
6572
6573void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6574                                unsigned long *start, unsigned long *end)
6575{
6576}
6577
6578bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6579{
6580        return false;
6581}
6582#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6583
6584#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6585pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6586                        unsigned long addr, unsigned long sz)
6587{
6588        pgd_t *pgd;
6589        p4d_t *p4d;
6590        pud_t *pud;
6591        pte_t *pte = NULL;
6592
6593        pgd = pgd_offset(mm, addr);
6594        p4d = p4d_alloc(mm, pgd, addr);
6595        if (!p4d)
6596                return NULL;
6597        pud = pud_alloc(mm, p4d, addr);
6598        if (pud) {
6599                if (sz == PUD_SIZE) {
6600                        pte = (pte_t *)pud;
6601                } else {
6602                        BUG_ON(sz != PMD_SIZE);
6603                        if (want_pmd_share(vma, addr) && pud_none(*pud))
6604                                pte = huge_pmd_share(mm, vma, addr, pud);
6605                        else
6606                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
6607                }
6608        }
6609        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6610
6611        return pte;
6612}
6613
6614/*
6615 * huge_pte_offset() - Walk the page table to resolve the hugepage
6616 * entry at address @addr
6617 *
6618 * Return: Pointer to page table entry (PUD or PMD) for
6619 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6620 * size @sz doesn't match the hugepage size at this level of the page
6621 * table.
6622 */
6623pte_t *huge_pte_offset(struct mm_struct *mm,
6624                       unsigned long addr, unsigned long sz)
6625{
6626        pgd_t *pgd;
6627        p4d_t *p4d;
6628        pud_t *pud;
6629        pmd_t *pmd;
6630
6631        pgd = pgd_offset(mm, addr);
6632        if (!pgd_present(*pgd))
6633                return NULL;
6634        p4d = p4d_offset(pgd, addr);
6635        if (!p4d_present(*p4d))
6636                return NULL;
6637
6638        pud = pud_offset(p4d, addr);
6639        if (sz == PUD_SIZE)
6640                /* must be pud huge, non-present or none */
6641                return (pte_t *)pud;
6642        if (!pud_present(*pud))
6643                return NULL;
6644        /* must have a valid entry and size to go further */
6645
6646        pmd = pmd_offset(pud, addr);
6647        /* must be pmd huge, non-present or none */
6648        return (pte_t *)pmd;
6649}
6650
6651#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6652
6653/*
6654 * These functions are overwritable if your architecture needs its own
6655 * behavior.
6656 */
6657struct page * __weak
6658follow_huge_addr(struct mm_struct *mm, unsigned long address,
6659                              int write)
6660{
6661        return ERR_PTR(-EINVAL);
6662}
6663
6664struct page * __weak
6665follow_huge_pd(struct vm_area_struct *vma,
6666               unsigned long address, hugepd_t hpd, int flags, int pdshift)
6667{
6668        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6669        return NULL;
6670}
6671
6672struct page * __weak
6673follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6674                pmd_t *pmd, int flags)
6675{
6676        struct page *page = NULL;
6677        spinlock_t *ptl;
6678        pte_t pte;
6679
6680        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6681        if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6682                         (FOLL_PIN | FOLL_GET)))
6683                return NULL;
6684
6685retry:
6686        ptl = pmd_lockptr(mm, pmd);
6687        spin_lock(ptl);
6688        /*
6689         * make sure that the address range covered by this pmd is not
6690         * unmapped from other threads.
6691         */
6692        if (!pmd_huge(*pmd))
6693                goto out;
6694        pte = huge_ptep_get((pte_t *)pmd);
6695        if (pte_present(pte)) {
6696                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6697                /*
6698                 * try_grab_page() should always succeed here, because: a) we
6699                 * hold the pmd (ptl) lock, and b) we've just checked that the
6700                 * huge pmd (head) page is present in the page tables. The ptl
6701                 * prevents the head page and tail pages from being rearranged
6702                 * in any way. So this page must be available at this point,
6703                 * unless the page refcount overflowed:
6704                 */
6705                if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6706                        page = NULL;
6707                        goto out;
6708                }
6709        } else {
6710                if (is_hugetlb_entry_migration(pte)) {
6711                        spin_unlock(ptl);
6712                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6713                        goto retry;
6714                }
6715                /*
6716                 * hwpoisoned entry is treated as no_page_table in
6717                 * follow_page_mask().
6718                 */
6719        }
6720out:
6721        spin_unlock(ptl);
6722        return page;
6723}
6724
6725struct page * __weak
6726follow_huge_pud(struct mm_struct *mm, unsigned long address,
6727                pud_t *pud, int flags)
6728{
6729        if (flags & (FOLL_GET | FOLL_PIN))
6730                return NULL;
6731
6732        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6733}
6734
6735struct page * __weak
6736follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6737{
6738        if (flags & (FOLL_GET | FOLL_PIN))
6739                return NULL;
6740
6741        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6742}
6743
6744bool isolate_huge_page(struct page *page, struct list_head *list)
6745{
6746        bool ret = true;
6747
6748        spin_lock_irq(&hugetlb_lock);
6749        if (!PageHeadHuge(page) ||
6750            !HPageMigratable(page) ||
6751            !get_page_unless_zero(page)) {
6752                ret = false;
6753                goto unlock;
6754        }
6755        ClearHPageMigratable(page);
6756        list_move_tail(&page->lru, list);
6757unlock:
6758        spin_unlock_irq(&hugetlb_lock);
6759        return ret;
6760}
6761
6762int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6763{
6764        int ret = 0;
6765
6766        *hugetlb = false;
6767        spin_lock_irq(&hugetlb_lock);
6768        if (PageHeadHuge(page)) {
6769                *hugetlb = true;
6770                if (HPageFreed(page) || HPageMigratable(page))
6771                        ret = get_page_unless_zero(page);
6772                else
6773                        ret = -EBUSY;
6774        }
6775        spin_unlock_irq(&hugetlb_lock);
6776        return ret;
6777}
6778
6779void putback_active_hugepage(struct page *page)
6780{
6781        spin_lock_irq(&hugetlb_lock);
6782        SetHPageMigratable(page);
6783        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6784        spin_unlock_irq(&hugetlb_lock);
6785        put_page(page);
6786}
6787
6788void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6789{
6790        struct hstate *h = page_hstate(oldpage);
6791
6792        hugetlb_cgroup_migrate(oldpage, newpage);
6793        set_page_owner_migrate_reason(newpage, reason);
6794
6795        /*
6796         * transfer temporary state of the new huge page. This is
6797         * reverse to other transitions because the newpage is going to
6798         * be final while the old one will be freed so it takes over
6799         * the temporary status.
6800         *
6801         * Also note that we have to transfer the per-node surplus state
6802         * here as well otherwise the global surplus count will not match
6803         * the per-node's.
6804         */
6805        if (HPageTemporary(newpage)) {
6806                int old_nid = page_to_nid(oldpage);
6807                int new_nid = page_to_nid(newpage);
6808
6809                SetHPageTemporary(oldpage);
6810                ClearHPageTemporary(newpage);
6811
6812                /*
6813                 * There is no need to transfer the per-node surplus state
6814                 * when we do not cross the node.
6815                 */
6816                if (new_nid == old_nid)
6817                        return;
6818                spin_lock_irq(&hugetlb_lock);
6819                if (h->surplus_huge_pages_node[old_nid]) {
6820                        h->surplus_huge_pages_node[old_nid]--;
6821                        h->surplus_huge_pages_node[new_nid]++;
6822                }
6823                spin_unlock_irq(&hugetlb_lock);
6824        }
6825}
6826
6827/*
6828 * This function will unconditionally remove all the shared pmd pgtable entries
6829 * within the specific vma for a hugetlbfs memory range.
6830 */
6831void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6832{
6833        struct hstate *h = hstate_vma(vma);
6834        unsigned long sz = huge_page_size(h);
6835        struct mm_struct *mm = vma->vm_mm;
6836        struct mmu_notifier_range range;
6837        unsigned long address, start, end;
6838        spinlock_t *ptl;
6839        pte_t *ptep;
6840
6841        if (!(vma->vm_flags & VM_MAYSHARE))
6842                return;
6843
6844        start = ALIGN(vma->vm_start, PUD_SIZE);
6845        end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6846
6847        if (start >= end)
6848                return;
6849
6850        /*
6851         * No need to call adjust_range_if_pmd_sharing_possible(), because
6852         * we have already done the PUD_SIZE alignment.
6853         */
6854        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6855                                start, end);
6856        mmu_notifier_invalidate_range_start(&range);
6857        i_mmap_lock_write(vma->vm_file->f_mapping);
6858        for (address = start; address < end; address += PUD_SIZE) {
6859                unsigned long tmp = address;
6860
6861                ptep = huge_pte_offset(mm, address, sz);
6862                if (!ptep)
6863                        continue;
6864                ptl = huge_pte_lock(h, mm, ptep);
6865                /* We don't want 'address' to be changed */
6866                huge_pmd_unshare(mm, vma, &tmp, ptep);
6867                spin_unlock(ptl);
6868        }
6869        flush_hugetlb_tlb_range(vma, start, end);
6870        i_mmap_unlock_write(vma->vm_file->f_mapping);
6871        /*
6872         * No need to call mmu_notifier_invalidate_range(), see
6873         * Documentation/vm/mmu_notifier.rst.
6874         */
6875        mmu_notifier_invalidate_range_end(&range);
6876}
6877
6878#ifdef CONFIG_CMA
6879static bool cma_reserve_called __initdata;
6880
6881static int __init cmdline_parse_hugetlb_cma(char *p)
6882{
6883        int nid, count = 0;
6884        unsigned long tmp;
6885        char *s = p;
6886
6887        while (*s) {
6888                if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6889                        break;
6890
6891                if (s[count] == ':') {
6892                        nid = tmp;
6893                        if (nid < 0 || nid >= MAX_NUMNODES)
6894                                break;
6895
6896                        s += count + 1;
6897                        tmp = memparse(s, &s);
6898                        hugetlb_cma_size_in_node[nid] = tmp;
6899                        hugetlb_cma_size += tmp;
6900
6901                        /*
6902                         * Skip the separator if have one, otherwise
6903                         * break the parsing.
6904                         */
6905                        if (*s == ',')
6906                                s++;
6907                        else
6908                                break;
6909                } else {
6910                        hugetlb_cma_size = memparse(p, &p);
6911                        break;
6912                }
6913        }
6914
6915        return 0;
6916}
6917
6918early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6919
6920void __init hugetlb_cma_reserve(int order)
6921{
6922        unsigned long size, reserved, per_node;
6923        bool node_specific_cma_alloc = false;
6924        int nid;
6925
6926        cma_reserve_called = true;
6927
6928        if (!hugetlb_cma_size)
6929                return;
6930
6931        for (nid = 0; nid < MAX_NUMNODES; nid++) {
6932                if (hugetlb_cma_size_in_node[nid] == 0)
6933                        continue;
6934
6935                if (!node_state(nid, N_ONLINE)) {
6936                        pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6937                        hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6938                        hugetlb_cma_size_in_node[nid] = 0;
6939                        continue;
6940                }
6941
6942                if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6943                        pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6944                                nid, (PAGE_SIZE << order) / SZ_1M);
6945                        hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6946                        hugetlb_cma_size_in_node[nid] = 0;
6947                } else {
6948                        node_specific_cma_alloc = true;
6949                }
6950        }
6951
6952        /* Validate the CMA size again in case some invalid nodes specified. */
6953        if (!hugetlb_cma_size)
6954                return;
6955
6956        if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6957                pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6958                        (PAGE_SIZE << order) / SZ_1M);
6959                hugetlb_cma_size = 0;
6960                return;
6961        }
6962
6963        if (!node_specific_cma_alloc) {
6964                /*
6965                 * If 3 GB area is requested on a machine with 4 numa nodes,
6966                 * let's allocate 1 GB on first three nodes and ignore the last one.
6967                 */
6968                per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6969                pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6970                        hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6971        }
6972
6973        reserved = 0;
6974        for_each_node_state(nid, N_ONLINE) {
6975                int res;
6976                char name[CMA_MAX_NAME];
6977
6978                if (node_specific_cma_alloc) {
6979                        if (hugetlb_cma_size_in_node[nid] == 0)
6980                                continue;
6981
6982                        size = hugetlb_cma_size_in_node[nid];
6983                } else {
6984                        size = min(per_node, hugetlb_cma_size - reserved);
6985                }
6986
6987                size = round_up(size, PAGE_SIZE << order);
6988
6989                snprintf(name, sizeof(name), "hugetlb%d", nid);
6990                /*
6991                 * Note that 'order per bit' is based on smallest size that
6992                 * may be returned to CMA allocator in the case of
6993                 * huge page demotion.
6994                 */
6995                res = cma_declare_contiguous_nid(0, size, 0,
6996                                                PAGE_SIZE << HUGETLB_PAGE_ORDER,
6997                                                 0, false, name,
6998                                                 &hugetlb_cma[nid], nid);
6999                if (res) {
7000                        pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7001                                res, nid);
7002                        continue;
7003                }
7004
7005                reserved += size;
7006                pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7007                        size / SZ_1M, nid);
7008
7009                if (reserved >= hugetlb_cma_size)
7010                        break;
7011        }
7012
7013        if (!reserved)
7014                /*
7015                 * hugetlb_cma_size is used to determine if allocations from
7016                 * cma are possible.  Set to zero if no cma regions are set up.
7017                 */
7018                hugetlb_cma_size = 0;
7019}
7020
7021void __init hugetlb_cma_check(void)
7022{
7023        if (!hugetlb_cma_size || cma_reserve_called)
7024                return;
7025
7026        pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7027}
7028
7029#endif /* CONFIG_CMA */
7030