linux/mm/vmalloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1993  Linus Torvalds
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   6 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   7 *  Numa awareness, Christoph Lameter, SGI, June 2005
   8 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/set_memory.h>
  22#include <linux/debugobjects.h>
  23#include <linux/kallsyms.h>
  24#include <linux/list.h>
  25#include <linux/notifier.h>
  26#include <linux/rbtree.h>
  27#include <linux/xarray.h>
  28#include <linux/io.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/memcontrol.h>
  35#include <linux/llist.h>
  36#include <linux/bitops.h>
  37#include <linux/rbtree_augmented.h>
  38#include <linux/overflow.h>
  39#include <linux/pgtable.h>
  40#include <linux/uaccess.h>
  41#include <linux/hugetlb.h>
  42#include <linux/sched/mm.h>
  43#include <asm/tlbflush.h>
  44#include <asm/shmparam.h>
  45
  46#include "internal.h"
  47#include "pgalloc-track.h"
  48
  49#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
  50static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
  51
  52static int __init set_nohugeiomap(char *str)
  53{
  54        ioremap_max_page_shift = PAGE_SHIFT;
  55        return 0;
  56}
  57early_param("nohugeiomap", set_nohugeiomap);
  58#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
  59static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
  60#endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
  61
  62#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
  63static bool __ro_after_init vmap_allow_huge = true;
  64
  65static int __init set_nohugevmalloc(char *str)
  66{
  67        vmap_allow_huge = false;
  68        return 0;
  69}
  70early_param("nohugevmalloc", set_nohugevmalloc);
  71#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  72static const bool vmap_allow_huge = false;
  73#endif  /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  74
  75bool is_vmalloc_addr(const void *x)
  76{
  77        unsigned long addr = (unsigned long)x;
  78
  79        return addr >= VMALLOC_START && addr < VMALLOC_END;
  80}
  81EXPORT_SYMBOL(is_vmalloc_addr);
  82
  83struct vfree_deferred {
  84        struct llist_head list;
  85        struct work_struct wq;
  86};
  87static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  88
  89static void __vunmap(const void *, int);
  90
  91static void free_work(struct work_struct *w)
  92{
  93        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  94        struct llist_node *t, *llnode;
  95
  96        llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  97                __vunmap((void *)llnode, 1);
  98}
  99
 100/*** Page table manipulation functions ***/
 101static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 102                        phys_addr_t phys_addr, pgprot_t prot,
 103                        unsigned int max_page_shift, pgtbl_mod_mask *mask)
 104{
 105        pte_t *pte;
 106        u64 pfn;
 107        unsigned long size = PAGE_SIZE;
 108
 109        pfn = phys_addr >> PAGE_SHIFT;
 110        pte = pte_alloc_kernel_track(pmd, addr, mask);
 111        if (!pte)
 112                return -ENOMEM;
 113        do {
 114                BUG_ON(!pte_none(*pte));
 115
 116#ifdef CONFIG_HUGETLB_PAGE
 117                size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
 118                if (size != PAGE_SIZE) {
 119                        pte_t entry = pfn_pte(pfn, prot);
 120
 121                        entry = pte_mkhuge(entry);
 122                        entry = arch_make_huge_pte(entry, ilog2(size), 0);
 123                        set_huge_pte_at(&init_mm, addr, pte, entry);
 124                        pfn += PFN_DOWN(size);
 125                        continue;
 126                }
 127#endif
 128                set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
 129                pfn++;
 130        } while (pte += PFN_DOWN(size), addr += size, addr != end);
 131        *mask |= PGTBL_PTE_MODIFIED;
 132        return 0;
 133}
 134
 135static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
 136                        phys_addr_t phys_addr, pgprot_t prot,
 137                        unsigned int max_page_shift)
 138{
 139        if (max_page_shift < PMD_SHIFT)
 140                return 0;
 141
 142        if (!arch_vmap_pmd_supported(prot))
 143                return 0;
 144
 145        if ((end - addr) != PMD_SIZE)
 146                return 0;
 147
 148        if (!IS_ALIGNED(addr, PMD_SIZE))
 149                return 0;
 150
 151        if (!IS_ALIGNED(phys_addr, PMD_SIZE))
 152                return 0;
 153
 154        if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
 155                return 0;
 156
 157        return pmd_set_huge(pmd, phys_addr, prot);
 158}
 159
 160static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 161                        phys_addr_t phys_addr, pgprot_t prot,
 162                        unsigned int max_page_shift, pgtbl_mod_mask *mask)
 163{
 164        pmd_t *pmd;
 165        unsigned long next;
 166
 167        pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 168        if (!pmd)
 169                return -ENOMEM;
 170        do {
 171                next = pmd_addr_end(addr, end);
 172
 173                if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
 174                                        max_page_shift)) {
 175                        *mask |= PGTBL_PMD_MODIFIED;
 176                        continue;
 177                }
 178
 179                if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
 180                        return -ENOMEM;
 181        } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
 182        return 0;
 183}
 184
 185static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
 186                        phys_addr_t phys_addr, pgprot_t prot,
 187                        unsigned int max_page_shift)
 188{
 189        if (max_page_shift < PUD_SHIFT)
 190                return 0;
 191
 192        if (!arch_vmap_pud_supported(prot))
 193                return 0;
 194
 195        if ((end - addr) != PUD_SIZE)
 196                return 0;
 197
 198        if (!IS_ALIGNED(addr, PUD_SIZE))
 199                return 0;
 200
 201        if (!IS_ALIGNED(phys_addr, PUD_SIZE))
 202                return 0;
 203
 204        if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
 205                return 0;
 206
 207        return pud_set_huge(pud, phys_addr, prot);
 208}
 209
 210static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 211                        phys_addr_t phys_addr, pgprot_t prot,
 212                        unsigned int max_page_shift, pgtbl_mod_mask *mask)
 213{
 214        pud_t *pud;
 215        unsigned long next;
 216
 217        pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 218        if (!pud)
 219                return -ENOMEM;
 220        do {
 221                next = pud_addr_end(addr, end);
 222
 223                if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
 224                                        max_page_shift)) {
 225                        *mask |= PGTBL_PUD_MODIFIED;
 226                        continue;
 227                }
 228
 229                if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
 230                                        max_page_shift, mask))
 231                        return -ENOMEM;
 232        } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
 233        return 0;
 234}
 235
 236static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
 237                        phys_addr_t phys_addr, pgprot_t prot,
 238                        unsigned int max_page_shift)
 239{
 240        if (max_page_shift < P4D_SHIFT)
 241                return 0;
 242
 243        if (!arch_vmap_p4d_supported(prot))
 244                return 0;
 245
 246        if ((end - addr) != P4D_SIZE)
 247                return 0;
 248
 249        if (!IS_ALIGNED(addr, P4D_SIZE))
 250                return 0;
 251
 252        if (!IS_ALIGNED(phys_addr, P4D_SIZE))
 253                return 0;
 254
 255        if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
 256                return 0;
 257
 258        return p4d_set_huge(p4d, phys_addr, prot);
 259}
 260
 261static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 262                        phys_addr_t phys_addr, pgprot_t prot,
 263                        unsigned int max_page_shift, pgtbl_mod_mask *mask)
 264{
 265        p4d_t *p4d;
 266        unsigned long next;
 267
 268        p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 269        if (!p4d)
 270                return -ENOMEM;
 271        do {
 272                next = p4d_addr_end(addr, end);
 273
 274                if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
 275                                        max_page_shift)) {
 276                        *mask |= PGTBL_P4D_MODIFIED;
 277                        continue;
 278                }
 279
 280                if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
 281                                        max_page_shift, mask))
 282                        return -ENOMEM;
 283        } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
 284        return 0;
 285}
 286
 287static int vmap_range_noflush(unsigned long addr, unsigned long end,
 288                        phys_addr_t phys_addr, pgprot_t prot,
 289                        unsigned int max_page_shift)
 290{
 291        pgd_t *pgd;
 292        unsigned long start;
 293        unsigned long next;
 294        int err;
 295        pgtbl_mod_mask mask = 0;
 296
 297        might_sleep();
 298        BUG_ON(addr >= end);
 299
 300        start = addr;
 301        pgd = pgd_offset_k(addr);
 302        do {
 303                next = pgd_addr_end(addr, end);
 304                err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
 305                                        max_page_shift, &mask);
 306                if (err)
 307                        break;
 308        } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
 309
 310        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 311                arch_sync_kernel_mappings(start, end);
 312
 313        return err;
 314}
 315
 316int ioremap_page_range(unsigned long addr, unsigned long end,
 317                phys_addr_t phys_addr, pgprot_t prot)
 318{
 319        int err;
 320
 321        err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
 322                                 ioremap_max_page_shift);
 323        flush_cache_vmap(addr, end);
 324        return err;
 325}
 326
 327static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 328                             pgtbl_mod_mask *mask)
 329{
 330        pte_t *pte;
 331
 332        pte = pte_offset_kernel(pmd, addr);
 333        do {
 334                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 335                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 336        } while (pte++, addr += PAGE_SIZE, addr != end);
 337        *mask |= PGTBL_PTE_MODIFIED;
 338}
 339
 340static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 341                             pgtbl_mod_mask *mask)
 342{
 343        pmd_t *pmd;
 344        unsigned long next;
 345        int cleared;
 346
 347        pmd = pmd_offset(pud, addr);
 348        do {
 349                next = pmd_addr_end(addr, end);
 350
 351                cleared = pmd_clear_huge(pmd);
 352                if (cleared || pmd_bad(*pmd))
 353                        *mask |= PGTBL_PMD_MODIFIED;
 354
 355                if (cleared)
 356                        continue;
 357                if (pmd_none_or_clear_bad(pmd))
 358                        continue;
 359                vunmap_pte_range(pmd, addr, next, mask);
 360
 361                cond_resched();
 362        } while (pmd++, addr = next, addr != end);
 363}
 364
 365static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 366                             pgtbl_mod_mask *mask)
 367{
 368        pud_t *pud;
 369        unsigned long next;
 370        int cleared;
 371
 372        pud = pud_offset(p4d, addr);
 373        do {
 374                next = pud_addr_end(addr, end);
 375
 376                cleared = pud_clear_huge(pud);
 377                if (cleared || pud_bad(*pud))
 378                        *mask |= PGTBL_PUD_MODIFIED;
 379
 380                if (cleared)
 381                        continue;
 382                if (pud_none_or_clear_bad(pud))
 383                        continue;
 384                vunmap_pmd_range(pud, addr, next, mask);
 385        } while (pud++, addr = next, addr != end);
 386}
 387
 388static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 389                             pgtbl_mod_mask *mask)
 390{
 391        p4d_t *p4d;
 392        unsigned long next;
 393        int cleared;
 394
 395        p4d = p4d_offset(pgd, addr);
 396        do {
 397                next = p4d_addr_end(addr, end);
 398
 399                cleared = p4d_clear_huge(p4d);
 400                if (cleared || p4d_bad(*p4d))
 401                        *mask |= PGTBL_P4D_MODIFIED;
 402
 403                if (cleared)
 404                        continue;
 405                if (p4d_none_or_clear_bad(p4d))
 406                        continue;
 407                vunmap_pud_range(p4d, addr, next, mask);
 408        } while (p4d++, addr = next, addr != end);
 409}
 410
 411/*
 412 * vunmap_range_noflush is similar to vunmap_range, but does not
 413 * flush caches or TLBs.
 414 *
 415 * The caller is responsible for calling flush_cache_vmap() before calling
 416 * this function, and flush_tlb_kernel_range after it has returned
 417 * successfully (and before the addresses are expected to cause a page fault
 418 * or be re-mapped for something else, if TLB flushes are being delayed or
 419 * coalesced).
 420 *
 421 * This is an internal function only. Do not use outside mm/.
 422 */
 423void vunmap_range_noflush(unsigned long start, unsigned long end)
 424{
 425        unsigned long next;
 426        pgd_t *pgd;
 427        unsigned long addr = start;
 428        pgtbl_mod_mask mask = 0;
 429
 430        BUG_ON(addr >= end);
 431        pgd = pgd_offset_k(addr);
 432        do {
 433                next = pgd_addr_end(addr, end);
 434                if (pgd_bad(*pgd))
 435                        mask |= PGTBL_PGD_MODIFIED;
 436                if (pgd_none_or_clear_bad(pgd))
 437                        continue;
 438                vunmap_p4d_range(pgd, addr, next, &mask);
 439        } while (pgd++, addr = next, addr != end);
 440
 441        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 442                arch_sync_kernel_mappings(start, end);
 443}
 444
 445/**
 446 * vunmap_range - unmap kernel virtual addresses
 447 * @addr: start of the VM area to unmap
 448 * @end: end of the VM area to unmap (non-inclusive)
 449 *
 450 * Clears any present PTEs in the virtual address range, flushes TLBs and
 451 * caches. Any subsequent access to the address before it has been re-mapped
 452 * is a kernel bug.
 453 */
 454void vunmap_range(unsigned long addr, unsigned long end)
 455{
 456        flush_cache_vunmap(addr, end);
 457        vunmap_range_noflush(addr, end);
 458        flush_tlb_kernel_range(addr, end);
 459}
 460
 461static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
 462                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 463                pgtbl_mod_mask *mask)
 464{
 465        pte_t *pte;
 466
 467        /*
 468         * nr is a running index into the array which helps higher level
 469         * callers keep track of where we're up to.
 470         */
 471
 472        pte = pte_alloc_kernel_track(pmd, addr, mask);
 473        if (!pte)
 474                return -ENOMEM;
 475        do {
 476                struct page *page = pages[*nr];
 477
 478                if (WARN_ON(!pte_none(*pte)))
 479                        return -EBUSY;
 480                if (WARN_ON(!page))
 481                        return -ENOMEM;
 482                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 483                (*nr)++;
 484        } while (pte++, addr += PAGE_SIZE, addr != end);
 485        *mask |= PGTBL_PTE_MODIFIED;
 486        return 0;
 487}
 488
 489static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
 490                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 491                pgtbl_mod_mask *mask)
 492{
 493        pmd_t *pmd;
 494        unsigned long next;
 495
 496        pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 497        if (!pmd)
 498                return -ENOMEM;
 499        do {
 500                next = pmd_addr_end(addr, end);
 501                if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
 502                        return -ENOMEM;
 503        } while (pmd++, addr = next, addr != end);
 504        return 0;
 505}
 506
 507static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
 508                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 509                pgtbl_mod_mask *mask)
 510{
 511        pud_t *pud;
 512        unsigned long next;
 513
 514        pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 515        if (!pud)
 516                return -ENOMEM;
 517        do {
 518                next = pud_addr_end(addr, end);
 519                if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
 520                        return -ENOMEM;
 521        } while (pud++, addr = next, addr != end);
 522        return 0;
 523}
 524
 525static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
 526                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 527                pgtbl_mod_mask *mask)
 528{
 529        p4d_t *p4d;
 530        unsigned long next;
 531
 532        p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 533        if (!p4d)
 534                return -ENOMEM;
 535        do {
 536                next = p4d_addr_end(addr, end);
 537                if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
 538                        return -ENOMEM;
 539        } while (p4d++, addr = next, addr != end);
 540        return 0;
 541}
 542
 543static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
 544                pgprot_t prot, struct page **pages)
 545{
 546        unsigned long start = addr;
 547        pgd_t *pgd;
 548        unsigned long next;
 549        int err = 0;
 550        int nr = 0;
 551        pgtbl_mod_mask mask = 0;
 552
 553        BUG_ON(addr >= end);
 554        pgd = pgd_offset_k(addr);
 555        do {
 556                next = pgd_addr_end(addr, end);
 557                if (pgd_bad(*pgd))
 558                        mask |= PGTBL_PGD_MODIFIED;
 559                err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 560                if (err)
 561                        return err;
 562        } while (pgd++, addr = next, addr != end);
 563
 564        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 565                arch_sync_kernel_mappings(start, end);
 566
 567        return 0;
 568}
 569
 570/*
 571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
 572 * flush caches.
 573 *
 574 * The caller is responsible for calling flush_cache_vmap() after this
 575 * function returns successfully and before the addresses are accessed.
 576 *
 577 * This is an internal function only. Do not use outside mm/.
 578 */
 579int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 580                pgprot_t prot, struct page **pages, unsigned int page_shift)
 581{
 582        unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
 583
 584        WARN_ON(page_shift < PAGE_SHIFT);
 585
 586        if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
 587                        page_shift == PAGE_SHIFT)
 588                return vmap_small_pages_range_noflush(addr, end, prot, pages);
 589
 590        for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
 591                int err;
 592
 593                err = vmap_range_noflush(addr, addr + (1UL << page_shift),
 594                                        __pa(page_address(pages[i])), prot,
 595                                        page_shift);
 596                if (err)
 597                        return err;
 598
 599                addr += 1UL << page_shift;
 600        }
 601
 602        return 0;
 603}
 604
 605/**
 606 * vmap_pages_range - map pages to a kernel virtual address
 607 * @addr: start of the VM area to map
 608 * @end: end of the VM area to map (non-inclusive)
 609 * @prot: page protection flags to use
 610 * @pages: pages to map (always PAGE_SIZE pages)
 611 * @page_shift: maximum shift that the pages may be mapped with, @pages must
 612 * be aligned and contiguous up to at least this shift.
 613 *
 614 * RETURNS:
 615 * 0 on success, -errno on failure.
 616 */
 617static int vmap_pages_range(unsigned long addr, unsigned long end,
 618                pgprot_t prot, struct page **pages, unsigned int page_shift)
 619{
 620        int err;
 621
 622        err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 623        flush_cache_vmap(addr, end);
 624        return err;
 625}
 626
 627int is_vmalloc_or_module_addr(const void *x)
 628{
 629        /*
 630         * ARM, x86-64 and sparc64 put modules in a special place,
 631         * and fall back on vmalloc() if that fails. Others
 632         * just put it in the vmalloc space.
 633         */
 634#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 635        unsigned long addr = (unsigned long)x;
 636        if (addr >= MODULES_VADDR && addr < MODULES_END)
 637                return 1;
 638#endif
 639        return is_vmalloc_addr(x);
 640}
 641
 642/*
 643 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
 644 * return the tail page that corresponds to the base page address, which
 645 * matches small vmap mappings.
 646 */
 647struct page *vmalloc_to_page(const void *vmalloc_addr)
 648{
 649        unsigned long addr = (unsigned long) vmalloc_addr;
 650        struct page *page = NULL;
 651        pgd_t *pgd = pgd_offset_k(addr);
 652        p4d_t *p4d;
 653        pud_t *pud;
 654        pmd_t *pmd;
 655        pte_t *ptep, pte;
 656
 657        /*
 658         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 659         * architectures that do not vmalloc module space
 660         */
 661        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 662
 663        if (pgd_none(*pgd))
 664                return NULL;
 665        if (WARN_ON_ONCE(pgd_leaf(*pgd)))
 666                return NULL; /* XXX: no allowance for huge pgd */
 667        if (WARN_ON_ONCE(pgd_bad(*pgd)))
 668                return NULL;
 669
 670        p4d = p4d_offset(pgd, addr);
 671        if (p4d_none(*p4d))
 672                return NULL;
 673        if (p4d_leaf(*p4d))
 674                return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
 675        if (WARN_ON_ONCE(p4d_bad(*p4d)))
 676                return NULL;
 677
 678        pud = pud_offset(p4d, addr);
 679        if (pud_none(*pud))
 680                return NULL;
 681        if (pud_leaf(*pud))
 682                return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 683        if (WARN_ON_ONCE(pud_bad(*pud)))
 684                return NULL;
 685
 686        pmd = pmd_offset(pud, addr);
 687        if (pmd_none(*pmd))
 688                return NULL;
 689        if (pmd_leaf(*pmd))
 690                return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 691        if (WARN_ON_ONCE(pmd_bad(*pmd)))
 692                return NULL;
 693
 694        ptep = pte_offset_map(pmd, addr);
 695        pte = *ptep;
 696        if (pte_present(pte))
 697                page = pte_page(pte);
 698        pte_unmap(ptep);
 699
 700        return page;
 701}
 702EXPORT_SYMBOL(vmalloc_to_page);
 703
 704/*
 705 * Map a vmalloc()-space virtual address to the physical page frame number.
 706 */
 707unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 708{
 709        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 710}
 711EXPORT_SYMBOL(vmalloc_to_pfn);
 712
 713
 714/*** Global kva allocator ***/
 715
 716#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 717#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 718
 719
 720static DEFINE_SPINLOCK(vmap_area_lock);
 721static DEFINE_SPINLOCK(free_vmap_area_lock);
 722/* Export for kexec only */
 723LIST_HEAD(vmap_area_list);
 724static struct rb_root vmap_area_root = RB_ROOT;
 725static bool vmap_initialized __read_mostly;
 726
 727static struct rb_root purge_vmap_area_root = RB_ROOT;
 728static LIST_HEAD(purge_vmap_area_list);
 729static DEFINE_SPINLOCK(purge_vmap_area_lock);
 730
 731/*
 732 * This kmem_cache is used for vmap_area objects. Instead of
 733 * allocating from slab we reuse an object from this cache to
 734 * make things faster. Especially in "no edge" splitting of
 735 * free block.
 736 */
 737static struct kmem_cache *vmap_area_cachep;
 738
 739/*
 740 * This linked list is used in pair with free_vmap_area_root.
 741 * It gives O(1) access to prev/next to perform fast coalescing.
 742 */
 743static LIST_HEAD(free_vmap_area_list);
 744
 745/*
 746 * This augment red-black tree represents the free vmap space.
 747 * All vmap_area objects in this tree are sorted by va->va_start
 748 * address. It is used for allocation and merging when a vmap
 749 * object is released.
 750 *
 751 * Each vmap_area node contains a maximum available free block
 752 * of its sub-tree, right or left. Therefore it is possible to
 753 * find a lowest match of free area.
 754 */
 755static struct rb_root free_vmap_area_root = RB_ROOT;
 756
 757/*
 758 * Preload a CPU with one object for "no edge" split case. The
 759 * aim is to get rid of allocations from the atomic context, thus
 760 * to use more permissive allocation masks.
 761 */
 762static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 763
 764static __always_inline unsigned long
 765va_size(struct vmap_area *va)
 766{
 767        return (va->va_end - va->va_start);
 768}
 769
 770static __always_inline unsigned long
 771get_subtree_max_size(struct rb_node *node)
 772{
 773        struct vmap_area *va;
 774
 775        va = rb_entry_safe(node, struct vmap_area, rb_node);
 776        return va ? va->subtree_max_size : 0;
 777}
 778
 779/*
 780 * Gets called when remove the node and rotate.
 781 */
 782static __always_inline unsigned long
 783compute_subtree_max_size(struct vmap_area *va)
 784{
 785        return max3(va_size(va),
 786                get_subtree_max_size(va->rb_node.rb_left),
 787                get_subtree_max_size(va->rb_node.rb_right));
 788}
 789
 790RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 791        struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 792
 793static void purge_vmap_area_lazy(void);
 794static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 795static unsigned long lazy_max_pages(void);
 796
 797static atomic_long_t nr_vmalloc_pages;
 798
 799unsigned long vmalloc_nr_pages(void)
 800{
 801        return atomic_long_read(&nr_vmalloc_pages);
 802}
 803
 804static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
 805{
 806        struct vmap_area *va = NULL;
 807        struct rb_node *n = vmap_area_root.rb_node;
 808
 809        while (n) {
 810                struct vmap_area *tmp;
 811
 812                tmp = rb_entry(n, struct vmap_area, rb_node);
 813                if (tmp->va_end > addr) {
 814                        va = tmp;
 815                        if (tmp->va_start <= addr)
 816                                break;
 817
 818                        n = n->rb_left;
 819                } else
 820                        n = n->rb_right;
 821        }
 822
 823        return va;
 824}
 825
 826static struct vmap_area *__find_vmap_area(unsigned long addr)
 827{
 828        struct rb_node *n = vmap_area_root.rb_node;
 829
 830        while (n) {
 831                struct vmap_area *va;
 832
 833                va = rb_entry(n, struct vmap_area, rb_node);
 834                if (addr < va->va_start)
 835                        n = n->rb_left;
 836                else if (addr >= va->va_end)
 837                        n = n->rb_right;
 838                else
 839                        return va;
 840        }
 841
 842        return NULL;
 843}
 844
 845/*
 846 * This function returns back addresses of parent node
 847 * and its left or right link for further processing.
 848 *
 849 * Otherwise NULL is returned. In that case all further
 850 * steps regarding inserting of conflicting overlap range
 851 * have to be declined and actually considered as a bug.
 852 */
 853static __always_inline struct rb_node **
 854find_va_links(struct vmap_area *va,
 855        struct rb_root *root, struct rb_node *from,
 856        struct rb_node **parent)
 857{
 858        struct vmap_area *tmp_va;
 859        struct rb_node **link;
 860
 861        if (root) {
 862                link = &root->rb_node;
 863                if (unlikely(!*link)) {
 864                        *parent = NULL;
 865                        return link;
 866                }
 867        } else {
 868                link = &from;
 869        }
 870
 871        /*
 872         * Go to the bottom of the tree. When we hit the last point
 873         * we end up with parent rb_node and correct direction, i name
 874         * it link, where the new va->rb_node will be attached to.
 875         */
 876        do {
 877                tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 878
 879                /*
 880                 * During the traversal we also do some sanity check.
 881                 * Trigger the BUG() if there are sides(left/right)
 882                 * or full overlaps.
 883                 */
 884                if (va->va_start < tmp_va->va_end &&
 885                                va->va_end <= tmp_va->va_start)
 886                        link = &(*link)->rb_left;
 887                else if (va->va_end > tmp_va->va_start &&
 888                                va->va_start >= tmp_va->va_end)
 889                        link = &(*link)->rb_right;
 890                else {
 891                        WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 892                                va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 893
 894                        return NULL;
 895                }
 896        } while (*link);
 897
 898        *parent = &tmp_va->rb_node;
 899        return link;
 900}
 901
 902static __always_inline struct list_head *
 903get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 904{
 905        struct list_head *list;
 906
 907        if (unlikely(!parent))
 908                /*
 909                 * The red-black tree where we try to find VA neighbors
 910                 * before merging or inserting is empty, i.e. it means
 911                 * there is no free vmap space. Normally it does not
 912                 * happen but we handle this case anyway.
 913                 */
 914                return NULL;
 915
 916        list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 917        return (&parent->rb_right == link ? list->next : list);
 918}
 919
 920static __always_inline void
 921link_va(struct vmap_area *va, struct rb_root *root,
 922        struct rb_node *parent, struct rb_node **link, struct list_head *head)
 923{
 924        /*
 925         * VA is still not in the list, but we can
 926         * identify its future previous list_head node.
 927         */
 928        if (likely(parent)) {
 929                head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 930                if (&parent->rb_right != link)
 931                        head = head->prev;
 932        }
 933
 934        /* Insert to the rb-tree */
 935        rb_link_node(&va->rb_node, parent, link);
 936        if (root == &free_vmap_area_root) {
 937                /*
 938                 * Some explanation here. Just perform simple insertion
 939                 * to the tree. We do not set va->subtree_max_size to
 940                 * its current size before calling rb_insert_augmented().
 941                 * It is because of we populate the tree from the bottom
 942                 * to parent levels when the node _is_ in the tree.
 943                 *
 944                 * Therefore we set subtree_max_size to zero after insertion,
 945                 * to let __augment_tree_propagate_from() puts everything to
 946                 * the correct order later on.
 947                 */
 948                rb_insert_augmented(&va->rb_node,
 949                        root, &free_vmap_area_rb_augment_cb);
 950                va->subtree_max_size = 0;
 951        } else {
 952                rb_insert_color(&va->rb_node, root);
 953        }
 954
 955        /* Address-sort this list */
 956        list_add(&va->list, head);
 957}
 958
 959static __always_inline void
 960unlink_va(struct vmap_area *va, struct rb_root *root)
 961{
 962        if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 963                return;
 964
 965        if (root == &free_vmap_area_root)
 966                rb_erase_augmented(&va->rb_node,
 967                        root, &free_vmap_area_rb_augment_cb);
 968        else
 969                rb_erase(&va->rb_node, root);
 970
 971        list_del(&va->list);
 972        RB_CLEAR_NODE(&va->rb_node);
 973}
 974
 975#if DEBUG_AUGMENT_PROPAGATE_CHECK
 976static void
 977augment_tree_propagate_check(void)
 978{
 979        struct vmap_area *va;
 980        unsigned long computed_size;
 981
 982        list_for_each_entry(va, &free_vmap_area_list, list) {
 983                computed_size = compute_subtree_max_size(va);
 984                if (computed_size != va->subtree_max_size)
 985                        pr_emerg("tree is corrupted: %lu, %lu\n",
 986                                va_size(va), va->subtree_max_size);
 987        }
 988}
 989#endif
 990
 991/*
 992 * This function populates subtree_max_size from bottom to upper
 993 * levels starting from VA point. The propagation must be done
 994 * when VA size is modified by changing its va_start/va_end. Or
 995 * in case of newly inserting of VA to the tree.
 996 *
 997 * It means that __augment_tree_propagate_from() must be called:
 998 * - After VA has been inserted to the tree(free path);
 999 * - After VA has been shrunk(allocation path);
1000 * - After VA has been increased(merging path).
1001 *
1002 * Please note that, it does not mean that upper parent nodes
1003 * and their subtree_max_size are recalculated all the time up
1004 * to the root node.
1005 *
1006 *       4--8
1007 *        /\
1008 *       /  \
1009 *      /    \
1010 *    2--2  8--8
1011 *
1012 * For example if we modify the node 4, shrinking it to 2, then
1013 * no any modification is required. If we shrink the node 2 to 1
1014 * its subtree_max_size is updated only, and set to 1. If we shrink
1015 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1016 * node becomes 4--6.
1017 */
1018static __always_inline void
1019augment_tree_propagate_from(struct vmap_area *va)
1020{
1021        /*
1022         * Populate the tree from bottom towards the root until
1023         * the calculated maximum available size of checked node
1024         * is equal to its current one.
1025         */
1026        free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1027
1028#if DEBUG_AUGMENT_PROPAGATE_CHECK
1029        augment_tree_propagate_check();
1030#endif
1031}
1032
1033static void
1034insert_vmap_area(struct vmap_area *va,
1035        struct rb_root *root, struct list_head *head)
1036{
1037        struct rb_node **link;
1038        struct rb_node *parent;
1039
1040        link = find_va_links(va, root, NULL, &parent);
1041        if (link)
1042                link_va(va, root, parent, link, head);
1043}
1044
1045static void
1046insert_vmap_area_augment(struct vmap_area *va,
1047        struct rb_node *from, struct rb_root *root,
1048        struct list_head *head)
1049{
1050        struct rb_node **link;
1051        struct rb_node *parent;
1052
1053        if (from)
1054                link = find_va_links(va, NULL, from, &parent);
1055        else
1056                link = find_va_links(va, root, NULL, &parent);
1057
1058        if (link) {
1059                link_va(va, root, parent, link, head);
1060                augment_tree_propagate_from(va);
1061        }
1062}
1063
1064/*
1065 * Merge de-allocated chunk of VA memory with previous
1066 * and next free blocks. If coalesce is not done a new
1067 * free area is inserted. If VA has been merged, it is
1068 * freed.
1069 *
1070 * Please note, it can return NULL in case of overlap
1071 * ranges, followed by WARN() report. Despite it is a
1072 * buggy behaviour, a system can be alive and keep
1073 * ongoing.
1074 */
1075static __always_inline struct vmap_area *
1076merge_or_add_vmap_area(struct vmap_area *va,
1077        struct rb_root *root, struct list_head *head)
1078{
1079        struct vmap_area *sibling;
1080        struct list_head *next;
1081        struct rb_node **link;
1082        struct rb_node *parent;
1083        bool merged = false;
1084
1085        /*
1086         * Find a place in the tree where VA potentially will be
1087         * inserted, unless it is merged with its sibling/siblings.
1088         */
1089        link = find_va_links(va, root, NULL, &parent);
1090        if (!link)
1091                return NULL;
1092
1093        /*
1094         * Get next node of VA to check if merging can be done.
1095         */
1096        next = get_va_next_sibling(parent, link);
1097        if (unlikely(next == NULL))
1098                goto insert;
1099
1100        /*
1101         * start            end
1102         * |                |
1103         * |<------VA------>|<-----Next----->|
1104         *                  |                |
1105         *                  start            end
1106         */
1107        if (next != head) {
1108                sibling = list_entry(next, struct vmap_area, list);
1109                if (sibling->va_start == va->va_end) {
1110                        sibling->va_start = va->va_start;
1111
1112                        /* Free vmap_area object. */
1113                        kmem_cache_free(vmap_area_cachep, va);
1114
1115                        /* Point to the new merged area. */
1116                        va = sibling;
1117                        merged = true;
1118                }
1119        }
1120
1121        /*
1122         * start            end
1123         * |                |
1124         * |<-----Prev----->|<------VA------>|
1125         *                  |                |
1126         *                  start            end
1127         */
1128        if (next->prev != head) {
1129                sibling = list_entry(next->prev, struct vmap_area, list);
1130                if (sibling->va_end == va->va_start) {
1131                        /*
1132                         * If both neighbors are coalesced, it is important
1133                         * to unlink the "next" node first, followed by merging
1134                         * with "previous" one. Otherwise the tree might not be
1135                         * fully populated if a sibling's augmented value is
1136                         * "normalized" because of rotation operations.
1137                         */
1138                        if (merged)
1139                                unlink_va(va, root);
1140
1141                        sibling->va_end = va->va_end;
1142
1143                        /* Free vmap_area object. */
1144                        kmem_cache_free(vmap_area_cachep, va);
1145
1146                        /* Point to the new merged area. */
1147                        va = sibling;
1148                        merged = true;
1149                }
1150        }
1151
1152insert:
1153        if (!merged)
1154                link_va(va, root, parent, link, head);
1155
1156        return va;
1157}
1158
1159static __always_inline struct vmap_area *
1160merge_or_add_vmap_area_augment(struct vmap_area *va,
1161        struct rb_root *root, struct list_head *head)
1162{
1163        va = merge_or_add_vmap_area(va, root, head);
1164        if (va)
1165                augment_tree_propagate_from(va);
1166
1167        return va;
1168}
1169
1170static __always_inline bool
1171is_within_this_va(struct vmap_area *va, unsigned long size,
1172        unsigned long align, unsigned long vstart)
1173{
1174        unsigned long nva_start_addr;
1175
1176        if (va->va_start > vstart)
1177                nva_start_addr = ALIGN(va->va_start, align);
1178        else
1179                nva_start_addr = ALIGN(vstart, align);
1180
1181        /* Can be overflowed due to big size or alignment. */
1182        if (nva_start_addr + size < nva_start_addr ||
1183                        nva_start_addr < vstart)
1184                return false;
1185
1186        return (nva_start_addr + size <= va->va_end);
1187}
1188
1189/*
1190 * Find the first free block(lowest start address) in the tree,
1191 * that will accomplish the request corresponding to passing
1192 * parameters.
1193 */
1194static __always_inline struct vmap_area *
1195find_vmap_lowest_match(unsigned long size,
1196        unsigned long align, unsigned long vstart)
1197{
1198        struct vmap_area *va;
1199        struct rb_node *node;
1200
1201        /* Start from the root. */
1202        node = free_vmap_area_root.rb_node;
1203
1204        while (node) {
1205                va = rb_entry(node, struct vmap_area, rb_node);
1206
1207                if (get_subtree_max_size(node->rb_left) >= size &&
1208                                vstart < va->va_start) {
1209                        node = node->rb_left;
1210                } else {
1211                        if (is_within_this_va(va, size, align, vstart))
1212                                return va;
1213
1214                        /*
1215                         * Does not make sense to go deeper towards the right
1216                         * sub-tree if it does not have a free block that is
1217                         * equal or bigger to the requested search size.
1218                         */
1219                        if (get_subtree_max_size(node->rb_right) >= size) {
1220                                node = node->rb_right;
1221                                continue;
1222                        }
1223
1224                        /*
1225                         * OK. We roll back and find the first right sub-tree,
1226                         * that will satisfy the search criteria. It can happen
1227                         * due to "vstart" restriction or an alignment overhead
1228                         * that is bigger then PAGE_SIZE.
1229                         */
1230                        while ((node = rb_parent(node))) {
1231                                va = rb_entry(node, struct vmap_area, rb_node);
1232                                if (is_within_this_va(va, size, align, vstart))
1233                                        return va;
1234
1235                                if (get_subtree_max_size(node->rb_right) >= size &&
1236                                                vstart <= va->va_start) {
1237                                        /*
1238                                         * Shift the vstart forward. Please note, we update it with
1239                                         * parent's start address adding "1" because we do not want
1240                                         * to enter same sub-tree after it has already been checked
1241                                         * and no suitable free block found there.
1242                                         */
1243                                        vstart = va->va_start + 1;
1244                                        node = node->rb_right;
1245                                        break;
1246                                }
1247                        }
1248                }
1249        }
1250
1251        return NULL;
1252}
1253
1254#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1255#include <linux/random.h>
1256
1257static struct vmap_area *
1258find_vmap_lowest_linear_match(unsigned long size,
1259        unsigned long align, unsigned long vstart)
1260{
1261        struct vmap_area *va;
1262
1263        list_for_each_entry(va, &free_vmap_area_list, list) {
1264                if (!is_within_this_va(va, size, align, vstart))
1265                        continue;
1266
1267                return va;
1268        }
1269
1270        return NULL;
1271}
1272
1273static void
1274find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1275{
1276        struct vmap_area *va_1, *va_2;
1277        unsigned long vstart;
1278        unsigned int rnd;
1279
1280        get_random_bytes(&rnd, sizeof(rnd));
1281        vstart = VMALLOC_START + rnd;
1282
1283        va_1 = find_vmap_lowest_match(size, align, vstart);
1284        va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1285
1286        if (va_1 != va_2)
1287                pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1288                        va_1, va_2, vstart);
1289}
1290#endif
1291
1292enum fit_type {
1293        NOTHING_FIT = 0,
1294        FL_FIT_TYPE = 1,        /* full fit */
1295        LE_FIT_TYPE = 2,        /* left edge fit */
1296        RE_FIT_TYPE = 3,        /* right edge fit */
1297        NE_FIT_TYPE = 4         /* no edge fit */
1298};
1299
1300static __always_inline enum fit_type
1301classify_va_fit_type(struct vmap_area *va,
1302        unsigned long nva_start_addr, unsigned long size)
1303{
1304        enum fit_type type;
1305
1306        /* Check if it is within VA. */
1307        if (nva_start_addr < va->va_start ||
1308                        nva_start_addr + size > va->va_end)
1309                return NOTHING_FIT;
1310
1311        /* Now classify. */
1312        if (va->va_start == nva_start_addr) {
1313                if (va->va_end == nva_start_addr + size)
1314                        type = FL_FIT_TYPE;
1315                else
1316                        type = LE_FIT_TYPE;
1317        } else if (va->va_end == nva_start_addr + size) {
1318                type = RE_FIT_TYPE;
1319        } else {
1320                type = NE_FIT_TYPE;
1321        }
1322
1323        return type;
1324}
1325
1326static __always_inline int
1327adjust_va_to_fit_type(struct vmap_area *va,
1328        unsigned long nva_start_addr, unsigned long size,
1329        enum fit_type type)
1330{
1331        struct vmap_area *lva = NULL;
1332
1333        if (type == FL_FIT_TYPE) {
1334                /*
1335                 * No need to split VA, it fully fits.
1336                 *
1337                 * |               |
1338                 * V      NVA      V
1339                 * |---------------|
1340                 */
1341                unlink_va(va, &free_vmap_area_root);
1342                kmem_cache_free(vmap_area_cachep, va);
1343        } else if (type == LE_FIT_TYPE) {
1344                /*
1345                 * Split left edge of fit VA.
1346                 *
1347                 * |       |
1348                 * V  NVA  V   R
1349                 * |-------|-------|
1350                 */
1351                va->va_start += size;
1352        } else if (type == RE_FIT_TYPE) {
1353                /*
1354                 * Split right edge of fit VA.
1355                 *
1356                 *         |       |
1357                 *     L   V  NVA  V
1358                 * |-------|-------|
1359                 */
1360                va->va_end = nva_start_addr;
1361        } else if (type == NE_FIT_TYPE) {
1362                /*
1363                 * Split no edge of fit VA.
1364                 *
1365                 *     |       |
1366                 *   L V  NVA  V R
1367                 * |---|-------|---|
1368                 */
1369                lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1370                if (unlikely(!lva)) {
1371                        /*
1372                         * For percpu allocator we do not do any pre-allocation
1373                         * and leave it as it is. The reason is it most likely
1374                         * never ends up with NE_FIT_TYPE splitting. In case of
1375                         * percpu allocations offsets and sizes are aligned to
1376                         * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1377                         * are its main fitting cases.
1378                         *
1379                         * There are a few exceptions though, as an example it is
1380                         * a first allocation (early boot up) when we have "one"
1381                         * big free space that has to be split.
1382                         *
1383                         * Also we can hit this path in case of regular "vmap"
1384                         * allocations, if "this" current CPU was not preloaded.
1385                         * See the comment in alloc_vmap_area() why. If so, then
1386                         * GFP_NOWAIT is used instead to get an extra object for
1387                         * split purpose. That is rare and most time does not
1388                         * occur.
1389                         *
1390                         * What happens if an allocation gets failed. Basically,
1391                         * an "overflow" path is triggered to purge lazily freed
1392                         * areas to free some memory, then, the "retry" path is
1393                         * triggered to repeat one more time. See more details
1394                         * in alloc_vmap_area() function.
1395                         */
1396                        lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1397                        if (!lva)
1398                                return -1;
1399                }
1400
1401                /*
1402                 * Build the remainder.
1403                 */
1404                lva->va_start = va->va_start;
1405                lva->va_end = nva_start_addr;
1406
1407                /*
1408                 * Shrink this VA to remaining size.
1409                 */
1410                va->va_start = nva_start_addr + size;
1411        } else {
1412                return -1;
1413        }
1414
1415        if (type != FL_FIT_TYPE) {
1416                augment_tree_propagate_from(va);
1417
1418                if (lva)        /* type == NE_FIT_TYPE */
1419                        insert_vmap_area_augment(lva, &va->rb_node,
1420                                &free_vmap_area_root, &free_vmap_area_list);
1421        }
1422
1423        return 0;
1424}
1425
1426/*
1427 * Returns a start address of the newly allocated area, if success.
1428 * Otherwise a vend is returned that indicates failure.
1429 */
1430static __always_inline unsigned long
1431__alloc_vmap_area(unsigned long size, unsigned long align,
1432        unsigned long vstart, unsigned long vend)
1433{
1434        unsigned long nva_start_addr;
1435        struct vmap_area *va;
1436        enum fit_type type;
1437        int ret;
1438
1439        va = find_vmap_lowest_match(size, align, vstart);
1440        if (unlikely(!va))
1441                return vend;
1442
1443        if (va->va_start > vstart)
1444                nva_start_addr = ALIGN(va->va_start, align);
1445        else
1446                nva_start_addr = ALIGN(vstart, align);
1447
1448        /* Check the "vend" restriction. */
1449        if (nva_start_addr + size > vend)
1450                return vend;
1451
1452        /* Classify what we have found. */
1453        type = classify_va_fit_type(va, nva_start_addr, size);
1454        if (WARN_ON_ONCE(type == NOTHING_FIT))
1455                return vend;
1456
1457        /* Update the free vmap_area. */
1458        ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1459        if (ret)
1460                return vend;
1461
1462#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1463        find_vmap_lowest_match_check(size, align);
1464#endif
1465
1466        return nva_start_addr;
1467}
1468
1469/*
1470 * Free a region of KVA allocated by alloc_vmap_area
1471 */
1472static void free_vmap_area(struct vmap_area *va)
1473{
1474        /*
1475         * Remove from the busy tree/list.
1476         */
1477        spin_lock(&vmap_area_lock);
1478        unlink_va(va, &vmap_area_root);
1479        spin_unlock(&vmap_area_lock);
1480
1481        /*
1482         * Insert/Merge it back to the free tree/list.
1483         */
1484        spin_lock(&free_vmap_area_lock);
1485        merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1486        spin_unlock(&free_vmap_area_lock);
1487}
1488
1489static inline void
1490preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1491{
1492        struct vmap_area *va = NULL;
1493
1494        /*
1495         * Preload this CPU with one extra vmap_area object. It is used
1496         * when fit type of free area is NE_FIT_TYPE. It guarantees that
1497         * a CPU that does an allocation is preloaded.
1498         *
1499         * We do it in non-atomic context, thus it allows us to use more
1500         * permissive allocation masks to be more stable under low memory
1501         * condition and high memory pressure.
1502         */
1503        if (!this_cpu_read(ne_fit_preload_node))
1504                va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1505
1506        spin_lock(lock);
1507
1508        if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1509                kmem_cache_free(vmap_area_cachep, va);
1510}
1511
1512/*
1513 * Allocate a region of KVA of the specified size and alignment, within the
1514 * vstart and vend.
1515 */
1516static struct vmap_area *alloc_vmap_area(unsigned long size,
1517                                unsigned long align,
1518                                unsigned long vstart, unsigned long vend,
1519                                int node, gfp_t gfp_mask)
1520{
1521        struct vmap_area *va;
1522        unsigned long freed;
1523        unsigned long addr;
1524        int purged = 0;
1525        int ret;
1526
1527        BUG_ON(!size);
1528        BUG_ON(offset_in_page(size));
1529        BUG_ON(!is_power_of_2(align));
1530
1531        if (unlikely(!vmap_initialized))
1532                return ERR_PTR(-EBUSY);
1533
1534        might_sleep();
1535        gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1536
1537        va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1538        if (unlikely(!va))
1539                return ERR_PTR(-ENOMEM);
1540
1541        /*
1542         * Only scan the relevant parts containing pointers to other objects
1543         * to avoid false negatives.
1544         */
1545        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1546
1547retry:
1548        preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1549        addr = __alloc_vmap_area(size, align, vstart, vend);
1550        spin_unlock(&free_vmap_area_lock);
1551
1552        /*
1553         * If an allocation fails, the "vend" address is
1554         * returned. Therefore trigger the overflow path.
1555         */
1556        if (unlikely(addr == vend))
1557                goto overflow;
1558
1559        va->va_start = addr;
1560        va->va_end = addr + size;
1561        va->vm = NULL;
1562
1563        spin_lock(&vmap_area_lock);
1564        insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1565        spin_unlock(&vmap_area_lock);
1566
1567        BUG_ON(!IS_ALIGNED(va->va_start, align));
1568        BUG_ON(va->va_start < vstart);
1569        BUG_ON(va->va_end > vend);
1570
1571        ret = kasan_populate_vmalloc(addr, size);
1572        if (ret) {
1573                free_vmap_area(va);
1574                return ERR_PTR(ret);
1575        }
1576
1577        return va;
1578
1579overflow:
1580        if (!purged) {
1581                purge_vmap_area_lazy();
1582                purged = 1;
1583                goto retry;
1584        }
1585
1586        freed = 0;
1587        blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1588
1589        if (freed > 0) {
1590                purged = 0;
1591                goto retry;
1592        }
1593
1594        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1595                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1596                        size);
1597
1598        kmem_cache_free(vmap_area_cachep, va);
1599        return ERR_PTR(-EBUSY);
1600}
1601
1602int register_vmap_purge_notifier(struct notifier_block *nb)
1603{
1604        return blocking_notifier_chain_register(&vmap_notify_list, nb);
1605}
1606EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1607
1608int unregister_vmap_purge_notifier(struct notifier_block *nb)
1609{
1610        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1611}
1612EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1613
1614/*
1615 * lazy_max_pages is the maximum amount of virtual address space we gather up
1616 * before attempting to purge with a TLB flush.
1617 *
1618 * There is a tradeoff here: a larger number will cover more kernel page tables
1619 * and take slightly longer to purge, but it will linearly reduce the number of
1620 * global TLB flushes that must be performed. It would seem natural to scale
1621 * this number up linearly with the number of CPUs (because vmapping activity
1622 * could also scale linearly with the number of CPUs), however it is likely
1623 * that in practice, workloads might be constrained in other ways that mean
1624 * vmap activity will not scale linearly with CPUs. Also, I want to be
1625 * conservative and not introduce a big latency on huge systems, so go with
1626 * a less aggressive log scale. It will still be an improvement over the old
1627 * code, and it will be simple to change the scale factor if we find that it
1628 * becomes a problem on bigger systems.
1629 */
1630static unsigned long lazy_max_pages(void)
1631{
1632        unsigned int log;
1633
1634        log = fls(num_online_cpus());
1635
1636        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1637}
1638
1639static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1640
1641/*
1642 * Serialize vmap purging.  There is no actual critical section protected
1643 * by this look, but we want to avoid concurrent calls for performance
1644 * reasons and to make the pcpu_get_vm_areas more deterministic.
1645 */
1646static DEFINE_MUTEX(vmap_purge_lock);
1647
1648/* for per-CPU blocks */
1649static void purge_fragmented_blocks_allcpus(void);
1650
1651#ifdef CONFIG_X86_64
1652/*
1653 * called before a call to iounmap() if the caller wants vm_area_struct's
1654 * immediately freed.
1655 */
1656void set_iounmap_nonlazy(void)
1657{
1658        atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1659}
1660#endif /* CONFIG_X86_64 */
1661
1662/*
1663 * Purges all lazily-freed vmap areas.
1664 */
1665static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1666{
1667        unsigned long resched_threshold;
1668        struct list_head local_pure_list;
1669        struct vmap_area *va, *n_va;
1670
1671        lockdep_assert_held(&vmap_purge_lock);
1672
1673        spin_lock(&purge_vmap_area_lock);
1674        purge_vmap_area_root = RB_ROOT;
1675        list_replace_init(&purge_vmap_area_list, &local_pure_list);
1676        spin_unlock(&purge_vmap_area_lock);
1677
1678        if (unlikely(list_empty(&local_pure_list)))
1679                return false;
1680
1681        start = min(start,
1682                list_first_entry(&local_pure_list,
1683                        struct vmap_area, list)->va_start);
1684
1685        end = max(end,
1686                list_last_entry(&local_pure_list,
1687                        struct vmap_area, list)->va_end);
1688
1689        flush_tlb_kernel_range(start, end);
1690        resched_threshold = lazy_max_pages() << 1;
1691
1692        spin_lock(&free_vmap_area_lock);
1693        list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1694                unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1695                unsigned long orig_start = va->va_start;
1696                unsigned long orig_end = va->va_end;
1697
1698                /*
1699                 * Finally insert or merge lazily-freed area. It is
1700                 * detached and there is no need to "unlink" it from
1701                 * anything.
1702                 */
1703                va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1704                                &free_vmap_area_list);
1705
1706                if (!va)
1707                        continue;
1708
1709                if (is_vmalloc_or_module_addr((void *)orig_start))
1710                        kasan_release_vmalloc(orig_start, orig_end,
1711                                              va->va_start, va->va_end);
1712
1713                atomic_long_sub(nr, &vmap_lazy_nr);
1714
1715                if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1716                        cond_resched_lock(&free_vmap_area_lock);
1717        }
1718        spin_unlock(&free_vmap_area_lock);
1719        return true;
1720}
1721
1722/*
1723 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1724 * is already purging.
1725 */
1726static void try_purge_vmap_area_lazy(void)
1727{
1728        if (mutex_trylock(&vmap_purge_lock)) {
1729                __purge_vmap_area_lazy(ULONG_MAX, 0);
1730                mutex_unlock(&vmap_purge_lock);
1731        }
1732}
1733
1734/*
1735 * Kick off a purge of the outstanding lazy areas.
1736 */
1737static void purge_vmap_area_lazy(void)
1738{
1739        mutex_lock(&vmap_purge_lock);
1740        purge_fragmented_blocks_allcpus();
1741        __purge_vmap_area_lazy(ULONG_MAX, 0);
1742        mutex_unlock(&vmap_purge_lock);
1743}
1744
1745/*
1746 * Free a vmap area, caller ensuring that the area has been unmapped
1747 * and flush_cache_vunmap had been called for the correct range
1748 * previously.
1749 */
1750static void free_vmap_area_noflush(struct vmap_area *va)
1751{
1752        unsigned long nr_lazy;
1753
1754        spin_lock(&vmap_area_lock);
1755        unlink_va(va, &vmap_area_root);
1756        spin_unlock(&vmap_area_lock);
1757
1758        nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1759                                PAGE_SHIFT, &vmap_lazy_nr);
1760
1761        /*
1762         * Merge or place it to the purge tree/list.
1763         */
1764        spin_lock(&purge_vmap_area_lock);
1765        merge_or_add_vmap_area(va,
1766                &purge_vmap_area_root, &purge_vmap_area_list);
1767        spin_unlock(&purge_vmap_area_lock);
1768
1769        /* After this point, we may free va at any time */
1770        if (unlikely(nr_lazy > lazy_max_pages()))
1771                try_purge_vmap_area_lazy();
1772}
1773
1774/*
1775 * Free and unmap a vmap area
1776 */
1777static void free_unmap_vmap_area(struct vmap_area *va)
1778{
1779        flush_cache_vunmap(va->va_start, va->va_end);
1780        vunmap_range_noflush(va->va_start, va->va_end);
1781        if (debug_pagealloc_enabled_static())
1782                flush_tlb_kernel_range(va->va_start, va->va_end);
1783
1784        free_vmap_area_noflush(va);
1785}
1786
1787static struct vmap_area *find_vmap_area(unsigned long addr)
1788{
1789        struct vmap_area *va;
1790
1791        spin_lock(&vmap_area_lock);
1792        va = __find_vmap_area(addr);
1793        spin_unlock(&vmap_area_lock);
1794
1795        return va;
1796}
1797
1798/*** Per cpu kva allocator ***/
1799
1800/*
1801 * vmap space is limited especially on 32 bit architectures. Ensure there is
1802 * room for at least 16 percpu vmap blocks per CPU.
1803 */
1804/*
1805 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1806 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
1807 * instead (we just need a rough idea)
1808 */
1809#if BITS_PER_LONG == 32
1810#define VMALLOC_SPACE           (128UL*1024*1024)
1811#else
1812#define VMALLOC_SPACE           (128UL*1024*1024*1024)
1813#endif
1814
1815#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
1816#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
1817#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
1818#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
1819#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
1820#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
1821#define VMAP_BBMAP_BITS         \
1822                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
1823                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
1824                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1825
1826#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
1827
1828struct vmap_block_queue {
1829        spinlock_t lock;
1830        struct list_head free;
1831};
1832
1833struct vmap_block {
1834        spinlock_t lock;
1835        struct vmap_area *va;
1836        unsigned long free, dirty;
1837        unsigned long dirty_min, dirty_max; /*< dirty range */
1838        struct list_head free_list;
1839        struct rcu_head rcu_head;
1840        struct list_head purge;
1841};
1842
1843/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1844static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1845
1846/*
1847 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1848 * in the free path. Could get rid of this if we change the API to return a
1849 * "cookie" from alloc, to be passed to free. But no big deal yet.
1850 */
1851static DEFINE_XARRAY(vmap_blocks);
1852
1853/*
1854 * We should probably have a fallback mechanism to allocate virtual memory
1855 * out of partially filled vmap blocks. However vmap block sizing should be
1856 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1857 * big problem.
1858 */
1859
1860static unsigned long addr_to_vb_idx(unsigned long addr)
1861{
1862        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1863        addr /= VMAP_BLOCK_SIZE;
1864        return addr;
1865}
1866
1867static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1868{
1869        unsigned long addr;
1870
1871        addr = va_start + (pages_off << PAGE_SHIFT);
1872        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1873        return (void *)addr;
1874}
1875
1876/**
1877 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1878 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1879 * @order:    how many 2^order pages should be occupied in newly allocated block
1880 * @gfp_mask: flags for the page level allocator
1881 *
1882 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1883 */
1884static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1885{
1886        struct vmap_block_queue *vbq;
1887        struct vmap_block *vb;
1888        struct vmap_area *va;
1889        unsigned long vb_idx;
1890        int node, err;
1891        void *vaddr;
1892
1893        node = numa_node_id();
1894
1895        vb = kmalloc_node(sizeof(struct vmap_block),
1896                        gfp_mask & GFP_RECLAIM_MASK, node);
1897        if (unlikely(!vb))
1898                return ERR_PTR(-ENOMEM);
1899
1900        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1901                                        VMALLOC_START, VMALLOC_END,
1902                                        node, gfp_mask);
1903        if (IS_ERR(va)) {
1904                kfree(vb);
1905                return ERR_CAST(va);
1906        }
1907
1908        vaddr = vmap_block_vaddr(va->va_start, 0);
1909        spin_lock_init(&vb->lock);
1910        vb->va = va;
1911        /* At least something should be left free */
1912        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1913        vb->free = VMAP_BBMAP_BITS - (1UL << order);
1914        vb->dirty = 0;
1915        vb->dirty_min = VMAP_BBMAP_BITS;
1916        vb->dirty_max = 0;
1917        INIT_LIST_HEAD(&vb->free_list);
1918
1919        vb_idx = addr_to_vb_idx(va->va_start);
1920        err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1921        if (err) {
1922                kfree(vb);
1923                free_vmap_area(va);
1924                return ERR_PTR(err);
1925        }
1926
1927        vbq = &get_cpu_var(vmap_block_queue);
1928        spin_lock(&vbq->lock);
1929        list_add_tail_rcu(&vb->free_list, &vbq->free);
1930        spin_unlock(&vbq->lock);
1931        put_cpu_var(vmap_block_queue);
1932
1933        return vaddr;
1934}
1935
1936static void free_vmap_block(struct vmap_block *vb)
1937{
1938        struct vmap_block *tmp;
1939
1940        tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1941        BUG_ON(tmp != vb);
1942
1943        free_vmap_area_noflush(vb->va);
1944        kfree_rcu(vb, rcu_head);
1945}
1946
1947static void purge_fragmented_blocks(int cpu)
1948{
1949        LIST_HEAD(purge);
1950        struct vmap_block *vb;
1951        struct vmap_block *n_vb;
1952        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1953
1954        rcu_read_lock();
1955        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1956
1957                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1958                        continue;
1959
1960                spin_lock(&vb->lock);
1961                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1962                        vb->free = 0; /* prevent further allocs after releasing lock */
1963                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1964                        vb->dirty_min = 0;
1965                        vb->dirty_max = VMAP_BBMAP_BITS;
1966                        spin_lock(&vbq->lock);
1967                        list_del_rcu(&vb->free_list);
1968                        spin_unlock(&vbq->lock);
1969                        spin_unlock(&vb->lock);
1970                        list_add_tail(&vb->purge, &purge);
1971                } else
1972                        spin_unlock(&vb->lock);
1973        }
1974        rcu_read_unlock();
1975
1976        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1977                list_del(&vb->purge);
1978                free_vmap_block(vb);
1979        }
1980}
1981
1982static void purge_fragmented_blocks_allcpus(void)
1983{
1984        int cpu;
1985
1986        for_each_possible_cpu(cpu)
1987                purge_fragmented_blocks(cpu);
1988}
1989
1990static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1991{
1992        struct vmap_block_queue *vbq;
1993        struct vmap_block *vb;
1994        void *vaddr = NULL;
1995        unsigned int order;
1996
1997        BUG_ON(offset_in_page(size));
1998        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1999        if (WARN_ON(size == 0)) {
2000                /*
2001                 * Allocating 0 bytes isn't what caller wants since
2002                 * get_order(0) returns funny result. Just warn and terminate
2003                 * early.
2004                 */
2005                return NULL;
2006        }
2007        order = get_order(size);
2008
2009        rcu_read_lock();
2010        vbq = &get_cpu_var(vmap_block_queue);
2011        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2012                unsigned long pages_off;
2013
2014                spin_lock(&vb->lock);
2015                if (vb->free < (1UL << order)) {
2016                        spin_unlock(&vb->lock);
2017                        continue;
2018                }
2019
2020                pages_off = VMAP_BBMAP_BITS - vb->free;
2021                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2022                vb->free -= 1UL << order;
2023                if (vb->free == 0) {
2024                        spin_lock(&vbq->lock);
2025                        list_del_rcu(&vb->free_list);
2026                        spin_unlock(&vbq->lock);
2027                }
2028
2029                spin_unlock(&vb->lock);
2030                break;
2031        }
2032
2033        put_cpu_var(vmap_block_queue);
2034        rcu_read_unlock();
2035
2036        /* Allocate new block if nothing was found */
2037        if (!vaddr)
2038                vaddr = new_vmap_block(order, gfp_mask);
2039
2040        return vaddr;
2041}
2042
2043static void vb_free(unsigned long addr, unsigned long size)
2044{
2045        unsigned long offset;
2046        unsigned int order;
2047        struct vmap_block *vb;
2048
2049        BUG_ON(offset_in_page(size));
2050        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2051
2052        flush_cache_vunmap(addr, addr + size);
2053
2054        order = get_order(size);
2055        offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2056        vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2057
2058        vunmap_range_noflush(addr, addr + size);
2059
2060        if (debug_pagealloc_enabled_static())
2061                flush_tlb_kernel_range(addr, addr + size);
2062
2063        spin_lock(&vb->lock);
2064
2065        /* Expand dirty range */
2066        vb->dirty_min = min(vb->dirty_min, offset);
2067        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2068
2069        vb->dirty += 1UL << order;
2070        if (vb->dirty == VMAP_BBMAP_BITS) {
2071                BUG_ON(vb->free);
2072                spin_unlock(&vb->lock);
2073                free_vmap_block(vb);
2074        } else
2075                spin_unlock(&vb->lock);
2076}
2077
2078static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2079{
2080        int cpu;
2081
2082        if (unlikely(!vmap_initialized))
2083                return;
2084
2085        might_sleep();
2086
2087        for_each_possible_cpu(cpu) {
2088                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2089                struct vmap_block *vb;
2090
2091                rcu_read_lock();
2092                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2093                        spin_lock(&vb->lock);
2094                        if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2095                                unsigned long va_start = vb->va->va_start;
2096                                unsigned long s, e;
2097
2098                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
2099                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
2100
2101                                start = min(s, start);
2102                                end   = max(e, end);
2103
2104                                flush = 1;
2105                        }
2106                        spin_unlock(&vb->lock);
2107                }
2108                rcu_read_unlock();
2109        }
2110
2111        mutex_lock(&vmap_purge_lock);
2112        purge_fragmented_blocks_allcpus();
2113        if (!__purge_vmap_area_lazy(start, end) && flush)
2114                flush_tlb_kernel_range(start, end);
2115        mutex_unlock(&vmap_purge_lock);
2116}
2117
2118/**
2119 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2120 *
2121 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2122 * to amortize TLB flushing overheads. What this means is that any page you
2123 * have now, may, in a former life, have been mapped into kernel virtual
2124 * address by the vmap layer and so there might be some CPUs with TLB entries
2125 * still referencing that page (additional to the regular 1:1 kernel mapping).
2126 *
2127 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2128 * be sure that none of the pages we have control over will have any aliases
2129 * from the vmap layer.
2130 */
2131void vm_unmap_aliases(void)
2132{
2133        unsigned long start = ULONG_MAX, end = 0;
2134        int flush = 0;
2135
2136        _vm_unmap_aliases(start, end, flush);
2137}
2138EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2139
2140/**
2141 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2142 * @mem: the pointer returned by vm_map_ram
2143 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2144 */
2145void vm_unmap_ram(const void *mem, unsigned int count)
2146{
2147        unsigned long size = (unsigned long)count << PAGE_SHIFT;
2148        unsigned long addr = (unsigned long)mem;
2149        struct vmap_area *va;
2150
2151        might_sleep();
2152        BUG_ON(!addr);
2153        BUG_ON(addr < VMALLOC_START);
2154        BUG_ON(addr > VMALLOC_END);
2155        BUG_ON(!PAGE_ALIGNED(addr));
2156
2157        kasan_poison_vmalloc(mem, size);
2158
2159        if (likely(count <= VMAP_MAX_ALLOC)) {
2160                debug_check_no_locks_freed(mem, size);
2161                vb_free(addr, size);
2162                return;
2163        }
2164
2165        va = find_vmap_area(addr);
2166        BUG_ON(!va);
2167        debug_check_no_locks_freed((void *)va->va_start,
2168                                    (va->va_end - va->va_start));
2169        free_unmap_vmap_area(va);
2170}
2171EXPORT_SYMBOL(vm_unmap_ram);
2172
2173/**
2174 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2175 * @pages: an array of pointers to the pages to be mapped
2176 * @count: number of pages
2177 * @node: prefer to allocate data structures on this node
2178 *
2179 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2180 * faster than vmap so it's good.  But if you mix long-life and short-life
2181 * objects with vm_map_ram(), it could consume lots of address space through
2182 * fragmentation (especially on a 32bit machine).  You could see failures in
2183 * the end.  Please use this function for short-lived objects.
2184 *
2185 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2186 */
2187void *vm_map_ram(struct page **pages, unsigned int count, int node)
2188{
2189        unsigned long size = (unsigned long)count << PAGE_SHIFT;
2190        unsigned long addr;
2191        void *mem;
2192
2193        if (likely(count <= VMAP_MAX_ALLOC)) {
2194                mem = vb_alloc(size, GFP_KERNEL);
2195                if (IS_ERR(mem))
2196                        return NULL;
2197                addr = (unsigned long)mem;
2198        } else {
2199                struct vmap_area *va;
2200                va = alloc_vmap_area(size, PAGE_SIZE,
2201                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2202                if (IS_ERR(va))
2203                        return NULL;
2204
2205                addr = va->va_start;
2206                mem = (void *)addr;
2207        }
2208
2209        kasan_unpoison_vmalloc(mem, size);
2210
2211        if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2212                                pages, PAGE_SHIFT) < 0) {
2213                vm_unmap_ram(mem, count);
2214                return NULL;
2215        }
2216
2217        return mem;
2218}
2219EXPORT_SYMBOL(vm_map_ram);
2220
2221static struct vm_struct *vmlist __initdata;
2222
2223static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2224{
2225#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2226        return vm->page_order;
2227#else
2228        return 0;
2229#endif
2230}
2231
2232static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2233{
2234#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2235        vm->page_order = order;
2236#else
2237        BUG_ON(order != 0);
2238#endif
2239}
2240
2241/**
2242 * vm_area_add_early - add vmap area early during boot
2243 * @vm: vm_struct to add
2244 *
2245 * This function is used to add fixed kernel vm area to vmlist before
2246 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2247 * should contain proper values and the other fields should be zero.
2248 *
2249 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2250 */
2251void __init vm_area_add_early(struct vm_struct *vm)
2252{
2253        struct vm_struct *tmp, **p;
2254
2255        BUG_ON(vmap_initialized);
2256        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2257                if (tmp->addr >= vm->addr) {
2258                        BUG_ON(tmp->addr < vm->addr + vm->size);
2259                        break;
2260                } else
2261                        BUG_ON(tmp->addr + tmp->size > vm->addr);
2262        }
2263        vm->next = *p;
2264        *p = vm;
2265}
2266
2267/**
2268 * vm_area_register_early - register vmap area early during boot
2269 * @vm: vm_struct to register
2270 * @align: requested alignment
2271 *
2272 * This function is used to register kernel vm area before
2273 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2274 * proper values on entry and other fields should be zero.  On return,
2275 * vm->addr contains the allocated address.
2276 *
2277 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2278 */
2279void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2280{
2281        unsigned long addr = ALIGN(VMALLOC_START, align);
2282        struct vm_struct *cur, **p;
2283
2284        BUG_ON(vmap_initialized);
2285
2286        for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2287                if ((unsigned long)cur->addr - addr >= vm->size)
2288                        break;
2289                addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2290        }
2291
2292        BUG_ON(addr > VMALLOC_END - vm->size);
2293        vm->addr = (void *)addr;
2294        vm->next = *p;
2295        *p = vm;
2296        kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2297}
2298
2299static void vmap_init_free_space(void)
2300{
2301        unsigned long vmap_start = 1;
2302        const unsigned long vmap_end = ULONG_MAX;
2303        struct vmap_area *busy, *free;
2304
2305        /*
2306         *     B     F     B     B     B     F
2307         * -|-----|.....|-----|-----|-----|.....|-
2308         *  |           The KVA space           |
2309         *  |<--------------------------------->|
2310         */
2311        list_for_each_entry(busy, &vmap_area_list, list) {
2312                if (busy->va_start - vmap_start > 0) {
2313                        free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2314                        if (!WARN_ON_ONCE(!free)) {
2315                                free->va_start = vmap_start;
2316                                free->va_end = busy->va_start;
2317
2318                                insert_vmap_area_augment(free, NULL,
2319                                        &free_vmap_area_root,
2320                                                &free_vmap_area_list);
2321                        }
2322                }
2323
2324                vmap_start = busy->va_end;
2325        }
2326
2327        if (vmap_end - vmap_start > 0) {
2328                free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2329                if (!WARN_ON_ONCE(!free)) {
2330                        free->va_start = vmap_start;
2331                        free->va_end = vmap_end;
2332
2333                        insert_vmap_area_augment(free, NULL,
2334                                &free_vmap_area_root,
2335                                        &free_vmap_area_list);
2336                }
2337        }
2338}
2339
2340void __init vmalloc_init(void)
2341{
2342        struct vmap_area *va;
2343        struct vm_struct *tmp;
2344        int i;
2345
2346        /*
2347         * Create the cache for vmap_area objects.
2348         */
2349        vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2350
2351        for_each_possible_cpu(i) {
2352                struct vmap_block_queue *vbq;
2353                struct vfree_deferred *p;
2354
2355                vbq = &per_cpu(vmap_block_queue, i);
2356                spin_lock_init(&vbq->lock);
2357                INIT_LIST_HEAD(&vbq->free);
2358                p = &per_cpu(vfree_deferred, i);
2359                init_llist_head(&p->list);
2360                INIT_WORK(&p->wq, free_work);
2361        }
2362
2363        /* Import existing vmlist entries. */
2364        for (tmp = vmlist; tmp; tmp = tmp->next) {
2365                va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2366                if (WARN_ON_ONCE(!va))
2367                        continue;
2368
2369                va->va_start = (unsigned long)tmp->addr;
2370                va->va_end = va->va_start + tmp->size;
2371                va->vm = tmp;
2372                insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2373        }
2374
2375        /*
2376         * Now we can initialize a free vmap space.
2377         */
2378        vmap_init_free_space();
2379        vmap_initialized = true;
2380}
2381
2382static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2383        struct vmap_area *va, unsigned long flags, const void *caller)
2384{
2385        vm->flags = flags;
2386        vm->addr = (void *)va->va_start;
2387        vm->size = va->va_end - va->va_start;
2388        vm->caller = caller;
2389        va->vm = vm;
2390}
2391
2392static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2393                              unsigned long flags, const void *caller)
2394{
2395        spin_lock(&vmap_area_lock);
2396        setup_vmalloc_vm_locked(vm, va, flags, caller);
2397        spin_unlock(&vmap_area_lock);
2398}
2399
2400static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2401{
2402        /*
2403         * Before removing VM_UNINITIALIZED,
2404         * we should make sure that vm has proper values.
2405         * Pair with smp_rmb() in show_numa_info().
2406         */
2407        smp_wmb();
2408        vm->flags &= ~VM_UNINITIALIZED;
2409}
2410
2411static struct vm_struct *__get_vm_area_node(unsigned long size,
2412                unsigned long align, unsigned long shift, unsigned long flags,
2413                unsigned long start, unsigned long end, int node,
2414                gfp_t gfp_mask, const void *caller)
2415{
2416        struct vmap_area *va;
2417        struct vm_struct *area;
2418        unsigned long requested_size = size;
2419
2420        BUG_ON(in_interrupt());
2421        size = ALIGN(size, 1ul << shift);
2422        if (unlikely(!size))
2423                return NULL;
2424
2425        if (flags & VM_IOREMAP)
2426                align = 1ul << clamp_t(int, get_count_order_long(size),
2427                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2428
2429        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2430        if (unlikely(!area))
2431                return NULL;
2432
2433        if (!(flags & VM_NO_GUARD))
2434                size += PAGE_SIZE;
2435
2436        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2437        if (IS_ERR(va)) {
2438                kfree(area);
2439                return NULL;
2440        }
2441
2442        kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2443
2444        setup_vmalloc_vm(area, va, flags, caller);
2445
2446        return area;
2447}
2448
2449struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2450                                       unsigned long start, unsigned long end,
2451                                       const void *caller)
2452{
2453        return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2454                                  NUMA_NO_NODE, GFP_KERNEL, caller);
2455}
2456
2457/**
2458 * get_vm_area - reserve a contiguous kernel virtual area
2459 * @size:        size of the area
2460 * @flags:       %VM_IOREMAP for I/O mappings or VM_ALLOC
2461 *
2462 * Search an area of @size in the kernel virtual mapping area,
2463 * and reserved it for out purposes.  Returns the area descriptor
2464 * on success or %NULL on failure.
2465 *
2466 * Return: the area descriptor on success or %NULL on failure.
2467 */
2468struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2469{
2470        return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2471                                  VMALLOC_START, VMALLOC_END,
2472                                  NUMA_NO_NODE, GFP_KERNEL,
2473                                  __builtin_return_address(0));
2474}
2475
2476struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2477                                const void *caller)
2478{
2479        return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2480                                  VMALLOC_START, VMALLOC_END,
2481                                  NUMA_NO_NODE, GFP_KERNEL, caller);
2482}
2483
2484/**
2485 * find_vm_area - find a continuous kernel virtual area
2486 * @addr:         base address
2487 *
2488 * Search for the kernel VM area starting at @addr, and return it.
2489 * It is up to the caller to do all required locking to keep the returned
2490 * pointer valid.
2491 *
2492 * Return: the area descriptor on success or %NULL on failure.
2493 */
2494struct vm_struct *find_vm_area(const void *addr)
2495{
2496        struct vmap_area *va;
2497
2498        va = find_vmap_area((unsigned long)addr);
2499        if (!va)
2500                return NULL;
2501
2502        return va->vm;
2503}
2504
2505/**
2506 * remove_vm_area - find and remove a continuous kernel virtual area
2507 * @addr:           base address
2508 *
2509 * Search for the kernel VM area starting at @addr, and remove it.
2510 * This function returns the found VM area, but using it is NOT safe
2511 * on SMP machines, except for its size or flags.
2512 *
2513 * Return: the area descriptor on success or %NULL on failure.
2514 */
2515struct vm_struct *remove_vm_area(const void *addr)
2516{
2517        struct vmap_area *va;
2518
2519        might_sleep();
2520
2521        spin_lock(&vmap_area_lock);
2522        va = __find_vmap_area((unsigned long)addr);
2523        if (va && va->vm) {
2524                struct vm_struct *vm = va->vm;
2525
2526                va->vm = NULL;
2527                spin_unlock(&vmap_area_lock);
2528
2529                kasan_free_shadow(vm);
2530                free_unmap_vmap_area(va);
2531
2532                return vm;
2533        }
2534
2535        spin_unlock(&vmap_area_lock);
2536        return NULL;
2537}
2538
2539static inline void set_area_direct_map(const struct vm_struct *area,
2540                                       int (*set_direct_map)(struct page *page))
2541{
2542        int i;
2543
2544        /* HUGE_VMALLOC passes small pages to set_direct_map */
2545        for (i = 0; i < area->nr_pages; i++)
2546                if (page_address(area->pages[i]))
2547                        set_direct_map(area->pages[i]);
2548}
2549
2550/* Handle removing and resetting vm mappings related to the vm_struct. */
2551static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2552{
2553        unsigned long start = ULONG_MAX, end = 0;
2554        unsigned int page_order = vm_area_page_order(area);
2555        int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2556        int flush_dmap = 0;
2557        int i;
2558
2559        remove_vm_area(area->addr);
2560
2561        /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2562        if (!flush_reset)
2563                return;
2564
2565        /*
2566         * If not deallocating pages, just do the flush of the VM area and
2567         * return.
2568         */
2569        if (!deallocate_pages) {
2570                vm_unmap_aliases();
2571                return;
2572        }
2573
2574        /*
2575         * If execution gets here, flush the vm mapping and reset the direct
2576         * map. Find the start and end range of the direct mappings to make sure
2577         * the vm_unmap_aliases() flush includes the direct map.
2578         */
2579        for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2580                unsigned long addr = (unsigned long)page_address(area->pages[i]);
2581                if (addr) {
2582                        unsigned long page_size;
2583
2584                        page_size = PAGE_SIZE << page_order;
2585                        start = min(addr, start);
2586                        end = max(addr + page_size, end);
2587                        flush_dmap = 1;
2588                }
2589        }
2590
2591        /*
2592         * Set direct map to something invalid so that it won't be cached if
2593         * there are any accesses after the TLB flush, then flush the TLB and
2594         * reset the direct map permissions to the default.
2595         */
2596        set_area_direct_map(area, set_direct_map_invalid_noflush);
2597        _vm_unmap_aliases(start, end, flush_dmap);
2598        set_area_direct_map(area, set_direct_map_default_noflush);
2599}
2600
2601static void __vunmap(const void *addr, int deallocate_pages)
2602{
2603        struct vm_struct *area;
2604
2605        if (!addr)
2606                return;
2607
2608        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2609                        addr))
2610                return;
2611
2612        area = find_vm_area(addr);
2613        if (unlikely(!area)) {
2614                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2615                                addr);
2616                return;
2617        }
2618
2619        debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2620        debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2621
2622        kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2623
2624        vm_remove_mappings(area, deallocate_pages);
2625
2626        if (deallocate_pages) {
2627                unsigned int page_order = vm_area_page_order(area);
2628                int i, step = 1U << page_order;
2629
2630                for (i = 0; i < area->nr_pages; i += step) {
2631                        struct page *page = area->pages[i];
2632
2633                        BUG_ON(!page);
2634                        mod_memcg_page_state(page, MEMCG_VMALLOC, -step);
2635                        __free_pages(page, page_order);
2636                        cond_resched();
2637                }
2638                atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2639
2640                kvfree(area->pages);
2641        }
2642
2643        kfree(area);
2644}
2645
2646static inline void __vfree_deferred(const void *addr)
2647{
2648        /*
2649         * Use raw_cpu_ptr() because this can be called from preemptible
2650         * context. Preemption is absolutely fine here, because the llist_add()
2651         * implementation is lockless, so it works even if we are adding to
2652         * another cpu's list. schedule_work() should be fine with this too.
2653         */
2654        struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2655
2656        if (llist_add((struct llist_node *)addr, &p->list))
2657                schedule_work(&p->wq);
2658}
2659
2660/**
2661 * vfree_atomic - release memory allocated by vmalloc()
2662 * @addr:         memory base address
2663 *
2664 * This one is just like vfree() but can be called in any atomic context
2665 * except NMIs.
2666 */
2667void vfree_atomic(const void *addr)
2668{
2669        BUG_ON(in_nmi());
2670
2671        kmemleak_free(addr);
2672
2673        if (!addr)
2674                return;
2675        __vfree_deferred(addr);
2676}
2677
2678static void __vfree(const void *addr)
2679{
2680        if (unlikely(in_interrupt()))
2681                __vfree_deferred(addr);
2682        else
2683                __vunmap(addr, 1);
2684}
2685
2686/**
2687 * vfree - Release memory allocated by vmalloc()
2688 * @addr:  Memory base address
2689 *
2690 * Free the virtually continuous memory area starting at @addr, as obtained
2691 * from one of the vmalloc() family of APIs.  This will usually also free the
2692 * physical memory underlying the virtual allocation, but that memory is
2693 * reference counted, so it will not be freed until the last user goes away.
2694 *
2695 * If @addr is NULL, no operation is performed.
2696 *
2697 * Context:
2698 * May sleep if called *not* from interrupt context.
2699 * Must not be called in NMI context (strictly speaking, it could be
2700 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2701 * conventions for vfree() arch-dependent would be a really bad idea).
2702 */
2703void vfree(const void *addr)
2704{
2705        BUG_ON(in_nmi());
2706
2707        kmemleak_free(addr);
2708
2709        might_sleep_if(!in_interrupt());
2710
2711        if (!addr)
2712                return;
2713
2714        __vfree(addr);
2715}
2716EXPORT_SYMBOL(vfree);
2717
2718/**
2719 * vunmap - release virtual mapping obtained by vmap()
2720 * @addr:   memory base address
2721 *
2722 * Free the virtually contiguous memory area starting at @addr,
2723 * which was created from the page array passed to vmap().
2724 *
2725 * Must not be called in interrupt context.
2726 */
2727void vunmap(const void *addr)
2728{
2729        BUG_ON(in_interrupt());
2730        might_sleep();
2731        if (addr)
2732                __vunmap(addr, 0);
2733}
2734EXPORT_SYMBOL(vunmap);
2735
2736/**
2737 * vmap - map an array of pages into virtually contiguous space
2738 * @pages: array of page pointers
2739 * @count: number of pages to map
2740 * @flags: vm_area->flags
2741 * @prot: page protection for the mapping
2742 *
2743 * Maps @count pages from @pages into contiguous kernel virtual space.
2744 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2745 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2746 * are transferred from the caller to vmap(), and will be freed / dropped when
2747 * vfree() is called on the return value.
2748 *
2749 * Return: the address of the area or %NULL on failure
2750 */
2751void *vmap(struct page **pages, unsigned int count,
2752           unsigned long flags, pgprot_t prot)
2753{
2754        struct vm_struct *area;
2755        unsigned long addr;
2756        unsigned long size;             /* In bytes */
2757
2758        might_sleep();
2759
2760        /*
2761         * Your top guard is someone else's bottom guard. Not having a top
2762         * guard compromises someone else's mappings too.
2763         */
2764        if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2765                flags &= ~VM_NO_GUARD;
2766
2767        if (count > totalram_pages())
2768                return NULL;
2769
2770        size = (unsigned long)count << PAGE_SHIFT;
2771        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2772        if (!area)
2773                return NULL;
2774
2775        addr = (unsigned long)area->addr;
2776        if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2777                                pages, PAGE_SHIFT) < 0) {
2778                vunmap(area->addr);
2779                return NULL;
2780        }
2781
2782        if (flags & VM_MAP_PUT_PAGES) {
2783                area->pages = pages;
2784                area->nr_pages = count;
2785        }
2786        return area->addr;
2787}
2788EXPORT_SYMBOL(vmap);
2789
2790#ifdef CONFIG_VMAP_PFN
2791struct vmap_pfn_data {
2792        unsigned long   *pfns;
2793        pgprot_t        prot;
2794        unsigned int    idx;
2795};
2796
2797static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2798{
2799        struct vmap_pfn_data *data = private;
2800
2801        if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2802                return -EINVAL;
2803        *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2804        return 0;
2805}
2806
2807/**
2808 * vmap_pfn - map an array of PFNs into virtually contiguous space
2809 * @pfns: array of PFNs
2810 * @count: number of pages to map
2811 * @prot: page protection for the mapping
2812 *
2813 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2814 * the start address of the mapping.
2815 */
2816void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2817{
2818        struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2819        struct vm_struct *area;
2820
2821        area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2822                        __builtin_return_address(0));
2823        if (!area)
2824                return NULL;
2825        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2826                        count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2827                free_vm_area(area);
2828                return NULL;
2829        }
2830        return area->addr;
2831}
2832EXPORT_SYMBOL_GPL(vmap_pfn);
2833#endif /* CONFIG_VMAP_PFN */
2834
2835static inline unsigned int
2836vm_area_alloc_pages(gfp_t gfp, int nid,
2837                unsigned int order, unsigned int nr_pages, struct page **pages)
2838{
2839        unsigned int nr_allocated = 0;
2840        struct page *page;
2841        int i;
2842
2843        /*
2844         * For order-0 pages we make use of bulk allocator, if
2845         * the page array is partly or not at all populated due
2846         * to fails, fallback to a single page allocator that is
2847         * more permissive.
2848         */
2849        if (!order) {
2850                gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2851
2852                while (nr_allocated < nr_pages) {
2853                        unsigned int nr, nr_pages_request;
2854
2855                        /*
2856                         * A maximum allowed request is hard-coded and is 100
2857                         * pages per call. That is done in order to prevent a
2858                         * long preemption off scenario in the bulk-allocator
2859                         * so the range is [1:100].
2860                         */
2861                        nr_pages_request = min(100U, nr_pages - nr_allocated);
2862
2863                        /* memory allocation should consider mempolicy, we can't
2864                         * wrongly use nearest node when nid == NUMA_NO_NODE,
2865                         * otherwise memory may be allocated in only one node,
2866                         * but mempolcy want to alloc memory by interleaving.
2867                         */
2868                        if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2869                                nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2870                                                        nr_pages_request,
2871                                                        pages + nr_allocated);
2872
2873                        else
2874                                nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2875                                                        nr_pages_request,
2876                                                        pages + nr_allocated);
2877
2878                        nr_allocated += nr;
2879                        cond_resched();
2880
2881                        /*
2882                         * If zero or pages were obtained partly,
2883                         * fallback to a single page allocator.
2884                         */
2885                        if (nr != nr_pages_request)
2886                                break;
2887                }
2888        } else
2889                /*
2890                 * Compound pages required for remap_vmalloc_page if
2891                 * high-order pages.
2892                 */
2893                gfp |= __GFP_COMP;
2894
2895        /* High-order pages or fallback path if "bulk" fails. */
2896
2897        while (nr_allocated < nr_pages) {
2898                if (fatal_signal_pending(current))
2899                        break;
2900
2901                if (nid == NUMA_NO_NODE)
2902                        page = alloc_pages(gfp, order);
2903                else
2904                        page = alloc_pages_node(nid, gfp, order);
2905                if (unlikely(!page))
2906                        break;
2907
2908                /*
2909                 * Careful, we allocate and map page-order pages, but
2910                 * tracking is done per PAGE_SIZE page so as to keep the
2911                 * vm_struct APIs independent of the physical/mapped size.
2912                 */
2913                for (i = 0; i < (1U << order); i++)
2914                        pages[nr_allocated + i] = page + i;
2915
2916                cond_resched();
2917                nr_allocated += 1U << order;
2918        }
2919
2920        return nr_allocated;
2921}
2922
2923static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2924                                 pgprot_t prot, unsigned int page_shift,
2925                                 int node)
2926{
2927        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2928        const gfp_t orig_gfp_mask = gfp_mask;
2929        bool nofail = gfp_mask & __GFP_NOFAIL;
2930        unsigned long addr = (unsigned long)area->addr;
2931        unsigned long size = get_vm_area_size(area);
2932        unsigned long array_size;
2933        unsigned int nr_small_pages = size >> PAGE_SHIFT;
2934        unsigned int page_order;
2935        unsigned int flags;
2936        int ret;
2937
2938        array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2939        gfp_mask |= __GFP_NOWARN;
2940        if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2941                gfp_mask |= __GFP_HIGHMEM;
2942
2943        /* Please note that the recursion is strictly bounded. */
2944        if (array_size > PAGE_SIZE) {
2945                area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2946                                        area->caller);
2947        } else {
2948                area->pages = kmalloc_node(array_size, nested_gfp, node);
2949        }
2950
2951        if (!area->pages) {
2952                warn_alloc(orig_gfp_mask, NULL,
2953                        "vmalloc error: size %lu, failed to allocated page array size %lu",
2954                        nr_small_pages * PAGE_SIZE, array_size);
2955                free_vm_area(area);
2956                return NULL;
2957        }
2958
2959        set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2960        page_order = vm_area_page_order(area);
2961
2962        area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2963                page_order, nr_small_pages, area->pages);
2964
2965        atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2966        if (gfp_mask & __GFP_ACCOUNT) {
2967                int i, step = 1U << page_order;
2968
2969                for (i = 0; i < area->nr_pages; i += step)
2970                        mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC,
2971                                             step);
2972        }
2973
2974        /*
2975         * If not enough pages were obtained to accomplish an
2976         * allocation request, free them via __vfree() if any.
2977         */
2978        if (area->nr_pages != nr_small_pages) {
2979                warn_alloc(orig_gfp_mask, NULL,
2980                        "vmalloc error: size %lu, page order %u, failed to allocate pages",
2981                        area->nr_pages * PAGE_SIZE, page_order);
2982                goto fail;
2983        }
2984
2985        /*
2986         * page tables allocations ignore external gfp mask, enforce it
2987         * by the scope API
2988         */
2989        if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
2990                flags = memalloc_nofs_save();
2991        else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
2992                flags = memalloc_noio_save();
2993
2994        do {
2995                ret = vmap_pages_range(addr, addr + size, prot, area->pages,
2996                        page_shift);
2997                if (nofail && (ret < 0))
2998                        schedule_timeout_uninterruptible(1);
2999        } while (nofail && (ret < 0));
3000
3001        if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3002                memalloc_nofs_restore(flags);
3003        else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3004                memalloc_noio_restore(flags);
3005
3006        if (ret < 0) {
3007                warn_alloc(orig_gfp_mask, NULL,
3008                        "vmalloc error: size %lu, failed to map pages",
3009                        area->nr_pages * PAGE_SIZE);
3010                goto fail;
3011        }
3012
3013        return area->addr;
3014
3015fail:
3016        __vfree(area->addr);
3017        return NULL;
3018}
3019
3020/**
3021 * __vmalloc_node_range - allocate virtually contiguous memory
3022 * @size:                 allocation size
3023 * @align:                desired alignment
3024 * @start:                vm area range start
3025 * @end:                  vm area range end
3026 * @gfp_mask:             flags for the page level allocator
3027 * @prot:                 protection mask for the allocated pages
3028 * @vm_flags:             additional vm area flags (e.g. %VM_NO_GUARD)
3029 * @node:                 node to use for allocation or NUMA_NO_NODE
3030 * @caller:               caller's return address
3031 *
3032 * Allocate enough pages to cover @size from the page level
3033 * allocator with @gfp_mask flags. Please note that the full set of gfp
3034 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3035 * supported.
3036 * Zone modifiers are not supported. From the reclaim modifiers
3037 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3038 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3039 * __GFP_RETRY_MAYFAIL are not supported).
3040 *
3041 * __GFP_NOWARN can be used to suppress failures messages.
3042 *
3043 * Map them into contiguous kernel virtual space, using a pagetable
3044 * protection of @prot.
3045 *
3046 * Return: the address of the area or %NULL on failure
3047 */
3048void *__vmalloc_node_range(unsigned long size, unsigned long align,
3049                        unsigned long start, unsigned long end, gfp_t gfp_mask,
3050                        pgprot_t prot, unsigned long vm_flags, int node,
3051                        const void *caller)
3052{
3053        struct vm_struct *area;
3054        void *addr;
3055        unsigned long real_size = size;
3056        unsigned long real_align = align;
3057        unsigned int shift = PAGE_SHIFT;
3058
3059        if (WARN_ON_ONCE(!size))
3060                return NULL;
3061
3062        if ((size >> PAGE_SHIFT) > totalram_pages()) {
3063                warn_alloc(gfp_mask, NULL,
3064                        "vmalloc error: size %lu, exceeds total pages",
3065                        real_size);
3066                return NULL;
3067        }
3068
3069        if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
3070                unsigned long size_per_node;
3071
3072                /*
3073                 * Try huge pages. Only try for PAGE_KERNEL allocations,
3074                 * others like modules don't yet expect huge pages in
3075                 * their allocations due to apply_to_page_range not
3076                 * supporting them.
3077                 */
3078
3079                size_per_node = size;
3080                if (node == NUMA_NO_NODE)
3081                        size_per_node /= num_online_nodes();
3082                if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3083                        shift = PMD_SHIFT;
3084                else
3085                        shift = arch_vmap_pte_supported_shift(size_per_node);
3086
3087                align = max(real_align, 1UL << shift);
3088                size = ALIGN(real_size, 1UL << shift);
3089        }
3090
3091again:
3092        area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3093                                  VM_UNINITIALIZED | vm_flags, start, end, node,
3094                                  gfp_mask, caller);
3095        if (!area) {
3096                bool nofail = gfp_mask & __GFP_NOFAIL;
3097                warn_alloc(gfp_mask, NULL,
3098                        "vmalloc error: size %lu, vm_struct allocation failed%s",
3099                        real_size, (nofail) ? ". Retrying." : "");
3100                if (nofail) {
3101                        schedule_timeout_uninterruptible(1);
3102                        goto again;
3103                }
3104                goto fail;
3105        }
3106
3107        addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3108        if (!addr)
3109                goto fail;
3110
3111        /*
3112         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3113         * flag. It means that vm_struct is not fully initialized.
3114         * Now, it is fully initialized, so remove this flag here.
3115         */
3116        clear_vm_uninitialized_flag(area);
3117
3118        size = PAGE_ALIGN(size);
3119        if (!(vm_flags & VM_DEFER_KMEMLEAK))
3120                kmemleak_vmalloc(area, size, gfp_mask);
3121
3122        return addr;
3123
3124fail:
3125        if (shift > PAGE_SHIFT) {
3126                shift = PAGE_SHIFT;
3127                align = real_align;
3128                size = real_size;
3129                goto again;
3130        }
3131
3132        return NULL;
3133}
3134
3135/**
3136 * __vmalloc_node - allocate virtually contiguous memory
3137 * @size:           allocation size
3138 * @align:          desired alignment
3139 * @gfp_mask:       flags for the page level allocator
3140 * @node:           node to use for allocation or NUMA_NO_NODE
3141 * @caller:         caller's return address
3142 *
3143 * Allocate enough pages to cover @size from the page level allocator with
3144 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3145 *
3146 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3147 * and __GFP_NOFAIL are not supported
3148 *
3149 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3150 * with mm people.
3151 *
3152 * Return: pointer to the allocated memory or %NULL on error
3153 */
3154void *__vmalloc_node(unsigned long size, unsigned long align,
3155                            gfp_t gfp_mask, int node, const void *caller)
3156{
3157        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3158                                gfp_mask, PAGE_KERNEL, 0, node, caller);
3159}
3160/*
3161 * This is only for performance analysis of vmalloc and stress purpose.
3162 * It is required by vmalloc test module, therefore do not use it other
3163 * than that.
3164 */
3165#ifdef CONFIG_TEST_VMALLOC_MODULE
3166EXPORT_SYMBOL_GPL(__vmalloc_node);
3167#endif
3168
3169void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3170{
3171        return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3172                                __builtin_return_address(0));
3173}
3174EXPORT_SYMBOL(__vmalloc);
3175
3176/**
3177 * vmalloc - allocate virtually contiguous memory
3178 * @size:    allocation size
3179 *
3180 * Allocate enough pages to cover @size from the page level
3181 * allocator and map them into contiguous kernel virtual space.
3182 *
3183 * For tight control over page level allocator and protection flags
3184 * use __vmalloc() instead.
3185 *
3186 * Return: pointer to the allocated memory or %NULL on error
3187 */
3188void *vmalloc(unsigned long size)
3189{
3190        return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3191                                __builtin_return_address(0));
3192}
3193EXPORT_SYMBOL(vmalloc);
3194
3195/**
3196 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3197 * @size:    allocation size
3198 *
3199 * Allocate enough non-huge pages to cover @size from the page level
3200 * allocator and map them into contiguous kernel virtual space.
3201 *
3202 * Return: pointer to the allocated memory or %NULL on error
3203 */
3204void *vmalloc_no_huge(unsigned long size)
3205{
3206        return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3207                                    GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3208                                    NUMA_NO_NODE, __builtin_return_address(0));
3209}
3210EXPORT_SYMBOL(vmalloc_no_huge);
3211
3212/**
3213 * vzalloc - allocate virtually contiguous memory with zero fill
3214 * @size:    allocation size
3215 *
3216 * Allocate enough pages to cover @size from the page level
3217 * allocator and map them into contiguous kernel virtual space.
3218 * The memory allocated is set to zero.
3219 *
3220 * For tight control over page level allocator and protection flags
3221 * use __vmalloc() instead.
3222 *
3223 * Return: pointer to the allocated memory or %NULL on error
3224 */
3225void *vzalloc(unsigned long size)
3226{
3227        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3228                                __builtin_return_address(0));
3229}
3230EXPORT_SYMBOL(vzalloc);
3231
3232/**
3233 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3234 * @size: allocation size
3235 *
3236 * The resulting memory area is zeroed so it can be mapped to userspace
3237 * without leaking data.
3238 *
3239 * Return: pointer to the allocated memory or %NULL on error
3240 */
3241void *vmalloc_user(unsigned long size)
3242{
3243        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3244                                    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3245                                    VM_USERMAP, NUMA_NO_NODE,
3246                                    __builtin_return_address(0));
3247}
3248EXPORT_SYMBOL(vmalloc_user);
3249
3250/**
3251 * vmalloc_node - allocate memory on a specific node
3252 * @size:         allocation size
3253 * @node:         numa node
3254 *
3255 * Allocate enough pages to cover @size from the page level
3256 * allocator and map them into contiguous kernel virtual space.
3257 *
3258 * For tight control over page level allocator and protection flags
3259 * use __vmalloc() instead.
3260 *
3261 * Return: pointer to the allocated memory or %NULL on error
3262 */
3263void *vmalloc_node(unsigned long size, int node)
3264{
3265        return __vmalloc_node(size, 1, GFP_KERNEL, node,
3266                        __builtin_return_address(0));
3267}
3268EXPORT_SYMBOL(vmalloc_node);
3269
3270/**
3271 * vzalloc_node - allocate memory on a specific node with zero fill
3272 * @size:       allocation size
3273 * @node:       numa node
3274 *
3275 * Allocate enough pages to cover @size from the page level
3276 * allocator and map them into contiguous kernel virtual space.
3277 * The memory allocated is set to zero.
3278 *
3279 * Return: pointer to the allocated memory or %NULL on error
3280 */
3281void *vzalloc_node(unsigned long size, int node)
3282{
3283        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3284                                __builtin_return_address(0));
3285}
3286EXPORT_SYMBOL(vzalloc_node);
3287
3288#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3289#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3290#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3291#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3292#else
3293/*
3294 * 64b systems should always have either DMA or DMA32 zones. For others
3295 * GFP_DMA32 should do the right thing and use the normal zone.
3296 */
3297#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3298#endif
3299
3300/**
3301 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3302 * @size:       allocation size
3303 *
3304 * Allocate enough 32bit PA addressable pages to cover @size from the
3305 * page level allocator and map them into contiguous kernel virtual space.
3306 *
3307 * Return: pointer to the allocated memory or %NULL on error
3308 */
3309void *vmalloc_32(unsigned long size)
3310{
3311        return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3312                        __builtin_return_address(0));
3313}
3314EXPORT_SYMBOL(vmalloc_32);
3315
3316/**
3317 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3318 * @size:            allocation size
3319 *
3320 * The resulting memory area is 32bit addressable and zeroed so it can be
3321 * mapped to userspace without leaking data.
3322 *
3323 * Return: pointer to the allocated memory or %NULL on error
3324 */
3325void *vmalloc_32_user(unsigned long size)
3326{
3327        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3328                                    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3329                                    VM_USERMAP, NUMA_NO_NODE,
3330                                    __builtin_return_address(0));
3331}
3332EXPORT_SYMBOL(vmalloc_32_user);
3333
3334/*
3335 * small helper routine , copy contents to buf from addr.
3336 * If the page is not present, fill zero.
3337 */
3338
3339static int aligned_vread(char *buf, char *addr, unsigned long count)
3340{
3341        struct page *p;
3342        int copied = 0;
3343
3344        while (count) {
3345                unsigned long offset, length;
3346
3347                offset = offset_in_page(addr);
3348                length = PAGE_SIZE - offset;
3349                if (length > count)
3350                        length = count;
3351                p = vmalloc_to_page(addr);
3352                /*
3353                 * To do safe access to this _mapped_ area, we need
3354                 * lock. But adding lock here means that we need to add
3355                 * overhead of vmalloc()/vfree() calls for this _debug_
3356                 * interface, rarely used. Instead of that, we'll use
3357                 * kmap() and get small overhead in this access function.
3358                 */
3359                if (p) {
3360                        /* We can expect USER0 is not used -- see vread() */
3361                        void *map = kmap_atomic(p);
3362                        memcpy(buf, map + offset, length);
3363                        kunmap_atomic(map);
3364                } else
3365                        memset(buf, 0, length);
3366
3367                addr += length;
3368                buf += length;
3369                copied += length;
3370                count -= length;
3371        }
3372        return copied;
3373}
3374
3375/**
3376 * vread() - read vmalloc area in a safe way.
3377 * @buf:     buffer for reading data
3378 * @addr:    vm address.
3379 * @count:   number of bytes to be read.
3380 *
3381 * This function checks that addr is a valid vmalloc'ed area, and
3382 * copy data from that area to a given buffer. If the given memory range
3383 * of [addr...addr+count) includes some valid address, data is copied to
3384 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3385 * IOREMAP area is treated as memory hole and no copy is done.
3386 *
3387 * If [addr...addr+count) doesn't includes any intersects with alive
3388 * vm_struct area, returns 0. @buf should be kernel's buffer.
3389 *
3390 * Note: In usual ops, vread() is never necessary because the caller
3391 * should know vmalloc() area is valid and can use memcpy().
3392 * This is for routines which have to access vmalloc area without
3393 * any information, as /proc/kcore.
3394 *
3395 * Return: number of bytes for which addr and buf should be increased
3396 * (same number as @count) or %0 if [addr...addr+count) doesn't
3397 * include any intersection with valid vmalloc area
3398 */
3399long vread(char *buf, char *addr, unsigned long count)
3400{
3401        struct vmap_area *va;
3402        struct vm_struct *vm;
3403        char *vaddr, *buf_start = buf;
3404        unsigned long buflen = count;
3405        unsigned long n;
3406
3407        /* Don't allow overflow */
3408        if ((unsigned long) addr + count < count)
3409                count = -(unsigned long) addr;
3410
3411        spin_lock(&vmap_area_lock);
3412        va = find_vmap_area_exceed_addr((unsigned long)addr);
3413        if (!va)
3414                goto finished;
3415
3416        /* no intersects with alive vmap_area */
3417        if ((unsigned long)addr + count <= va->va_start)
3418                goto finished;
3419
3420        list_for_each_entry_from(va, &vmap_area_list, list) {
3421                if (!count)
3422                        break;
3423
3424                if (!va->vm)
3425                        continue;
3426
3427                vm = va->vm;
3428                vaddr = (char *) vm->addr;
3429                if (addr >= vaddr + get_vm_area_size(vm))
3430                        continue;
3431                while (addr < vaddr) {
3432                        if (count == 0)
3433                                goto finished;
3434                        *buf = '\0';
3435                        buf++;
3436                        addr++;
3437                        count--;
3438                }
3439                n = vaddr + get_vm_area_size(vm) - addr;
3440                if (n > count)
3441                        n = count;
3442                if (!(vm->flags & VM_IOREMAP))
3443                        aligned_vread(buf, addr, n);
3444                else /* IOREMAP area is treated as memory hole */
3445                        memset(buf, 0, n);
3446                buf += n;
3447                addr += n;
3448                count -= n;
3449        }
3450finished:
3451        spin_unlock(&vmap_area_lock);
3452
3453        if (buf == buf_start)
3454                return 0;
3455        /* zero-fill memory holes */
3456        if (buf != buf_start + buflen)
3457                memset(buf, 0, buflen - (buf - buf_start));
3458
3459        return buflen;
3460}
3461
3462/**
3463 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3464 * @vma:                vma to cover
3465 * @uaddr:              target user address to start at
3466 * @kaddr:              virtual address of vmalloc kernel memory
3467 * @pgoff:              offset from @kaddr to start at
3468 * @size:               size of map area
3469 *
3470 * Returns:     0 for success, -Exxx on failure
3471 *
3472 * This function checks that @kaddr is a valid vmalloc'ed area,
3473 * and that it is big enough to cover the range starting at
3474 * @uaddr in @vma. Will return failure if that criteria isn't
3475 * met.
3476 *
3477 * Similar to remap_pfn_range() (see mm/memory.c)
3478 */
3479int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3480                                void *kaddr, unsigned long pgoff,
3481                                unsigned long size)
3482{
3483        struct vm_struct *area;
3484        unsigned long off;
3485        unsigned long end_index;
3486
3487        if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3488                return -EINVAL;
3489
3490        size = PAGE_ALIGN(size);
3491
3492        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3493                return -EINVAL;
3494
3495        area = find_vm_area(kaddr);
3496        if (!area)
3497                return -EINVAL;
3498
3499        if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3500                return -EINVAL;
3501
3502        if (check_add_overflow(size, off, &end_index) ||
3503            end_index > get_vm_area_size(area))
3504                return -EINVAL;
3505        kaddr += off;
3506
3507        do {
3508                struct page *page = vmalloc_to_page(kaddr);
3509                int ret;
3510
3511                ret = vm_insert_page(vma, uaddr, page);
3512                if (ret)
3513                        return ret;
3514
3515                uaddr += PAGE_SIZE;
3516                kaddr += PAGE_SIZE;
3517                size -= PAGE_SIZE;
3518        } while (size > 0);
3519
3520        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3521
3522        return 0;
3523}
3524
3525/**
3526 * remap_vmalloc_range - map vmalloc pages to userspace
3527 * @vma:                vma to cover (map full range of vma)
3528 * @addr:               vmalloc memory
3529 * @pgoff:              number of pages into addr before first page to map
3530 *
3531 * Returns:     0 for success, -Exxx on failure
3532 *
3533 * This function checks that addr is a valid vmalloc'ed area, and
3534 * that it is big enough to cover the vma. Will return failure if
3535 * that criteria isn't met.
3536 *
3537 * Similar to remap_pfn_range() (see mm/memory.c)
3538 */
3539int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3540                                                unsigned long pgoff)
3541{
3542        return remap_vmalloc_range_partial(vma, vma->vm_start,
3543                                           addr, pgoff,
3544                                           vma->vm_end - vma->vm_start);
3545}
3546EXPORT_SYMBOL(remap_vmalloc_range);
3547
3548void free_vm_area(struct vm_struct *area)
3549{
3550        struct vm_struct *ret;
3551        ret = remove_vm_area(area->addr);
3552        BUG_ON(ret != area);
3553        kfree(area);
3554}
3555EXPORT_SYMBOL_GPL(free_vm_area);
3556
3557#ifdef CONFIG_SMP
3558static struct vmap_area *node_to_va(struct rb_node *n)
3559{
3560        return rb_entry_safe(n, struct vmap_area, rb_node);
3561}
3562
3563/**
3564 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3565 * @addr: target address
3566 *
3567 * Returns: vmap_area if it is found. If there is no such area
3568 *   the first highest(reverse order) vmap_area is returned
3569 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3570 *   if there are no any areas before @addr.
3571 */
3572static struct vmap_area *
3573pvm_find_va_enclose_addr(unsigned long addr)
3574{
3575        struct vmap_area *va, *tmp;
3576        struct rb_node *n;
3577
3578        n = free_vmap_area_root.rb_node;
3579        va = NULL;
3580
3581        while (n) {
3582                tmp = rb_entry(n, struct vmap_area, rb_node);
3583                if (tmp->va_start <= addr) {
3584                        va = tmp;
3585                        if (tmp->va_end >= addr)
3586                                break;
3587
3588                        n = n->rb_right;
3589                } else {
3590                        n = n->rb_left;
3591                }
3592        }
3593
3594        return va;
3595}
3596
3597/**
3598 * pvm_determine_end_from_reverse - find the highest aligned address
3599 * of free block below VMALLOC_END
3600 * @va:
3601 *   in - the VA we start the search(reverse order);
3602 *   out - the VA with the highest aligned end address.
3603 * @align: alignment for required highest address
3604 *
3605 * Returns: determined end address within vmap_area
3606 */
3607static unsigned long
3608pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3609{
3610        unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3611        unsigned long addr;
3612
3613        if (likely(*va)) {
3614                list_for_each_entry_from_reverse((*va),
3615                                &free_vmap_area_list, list) {
3616                        addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3617                        if ((*va)->va_start < addr)
3618                                return addr;
3619                }
3620        }
3621
3622        return 0;
3623}
3624
3625/**
3626 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3627 * @offsets: array containing offset of each area
3628 * @sizes: array containing size of each area
3629 * @nr_vms: the number of areas to allocate
3630 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3631 *
3632 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3633 *          vm_structs on success, %NULL on failure
3634 *
3635 * Percpu allocator wants to use congruent vm areas so that it can
3636 * maintain the offsets among percpu areas.  This function allocates
3637 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3638 * be scattered pretty far, distance between two areas easily going up
3639 * to gigabytes.  To avoid interacting with regular vmallocs, these
3640 * areas are allocated from top.
3641 *
3642 * Despite its complicated look, this allocator is rather simple. It
3643 * does everything top-down and scans free blocks from the end looking
3644 * for matching base. While scanning, if any of the areas do not fit the
3645 * base address is pulled down to fit the area. Scanning is repeated till
3646 * all the areas fit and then all necessary data structures are inserted
3647 * and the result is returned.
3648 */
3649struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3650                                     const size_t *sizes, int nr_vms,
3651                                     size_t align)
3652{
3653        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3654        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3655        struct vmap_area **vas, *va;
3656        struct vm_struct **vms;
3657        int area, area2, last_area, term_area;
3658        unsigned long base, start, size, end, last_end, orig_start, orig_end;
3659        bool purged = false;
3660        enum fit_type type;
3661
3662        /* verify parameters and allocate data structures */
3663        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3664        for (last_area = 0, area = 0; area < nr_vms; area++) {
3665                start = offsets[area];
3666                end = start + sizes[area];
3667
3668                /* is everything aligned properly? */
3669                BUG_ON(!IS_ALIGNED(offsets[area], align));
3670                BUG_ON(!IS_ALIGNED(sizes[area], align));
3671
3672                /* detect the area with the highest address */
3673                if (start > offsets[last_area])
3674                        last_area = area;
3675
3676                for (area2 = area + 1; area2 < nr_vms; area2++) {
3677                        unsigned long start2 = offsets[area2];
3678                        unsigned long end2 = start2 + sizes[area2];
3679
3680                        BUG_ON(start2 < end && start < end2);
3681                }
3682        }
3683        last_end = offsets[last_area] + sizes[last_area];
3684
3685        if (vmalloc_end - vmalloc_start < last_end) {
3686                WARN_ON(true);
3687                return NULL;
3688        }
3689
3690        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3691        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3692        if (!vas || !vms)
3693                goto err_free2;
3694
3695        for (area = 0; area < nr_vms; area++) {
3696                vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3697                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3698                if (!vas[area] || !vms[area])
3699                        goto err_free;
3700        }
3701retry:
3702        spin_lock(&free_vmap_area_lock);
3703
3704        /* start scanning - we scan from the top, begin with the last area */
3705        area = term_area = last_area;
3706        start = offsets[area];
3707        end = start + sizes[area];
3708
3709        va = pvm_find_va_enclose_addr(vmalloc_end);
3710        base = pvm_determine_end_from_reverse(&va, align) - end;
3711
3712        while (true) {
3713                /*
3714                 * base might have underflowed, add last_end before
3715                 * comparing.
3716                 */
3717                if (base + last_end < vmalloc_start + last_end)
3718                        goto overflow;
3719
3720                /*
3721                 * Fitting base has not been found.
3722                 */
3723                if (va == NULL)
3724                        goto overflow;
3725
3726                /*
3727                 * If required width exceeds current VA block, move
3728                 * base downwards and then recheck.
3729                 */
3730                if (base + end > va->va_end) {
3731                        base = pvm_determine_end_from_reverse(&va, align) - end;
3732                        term_area = area;
3733                        continue;
3734                }
3735
3736                /*
3737                 * If this VA does not fit, move base downwards and recheck.
3738                 */
3739                if (base + start < va->va_start) {
3740                        va = node_to_va(rb_prev(&va->rb_node));
3741                        base = pvm_determine_end_from_reverse(&va, align) - end;
3742                        term_area = area;
3743                        continue;
3744                }
3745
3746                /*
3747                 * This area fits, move on to the previous one.  If
3748                 * the previous one is the terminal one, we're done.
3749                 */
3750                area = (area + nr_vms - 1) % nr_vms;
3751                if (area == term_area)
3752                        break;
3753
3754                start = offsets[area];
3755                end = start + sizes[area];
3756                va = pvm_find_va_enclose_addr(base + end);
3757        }
3758
3759        /* we've found a fitting base, insert all va's */
3760        for (area = 0; area < nr_vms; area++) {
3761                int ret;
3762
3763                start = base + offsets[area];
3764                size = sizes[area];
3765
3766                va = pvm_find_va_enclose_addr(start);
3767                if (WARN_ON_ONCE(va == NULL))
3768                        /* It is a BUG(), but trigger recovery instead. */
3769                        goto recovery;
3770
3771                type = classify_va_fit_type(va, start, size);
3772                if (WARN_ON_ONCE(type == NOTHING_FIT))
3773                        /* It is a BUG(), but trigger recovery instead. */
3774                        goto recovery;
3775
3776                ret = adjust_va_to_fit_type(va, start, size, type);
3777                if (unlikely(ret))
3778                        goto recovery;
3779
3780                /* Allocated area. */
3781                va = vas[area];
3782                va->va_start = start;
3783                va->va_end = start + size;
3784        }
3785
3786        spin_unlock(&free_vmap_area_lock);
3787
3788        /* populate the kasan shadow space */
3789        for (area = 0; area < nr_vms; area++) {
3790                if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3791                        goto err_free_shadow;
3792
3793                kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3794                                       sizes[area]);
3795        }
3796
3797        /* insert all vm's */
3798        spin_lock(&vmap_area_lock);
3799        for (area = 0; area < nr_vms; area++) {
3800                insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3801
3802                setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3803                                 pcpu_get_vm_areas);
3804        }
3805        spin_unlock(&vmap_area_lock);
3806
3807        kfree(vas);
3808        return vms;
3809
3810recovery:
3811        /*
3812         * Remove previously allocated areas. There is no
3813         * need in removing these areas from the busy tree,
3814         * because they are inserted only on the final step
3815         * and when pcpu_get_vm_areas() is success.
3816         */
3817        while (area--) {
3818                orig_start = vas[area]->va_start;
3819                orig_end = vas[area]->va_end;
3820                va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3821                                &free_vmap_area_list);
3822                if (va)
3823                        kasan_release_vmalloc(orig_start, orig_end,
3824                                va->va_start, va->va_end);
3825                vas[area] = NULL;
3826        }
3827
3828overflow:
3829        spin_unlock(&free_vmap_area_lock);
3830        if (!purged) {
3831                purge_vmap_area_lazy();
3832                purged = true;
3833
3834                /* Before "retry", check if we recover. */
3835                for (area = 0; area < nr_vms; area++) {
3836                        if (vas[area])
3837                                continue;
3838
3839                        vas[area] = kmem_cache_zalloc(
3840                                vmap_area_cachep, GFP_KERNEL);
3841                        if (!vas[area])
3842                                goto err_free;
3843                }
3844
3845                goto retry;
3846        }
3847
3848err_free:
3849        for (area = 0; area < nr_vms; area++) {
3850                if (vas[area])
3851                        kmem_cache_free(vmap_area_cachep, vas[area]);
3852
3853                kfree(vms[area]);
3854        }
3855err_free2:
3856        kfree(vas);
3857        kfree(vms);
3858        return NULL;
3859
3860err_free_shadow:
3861        spin_lock(&free_vmap_area_lock);
3862        /*
3863         * We release all the vmalloc shadows, even the ones for regions that
3864         * hadn't been successfully added. This relies on kasan_release_vmalloc
3865         * being able to tolerate this case.
3866         */
3867        for (area = 0; area < nr_vms; area++) {
3868                orig_start = vas[area]->va_start;
3869                orig_end = vas[area]->va_end;
3870                va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3871                                &free_vmap_area_list);
3872                if (va)
3873                        kasan_release_vmalloc(orig_start, orig_end,
3874                                va->va_start, va->va_end);
3875                vas[area] = NULL;
3876                kfree(vms[area]);
3877        }
3878        spin_unlock(&free_vmap_area_lock);
3879        kfree(vas);
3880        kfree(vms);
3881        return NULL;
3882}
3883
3884/**
3885 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3886 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3887 * @nr_vms: the number of allocated areas
3888 *
3889 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3890 */
3891void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3892{
3893        int i;
3894
3895        for (i = 0; i < nr_vms; i++)
3896                free_vm_area(vms[i]);
3897        kfree(vms);
3898}
3899#endif  /* CONFIG_SMP */
3900
3901#ifdef CONFIG_PRINTK
3902bool vmalloc_dump_obj(void *object)
3903{
3904        struct vm_struct *vm;
3905        void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3906
3907        vm = find_vm_area(objp);
3908        if (!vm)
3909                return false;
3910        pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3911                vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3912        return true;
3913}
3914#endif
3915
3916#ifdef CONFIG_PROC_FS
3917static void *s_start(struct seq_file *m, loff_t *pos)
3918        __acquires(&vmap_purge_lock)
3919        __acquires(&vmap_area_lock)
3920{
3921        mutex_lock(&vmap_purge_lock);
3922        spin_lock(&vmap_area_lock);
3923
3924        return seq_list_start(&vmap_area_list, *pos);
3925}
3926
3927static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3928{
3929        return seq_list_next(p, &vmap_area_list, pos);
3930}
3931
3932static void s_stop(struct seq_file *m, void *p)
3933        __releases(&vmap_area_lock)
3934        __releases(&vmap_purge_lock)
3935{
3936        spin_unlock(&vmap_area_lock);
3937        mutex_unlock(&vmap_purge_lock);
3938}
3939
3940static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3941{
3942        if (IS_ENABLED(CONFIG_NUMA)) {
3943                unsigned int nr, *counters = m->private;
3944                unsigned int step = 1U << vm_area_page_order(v);
3945
3946                if (!counters)
3947                        return;
3948
3949                if (v->flags & VM_UNINITIALIZED)
3950                        return;
3951                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3952                smp_rmb();
3953
3954                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3955
3956                for (nr = 0; nr < v->nr_pages; nr += step)
3957                        counters[page_to_nid(v->pages[nr])] += step;
3958                for_each_node_state(nr, N_HIGH_MEMORY)
3959                        if (counters[nr])
3960                                seq_printf(m, " N%u=%u", nr, counters[nr]);
3961        }
3962}
3963
3964static void show_purge_info(struct seq_file *m)
3965{
3966        struct vmap_area *va;
3967
3968        spin_lock(&purge_vmap_area_lock);
3969        list_for_each_entry(va, &purge_vmap_area_list, list) {
3970                seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3971                        (void *)va->va_start, (void *)va->va_end,
3972                        va->va_end - va->va_start);
3973        }
3974        spin_unlock(&purge_vmap_area_lock);
3975}
3976
3977static int s_show(struct seq_file *m, void *p)
3978{
3979        struct vmap_area *va;
3980        struct vm_struct *v;
3981
3982        va = list_entry(p, struct vmap_area, list);
3983
3984        /*
3985         * s_show can encounter race with remove_vm_area, !vm on behalf
3986         * of vmap area is being tear down or vm_map_ram allocation.
3987         */
3988        if (!va->vm) {
3989                seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3990                        (void *)va->va_start, (void *)va->va_end,
3991                        va->va_end - va->va_start);
3992
3993                goto final;
3994        }
3995
3996        v = va->vm;
3997
3998        seq_printf(m, "0x%pK-0x%pK %7ld",
3999                v->addr, v->addr + v->size, v->size);
4000
4001        if (v->caller)
4002                seq_printf(m, " %pS", v->caller);
4003
4004        if (v->nr_pages)
4005                seq_printf(m, " pages=%d", v->nr_pages);
4006
4007        if (v->phys_addr)
4008                seq_printf(m, " phys=%pa", &v->phys_addr);
4009
4010        if (v->flags & VM_IOREMAP)
4011                seq_puts(m, " ioremap");
4012
4013        if (v->flags & VM_ALLOC)
4014                seq_puts(m, " vmalloc");
4015
4016        if (v->flags & VM_MAP)
4017                seq_puts(m, " vmap");
4018
4019        if (v->flags & VM_USERMAP)
4020                seq_puts(m, " user");
4021
4022        if (v->flags & VM_DMA_COHERENT)
4023                seq_puts(m, " dma-coherent");
4024
4025        if (is_vmalloc_addr(v->pages))
4026                seq_puts(m, " vpages");
4027
4028        show_numa_info(m, v);
4029        seq_putc(m, '\n');
4030
4031        /*
4032         * As a final step, dump "unpurged" areas.
4033         */
4034final:
4035        if (list_is_last(&va->list, &vmap_area_list))
4036                show_purge_info(m);
4037
4038        return 0;
4039}
4040
4041static const struct seq_operations vmalloc_op = {
4042        .start = s_start,
4043        .next = s_next,
4044        .stop = s_stop,
4045        .show = s_show,
4046};
4047
4048static int __init proc_vmalloc_init(void)
4049{
4050        if (IS_ENABLED(CONFIG_NUMA))
4051                proc_create_seq_private("vmallocinfo", 0400, NULL,
4052                                &vmalloc_op,
4053                                nr_node_ids * sizeof(unsigned int), NULL);
4054        else
4055                proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4056        return 0;
4057}
4058module_init(proc_vmalloc_init);
4059
4060#endif
4061