linux/mm/vmscan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>  /* for try_to_release_page(),
  30                                        buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/migrate.h>
  45#include <linux/delayacct.h>
  46#include <linux/sysctl.h>
  47#include <linux/oom.h>
  48#include <linux/pagevec.h>
  49#include <linux/prefetch.h>
  50#include <linux/printk.h>
  51#include <linux/dax.h>
  52#include <linux/psi.h>
  53
  54#include <asm/tlbflush.h>
  55#include <asm/div64.h>
  56
  57#include <linux/swapops.h>
  58#include <linux/balloon_compaction.h>
  59
  60#include "internal.h"
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/vmscan.h>
  64
  65struct scan_control {
  66        /* How many pages shrink_list() should reclaim */
  67        unsigned long nr_to_reclaim;
  68
  69        /*
  70         * Nodemask of nodes allowed by the caller. If NULL, all nodes
  71         * are scanned.
  72         */
  73        nodemask_t      *nodemask;
  74
  75        /*
  76         * The memory cgroup that hit its limit and as a result is the
  77         * primary target of this reclaim invocation.
  78         */
  79        struct mem_cgroup *target_mem_cgroup;
  80
  81        /*
  82         * Scan pressure balancing between anon and file LRUs
  83         */
  84        unsigned long   anon_cost;
  85        unsigned long   file_cost;
  86
  87        /* Can active pages be deactivated as part of reclaim? */
  88#define DEACTIVATE_ANON 1
  89#define DEACTIVATE_FILE 2
  90        unsigned int may_deactivate:2;
  91        unsigned int force_deactivate:1;
  92        unsigned int skipped_deactivate:1;
  93
  94        /* Writepage batching in laptop mode; RECLAIM_WRITE */
  95        unsigned int may_writepage:1;
  96
  97        /* Can mapped pages be reclaimed? */
  98        unsigned int may_unmap:1;
  99
 100        /* Can pages be swapped as part of reclaim? */
 101        unsigned int may_swap:1;
 102
 103        /*
 104         * Cgroup memory below memory.low is protected as long as we
 105         * don't threaten to OOM. If any cgroup is reclaimed at
 106         * reduced force or passed over entirely due to its memory.low
 107         * setting (memcg_low_skipped), and nothing is reclaimed as a
 108         * result, then go back for one more cycle that reclaims the protected
 109         * memory (memcg_low_reclaim) to avert OOM.
 110         */
 111        unsigned int memcg_low_reclaim:1;
 112        unsigned int memcg_low_skipped:1;
 113
 114        unsigned int hibernation_mode:1;
 115
 116        /* One of the zones is ready for compaction */
 117        unsigned int compaction_ready:1;
 118
 119        /* There is easily reclaimable cold cache in the current node */
 120        unsigned int cache_trim_mode:1;
 121
 122        /* The file pages on the current node are dangerously low */
 123        unsigned int file_is_tiny:1;
 124
 125        /* Always discard instead of demoting to lower tier memory */
 126        unsigned int no_demotion:1;
 127
 128        /* Allocation order */
 129        s8 order;
 130
 131        /* Scan (total_size >> priority) pages at once */
 132        s8 priority;
 133
 134        /* The highest zone to isolate pages for reclaim from */
 135        s8 reclaim_idx;
 136
 137        /* This context's GFP mask */
 138        gfp_t gfp_mask;
 139
 140        /* Incremented by the number of inactive pages that were scanned */
 141        unsigned long nr_scanned;
 142
 143        /* Number of pages freed so far during a call to shrink_zones() */
 144        unsigned long nr_reclaimed;
 145
 146        struct {
 147                unsigned int dirty;
 148                unsigned int unqueued_dirty;
 149                unsigned int congested;
 150                unsigned int writeback;
 151                unsigned int immediate;
 152                unsigned int file_taken;
 153                unsigned int taken;
 154        } nr;
 155
 156        /* for recording the reclaimed slab by now */
 157        struct reclaim_state reclaim_state;
 158};
 159
 160#ifdef ARCH_HAS_PREFETCHW
 161#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 162        do {                                                            \
 163                if ((_page)->lru.prev != _base) {                       \
 164                        struct page *prev;                              \
 165                                                                        \
 166                        prev = lru_to_page(&(_page->lru));              \
 167                        prefetchw(&prev->_field);                       \
 168                }                                                       \
 169        } while (0)
 170#else
 171#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 172#endif
 173
 174/*
 175 * From 0 .. 200.  Higher means more swappy.
 176 */
 177int vm_swappiness = 60;
 178
 179static void set_task_reclaim_state(struct task_struct *task,
 180                                   struct reclaim_state *rs)
 181{
 182        /* Check for an overwrite */
 183        WARN_ON_ONCE(rs && task->reclaim_state);
 184
 185        /* Check for the nulling of an already-nulled member */
 186        WARN_ON_ONCE(!rs && !task->reclaim_state);
 187
 188        task->reclaim_state = rs;
 189}
 190
 191static LIST_HEAD(shrinker_list);
 192static DECLARE_RWSEM(shrinker_rwsem);
 193
 194#ifdef CONFIG_MEMCG
 195static int shrinker_nr_max;
 196
 197/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
 198static inline int shrinker_map_size(int nr_items)
 199{
 200        return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
 201}
 202
 203static inline int shrinker_defer_size(int nr_items)
 204{
 205        return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
 206}
 207
 208static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
 209                                                     int nid)
 210{
 211        return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
 212                                         lockdep_is_held(&shrinker_rwsem));
 213}
 214
 215static int expand_one_shrinker_info(struct mem_cgroup *memcg,
 216                                    int map_size, int defer_size,
 217                                    int old_map_size, int old_defer_size)
 218{
 219        struct shrinker_info *new, *old;
 220        struct mem_cgroup_per_node *pn;
 221        int nid;
 222        int size = map_size + defer_size;
 223
 224        for_each_node(nid) {
 225                pn = memcg->nodeinfo[nid];
 226                old = shrinker_info_protected(memcg, nid);
 227                /* Not yet online memcg */
 228                if (!old)
 229                        return 0;
 230
 231                new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
 232                if (!new)
 233                        return -ENOMEM;
 234
 235                new->nr_deferred = (atomic_long_t *)(new + 1);
 236                new->map = (void *)new->nr_deferred + defer_size;
 237
 238                /* map: set all old bits, clear all new bits */
 239                memset(new->map, (int)0xff, old_map_size);
 240                memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
 241                /* nr_deferred: copy old values, clear all new values */
 242                memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
 243                memset((void *)new->nr_deferred + old_defer_size, 0,
 244                       defer_size - old_defer_size);
 245
 246                rcu_assign_pointer(pn->shrinker_info, new);
 247                kvfree_rcu(old, rcu);
 248        }
 249
 250        return 0;
 251}
 252
 253void free_shrinker_info(struct mem_cgroup *memcg)
 254{
 255        struct mem_cgroup_per_node *pn;
 256        struct shrinker_info *info;
 257        int nid;
 258
 259        for_each_node(nid) {
 260                pn = memcg->nodeinfo[nid];
 261                info = rcu_dereference_protected(pn->shrinker_info, true);
 262                kvfree(info);
 263                rcu_assign_pointer(pn->shrinker_info, NULL);
 264        }
 265}
 266
 267int alloc_shrinker_info(struct mem_cgroup *memcg)
 268{
 269        struct shrinker_info *info;
 270        int nid, size, ret = 0;
 271        int map_size, defer_size = 0;
 272
 273        down_write(&shrinker_rwsem);
 274        map_size = shrinker_map_size(shrinker_nr_max);
 275        defer_size = shrinker_defer_size(shrinker_nr_max);
 276        size = map_size + defer_size;
 277        for_each_node(nid) {
 278                info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
 279                if (!info) {
 280                        free_shrinker_info(memcg);
 281                        ret = -ENOMEM;
 282                        break;
 283                }
 284                info->nr_deferred = (atomic_long_t *)(info + 1);
 285                info->map = (void *)info->nr_deferred + defer_size;
 286                rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
 287        }
 288        up_write(&shrinker_rwsem);
 289
 290        return ret;
 291}
 292
 293static inline bool need_expand(int nr_max)
 294{
 295        return round_up(nr_max, BITS_PER_LONG) >
 296               round_up(shrinker_nr_max, BITS_PER_LONG);
 297}
 298
 299static int expand_shrinker_info(int new_id)
 300{
 301        int ret = 0;
 302        int new_nr_max = new_id + 1;
 303        int map_size, defer_size = 0;
 304        int old_map_size, old_defer_size = 0;
 305        struct mem_cgroup *memcg;
 306
 307        if (!need_expand(new_nr_max))
 308                goto out;
 309
 310        if (!root_mem_cgroup)
 311                goto out;
 312
 313        lockdep_assert_held(&shrinker_rwsem);
 314
 315        map_size = shrinker_map_size(new_nr_max);
 316        defer_size = shrinker_defer_size(new_nr_max);
 317        old_map_size = shrinker_map_size(shrinker_nr_max);
 318        old_defer_size = shrinker_defer_size(shrinker_nr_max);
 319
 320        memcg = mem_cgroup_iter(NULL, NULL, NULL);
 321        do {
 322                ret = expand_one_shrinker_info(memcg, map_size, defer_size,
 323                                               old_map_size, old_defer_size);
 324                if (ret) {
 325                        mem_cgroup_iter_break(NULL, memcg);
 326                        goto out;
 327                }
 328        } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 329out:
 330        if (!ret)
 331                shrinker_nr_max = new_nr_max;
 332
 333        return ret;
 334}
 335
 336void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 337{
 338        if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 339                struct shrinker_info *info;
 340
 341                rcu_read_lock();
 342                info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
 343                /* Pairs with smp mb in shrink_slab() */
 344                smp_mb__before_atomic();
 345                set_bit(shrinker_id, info->map);
 346                rcu_read_unlock();
 347        }
 348}
 349
 350static DEFINE_IDR(shrinker_idr);
 351
 352static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 353{
 354        int id, ret = -ENOMEM;
 355
 356        if (mem_cgroup_disabled())
 357                return -ENOSYS;
 358
 359        down_write(&shrinker_rwsem);
 360        /* This may call shrinker, so it must use down_read_trylock() */
 361        id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
 362        if (id < 0)
 363                goto unlock;
 364
 365        if (id >= shrinker_nr_max) {
 366                if (expand_shrinker_info(id)) {
 367                        idr_remove(&shrinker_idr, id);
 368                        goto unlock;
 369                }
 370        }
 371        shrinker->id = id;
 372        ret = 0;
 373unlock:
 374        up_write(&shrinker_rwsem);
 375        return ret;
 376}
 377
 378static void unregister_memcg_shrinker(struct shrinker *shrinker)
 379{
 380        int id = shrinker->id;
 381
 382        BUG_ON(id < 0);
 383
 384        lockdep_assert_held(&shrinker_rwsem);
 385
 386        idr_remove(&shrinker_idr, id);
 387}
 388
 389static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 390                                   struct mem_cgroup *memcg)
 391{
 392        struct shrinker_info *info;
 393
 394        info = shrinker_info_protected(memcg, nid);
 395        return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
 396}
 397
 398static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 399                                  struct mem_cgroup *memcg)
 400{
 401        struct shrinker_info *info;
 402
 403        info = shrinker_info_protected(memcg, nid);
 404        return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
 405}
 406
 407void reparent_shrinker_deferred(struct mem_cgroup *memcg)
 408{
 409        int i, nid;
 410        long nr;
 411        struct mem_cgroup *parent;
 412        struct shrinker_info *child_info, *parent_info;
 413
 414        parent = parent_mem_cgroup(memcg);
 415        if (!parent)
 416                parent = root_mem_cgroup;
 417
 418        /* Prevent from concurrent shrinker_info expand */
 419        down_read(&shrinker_rwsem);
 420        for_each_node(nid) {
 421                child_info = shrinker_info_protected(memcg, nid);
 422                parent_info = shrinker_info_protected(parent, nid);
 423                for (i = 0; i < shrinker_nr_max; i++) {
 424                        nr = atomic_long_read(&child_info->nr_deferred[i]);
 425                        atomic_long_add(nr, &parent_info->nr_deferred[i]);
 426                }
 427        }
 428        up_read(&shrinker_rwsem);
 429}
 430
 431static bool cgroup_reclaim(struct scan_control *sc)
 432{
 433        return sc->target_mem_cgroup;
 434}
 435
 436/**
 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 438 * @sc: scan_control in question
 439 *
 440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 441 * completely broken with the legacy memcg and direct stalling in
 442 * shrink_page_list() is used for throttling instead, which lacks all the
 443 * niceties such as fairness, adaptive pausing, bandwidth proportional
 444 * allocation and configurability.
 445 *
 446 * This function tests whether the vmscan currently in progress can assume
 447 * that the normal dirty throttling mechanism is operational.
 448 */
 449static bool writeback_throttling_sane(struct scan_control *sc)
 450{
 451        if (!cgroup_reclaim(sc))
 452                return true;
 453#ifdef CONFIG_CGROUP_WRITEBACK
 454        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 455                return true;
 456#endif
 457        return false;
 458}
 459#else
 460static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 461{
 462        return -ENOSYS;
 463}
 464
 465static void unregister_memcg_shrinker(struct shrinker *shrinker)
 466{
 467}
 468
 469static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 470                                   struct mem_cgroup *memcg)
 471{
 472        return 0;
 473}
 474
 475static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 476                                  struct mem_cgroup *memcg)
 477{
 478        return 0;
 479}
 480
 481static bool cgroup_reclaim(struct scan_control *sc)
 482{
 483        return false;
 484}
 485
 486static bool writeback_throttling_sane(struct scan_control *sc)
 487{
 488        return true;
 489}
 490#endif
 491
 492static long xchg_nr_deferred(struct shrinker *shrinker,
 493                             struct shrink_control *sc)
 494{
 495        int nid = sc->nid;
 496
 497        if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 498                nid = 0;
 499
 500        if (sc->memcg &&
 501            (shrinker->flags & SHRINKER_MEMCG_AWARE))
 502                return xchg_nr_deferred_memcg(nid, shrinker,
 503                                              sc->memcg);
 504
 505        return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 506}
 507
 508
 509static long add_nr_deferred(long nr, struct shrinker *shrinker,
 510                            struct shrink_control *sc)
 511{
 512        int nid = sc->nid;
 513
 514        if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 515                nid = 0;
 516
 517        if (sc->memcg &&
 518            (shrinker->flags & SHRINKER_MEMCG_AWARE))
 519                return add_nr_deferred_memcg(nr, nid, shrinker,
 520                                             sc->memcg);
 521
 522        return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
 523}
 524
 525static bool can_demote(int nid, struct scan_control *sc)
 526{
 527        if (!numa_demotion_enabled)
 528                return false;
 529        if (sc) {
 530                if (sc->no_demotion)
 531                        return false;
 532                /* It is pointless to do demotion in memcg reclaim */
 533                if (cgroup_reclaim(sc))
 534                        return false;
 535        }
 536        if (next_demotion_node(nid) == NUMA_NO_NODE)
 537                return false;
 538
 539        return true;
 540}
 541
 542static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
 543                                          int nid,
 544                                          struct scan_control *sc)
 545{
 546        if (memcg == NULL) {
 547                /*
 548                 * For non-memcg reclaim, is there
 549                 * space in any swap device?
 550                 */
 551                if (get_nr_swap_pages() > 0)
 552                        return true;
 553        } else {
 554                /* Is the memcg below its swap limit? */
 555                if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
 556                        return true;
 557        }
 558
 559        /*
 560         * The page can not be swapped.
 561         *
 562         * Can it be reclaimed from this node via demotion?
 563         */
 564        return can_demote(nid, sc);
 565}
 566
 567/*
 568 * This misses isolated pages which are not accounted for to save counters.
 569 * As the data only determines if reclaim or compaction continues, it is
 570 * not expected that isolated pages will be a dominating factor.
 571 */
 572unsigned long zone_reclaimable_pages(struct zone *zone)
 573{
 574        unsigned long nr;
 575
 576        nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 577                zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 578        if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
 579                nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 580                        zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 581
 582        return nr;
 583}
 584
 585/**
 586 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 587 * @lruvec: lru vector
 588 * @lru: lru to use
 589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 590 */
 591static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 592                                     int zone_idx)
 593{
 594        unsigned long size = 0;
 595        int zid;
 596
 597        for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
 598                struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 599
 600                if (!managed_zone(zone))
 601                        continue;
 602
 603                if (!mem_cgroup_disabled())
 604                        size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 605                else
 606                        size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 607        }
 608        return size;
 609}
 610
 611/*
 612 * Add a shrinker callback to be called from the vm.
 613 */
 614int prealloc_shrinker(struct shrinker *shrinker)
 615{
 616        unsigned int size;
 617        int err;
 618
 619        if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 620                err = prealloc_memcg_shrinker(shrinker);
 621                if (err != -ENOSYS)
 622                        return err;
 623
 624                shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
 625        }
 626
 627        size = sizeof(*shrinker->nr_deferred);
 628        if (shrinker->flags & SHRINKER_NUMA_AWARE)
 629                size *= nr_node_ids;
 630
 631        shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 632        if (!shrinker->nr_deferred)
 633                return -ENOMEM;
 634
 635        return 0;
 636}
 637
 638void free_prealloced_shrinker(struct shrinker *shrinker)
 639{
 640        if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 641                down_write(&shrinker_rwsem);
 642                unregister_memcg_shrinker(shrinker);
 643                up_write(&shrinker_rwsem);
 644                return;
 645        }
 646
 647        kfree(shrinker->nr_deferred);
 648        shrinker->nr_deferred = NULL;
 649}
 650
 651void register_shrinker_prepared(struct shrinker *shrinker)
 652{
 653        down_write(&shrinker_rwsem);
 654        list_add_tail(&shrinker->list, &shrinker_list);
 655        shrinker->flags |= SHRINKER_REGISTERED;
 656        up_write(&shrinker_rwsem);
 657}
 658
 659int register_shrinker(struct shrinker *shrinker)
 660{
 661        int err = prealloc_shrinker(shrinker);
 662
 663        if (err)
 664                return err;
 665        register_shrinker_prepared(shrinker);
 666        return 0;
 667}
 668EXPORT_SYMBOL(register_shrinker);
 669
 670/*
 671 * Remove one
 672 */
 673void unregister_shrinker(struct shrinker *shrinker)
 674{
 675        if (!(shrinker->flags & SHRINKER_REGISTERED))
 676                return;
 677
 678        down_write(&shrinker_rwsem);
 679        list_del(&shrinker->list);
 680        shrinker->flags &= ~SHRINKER_REGISTERED;
 681        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 682                unregister_memcg_shrinker(shrinker);
 683        up_write(&shrinker_rwsem);
 684
 685        kfree(shrinker->nr_deferred);
 686        shrinker->nr_deferred = NULL;
 687}
 688EXPORT_SYMBOL(unregister_shrinker);
 689
 690/**
 691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
 692 *
 693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
 694 * but atomically and with less overhead. This is useful to guarantee that all
 695 * shrinker invocations have seen an update, before freeing memory, similar to
 696 * rcu.
 697 */
 698void synchronize_shrinkers(void)
 699{
 700        down_write(&shrinker_rwsem);
 701        up_write(&shrinker_rwsem);
 702}
 703EXPORT_SYMBOL(synchronize_shrinkers);
 704
 705#define SHRINK_BATCH 128
 706
 707static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 708                                    struct shrinker *shrinker, int priority)
 709{
 710        unsigned long freed = 0;
 711        unsigned long long delta;
 712        long total_scan;
 713        long freeable;
 714        long nr;
 715        long new_nr;
 716        long batch_size = shrinker->batch ? shrinker->batch
 717                                          : SHRINK_BATCH;
 718        long scanned = 0, next_deferred;
 719
 720        freeable = shrinker->count_objects(shrinker, shrinkctl);
 721        if (freeable == 0 || freeable == SHRINK_EMPTY)
 722                return freeable;
 723
 724        /*
 725         * copy the current shrinker scan count into a local variable
 726         * and zero it so that other concurrent shrinker invocations
 727         * don't also do this scanning work.
 728         */
 729        nr = xchg_nr_deferred(shrinker, shrinkctl);
 730
 731        if (shrinker->seeks) {
 732                delta = freeable >> priority;
 733                delta *= 4;
 734                do_div(delta, shrinker->seeks);
 735        } else {
 736                /*
 737                 * These objects don't require any IO to create. Trim
 738                 * them aggressively under memory pressure to keep
 739                 * them from causing refetches in the IO caches.
 740                 */
 741                delta = freeable / 2;
 742        }
 743
 744        total_scan = nr >> priority;
 745        total_scan += delta;
 746        total_scan = min(total_scan, (2 * freeable));
 747
 748        trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 749                                   freeable, delta, total_scan, priority);
 750
 751        /*
 752         * Normally, we should not scan less than batch_size objects in one
 753         * pass to avoid too frequent shrinker calls, but if the slab has less
 754         * than batch_size objects in total and we are really tight on memory,
 755         * we will try to reclaim all available objects, otherwise we can end
 756         * up failing allocations although there are plenty of reclaimable
 757         * objects spread over several slabs with usage less than the
 758         * batch_size.
 759         *
 760         * We detect the "tight on memory" situations by looking at the total
 761         * number of objects we want to scan (total_scan). If it is greater
 762         * than the total number of objects on slab (freeable), we must be
 763         * scanning at high prio and therefore should try to reclaim as much as
 764         * possible.
 765         */
 766        while (total_scan >= batch_size ||
 767               total_scan >= freeable) {
 768                unsigned long ret;
 769                unsigned long nr_to_scan = min(batch_size, total_scan);
 770
 771                shrinkctl->nr_to_scan = nr_to_scan;
 772                shrinkctl->nr_scanned = nr_to_scan;
 773                ret = shrinker->scan_objects(shrinker, shrinkctl);
 774                if (ret == SHRINK_STOP)
 775                        break;
 776                freed += ret;
 777
 778                count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 779                total_scan -= shrinkctl->nr_scanned;
 780                scanned += shrinkctl->nr_scanned;
 781
 782                cond_resched();
 783        }
 784
 785        /*
 786         * The deferred work is increased by any new work (delta) that wasn't
 787         * done, decreased by old deferred work that was done now.
 788         *
 789         * And it is capped to two times of the freeable items.
 790         */
 791        next_deferred = max_t(long, (nr + delta - scanned), 0);
 792        next_deferred = min(next_deferred, (2 * freeable));
 793
 794        /*
 795         * move the unused scan count back into the shrinker in a
 796         * manner that handles concurrent updates.
 797         */
 798        new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
 799
 800        trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
 801        return freed;
 802}
 803
 804#ifdef CONFIG_MEMCG
 805static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 806                        struct mem_cgroup *memcg, int priority)
 807{
 808        struct shrinker_info *info;
 809        unsigned long ret, freed = 0;
 810        int i;
 811
 812        if (!mem_cgroup_online(memcg))
 813                return 0;
 814
 815        if (!down_read_trylock(&shrinker_rwsem))
 816                return 0;
 817
 818        info = shrinker_info_protected(memcg, nid);
 819        if (unlikely(!info))
 820                goto unlock;
 821
 822        for_each_set_bit(i, info->map, shrinker_nr_max) {
 823                struct shrink_control sc = {
 824                        .gfp_mask = gfp_mask,
 825                        .nid = nid,
 826                        .memcg = memcg,
 827                };
 828                struct shrinker *shrinker;
 829
 830                shrinker = idr_find(&shrinker_idr, i);
 831                if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
 832                        if (!shrinker)
 833                                clear_bit(i, info->map);
 834                        continue;
 835                }
 836
 837                /* Call non-slab shrinkers even though kmem is disabled */
 838                if (!memcg_kmem_enabled() &&
 839                    !(shrinker->flags & SHRINKER_NONSLAB))
 840                        continue;
 841
 842                ret = do_shrink_slab(&sc, shrinker, priority);
 843                if (ret == SHRINK_EMPTY) {
 844                        clear_bit(i, info->map);
 845                        /*
 846                         * After the shrinker reported that it had no objects to
 847                         * free, but before we cleared the corresponding bit in
 848                         * the memcg shrinker map, a new object might have been
 849                         * added. To make sure, we have the bit set in this
 850                         * case, we invoke the shrinker one more time and reset
 851                         * the bit if it reports that it is not empty anymore.
 852                         * The memory barrier here pairs with the barrier in
 853                         * set_shrinker_bit():
 854                         *
 855                         * list_lru_add()     shrink_slab_memcg()
 856                         *   list_add_tail()    clear_bit()
 857                         *   <MB>               <MB>
 858                         *   set_bit()          do_shrink_slab()
 859                         */
 860                        smp_mb__after_atomic();
 861                        ret = do_shrink_slab(&sc, shrinker, priority);
 862                        if (ret == SHRINK_EMPTY)
 863                                ret = 0;
 864                        else
 865                                set_shrinker_bit(memcg, nid, i);
 866                }
 867                freed += ret;
 868
 869                if (rwsem_is_contended(&shrinker_rwsem)) {
 870                        freed = freed ? : 1;
 871                        break;
 872                }
 873        }
 874unlock:
 875        up_read(&shrinker_rwsem);
 876        return freed;
 877}
 878#else /* CONFIG_MEMCG */
 879static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 880                        struct mem_cgroup *memcg, int priority)
 881{
 882        return 0;
 883}
 884#endif /* CONFIG_MEMCG */
 885
 886/**
 887 * shrink_slab - shrink slab caches
 888 * @gfp_mask: allocation context
 889 * @nid: node whose slab caches to target
 890 * @memcg: memory cgroup whose slab caches to target
 891 * @priority: the reclaim priority
 892 *
 893 * Call the shrink functions to age shrinkable caches.
 894 *
 895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 896 * unaware shrinkers will receive a node id of 0 instead.
 897 *
 898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 899 * are called only if it is the root cgroup.
 900 *
 901 * @priority is sc->priority, we take the number of objects and >> by priority
 902 * in order to get the scan target.
 903 *
 904 * Returns the number of reclaimed slab objects.
 905 */
 906static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 907                                 struct mem_cgroup *memcg,
 908                                 int priority)
 909{
 910        unsigned long ret, freed = 0;
 911        struct shrinker *shrinker;
 912
 913        /*
 914         * The root memcg might be allocated even though memcg is disabled
 915         * via "cgroup_disable=memory" boot parameter.  This could make
 916         * mem_cgroup_is_root() return false, then just run memcg slab
 917         * shrink, but skip global shrink.  This may result in premature
 918         * oom.
 919         */
 920        if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 921                return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 922
 923        if (!down_read_trylock(&shrinker_rwsem))
 924                goto out;
 925
 926        list_for_each_entry(shrinker, &shrinker_list, list) {
 927                struct shrink_control sc = {
 928                        .gfp_mask = gfp_mask,
 929                        .nid = nid,
 930                        .memcg = memcg,
 931                };
 932
 933                ret = do_shrink_slab(&sc, shrinker, priority);
 934                if (ret == SHRINK_EMPTY)
 935                        ret = 0;
 936                freed += ret;
 937                /*
 938                 * Bail out if someone want to register a new shrinker to
 939                 * prevent the registration from being stalled for long periods
 940                 * by parallel ongoing shrinking.
 941                 */
 942                if (rwsem_is_contended(&shrinker_rwsem)) {
 943                        freed = freed ? : 1;
 944                        break;
 945                }
 946        }
 947
 948        up_read(&shrinker_rwsem);
 949out:
 950        cond_resched();
 951        return freed;
 952}
 953
 954static void drop_slab_node(int nid)
 955{
 956        unsigned long freed;
 957        int shift = 0;
 958
 959        do {
 960                struct mem_cgroup *memcg = NULL;
 961
 962                if (fatal_signal_pending(current))
 963                        return;
 964
 965                freed = 0;
 966                memcg = mem_cgroup_iter(NULL, NULL, NULL);
 967                do {
 968                        freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 969                } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 970        } while ((freed >> shift++) > 1);
 971}
 972
 973void drop_slab(void)
 974{
 975        int nid;
 976
 977        for_each_online_node(nid)
 978                drop_slab_node(nid);
 979}
 980
 981static inline int is_page_cache_freeable(struct page *page)
 982{
 983        /*
 984         * A freeable page cache page is referenced only by the caller
 985         * that isolated the page, the page cache and optional buffer
 986         * heads at page->private.
 987         */
 988        int page_cache_pins = thp_nr_pages(page);
 989        return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 990}
 991
 992static int may_write_to_inode(struct inode *inode)
 993{
 994        if (current->flags & PF_SWAPWRITE)
 995                return 1;
 996        if (!inode_write_congested(inode))
 997                return 1;
 998        if (inode_to_bdi(inode) == current->backing_dev_info)
 999                return 1;
1000        return 0;
1001}
1002
1003/*
1004 * We detected a synchronous write error writing a page out.  Probably
1005 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1006 * fsync(), msync() or close().
1007 *
1008 * The tricky part is that after writepage we cannot touch the mapping: nothing
1009 * prevents it from being freed up.  But we have a ref on the page and once
1010 * that page is locked, the mapping is pinned.
1011 *
1012 * We're allowed to run sleeping lock_page() here because we know the caller has
1013 * __GFP_FS.
1014 */
1015static void handle_write_error(struct address_space *mapping,
1016                                struct page *page, int error)
1017{
1018        lock_page(page);
1019        if (page_mapping(page) == mapping)
1020                mapping_set_error(mapping, error);
1021        unlock_page(page);
1022}
1023
1024static bool skip_throttle_noprogress(pg_data_t *pgdat)
1025{
1026        int reclaimable = 0, write_pending = 0;
1027        int i;
1028
1029        /*
1030         * If kswapd is disabled, reschedule if necessary but do not
1031         * throttle as the system is likely near OOM.
1032         */
1033        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1034                return true;
1035
1036        /*
1037         * If there are a lot of dirty/writeback pages then do not
1038         * throttle as throttling will occur when the pages cycle
1039         * towards the end of the LRU if still under writeback.
1040         */
1041        for (i = 0; i < MAX_NR_ZONES; i++) {
1042                struct zone *zone = pgdat->node_zones + i;
1043
1044                if (!populated_zone(zone))
1045                        continue;
1046
1047                reclaimable += zone_reclaimable_pages(zone);
1048                write_pending += zone_page_state_snapshot(zone,
1049                                                  NR_ZONE_WRITE_PENDING);
1050        }
1051        if (2 * write_pending <= reclaimable)
1052                return true;
1053
1054        return false;
1055}
1056
1057void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1058{
1059        wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1060        long timeout, ret;
1061        DEFINE_WAIT(wait);
1062
1063        /*
1064         * Do not throttle IO workers, kthreads other than kswapd or
1065         * workqueues. They may be required for reclaim to make
1066         * forward progress (e.g. journalling workqueues or kthreads).
1067         */
1068        if (!current_is_kswapd() &&
1069            current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1070                cond_resched();
1071                return;
1072        }
1073
1074        /*
1075         * These figures are pulled out of thin air.
1076         * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1077         * parallel reclaimers which is a short-lived event so the timeout is
1078         * short. Failing to make progress or waiting on writeback are
1079         * potentially long-lived events so use a longer timeout. This is shaky
1080         * logic as a failure to make progress could be due to anything from
1081         * writeback to a slow device to excessive references pages at the tail
1082         * of the inactive LRU.
1083         */
1084        switch(reason) {
1085        case VMSCAN_THROTTLE_WRITEBACK:
1086                timeout = HZ/10;
1087
1088                if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1089                        WRITE_ONCE(pgdat->nr_reclaim_start,
1090                                node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1091                }
1092
1093                break;
1094        case VMSCAN_THROTTLE_CONGESTED:
1095                fallthrough;
1096        case VMSCAN_THROTTLE_NOPROGRESS:
1097                if (skip_throttle_noprogress(pgdat)) {
1098                        cond_resched();
1099                        return;
1100                }
1101
1102                timeout = 1;
1103
1104                break;
1105        case VMSCAN_THROTTLE_ISOLATED:
1106                timeout = HZ/50;
1107                break;
1108        default:
1109                WARN_ON_ONCE(1);
1110                timeout = HZ;
1111                break;
1112        }
1113
1114        prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1115        ret = schedule_timeout(timeout);
1116        finish_wait(wqh, &wait);
1117
1118        if (reason == VMSCAN_THROTTLE_WRITEBACK)
1119                atomic_dec(&pgdat->nr_writeback_throttled);
1120
1121        trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1122                                jiffies_to_usecs(timeout - ret),
1123                                reason);
1124}
1125
1126/*
1127 * Account for pages written if tasks are throttled waiting on dirty
1128 * pages to clean. If enough pages have been cleaned since throttling
1129 * started then wakeup the throttled tasks.
1130 */
1131void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1132                                                        int nr_throttled)
1133{
1134        unsigned long nr_written;
1135
1136        node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1137
1138        /*
1139         * This is an inaccurate read as the per-cpu deltas may not
1140         * be synchronised. However, given that the system is
1141         * writeback throttled, it is not worth taking the penalty
1142         * of getting an accurate count. At worst, the throttle
1143         * timeout guarantees forward progress.
1144         */
1145        nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1146                READ_ONCE(pgdat->nr_reclaim_start);
1147
1148        if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1149                wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1150}
1151
1152/* possible outcome of pageout() */
1153typedef enum {
1154        /* failed to write page out, page is locked */
1155        PAGE_KEEP,
1156        /* move page to the active list, page is locked */
1157        PAGE_ACTIVATE,
1158        /* page has been sent to the disk successfully, page is unlocked */
1159        PAGE_SUCCESS,
1160        /* page is clean and locked */
1161        PAGE_CLEAN,
1162} pageout_t;
1163
1164/*
1165 * pageout is called by shrink_page_list() for each dirty page.
1166 * Calls ->writepage().
1167 */
1168static pageout_t pageout(struct page *page, struct address_space *mapping)
1169{
1170        /*
1171         * If the page is dirty, only perform writeback if that write
1172         * will be non-blocking.  To prevent this allocation from being
1173         * stalled by pagecache activity.  But note that there may be
1174         * stalls if we need to run get_block().  We could test
1175         * PagePrivate for that.
1176         *
1177         * If this process is currently in __generic_file_write_iter() against
1178         * this page's queue, we can perform writeback even if that
1179         * will block.
1180         *
1181         * If the page is swapcache, write it back even if that would
1182         * block, for some throttling. This happens by accident, because
1183         * swap_backing_dev_info is bust: it doesn't reflect the
1184         * congestion state of the swapdevs.  Easy to fix, if needed.
1185         */
1186        if (!is_page_cache_freeable(page))
1187                return PAGE_KEEP;
1188        if (!mapping) {
1189                /*
1190                 * Some data journaling orphaned pages can have
1191                 * page->mapping == NULL while being dirty with clean buffers.
1192                 */
1193                if (page_has_private(page)) {
1194                        if (try_to_free_buffers(page)) {
1195                                ClearPageDirty(page);
1196                                pr_info("%s: orphaned page\n", __func__);
1197                                return PAGE_CLEAN;
1198                        }
1199                }
1200                return PAGE_KEEP;
1201        }
1202        if (mapping->a_ops->writepage == NULL)
1203                return PAGE_ACTIVATE;
1204        if (!may_write_to_inode(mapping->host))
1205                return PAGE_KEEP;
1206
1207        if (clear_page_dirty_for_io(page)) {
1208                int res;
1209                struct writeback_control wbc = {
1210                        .sync_mode = WB_SYNC_NONE,
1211                        .nr_to_write = SWAP_CLUSTER_MAX,
1212                        .range_start = 0,
1213                        .range_end = LLONG_MAX,
1214                        .for_reclaim = 1,
1215                };
1216
1217                SetPageReclaim(page);
1218                res = mapping->a_ops->writepage(page, &wbc);
1219                if (res < 0)
1220                        handle_write_error(mapping, page, res);
1221                if (res == AOP_WRITEPAGE_ACTIVATE) {
1222                        ClearPageReclaim(page);
1223                        return PAGE_ACTIVATE;
1224                }
1225
1226                if (!PageWriteback(page)) {
1227                        /* synchronous write or broken a_ops? */
1228                        ClearPageReclaim(page);
1229                }
1230                trace_mm_vmscan_writepage(page);
1231                inc_node_page_state(page, NR_VMSCAN_WRITE);
1232                return PAGE_SUCCESS;
1233        }
1234
1235        return PAGE_CLEAN;
1236}
1237
1238/*
1239 * Same as remove_mapping, but if the page is removed from the mapping, it
1240 * gets returned with a refcount of 0.
1241 */
1242static int __remove_mapping(struct address_space *mapping, struct page *page,
1243                            bool reclaimed, struct mem_cgroup *target_memcg)
1244{
1245        int refcount;
1246        void *shadow = NULL;
1247
1248        BUG_ON(!PageLocked(page));
1249        BUG_ON(mapping != page_mapping(page));
1250
1251        if (!PageSwapCache(page))
1252                spin_lock(&mapping->host->i_lock);
1253        xa_lock_irq(&mapping->i_pages);
1254        /*
1255         * The non racy check for a busy page.
1256         *
1257         * Must be careful with the order of the tests. When someone has
1258         * a ref to the page, it may be possible that they dirty it then
1259         * drop the reference. So if PageDirty is tested before page_count
1260         * here, then the following race may occur:
1261         *
1262         * get_user_pages(&page);
1263         * [user mapping goes away]
1264         * write_to(page);
1265         *                              !PageDirty(page)    [good]
1266         * SetPageDirty(page);
1267         * put_page(page);
1268         *                              !page_count(page)   [good, discard it]
1269         *
1270         * [oops, our write_to data is lost]
1271         *
1272         * Reversing the order of the tests ensures such a situation cannot
1273         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1274         * load is not satisfied before that of page->_refcount.
1275         *
1276         * Note that if SetPageDirty is always performed via set_page_dirty,
1277         * and thus under the i_pages lock, then this ordering is not required.
1278         */
1279        refcount = 1 + compound_nr(page);
1280        if (!page_ref_freeze(page, refcount))
1281                goto cannot_free;
1282        /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1283        if (unlikely(PageDirty(page))) {
1284                page_ref_unfreeze(page, refcount);
1285                goto cannot_free;
1286        }
1287
1288        if (PageSwapCache(page)) {
1289                swp_entry_t swap = { .val = page_private(page) };
1290                mem_cgroup_swapout(page, swap);
1291                if (reclaimed && !mapping_exiting(mapping))
1292                        shadow = workingset_eviction(page, target_memcg);
1293                __delete_from_swap_cache(page, swap, shadow);
1294                xa_unlock_irq(&mapping->i_pages);
1295                put_swap_page(page, swap);
1296        } else {
1297                void (*freepage)(struct page *);
1298
1299                freepage = mapping->a_ops->freepage;
1300                /*
1301                 * Remember a shadow entry for reclaimed file cache in
1302                 * order to detect refaults, thus thrashing, later on.
1303                 *
1304                 * But don't store shadows in an address space that is
1305                 * already exiting.  This is not just an optimization,
1306                 * inode reclaim needs to empty out the radix tree or
1307                 * the nodes are lost.  Don't plant shadows behind its
1308                 * back.
1309                 *
1310                 * We also don't store shadows for DAX mappings because the
1311                 * only page cache pages found in these are zero pages
1312                 * covering holes, and because we don't want to mix DAX
1313                 * exceptional entries and shadow exceptional entries in the
1314                 * same address_space.
1315                 */
1316                if (reclaimed && page_is_file_lru(page) &&
1317                    !mapping_exiting(mapping) && !dax_mapping(mapping))
1318                        shadow = workingset_eviction(page, target_memcg);
1319                __delete_from_page_cache(page, shadow);
1320                xa_unlock_irq(&mapping->i_pages);
1321                if (mapping_shrinkable(mapping))
1322                        inode_add_lru(mapping->host);
1323                spin_unlock(&mapping->host->i_lock);
1324
1325                if (freepage != NULL)
1326                        freepage(page);
1327        }
1328
1329        return 1;
1330
1331cannot_free:
1332        xa_unlock_irq(&mapping->i_pages);
1333        if (!PageSwapCache(page))
1334                spin_unlock(&mapping->host->i_lock);
1335        return 0;
1336}
1337
1338/*
1339 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1340 * someone else has a ref on the page, abort and return 0.  If it was
1341 * successfully detached, return 1.  Assumes the caller has a single ref on
1342 * this page.
1343 */
1344int remove_mapping(struct address_space *mapping, struct page *page)
1345{
1346        if (__remove_mapping(mapping, page, false, NULL)) {
1347                /*
1348                 * Unfreezing the refcount with 1 rather than 2 effectively
1349                 * drops the pagecache ref for us without requiring another
1350                 * atomic operation.
1351                 */
1352                page_ref_unfreeze(page, 1);
1353                return 1;
1354        }
1355        return 0;
1356}
1357
1358/**
1359 * putback_lru_page - put previously isolated page onto appropriate LRU list
1360 * @page: page to be put back to appropriate lru list
1361 *
1362 * Add previously isolated @page to appropriate LRU list.
1363 * Page may still be unevictable for other reasons.
1364 *
1365 * lru_lock must not be held, interrupts must be enabled.
1366 */
1367void putback_lru_page(struct page *page)
1368{
1369        lru_cache_add(page);
1370        put_page(page);         /* drop ref from isolate */
1371}
1372
1373enum page_references {
1374        PAGEREF_RECLAIM,
1375        PAGEREF_RECLAIM_CLEAN,
1376        PAGEREF_KEEP,
1377        PAGEREF_ACTIVATE,
1378};
1379
1380static enum page_references page_check_references(struct page *page,
1381                                                  struct scan_control *sc)
1382{
1383        int referenced_ptes, referenced_page;
1384        unsigned long vm_flags;
1385
1386        referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1387                                          &vm_flags);
1388        referenced_page = TestClearPageReferenced(page);
1389
1390        /*
1391         * Mlock lost the isolation race with us.  Let try_to_unmap()
1392         * move the page to the unevictable list.
1393         */
1394        if (vm_flags & VM_LOCKED)
1395                return PAGEREF_RECLAIM;
1396
1397        if (referenced_ptes) {
1398                /*
1399                 * All mapped pages start out with page table
1400                 * references from the instantiating fault, so we need
1401                 * to look twice if a mapped file page is used more
1402                 * than once.
1403                 *
1404                 * Mark it and spare it for another trip around the
1405                 * inactive list.  Another page table reference will
1406                 * lead to its activation.
1407                 *
1408                 * Note: the mark is set for activated pages as well
1409                 * so that recently deactivated but used pages are
1410                 * quickly recovered.
1411                 */
1412                SetPageReferenced(page);
1413
1414                if (referenced_page || referenced_ptes > 1)
1415                        return PAGEREF_ACTIVATE;
1416
1417                /*
1418                 * Activate file-backed executable pages after first usage.
1419                 */
1420                if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1421                        return PAGEREF_ACTIVATE;
1422
1423                return PAGEREF_KEEP;
1424        }
1425
1426        /* Reclaim if clean, defer dirty pages to writeback */
1427        if (referenced_page && !PageSwapBacked(page))
1428                return PAGEREF_RECLAIM_CLEAN;
1429
1430        return PAGEREF_RECLAIM;
1431}
1432
1433/* Check if a page is dirty or under writeback */
1434static void page_check_dirty_writeback(struct page *page,
1435                                       bool *dirty, bool *writeback)
1436{
1437        struct address_space *mapping;
1438
1439        /*
1440         * Anonymous pages are not handled by flushers and must be written
1441         * from reclaim context. Do not stall reclaim based on them
1442         */
1443        if (!page_is_file_lru(page) ||
1444            (PageAnon(page) && !PageSwapBacked(page))) {
1445                *dirty = false;
1446                *writeback = false;
1447                return;
1448        }
1449
1450        /* By default assume that the page flags are accurate */
1451        *dirty = PageDirty(page);
1452        *writeback = PageWriteback(page);
1453
1454        /* Verify dirty/writeback state if the filesystem supports it */
1455        if (!page_has_private(page))
1456                return;
1457
1458        mapping = page_mapping(page);
1459        if (mapping && mapping->a_ops->is_dirty_writeback)
1460                mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1461}
1462
1463static struct page *alloc_demote_page(struct page *page, unsigned long node)
1464{
1465        struct migration_target_control mtc = {
1466                /*
1467                 * Allocate from 'node', or fail quickly and quietly.
1468                 * When this happens, 'page' will likely just be discarded
1469                 * instead of migrated.
1470                 */
1471                .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1472                            __GFP_THISNODE  | __GFP_NOWARN |
1473                            __GFP_NOMEMALLOC | GFP_NOWAIT,
1474                .nid = node
1475        };
1476
1477        return alloc_migration_target(page, (unsigned long)&mtc);
1478}
1479
1480/*
1481 * Take pages on @demote_list and attempt to demote them to
1482 * another node.  Pages which are not demoted are left on
1483 * @demote_pages.
1484 */
1485static unsigned int demote_page_list(struct list_head *demote_pages,
1486                                     struct pglist_data *pgdat)
1487{
1488        int target_nid = next_demotion_node(pgdat->node_id);
1489        unsigned int nr_succeeded;
1490
1491        if (list_empty(demote_pages))
1492                return 0;
1493
1494        if (target_nid == NUMA_NO_NODE)
1495                return 0;
1496
1497        /* Demotion ignores all cpuset and mempolicy settings */
1498        migrate_pages(demote_pages, alloc_demote_page, NULL,
1499                            target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1500                            &nr_succeeded);
1501
1502        if (current_is_kswapd())
1503                __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1504        else
1505                __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1506
1507        return nr_succeeded;
1508}
1509
1510/*
1511 * shrink_page_list() returns the number of reclaimed pages
1512 */
1513static unsigned int shrink_page_list(struct list_head *page_list,
1514                                     struct pglist_data *pgdat,
1515                                     struct scan_control *sc,
1516                                     struct reclaim_stat *stat,
1517                                     bool ignore_references)
1518{
1519        LIST_HEAD(ret_pages);
1520        LIST_HEAD(free_pages);
1521        LIST_HEAD(demote_pages);
1522        unsigned int nr_reclaimed = 0;
1523        unsigned int pgactivate = 0;
1524        bool do_demote_pass;
1525
1526        memset(stat, 0, sizeof(*stat));
1527        cond_resched();
1528        do_demote_pass = can_demote(pgdat->node_id, sc);
1529
1530retry:
1531        while (!list_empty(page_list)) {
1532                struct address_space *mapping;
1533                struct page *page;
1534                enum page_references references = PAGEREF_RECLAIM;
1535                bool dirty, writeback, may_enter_fs;
1536                unsigned int nr_pages;
1537
1538                cond_resched();
1539
1540                page = lru_to_page(page_list);
1541                list_del(&page->lru);
1542
1543                if (!trylock_page(page))
1544                        goto keep;
1545
1546                VM_BUG_ON_PAGE(PageActive(page), page);
1547
1548                nr_pages = compound_nr(page);
1549
1550                /* Account the number of base pages even though THP */
1551                sc->nr_scanned += nr_pages;
1552
1553                if (unlikely(!page_evictable(page)))
1554                        goto activate_locked;
1555
1556                if (!sc->may_unmap && page_mapped(page))
1557                        goto keep_locked;
1558
1559                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1560                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1561
1562                /*
1563                 * The number of dirty pages determines if a node is marked
1564                 * reclaim_congested. kswapd will stall and start writing
1565                 * pages if the tail of the LRU is all dirty unqueued pages.
1566                 */
1567                page_check_dirty_writeback(page, &dirty, &writeback);
1568                if (dirty || writeback)
1569                        stat->nr_dirty++;
1570
1571                if (dirty && !writeback)
1572                        stat->nr_unqueued_dirty++;
1573
1574                /*
1575                 * Treat this page as congested if the underlying BDI is or if
1576                 * pages are cycling through the LRU so quickly that the
1577                 * pages marked for immediate reclaim are making it to the
1578                 * end of the LRU a second time.
1579                 */
1580                mapping = page_mapping(page);
1581                if (((dirty || writeback) && mapping &&
1582                     inode_write_congested(mapping->host)) ||
1583                    (writeback && PageReclaim(page)))
1584                        stat->nr_congested++;
1585
1586                /*
1587                 * If a page at the tail of the LRU is under writeback, there
1588                 * are three cases to consider.
1589                 *
1590                 * 1) If reclaim is encountering an excessive number of pages
1591                 *    under writeback and this page is both under writeback and
1592                 *    PageReclaim then it indicates that pages are being queued
1593                 *    for IO but are being recycled through the LRU before the
1594                 *    IO can complete. Waiting on the page itself risks an
1595                 *    indefinite stall if it is impossible to writeback the
1596                 *    page due to IO error or disconnected storage so instead
1597                 *    note that the LRU is being scanned too quickly and the
1598                 *    caller can stall after page list has been processed.
1599                 *
1600                 * 2) Global or new memcg reclaim encounters a page that is
1601                 *    not marked for immediate reclaim, or the caller does not
1602                 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1603                 *    not to fs). In this case mark the page for immediate
1604                 *    reclaim and continue scanning.
1605                 *
1606                 *    Require may_enter_fs because we would wait on fs, which
1607                 *    may not have submitted IO yet. And the loop driver might
1608                 *    enter reclaim, and deadlock if it waits on a page for
1609                 *    which it is needed to do the write (loop masks off
1610                 *    __GFP_IO|__GFP_FS for this reason); but more thought
1611                 *    would probably show more reasons.
1612                 *
1613                 * 3) Legacy memcg encounters a page that is already marked
1614                 *    PageReclaim. memcg does not have any dirty pages
1615                 *    throttling so we could easily OOM just because too many
1616                 *    pages are in writeback and there is nothing else to
1617                 *    reclaim. Wait for the writeback to complete.
1618                 *
1619                 * In cases 1) and 2) we activate the pages to get them out of
1620                 * the way while we continue scanning for clean pages on the
1621                 * inactive list and refilling from the active list. The
1622                 * observation here is that waiting for disk writes is more
1623                 * expensive than potentially causing reloads down the line.
1624                 * Since they're marked for immediate reclaim, they won't put
1625                 * memory pressure on the cache working set any longer than it
1626                 * takes to write them to disk.
1627                 */
1628                if (PageWriteback(page)) {
1629                        /* Case 1 above */
1630                        if (current_is_kswapd() &&
1631                            PageReclaim(page) &&
1632                            test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1633                                stat->nr_immediate++;
1634                                goto activate_locked;
1635
1636                        /* Case 2 above */
1637                        } else if (writeback_throttling_sane(sc) ||
1638                            !PageReclaim(page) || !may_enter_fs) {
1639                                /*
1640                                 * This is slightly racy - end_page_writeback()
1641                                 * might have just cleared PageReclaim, then
1642                                 * setting PageReclaim here end up interpreted
1643                                 * as PageReadahead - but that does not matter
1644                                 * enough to care.  What we do want is for this
1645                                 * page to have PageReclaim set next time memcg
1646                                 * reclaim reaches the tests above, so it will
1647                                 * then wait_on_page_writeback() to avoid OOM;
1648                                 * and it's also appropriate in global reclaim.
1649                                 */
1650                                SetPageReclaim(page);
1651                                stat->nr_writeback++;
1652                                goto activate_locked;
1653
1654                        /* Case 3 above */
1655                        } else {
1656                                unlock_page(page);
1657                                wait_on_page_writeback(page);
1658                                /* then go back and try same page again */
1659                                list_add_tail(&page->lru, page_list);
1660                                continue;
1661                        }
1662                }
1663
1664                if (!ignore_references)
1665                        references = page_check_references(page, sc);
1666
1667                switch (references) {
1668                case PAGEREF_ACTIVATE:
1669                        goto activate_locked;
1670                case PAGEREF_KEEP:
1671                        stat->nr_ref_keep += nr_pages;
1672                        goto keep_locked;
1673                case PAGEREF_RECLAIM:
1674                case PAGEREF_RECLAIM_CLEAN:
1675                        ; /* try to reclaim the page below */
1676                }
1677
1678                /*
1679                 * Before reclaiming the page, try to relocate
1680                 * its contents to another node.
1681                 */
1682                if (do_demote_pass &&
1683                    (thp_migration_supported() || !PageTransHuge(page))) {
1684                        list_add(&page->lru, &demote_pages);
1685                        unlock_page(page);
1686                        continue;
1687                }
1688
1689                /*
1690                 * Anonymous process memory has backing store?
1691                 * Try to allocate it some swap space here.
1692                 * Lazyfree page could be freed directly
1693                 */
1694                if (PageAnon(page) && PageSwapBacked(page)) {
1695                        if (!PageSwapCache(page)) {
1696                                if (!(sc->gfp_mask & __GFP_IO))
1697                                        goto keep_locked;
1698                                if (page_maybe_dma_pinned(page))
1699                                        goto keep_locked;
1700                                if (PageTransHuge(page)) {
1701                                        /* cannot split THP, skip it */
1702                                        if (!can_split_huge_page(page, NULL))
1703                                                goto activate_locked;
1704                                        /*
1705                                         * Split pages without a PMD map right
1706                                         * away. Chances are some or all of the
1707                                         * tail pages can be freed without IO.
1708                                         */
1709                                        if (!compound_mapcount(page) &&
1710                                            split_huge_page_to_list(page,
1711                                                                    page_list))
1712                                                goto activate_locked;
1713                                }
1714                                if (!add_to_swap(page)) {
1715                                        if (!PageTransHuge(page))
1716                                                goto activate_locked_split;
1717                                        /* Fallback to swap normal pages */
1718                                        if (split_huge_page_to_list(page,
1719                                                                    page_list))
1720                                                goto activate_locked;
1721#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1722                                        count_vm_event(THP_SWPOUT_FALLBACK);
1723#endif
1724                                        if (!add_to_swap(page))
1725                                                goto activate_locked_split;
1726                                }
1727
1728                                may_enter_fs = true;
1729
1730                                /* Adding to swap updated mapping */
1731                                mapping = page_mapping(page);
1732                        }
1733                } else if (unlikely(PageTransHuge(page))) {
1734                        /* Split file THP */
1735                        if (split_huge_page_to_list(page, page_list))
1736                                goto keep_locked;
1737                }
1738
1739                /*
1740                 * THP may get split above, need minus tail pages and update
1741                 * nr_pages to avoid accounting tail pages twice.
1742                 *
1743                 * The tail pages that are added into swap cache successfully
1744                 * reach here.
1745                 */
1746                if ((nr_pages > 1) && !PageTransHuge(page)) {
1747                        sc->nr_scanned -= (nr_pages - 1);
1748                        nr_pages = 1;
1749                }
1750
1751                /*
1752                 * The page is mapped into the page tables of one or more
1753                 * processes. Try to unmap it here.
1754                 */
1755                if (page_mapped(page)) {
1756                        enum ttu_flags flags = TTU_BATCH_FLUSH;
1757                        bool was_swapbacked = PageSwapBacked(page);
1758
1759                        if (unlikely(PageTransHuge(page)))
1760                                flags |= TTU_SPLIT_HUGE_PMD;
1761
1762                        try_to_unmap(page, flags);
1763                        if (page_mapped(page)) {
1764                                stat->nr_unmap_fail += nr_pages;
1765                                if (!was_swapbacked && PageSwapBacked(page))
1766                                        stat->nr_lazyfree_fail += nr_pages;
1767                                goto activate_locked;
1768                        }
1769                }
1770
1771                if (PageDirty(page)) {
1772                        /*
1773                         * Only kswapd can writeback filesystem pages
1774                         * to avoid risk of stack overflow. But avoid
1775                         * injecting inefficient single-page IO into
1776                         * flusher writeback as much as possible: only
1777                         * write pages when we've encountered many
1778                         * dirty pages, and when we've already scanned
1779                         * the rest of the LRU for clean pages and see
1780                         * the same dirty pages again (PageReclaim).
1781                         */
1782                        if (page_is_file_lru(page) &&
1783                            (!current_is_kswapd() || !PageReclaim(page) ||
1784                             !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1785                                /*
1786                                 * Immediately reclaim when written back.
1787                                 * Similar in principal to deactivate_page()
1788                                 * except we already have the page isolated
1789                                 * and know it's dirty
1790                                 */
1791                                inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1792                                SetPageReclaim(page);
1793
1794                                goto activate_locked;
1795                        }
1796
1797                        if (references == PAGEREF_RECLAIM_CLEAN)
1798                                goto keep_locked;
1799                        if (!may_enter_fs)
1800                                goto keep_locked;
1801                        if (!sc->may_writepage)
1802                                goto keep_locked;
1803
1804                        /*
1805                         * Page is dirty. Flush the TLB if a writable entry
1806                         * potentially exists to avoid CPU writes after IO
1807                         * starts and then write it out here.
1808                         */
1809                        try_to_unmap_flush_dirty();
1810                        switch (pageout(page, mapping)) {
1811                        case PAGE_KEEP:
1812                                goto keep_locked;
1813                        case PAGE_ACTIVATE:
1814                                goto activate_locked;
1815                        case PAGE_SUCCESS:
1816                                stat->nr_pageout += thp_nr_pages(page);
1817
1818                                if (PageWriteback(page))
1819                                        goto keep;
1820                                if (PageDirty(page))
1821                                        goto keep;
1822
1823                                /*
1824                                 * A synchronous write - probably a ramdisk.  Go
1825                                 * ahead and try to reclaim the page.
1826                                 */
1827                                if (!trylock_page(page))
1828                                        goto keep;
1829                                if (PageDirty(page) || PageWriteback(page))
1830                                        goto keep_locked;
1831                                mapping = page_mapping(page);
1832                                fallthrough;
1833                        case PAGE_CLEAN:
1834                                ; /* try to free the page below */
1835                        }
1836                }
1837
1838                /*
1839                 * If the page has buffers, try to free the buffer mappings
1840                 * associated with this page. If we succeed we try to free
1841                 * the page as well.
1842                 *
1843                 * We do this even if the page is PageDirty().
1844                 * try_to_release_page() does not perform I/O, but it is
1845                 * possible for a page to have PageDirty set, but it is actually
1846                 * clean (all its buffers are clean).  This happens if the
1847                 * buffers were written out directly, with submit_bh(). ext3
1848                 * will do this, as well as the blockdev mapping.
1849                 * try_to_release_page() will discover that cleanness and will
1850                 * drop the buffers and mark the page clean - it can be freed.
1851                 *
1852                 * Rarely, pages can have buffers and no ->mapping.  These are
1853                 * the pages which were not successfully invalidated in
1854                 * truncate_cleanup_page().  We try to drop those buffers here
1855                 * and if that worked, and the page is no longer mapped into
1856                 * process address space (page_count == 1) it can be freed.
1857                 * Otherwise, leave the page on the LRU so it is swappable.
1858                 */
1859                if (page_has_private(page)) {
1860                        if (!try_to_release_page(page, sc->gfp_mask))
1861                                goto activate_locked;
1862                        if (!mapping && page_count(page) == 1) {
1863                                unlock_page(page);
1864                                if (put_page_testzero(page))
1865                                        goto free_it;
1866                                else {
1867                                        /*
1868                                         * rare race with speculative reference.
1869                                         * the speculative reference will free
1870                                         * this page shortly, so we may
1871                                         * increment nr_reclaimed here (and
1872                                         * leave it off the LRU).
1873                                         */
1874                                        nr_reclaimed++;
1875                                        continue;
1876                                }
1877                        }
1878                }
1879
1880                if (PageAnon(page) && !PageSwapBacked(page)) {
1881                        /* follow __remove_mapping for reference */
1882                        if (!page_ref_freeze(page, 1))
1883                                goto keep_locked;
1884                        /*
1885                         * The page has only one reference left, which is
1886                         * from the isolation. After the caller puts the
1887                         * page back on lru and drops the reference, the
1888                         * page will be freed anyway. It doesn't matter
1889                         * which lru it goes. So we don't bother checking
1890                         * PageDirty here.
1891                         */
1892                        count_vm_event(PGLAZYFREED);
1893                        count_memcg_page_event(page, PGLAZYFREED);
1894                } else if (!mapping || !__remove_mapping(mapping, page, true,
1895                                                         sc->target_mem_cgroup))
1896                        goto keep_locked;
1897
1898                unlock_page(page);
1899free_it:
1900                /*
1901                 * THP may get swapped out in a whole, need account
1902                 * all base pages.
1903                 */
1904                nr_reclaimed += nr_pages;
1905
1906                /*
1907                 * Is there need to periodically free_page_list? It would
1908                 * appear not as the counts should be low
1909                 */
1910                if (unlikely(PageTransHuge(page)))
1911                        destroy_compound_page(page);
1912                else
1913                        list_add(&page->lru, &free_pages);
1914                continue;
1915
1916activate_locked_split:
1917                /*
1918                 * The tail pages that are failed to add into swap cache
1919                 * reach here.  Fixup nr_scanned and nr_pages.
1920                 */
1921                if (nr_pages > 1) {
1922                        sc->nr_scanned -= (nr_pages - 1);
1923                        nr_pages = 1;
1924                }
1925activate_locked:
1926                /* Not a candidate for swapping, so reclaim swap space. */
1927                if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1928                                                PageMlocked(page)))
1929                        try_to_free_swap(page);
1930                VM_BUG_ON_PAGE(PageActive(page), page);
1931                if (!PageMlocked(page)) {
1932                        int type = page_is_file_lru(page);
1933                        SetPageActive(page);
1934                        stat->nr_activate[type] += nr_pages;
1935                        count_memcg_page_event(page, PGACTIVATE);
1936                }
1937keep_locked:
1938                unlock_page(page);
1939keep:
1940                list_add(&page->lru, &ret_pages);
1941                VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1942        }
1943        /* 'page_list' is always empty here */
1944
1945        /* Migrate pages selected for demotion */
1946        nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1947        /* Pages that could not be demoted are still in @demote_pages */
1948        if (!list_empty(&demote_pages)) {
1949                /* Pages which failed to demoted go back on @page_list for retry: */
1950                list_splice_init(&demote_pages, page_list);
1951                do_demote_pass = false;
1952                goto retry;
1953        }
1954
1955        pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1956
1957        mem_cgroup_uncharge_list(&free_pages);
1958        try_to_unmap_flush();
1959        free_unref_page_list(&free_pages);
1960
1961        list_splice(&ret_pages, page_list);
1962        count_vm_events(PGACTIVATE, pgactivate);
1963
1964        return nr_reclaimed;
1965}
1966
1967unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1968                                            struct list_head *page_list)
1969{
1970        struct scan_control sc = {
1971                .gfp_mask = GFP_KERNEL,
1972                .may_unmap = 1,
1973        };
1974        struct reclaim_stat stat;
1975        unsigned int nr_reclaimed;
1976        struct page *page, *next;
1977        LIST_HEAD(clean_pages);
1978        unsigned int noreclaim_flag;
1979
1980        list_for_each_entry_safe(page, next, page_list, lru) {
1981                if (!PageHuge(page) && page_is_file_lru(page) &&
1982                    !PageDirty(page) && !__PageMovable(page) &&
1983                    !PageUnevictable(page)) {
1984                        ClearPageActive(page);
1985                        list_move(&page->lru, &clean_pages);
1986                }
1987        }
1988
1989        /*
1990         * We should be safe here since we are only dealing with file pages and
1991         * we are not kswapd and therefore cannot write dirty file pages. But
1992         * call memalloc_noreclaim_save() anyway, just in case these conditions
1993         * change in the future.
1994         */
1995        noreclaim_flag = memalloc_noreclaim_save();
1996        nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1997                                        &stat, true);
1998        memalloc_noreclaim_restore(noreclaim_flag);
1999
2000        list_splice(&clean_pages, page_list);
2001        mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2002                            -(long)nr_reclaimed);
2003        /*
2004         * Since lazyfree pages are isolated from file LRU from the beginning,
2005         * they will rotate back to anonymous LRU in the end if it failed to
2006         * discard so isolated count will be mismatched.
2007         * Compensate the isolated count for both LRU lists.
2008         */
2009        mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2010                            stat.nr_lazyfree_fail);
2011        mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2012                            -(long)stat.nr_lazyfree_fail);
2013        return nr_reclaimed;
2014}
2015
2016/*
2017 * Attempt to remove the specified page from its LRU.  Only take this page
2018 * if it is of the appropriate PageActive status.  Pages which are being
2019 * freed elsewhere are also ignored.
2020 *
2021 * page:        page to consider
2022 * mode:        one of the LRU isolation modes defined above
2023 *
2024 * returns true on success, false on failure.
2025 */
2026bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
2027{
2028        /* Only take pages on the LRU. */
2029        if (!PageLRU(page))
2030                return false;
2031
2032        /* Compaction should not handle unevictable pages but CMA can do so */
2033        if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
2034                return false;
2035
2036        /*
2037         * To minimise LRU disruption, the caller can indicate that it only
2038         * wants to isolate pages it will be able to operate on without
2039         * blocking - clean pages for the most part.
2040         *
2041         * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
2042         * that it is possible to migrate without blocking
2043         */
2044        if (mode & ISOLATE_ASYNC_MIGRATE) {
2045                /* All the caller can do on PageWriteback is block */
2046                if (PageWriteback(page))
2047                        return false;
2048
2049                if (PageDirty(page)) {
2050                        struct address_space *mapping;
2051                        bool migrate_dirty;
2052
2053                        /*
2054                         * Only pages without mappings or that have a
2055                         * ->migratepage callback are possible to migrate
2056                         * without blocking. However, we can be racing with
2057                         * truncation so it's necessary to lock the page
2058                         * to stabilise the mapping as truncation holds
2059                         * the page lock until after the page is removed
2060                         * from the page cache.
2061                         */
2062                        if (!trylock_page(page))
2063                                return false;
2064
2065                        mapping = page_mapping(page);
2066                        migrate_dirty = !mapping || mapping->a_ops->migratepage;
2067                        unlock_page(page);
2068                        if (!migrate_dirty)
2069                                return false;
2070                }
2071        }
2072
2073        if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2074                return false;
2075
2076        return true;
2077}
2078
2079/*
2080 * Update LRU sizes after isolating pages. The LRU size updates must
2081 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2082 */
2083static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2084                        enum lru_list lru, unsigned long *nr_zone_taken)
2085{
2086        int zid;
2087
2088        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2089                if (!nr_zone_taken[zid])
2090                        continue;
2091
2092                update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2093        }
2094
2095}
2096
2097/*
2098 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2099 *
2100 * lruvec->lru_lock is heavily contended.  Some of the functions that
2101 * shrink the lists perform better by taking out a batch of pages
2102 * and working on them outside the LRU lock.
2103 *
2104 * For pagecache intensive workloads, this function is the hottest
2105 * spot in the kernel (apart from copy_*_user functions).
2106 *
2107 * Lru_lock must be held before calling this function.
2108 *
2109 * @nr_to_scan: The number of eligible pages to look through on the list.
2110 * @lruvec:     The LRU vector to pull pages from.
2111 * @dst:        The temp list to put pages on to.
2112 * @nr_scanned: The number of pages that were scanned.
2113 * @sc:         The scan_control struct for this reclaim session
2114 * @lru:        LRU list id for isolating
2115 *
2116 * returns how many pages were moved onto *@dst.
2117 */
2118static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2119                struct lruvec *lruvec, struct list_head *dst,
2120                unsigned long *nr_scanned, struct scan_control *sc,
2121                enum lru_list lru)
2122{
2123        struct list_head *src = &lruvec->lists[lru];
2124        unsigned long nr_taken = 0;
2125        unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2126        unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2127        unsigned long skipped = 0;
2128        unsigned long scan, total_scan, nr_pages;
2129        LIST_HEAD(pages_skipped);
2130        isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2131
2132        total_scan = 0;
2133        scan = 0;
2134        while (scan < nr_to_scan && !list_empty(src)) {
2135                struct page *page;
2136
2137                page = lru_to_page(src);
2138                prefetchw_prev_lru_page(page, src, flags);
2139
2140                nr_pages = compound_nr(page);
2141                total_scan += nr_pages;
2142
2143                if (page_zonenum(page) > sc->reclaim_idx) {
2144                        list_move(&page->lru, &pages_skipped);
2145                        nr_skipped[page_zonenum(page)] += nr_pages;
2146                        continue;
2147                }
2148
2149                /*
2150                 * Do not count skipped pages because that makes the function
2151                 * return with no isolated pages if the LRU mostly contains
2152                 * ineligible pages.  This causes the VM to not reclaim any
2153                 * pages, triggering a premature OOM.
2154                 *
2155                 * Account all tail pages of THP.  This would not cause
2156                 * premature OOM since __isolate_lru_page() returns -EBUSY
2157                 * only when the page is being freed somewhere else.
2158                 */
2159                scan += nr_pages;
2160                if (!__isolate_lru_page_prepare(page, mode)) {
2161                        /* It is being freed elsewhere */
2162                        list_move(&page->lru, src);
2163                        continue;
2164                }
2165                /*
2166                 * Be careful not to clear PageLRU until after we're
2167                 * sure the page is not being freed elsewhere -- the
2168                 * page release code relies on it.
2169                 */
2170                if (unlikely(!get_page_unless_zero(page))) {
2171                        list_move(&page->lru, src);
2172                        continue;
2173                }
2174
2175                if (!TestClearPageLRU(page)) {
2176                        /* Another thread is already isolating this page */
2177                        put_page(page);
2178                        list_move(&page->lru, src);
2179                        continue;
2180                }
2181
2182                nr_taken += nr_pages;
2183                nr_zone_taken[page_zonenum(page)] += nr_pages;
2184                list_move(&page->lru, dst);
2185        }
2186
2187        /*
2188         * Splice any skipped pages to the start of the LRU list. Note that
2189         * this disrupts the LRU order when reclaiming for lower zones but
2190         * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2191         * scanning would soon rescan the same pages to skip and put the
2192         * system at risk of premature OOM.
2193         */
2194        if (!list_empty(&pages_skipped)) {
2195                int zid;
2196
2197                list_splice(&pages_skipped, src);
2198                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2199                        if (!nr_skipped[zid])
2200                                continue;
2201
2202                        __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2203                        skipped += nr_skipped[zid];
2204                }
2205        }
2206        *nr_scanned = total_scan;
2207        trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2208                                    total_scan, skipped, nr_taken, mode, lru);
2209        update_lru_sizes(lruvec, lru, nr_zone_taken);
2210        return nr_taken;
2211}
2212
2213/**
2214 * isolate_lru_page - tries to isolate a page from its LRU list
2215 * @page: page to isolate from its LRU list
2216 *
2217 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2218 * vmstat statistic corresponding to whatever LRU list the page was on.
2219 *
2220 * Returns 0 if the page was removed from an LRU list.
2221 * Returns -EBUSY if the page was not on an LRU list.
2222 *
2223 * The returned page will have PageLRU() cleared.  If it was found on
2224 * the active list, it will have PageActive set.  If it was found on
2225 * the unevictable list, it will have the PageUnevictable bit set. That flag
2226 * may need to be cleared by the caller before letting the page go.
2227 *
2228 * The vmstat statistic corresponding to the list on which the page was
2229 * found will be decremented.
2230 *
2231 * Restrictions:
2232 *
2233 * (1) Must be called with an elevated refcount on the page. This is a
2234 *     fundamental difference from isolate_lru_pages (which is called
2235 *     without a stable reference).
2236 * (2) the lru_lock must not be held.
2237 * (3) interrupts must be enabled.
2238 */
2239int isolate_lru_page(struct page *page)
2240{
2241        struct folio *folio = page_folio(page);
2242        int ret = -EBUSY;
2243
2244        VM_BUG_ON_PAGE(!page_count(page), page);
2245        WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2246
2247        if (TestClearPageLRU(page)) {
2248                struct lruvec *lruvec;
2249
2250                get_page(page);
2251                lruvec = folio_lruvec_lock_irq(folio);
2252                del_page_from_lru_list(page, lruvec);
2253                unlock_page_lruvec_irq(lruvec);
2254                ret = 0;
2255        }
2256
2257        return ret;
2258}
2259
2260/*
2261 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2262 * then get rescheduled. When there are massive number of tasks doing page
2263 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2264 * the LRU list will go small and be scanned faster than necessary, leading to
2265 * unnecessary swapping, thrashing and OOM.
2266 */
2267static int too_many_isolated(struct pglist_data *pgdat, int file,
2268                struct scan_control *sc)
2269{
2270        unsigned long inactive, isolated;
2271        bool too_many;
2272
2273        if (current_is_kswapd())
2274                return 0;
2275
2276        if (!writeback_throttling_sane(sc))
2277                return 0;
2278
2279        if (file) {
2280                inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2281                isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2282        } else {
2283                inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2284                isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2285        }
2286
2287        /*
2288         * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2289         * won't get blocked by normal direct-reclaimers, forming a circular
2290         * deadlock.
2291         */
2292        if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2293                inactive >>= 3;
2294
2295        too_many = isolated > inactive;
2296
2297        /* Wake up tasks throttled due to too_many_isolated. */
2298        if (!too_many)
2299                wake_throttle_isolated(pgdat);
2300
2301        return too_many;
2302}
2303
2304/*
2305 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2306 * On return, @list is reused as a list of pages to be freed by the caller.
2307 *
2308 * Returns the number of pages moved to the given lruvec.
2309 */
2310static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2311                                      struct list_head *list)
2312{
2313        int nr_pages, nr_moved = 0;
2314        LIST_HEAD(pages_to_free);
2315        struct page *page;
2316
2317        while (!list_empty(list)) {
2318                page = lru_to_page(list);
2319                VM_BUG_ON_PAGE(PageLRU(page), page);
2320                list_del(&page->lru);
2321                if (unlikely(!page_evictable(page))) {
2322                        spin_unlock_irq(&lruvec->lru_lock);
2323                        putback_lru_page(page);
2324                        spin_lock_irq(&lruvec->lru_lock);
2325                        continue;
2326                }
2327
2328                /*
2329                 * The SetPageLRU needs to be kept here for list integrity.
2330                 * Otherwise:
2331                 *   #0 move_pages_to_lru             #1 release_pages
2332                 *   if !put_page_testzero
2333                 *                                    if (put_page_testzero())
2334                 *                                      !PageLRU //skip lru_lock
2335                 *     SetPageLRU()
2336                 *     list_add(&page->lru,)
2337                 *                                        list_add(&page->lru,)
2338                 */
2339                SetPageLRU(page);
2340
2341                if (unlikely(put_page_testzero(page))) {
2342                        __clear_page_lru_flags(page);
2343
2344                        if (unlikely(PageCompound(page))) {
2345                                spin_unlock_irq(&lruvec->lru_lock);
2346                                destroy_compound_page(page);
2347                                spin_lock_irq(&lruvec->lru_lock);
2348                        } else
2349                                list_add(&page->lru, &pages_to_free);
2350
2351                        continue;
2352                }
2353
2354                /*
2355                 * All pages were isolated from the same lruvec (and isolation
2356                 * inhibits memcg migration).
2357                 */
2358                VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2359                add_page_to_lru_list(page, lruvec);
2360                nr_pages = thp_nr_pages(page);
2361                nr_moved += nr_pages;
2362                if (PageActive(page))
2363                        workingset_age_nonresident(lruvec, nr_pages);
2364        }
2365
2366        /*
2367         * To save our caller's stack, now use input list for pages to free.
2368         */
2369        list_splice(&pages_to_free, list);
2370
2371        return nr_moved;
2372}
2373
2374/*
2375 * If a kernel thread (such as nfsd for loop-back mounts) services
2376 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2377 * In that case we should only throttle if the backing device it is
2378 * writing to is congested.  In other cases it is safe to throttle.
2379 */
2380static int current_may_throttle(void)
2381{
2382        return !(current->flags & PF_LOCAL_THROTTLE) ||
2383                current->backing_dev_info == NULL ||
2384                bdi_write_congested(current->backing_dev_info);
2385}
2386
2387/*
2388 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2389 * of reclaimed pages
2390 */
2391static unsigned long
2392shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2393                     struct scan_control *sc, enum lru_list lru)
2394{
2395        LIST_HEAD(page_list);
2396        unsigned long nr_scanned;
2397        unsigned int nr_reclaimed = 0;
2398        unsigned long nr_taken;
2399        struct reclaim_stat stat;
2400        bool file = is_file_lru(lru);
2401        enum vm_event_item item;
2402        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2403        bool stalled = false;
2404
2405        while (unlikely(too_many_isolated(pgdat, file, sc))) {
2406                if (stalled)
2407                        return 0;
2408
2409                /* wait a bit for the reclaimer. */
2410                stalled = true;
2411                reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2412
2413                /* We are about to die and free our memory. Return now. */
2414                if (fatal_signal_pending(current))
2415                        return SWAP_CLUSTER_MAX;
2416        }
2417
2418        lru_add_drain();
2419
2420        spin_lock_irq(&lruvec->lru_lock);
2421
2422        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2423                                     &nr_scanned, sc, lru);
2424
2425        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2426        item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2427        if (!cgroup_reclaim(sc))
2428                __count_vm_events(item, nr_scanned);
2429        __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2430        __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2431
2432        spin_unlock_irq(&lruvec->lru_lock);
2433
2434        if (nr_taken == 0)
2435                return 0;
2436
2437        nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2438
2439        spin_lock_irq(&lruvec->lru_lock);
2440        move_pages_to_lru(lruvec, &page_list);
2441
2442        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2443        item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2444        if (!cgroup_reclaim(sc))
2445                __count_vm_events(item, nr_reclaimed);
2446        __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2447        __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2448        spin_unlock_irq(&lruvec->lru_lock);
2449
2450        lru_note_cost(lruvec, file, stat.nr_pageout);
2451        mem_cgroup_uncharge_list(&page_list);
2452        free_unref_page_list(&page_list);
2453
2454        /*
2455         * If dirty pages are scanned that are not queued for IO, it
2456         * implies that flushers are not doing their job. This can
2457         * happen when memory pressure pushes dirty pages to the end of
2458         * the LRU before the dirty limits are breached and the dirty
2459         * data has expired. It can also happen when the proportion of
2460         * dirty pages grows not through writes but through memory
2461         * pressure reclaiming all the clean cache. And in some cases,
2462         * the flushers simply cannot keep up with the allocation
2463         * rate. Nudge the flusher threads in case they are asleep.
2464         */
2465        if (stat.nr_unqueued_dirty == nr_taken)
2466                wakeup_flusher_threads(WB_REASON_VMSCAN);
2467
2468        sc->nr.dirty += stat.nr_dirty;
2469        sc->nr.congested += stat.nr_congested;
2470        sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2471        sc->nr.writeback += stat.nr_writeback;
2472        sc->nr.immediate += stat.nr_immediate;
2473        sc->nr.taken += nr_taken;
2474        if (file)
2475                sc->nr.file_taken += nr_taken;
2476
2477        trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2478                        nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2479        return nr_reclaimed;
2480}
2481
2482/*
2483 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2484 *
2485 * We move them the other way if the page is referenced by one or more
2486 * processes.
2487 *
2488 * If the pages are mostly unmapped, the processing is fast and it is
2489 * appropriate to hold lru_lock across the whole operation.  But if
2490 * the pages are mapped, the processing is slow (page_referenced()), so
2491 * we should drop lru_lock around each page.  It's impossible to balance
2492 * this, so instead we remove the pages from the LRU while processing them.
2493 * It is safe to rely on PG_active against the non-LRU pages in here because
2494 * nobody will play with that bit on a non-LRU page.
2495 *
2496 * The downside is that we have to touch page->_refcount against each page.
2497 * But we had to alter page->flags anyway.
2498 */
2499static void shrink_active_list(unsigned long nr_to_scan,
2500                               struct lruvec *lruvec,
2501                               struct scan_control *sc,
2502                               enum lru_list lru)
2503{
2504        unsigned long nr_taken;
2505        unsigned long nr_scanned;
2506        unsigned long vm_flags;
2507        LIST_HEAD(l_hold);      /* The pages which were snipped off */
2508        LIST_HEAD(l_active);
2509        LIST_HEAD(l_inactive);
2510        struct page *page;
2511        unsigned nr_deactivate, nr_activate;
2512        unsigned nr_rotated = 0;
2513        int file = is_file_lru(lru);
2514        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2515
2516        lru_add_drain();
2517
2518        spin_lock_irq(&lruvec->lru_lock);
2519
2520        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2521                                     &nr_scanned, sc, lru);
2522
2523        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2524
2525        if (!cgroup_reclaim(sc))
2526                __count_vm_events(PGREFILL, nr_scanned);
2527        __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2528
2529        spin_unlock_irq(&lruvec->lru_lock);
2530
2531        while (!list_empty(&l_hold)) {
2532                cond_resched();
2533                page = lru_to_page(&l_hold);
2534                list_del(&page->lru);
2535
2536                if (unlikely(!page_evictable(page))) {
2537                        putback_lru_page(page);
2538                        continue;
2539                }
2540
2541                if (unlikely(buffer_heads_over_limit)) {
2542                        if (page_has_private(page) && trylock_page(page)) {
2543                                if (page_has_private(page))
2544                                        try_to_release_page(page, 0);
2545                                unlock_page(page);
2546                        }
2547                }
2548
2549                if (page_referenced(page, 0, sc->target_mem_cgroup,
2550                                    &vm_flags)) {
2551                        /*
2552                         * Identify referenced, file-backed active pages and
2553                         * give them one more trip around the active list. So
2554                         * that executable code get better chances to stay in
2555                         * memory under moderate memory pressure.  Anon pages
2556                         * are not likely to be evicted by use-once streaming
2557                         * IO, plus JVM can create lots of anon VM_EXEC pages,
2558                         * so we ignore them here.
2559                         */
2560                        if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2561                                nr_rotated += thp_nr_pages(page);
2562                                list_add(&page->lru, &l_active);
2563                                continue;
2564                        }
2565                }
2566
2567                ClearPageActive(page);  /* we are de-activating */
2568                SetPageWorkingset(page);
2569                list_add(&page->lru, &l_inactive);
2570        }
2571
2572        /*
2573         * Move pages back to the lru list.
2574         */
2575        spin_lock_irq(&lruvec->lru_lock);
2576
2577        nr_activate = move_pages_to_lru(lruvec, &l_active);
2578        nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2579        /* Keep all free pages in l_active list */
2580        list_splice(&l_inactive, &l_active);
2581
2582        __count_vm_events(PGDEACTIVATE, nr_deactivate);
2583        __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2584
2585        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2586        spin_unlock_irq(&lruvec->lru_lock);
2587
2588        mem_cgroup_uncharge_list(&l_active);
2589        free_unref_page_list(&l_active);
2590        trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2591                        nr_deactivate, nr_rotated, sc->priority, file);
2592}
2593
2594unsigned long reclaim_pages(struct list_head *page_list)
2595{
2596        int nid = NUMA_NO_NODE;
2597        unsigned int nr_reclaimed = 0;
2598        LIST_HEAD(node_page_list);
2599        struct reclaim_stat dummy_stat;
2600        struct page *page;
2601        unsigned int noreclaim_flag;
2602        struct scan_control sc = {
2603                .gfp_mask = GFP_KERNEL,
2604                .may_writepage = 1,
2605                .may_unmap = 1,
2606                .may_swap = 1,
2607                .no_demotion = 1,
2608        };
2609
2610        noreclaim_flag = memalloc_noreclaim_save();
2611
2612        while (!list_empty(page_list)) {
2613                page = lru_to_page(page_list);
2614                if (nid == NUMA_NO_NODE) {
2615                        nid = page_to_nid(page);
2616                        INIT_LIST_HEAD(&node_page_list);
2617                }
2618
2619                if (nid == page_to_nid(page)) {
2620                        ClearPageActive(page);
2621                        list_move(&page->lru, &node_page_list);
2622                        continue;
2623                }
2624
2625                nr_reclaimed += shrink_page_list(&node_page_list,
2626                                                NODE_DATA(nid),
2627                                                &sc, &dummy_stat, false);
2628                while (!list_empty(&node_page_list)) {
2629                        page = lru_to_page(&node_page_list);
2630                        list_del(&page->lru);
2631                        putback_lru_page(page);
2632                }
2633
2634                nid = NUMA_NO_NODE;
2635        }
2636
2637        if (!list_empty(&node_page_list)) {
2638                nr_reclaimed += shrink_page_list(&node_page_list,
2639                                                NODE_DATA(nid),
2640                                                &sc, &dummy_stat, false);
2641                while (!list_empty(&node_page_list)) {
2642                        page = lru_to_page(&node_page_list);
2643                        list_del(&page->lru);
2644                        putback_lru_page(page);
2645                }
2646        }
2647
2648        memalloc_noreclaim_restore(noreclaim_flag);
2649
2650        return nr_reclaimed;
2651}
2652
2653static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2654                                 struct lruvec *lruvec, struct scan_control *sc)
2655{
2656        if (is_active_lru(lru)) {
2657                if (sc->may_deactivate & (1 << is_file_lru(lru)))
2658                        shrink_active_list(nr_to_scan, lruvec, sc, lru);
2659                else
2660                        sc->skipped_deactivate = 1;
2661                return 0;
2662        }
2663
2664        return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2665}
2666
2667/*
2668 * The inactive anon list should be small enough that the VM never has
2669 * to do too much work.
2670 *
2671 * The inactive file list should be small enough to leave most memory
2672 * to the established workingset on the scan-resistant active list,
2673 * but large enough to avoid thrashing the aggregate readahead window.
2674 *
2675 * Both inactive lists should also be large enough that each inactive
2676 * page has a chance to be referenced again before it is reclaimed.
2677 *
2678 * If that fails and refaulting is observed, the inactive list grows.
2679 *
2680 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2681 * on this LRU, maintained by the pageout code. An inactive_ratio
2682 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2683 *
2684 * total     target    max
2685 * memory    ratio     inactive
2686 * -------------------------------------
2687 *   10MB       1         5MB
2688 *  100MB       1        50MB
2689 *    1GB       3       250MB
2690 *   10GB      10       0.9GB
2691 *  100GB      31         3GB
2692 *    1TB     101        10GB
2693 *   10TB     320        32GB
2694 */
2695static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2696{
2697        enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2698        unsigned long inactive, active;
2699        unsigned long inactive_ratio;
2700        unsigned long gb;
2701
2702        inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2703        active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2704
2705        gb = (inactive + active) >> (30 - PAGE_SHIFT);
2706        if (gb)
2707                inactive_ratio = int_sqrt(10 * gb);
2708        else
2709                inactive_ratio = 1;
2710
2711        return inactive * inactive_ratio < active;
2712}
2713
2714enum scan_balance {
2715        SCAN_EQUAL,
2716        SCAN_FRACT,
2717        SCAN_ANON,
2718        SCAN_FILE,
2719};
2720
2721/*
2722 * Determine how aggressively the anon and file LRU lists should be
2723 * scanned.  The relative value of each set of LRU lists is determined
2724 * by looking at the fraction of the pages scanned we did rotate back
2725 * onto the active list instead of evict.
2726 *
2727 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2728 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2729 */
2730static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2731                           unsigned long *nr)
2732{
2733        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2734        struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2735        unsigned long anon_cost, file_cost, total_cost;
2736        int swappiness = mem_cgroup_swappiness(memcg);
2737        u64 fraction[ANON_AND_FILE];
2738        u64 denominator = 0;    /* gcc */
2739        enum scan_balance scan_balance;
2740        unsigned long ap, fp;
2741        enum lru_list lru;
2742
2743        /* If we have no swap space, do not bother scanning anon pages. */
2744        if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2745                scan_balance = SCAN_FILE;
2746                goto out;
2747        }
2748
2749        /*
2750         * Global reclaim will swap to prevent OOM even with no
2751         * swappiness, but memcg users want to use this knob to
2752         * disable swapping for individual groups completely when
2753         * using the memory controller's swap limit feature would be
2754         * too expensive.
2755         */
2756        if (cgroup_reclaim(sc) && !swappiness) {
2757                scan_balance = SCAN_FILE;
2758                goto out;
2759        }
2760
2761        /*
2762         * Do not apply any pressure balancing cleverness when the
2763         * system is close to OOM, scan both anon and file equally
2764         * (unless the swappiness setting disagrees with swapping).
2765         */
2766        if (!sc->priority && swappiness) {
2767                scan_balance = SCAN_EQUAL;
2768                goto out;
2769        }
2770
2771        /*
2772         * If the system is almost out of file pages, force-scan anon.
2773         */
2774        if (sc->file_is_tiny) {
2775                scan_balance = SCAN_ANON;
2776                goto out;
2777        }
2778
2779        /*
2780         * If there is enough inactive page cache, we do not reclaim
2781         * anything from the anonymous working right now.
2782         */
2783        if (sc->cache_trim_mode) {
2784                scan_balance = SCAN_FILE;
2785                goto out;
2786        }
2787
2788        scan_balance = SCAN_FRACT;
2789        /*
2790         * Calculate the pressure balance between anon and file pages.
2791         *
2792         * The amount of pressure we put on each LRU is inversely
2793         * proportional to the cost of reclaiming each list, as
2794         * determined by the share of pages that are refaulting, times
2795         * the relative IO cost of bringing back a swapped out
2796         * anonymous page vs reloading a filesystem page (swappiness).
2797         *
2798         * Although we limit that influence to ensure no list gets
2799         * left behind completely: at least a third of the pressure is
2800         * applied, before swappiness.
2801         *
2802         * With swappiness at 100, anon and file have equal IO cost.
2803         */
2804        total_cost = sc->anon_cost + sc->file_cost;
2805        anon_cost = total_cost + sc->anon_cost;
2806        file_cost = total_cost + sc->file_cost;
2807        total_cost = anon_cost + file_cost;
2808
2809        ap = swappiness * (total_cost + 1);
2810        ap /= anon_cost + 1;
2811
2812        fp = (200 - swappiness) * (total_cost + 1);
2813        fp /= file_cost + 1;
2814
2815        fraction[0] = ap;
2816        fraction[1] = fp;
2817        denominator = ap + fp;
2818out:
2819        for_each_evictable_lru(lru) {
2820                int file = is_file_lru(lru);
2821                unsigned long lruvec_size;
2822                unsigned long low, min;
2823                unsigned long scan;
2824
2825                lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2826                mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2827                                      &min, &low);
2828
2829                if (min || low) {
2830                        /*
2831                         * Scale a cgroup's reclaim pressure by proportioning
2832                         * its current usage to its memory.low or memory.min
2833                         * setting.
2834                         *
2835                         * This is important, as otherwise scanning aggression
2836                         * becomes extremely binary -- from nothing as we
2837                         * approach the memory protection threshold, to totally
2838                         * nominal as we exceed it.  This results in requiring
2839                         * setting extremely liberal protection thresholds. It
2840                         * also means we simply get no protection at all if we
2841                         * set it too low, which is not ideal.
2842                         *
2843                         * If there is any protection in place, we reduce scan
2844                         * pressure by how much of the total memory used is
2845                         * within protection thresholds.
2846                         *
2847                         * There is one special case: in the first reclaim pass,
2848                         * we skip over all groups that are within their low
2849                         * protection. If that fails to reclaim enough pages to
2850                         * satisfy the reclaim goal, we come back and override
2851                         * the best-effort low protection. However, we still
2852                         * ideally want to honor how well-behaved groups are in
2853                         * that case instead of simply punishing them all
2854                         * equally. As such, we reclaim them based on how much
2855                         * memory they are using, reducing the scan pressure
2856                         * again by how much of the total memory used is under
2857                         * hard protection.
2858                         */
2859                        unsigned long cgroup_size = mem_cgroup_size(memcg);
2860                        unsigned long protection;
2861
2862                        /* memory.low scaling, make sure we retry before OOM */
2863                        if (!sc->memcg_low_reclaim && low > min) {
2864                                protection = low;
2865                                sc->memcg_low_skipped = 1;
2866                        } else {
2867                                protection = min;
2868                        }
2869
2870                        /* Avoid TOCTOU with earlier protection check */
2871                        cgroup_size = max(cgroup_size, protection);
2872
2873                        scan = lruvec_size - lruvec_size * protection /
2874                                (cgroup_size + 1);
2875
2876                        /*
2877                         * Minimally target SWAP_CLUSTER_MAX pages to keep
2878                         * reclaim moving forwards, avoiding decrementing
2879                         * sc->priority further than desirable.
2880                         */
2881                        scan = max(scan, SWAP_CLUSTER_MAX);
2882                } else {
2883                        scan = lruvec_size;
2884                }
2885
2886                scan >>= sc->priority;
2887
2888                /*
2889                 * If the cgroup's already been deleted, make sure to
2890                 * scrape out the remaining cache.
2891                 */
2892                if (!scan && !mem_cgroup_online(memcg))
2893                        scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2894
2895                switch (scan_balance) {
2896                case SCAN_EQUAL:
2897                        /* Scan lists relative to size */
2898                        break;
2899                case SCAN_FRACT:
2900                        /*
2901                         * Scan types proportional to swappiness and
2902                         * their relative recent reclaim efficiency.
2903                         * Make sure we don't miss the last page on
2904                         * the offlined memory cgroups because of a
2905                         * round-off error.
2906                         */
2907                        scan = mem_cgroup_online(memcg) ?
2908                               div64_u64(scan * fraction[file], denominator) :
2909                               DIV64_U64_ROUND_UP(scan * fraction[file],
2910                                                  denominator);
2911                        break;
2912                case SCAN_FILE:
2913                case SCAN_ANON:
2914                        /* Scan one type exclusively */
2915                        if ((scan_balance == SCAN_FILE) != file)
2916                                scan = 0;
2917                        break;
2918                default:
2919                        /* Look ma, no brain */
2920                        BUG();
2921                }
2922
2923                nr[lru] = scan;
2924        }
2925}
2926
2927/*
2928 * Anonymous LRU management is a waste if there is
2929 * ultimately no way to reclaim the memory.
2930 */
2931static bool can_age_anon_pages(struct pglist_data *pgdat,
2932                               struct scan_control *sc)
2933{
2934        /* Aging the anon LRU is valuable if swap is present: */
2935        if (total_swap_pages > 0)
2936                return true;
2937
2938        /* Also valuable if anon pages can be demoted: */
2939        return can_demote(pgdat->node_id, sc);
2940}
2941
2942static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2943{
2944        unsigned long nr[NR_LRU_LISTS];
2945        unsigned long targets[NR_LRU_LISTS];
2946        unsigned long nr_to_scan;
2947        enum lru_list lru;
2948        unsigned long nr_reclaimed = 0;
2949        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2950        struct blk_plug plug;
2951        bool scan_adjusted;
2952
2953        get_scan_count(lruvec, sc, nr);
2954
2955        /* Record the original scan target for proportional adjustments later */
2956        memcpy(targets, nr, sizeof(nr));
2957
2958        /*
2959         * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2960         * event that can occur when there is little memory pressure e.g.
2961         * multiple streaming readers/writers. Hence, we do not abort scanning
2962         * when the requested number of pages are reclaimed when scanning at
2963         * DEF_PRIORITY on the assumption that the fact we are direct
2964         * reclaiming implies that kswapd is not keeping up and it is best to
2965         * do a batch of work at once. For memcg reclaim one check is made to
2966         * abort proportional reclaim if either the file or anon lru has already
2967         * dropped to zero at the first pass.
2968         */
2969        scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2970                         sc->priority == DEF_PRIORITY);
2971
2972        blk_start_plug(&plug);
2973        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2974                                        nr[LRU_INACTIVE_FILE]) {
2975                unsigned long nr_anon, nr_file, percentage;
2976                unsigned long nr_scanned;
2977
2978                for_each_evictable_lru(lru) {
2979                        if (nr[lru]) {
2980                                nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2981                                nr[lru] -= nr_to_scan;
2982
2983                                nr_reclaimed += shrink_list(lru, nr_to_scan,
2984                                                            lruvec, sc);
2985                        }
2986                }
2987
2988                cond_resched();
2989
2990                if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2991                        continue;
2992
2993                /*
2994                 * For kswapd and memcg, reclaim at least the number of pages
2995                 * requested. Ensure that the anon and file LRUs are scanned
2996                 * proportionally what was requested by get_scan_count(). We
2997                 * stop reclaiming one LRU and reduce the amount scanning
2998                 * proportional to the original scan target.
2999                 */
3000                nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3001                nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3002
3003                /*
3004                 * It's just vindictive to attack the larger once the smaller
3005                 * has gone to zero.  And given the way we stop scanning the
3006                 * smaller below, this makes sure that we only make one nudge
3007                 * towards proportionality once we've got nr_to_reclaim.
3008                 */
3009                if (!nr_file || !nr_anon)
3010                        break;
3011
3012                if (nr_file > nr_anon) {
3013                        unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3014                                                targets[LRU_ACTIVE_ANON] + 1;
3015                        lru = LRU_BASE;
3016                        percentage = nr_anon * 100 / scan_target;
3017                } else {
3018                        unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3019                                                targets[LRU_ACTIVE_FILE] + 1;
3020                        lru = LRU_FILE;
3021                        percentage = nr_file * 100 / scan_target;
3022                }
3023
3024                /* Stop scanning the smaller of the LRU */
3025                nr[lru] = 0;
3026                nr[lru + LRU_ACTIVE] = 0;
3027
3028                /*
3029                 * Recalculate the other LRU scan count based on its original
3030                 * scan target and the percentage scanning already complete
3031                 */
3032                lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3033                nr_scanned = targets[lru] - nr[lru];
3034                nr[lru] = targets[lru] * (100 - percentage) / 100;
3035                nr[lru] -= min(nr[lru], nr_scanned);
3036
3037                lru += LRU_ACTIVE;
3038                nr_scanned = targets[lru] - nr[lru];
3039                nr[lru] = targets[lru] * (100 - percentage) / 100;
3040                nr[lru] -= min(nr[lru], nr_scanned);
3041
3042                scan_adjusted = true;
3043        }
3044        blk_finish_plug(&plug);
3045        sc->nr_reclaimed += nr_reclaimed;
3046
3047        /*
3048         * Even if we did not try to evict anon pages at all, we want to
3049         * rebalance the anon lru active/inactive ratio.
3050         */
3051        if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3052            inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3053                shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3054                                   sc, LRU_ACTIVE_ANON);
3055}
3056
3057/* Use reclaim/compaction for costly allocs or under memory pressure */
3058static bool in_reclaim_compaction(struct scan_control *sc)
3059{
3060        if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3061                        (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3062                         sc->priority < DEF_PRIORITY - 2))
3063                return true;
3064
3065        return false;
3066}
3067
3068/*
3069 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3070 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3071 * true if more pages should be reclaimed such that when the page allocator
3072 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3073 * It will give up earlier than that if there is difficulty reclaiming pages.
3074 */
3075static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3076                                        unsigned long nr_reclaimed,
3077                                        struct scan_control *sc)
3078{
3079        unsigned long pages_for_compaction;
3080        unsigned long inactive_lru_pages;
3081        int z;
3082
3083        /* If not in reclaim/compaction mode, stop */
3084        if (!in_reclaim_compaction(sc))
3085                return false;
3086
3087        /*
3088         * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3089         * number of pages that were scanned. This will return to the caller
3090         * with the risk reclaim/compaction and the resulting allocation attempt
3091         * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3092         * allocations through requiring that the full LRU list has been scanned
3093         * first, by assuming that zero delta of sc->nr_scanned means full LRU
3094         * scan, but that approximation was wrong, and there were corner cases
3095         * where always a non-zero amount of pages were scanned.
3096         */
3097        if (!nr_reclaimed)
3098                return false;
3099
3100        /* If compaction would go ahead or the allocation would succeed, stop */
3101        for (z = 0; z <= sc->reclaim_idx; z++) {
3102                struct zone *zone = &pgdat->node_zones[z];
3103                if (!managed_zone(zone))
3104                        continue;
3105
3106                switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3107                case COMPACT_SUCCESS:
3108                case COMPACT_CONTINUE:
3109                        return false;
3110                default:
3111                        /* check next zone */
3112                        ;
3113                }
3114        }
3115
3116        /*
3117         * If we have not reclaimed enough pages for compaction and the
3118         * inactive lists are large enough, continue reclaiming
3119         */
3120        pages_for_compaction = compact_gap(sc->order);
3121        inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3122        if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3123                inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3124
3125        return inactive_lru_pages > pages_for_compaction;
3126}
3127
3128static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3129{
3130        struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3131        struct mem_cgroup *memcg;
3132
3133        memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3134        do {
3135                struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3136                unsigned long reclaimed;
3137                unsigned long scanned;
3138
3139                /*
3140                 * This loop can become CPU-bound when target memcgs
3141                 * aren't eligible for reclaim - either because they
3142                 * don't have any reclaimable pages, or because their
3143                 * memory is explicitly protected. Avoid soft lockups.
3144                 */
3145                cond_resched();
3146
3147                mem_cgroup_calculate_protection(target_memcg, memcg);
3148
3149                if (mem_cgroup_below_min(memcg)) {
3150                        /*
3151                         * Hard protection.
3152                         * If there is no reclaimable memory, OOM.
3153                         */
3154                        continue;
3155                } else if (mem_cgroup_below_low(memcg)) {
3156                        /*
3157                         * Soft protection.
3158                         * Respect the protection only as long as
3159                         * there is an unprotected supply
3160                         * of reclaimable memory from other cgroups.
3161                         */
3162                        if (!sc->memcg_low_reclaim) {
3163                                sc->memcg_low_skipped = 1;
3164                                continue;
3165                        }
3166                        memcg_memory_event(memcg, MEMCG_LOW);
3167                }
3168
3169                reclaimed = sc->nr_reclaimed;
3170                scanned = sc->nr_scanned;
3171
3172                shrink_lruvec(lruvec, sc);
3173
3174                shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3175                            sc->priority);
3176
3177                /* Record the group's reclaim efficiency */
3178                vmpressure(sc->gfp_mask, memcg, false,
3179                           sc->nr_scanned - scanned,
3180                           sc->nr_reclaimed - reclaimed);
3181
3182        } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3183}
3184
3185static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3186{
3187        struct reclaim_state *reclaim_state = current->reclaim_state;
3188        unsigned long nr_reclaimed, nr_scanned;
3189        struct lruvec *target_lruvec;
3190        bool reclaimable = false;
3191        unsigned long file;
3192
3193        target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3194
3195again:
3196        /*
3197         * Flush the memory cgroup stats, so that we read accurate per-memcg
3198         * lruvec stats for heuristics.
3199         */
3200        mem_cgroup_flush_stats();
3201
3202        memset(&sc->nr, 0, sizeof(sc->nr));
3203
3204        nr_reclaimed = sc->nr_reclaimed;
3205        nr_scanned = sc->nr_scanned;
3206
3207        /*
3208         * Determine the scan balance between anon and file LRUs.
3209         */
3210        spin_lock_irq(&target_lruvec->lru_lock);
3211        sc->anon_cost = target_lruvec->anon_cost;
3212        sc->file_cost = target_lruvec->file_cost;
3213        spin_unlock_irq(&target_lruvec->lru_lock);
3214
3215        /*
3216         * Target desirable inactive:active list ratios for the anon
3217         * and file LRU lists.
3218         */
3219        if (!sc->force_deactivate) {
3220                unsigned long refaults;
3221
3222                refaults = lruvec_page_state(target_lruvec,
3223                                WORKINGSET_ACTIVATE_ANON);
3224                if (refaults != target_lruvec->refaults[0] ||
3225                        inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3226                        sc->may_deactivate |= DEACTIVATE_ANON;
3227                else
3228                        sc->may_deactivate &= ~DEACTIVATE_ANON;
3229
3230                /*
3231                 * When refaults are being observed, it means a new
3232                 * workingset is being established. Deactivate to get
3233                 * rid of any stale active pages quickly.
3234                 */
3235                refaults = lruvec_page_state(target_lruvec,
3236                                WORKINGSET_ACTIVATE_FILE);
3237                if (refaults != target_lruvec->refaults[1] ||
3238                    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3239                        sc->may_deactivate |= DEACTIVATE_FILE;
3240                else
3241                        sc->may_deactivate &= ~DEACTIVATE_FILE;
3242        } else
3243                sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3244
3245        /*
3246         * If we have plenty of inactive file pages that aren't
3247         * thrashing, try to reclaim those first before touching
3248         * anonymous pages.
3249         */
3250        file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3251        if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3252                sc->cache_trim_mode = 1;
3253        else
3254                sc->cache_trim_mode = 0;
3255
3256        /*
3257         * Prevent the reclaimer from falling into the cache trap: as
3258         * cache pages start out inactive, every cache fault will tip
3259         * the scan balance towards the file LRU.  And as the file LRU
3260         * shrinks, so does the window for rotation from references.
3261         * This means we have a runaway feedback loop where a tiny
3262         * thrashing file LRU becomes infinitely more attractive than
3263         * anon pages.  Try to detect this based on file LRU size.
3264         */
3265        if (!cgroup_reclaim(sc)) {
3266                unsigned long total_high_wmark = 0;
3267                unsigned long free, anon;
3268                int z;
3269
3270                free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3271                file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3272                           node_page_state(pgdat, NR_INACTIVE_FILE);
3273
3274                for (z = 0; z < MAX_NR_ZONES; z++) {
3275                        struct zone *zone = &pgdat->node_zones[z];
3276                        if (!managed_zone(zone))
3277                                continue;
3278
3279                        total_high_wmark += high_wmark_pages(zone);
3280                }
3281
3282                /*
3283                 * Consider anon: if that's low too, this isn't a
3284                 * runaway file reclaim problem, but rather just
3285                 * extreme pressure. Reclaim as per usual then.
3286                 */
3287                anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3288
3289                sc->file_is_tiny =
3290                        file + free <= total_high_wmark &&
3291                        !(sc->may_deactivate & DEACTIVATE_ANON) &&
3292                        anon >> sc->priority;
3293        }
3294
3295        shrink_node_memcgs(pgdat, sc);
3296
3297        if (reclaim_state) {
3298                sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3299                reclaim_state->reclaimed_slab = 0;
3300        }
3301
3302        /* Record the subtree's reclaim efficiency */
3303        vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3304                   sc->nr_scanned - nr_scanned,
3305                   sc->nr_reclaimed - nr_reclaimed);
3306
3307        if (sc->nr_reclaimed - nr_reclaimed)
3308                reclaimable = true;
3309
3310        if (current_is_kswapd()) {
3311                /*
3312                 * If reclaim is isolating dirty pages under writeback,
3313                 * it implies that the long-lived page allocation rate
3314                 * is exceeding the page laundering rate. Either the
3315                 * global limits are not being effective at throttling
3316                 * processes due to the page distribution throughout
3317                 * zones or there is heavy usage of a slow backing
3318                 * device. The only option is to throttle from reclaim
3319                 * context which is not ideal as there is no guarantee
3320                 * the dirtying process is throttled in the same way
3321                 * balance_dirty_pages() manages.
3322                 *
3323                 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3324                 * count the number of pages under pages flagged for
3325                 * immediate reclaim and stall if any are encountered
3326                 * in the nr_immediate check below.
3327                 */
3328                if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3329                        set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3330
3331                /* Allow kswapd to start writing pages during reclaim.*/
3332                if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3333                        set_bit(PGDAT_DIRTY, &pgdat->flags);
3334
3335                /*
3336                 * If kswapd scans pages marked for immediate
3337                 * reclaim and under writeback (nr_immediate), it
3338                 * implies that pages are cycling through the LRU
3339                 * faster than they are written so forcibly stall
3340                 * until some pages complete writeback.
3341                 */
3342                if (sc->nr.immediate)
3343                        reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3344        }
3345
3346        /*
3347         * Tag a node/memcg as congested if all the dirty pages were marked
3348         * for writeback and immediate reclaim (counted in nr.congested).
3349         *
3350         * Legacy memcg will stall in page writeback so avoid forcibly
3351         * stalling in reclaim_throttle().
3352         */
3353        if ((current_is_kswapd() ||
3354             (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3355            sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3356                set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3357
3358        /*
3359         * Stall direct reclaim for IO completions if the lruvec is
3360         * node is congested. Allow kswapd to continue until it
3361         * starts encountering unqueued dirty pages or cycling through
3362         * the LRU too quickly.
3363         */
3364        if (!current_is_kswapd() && current_may_throttle() &&
3365            !sc->hibernation_mode &&
3366            test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3367                reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3368
3369        if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3370                                    sc))
3371                goto again;
3372
3373        /*
3374         * Kswapd gives up on balancing particular nodes after too
3375         * many failures to reclaim anything from them and goes to
3376         * sleep. On reclaim progress, reset the failure counter. A
3377         * successful direct reclaim run will revive a dormant kswapd.
3378         */
3379        if (reclaimable)
3380                pgdat->kswapd_failures = 0;
3381}
3382
3383/*
3384 * Returns true if compaction should go ahead for a costly-order request, or
3385 * the allocation would already succeed without compaction. Return false if we
3386 * should reclaim first.
3387 */
3388static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3389{
3390        unsigned long watermark;
3391        enum compact_result suitable;
3392
3393        suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3394        if (suitable == COMPACT_SUCCESS)
3395                /* Allocation should succeed already. Don't reclaim. */
3396                return true;
3397        if (suitable == COMPACT_SKIPPED)
3398                /* Compaction cannot yet proceed. Do reclaim. */
3399                return false;
3400
3401        /*
3402         * Compaction is already possible, but it takes time to run and there
3403         * are potentially other callers using the pages just freed. So proceed
3404         * with reclaim to make a buffer of free pages available to give
3405         * compaction a reasonable chance of completing and allocating the page.
3406         * Note that we won't actually reclaim the whole buffer in one attempt
3407         * as the target watermark in should_continue_reclaim() is lower. But if
3408         * we are already above the high+gap watermark, don't reclaim at all.
3409         */
3410        watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3411
3412        return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3413}
3414
3415static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3416{
3417        /*
3418         * If reclaim is making progress greater than 12% efficiency then
3419         * wake all the NOPROGRESS throttled tasks.
3420         */
3421        if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3422                wait_queue_head_t *wqh;
3423
3424                wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3425                if (waitqueue_active(wqh))
3426                        wake_up(wqh);
3427
3428                return;
3429        }
3430
3431        /*
3432         * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3433         * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3434         * under writeback and marked for immediate reclaim at the tail of the
3435         * LRU.
3436         */
3437        if (current_is_kswapd() || cgroup_reclaim(sc))
3438                return;
3439
3440        /* Throttle if making no progress at high prioities. */
3441        if (sc->priority == 1 && !sc->nr_reclaimed)
3442                reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3443}
3444
3445/*
3446 * This is the direct reclaim path, for page-allocating processes.  We only
3447 * try to reclaim pages from zones which will satisfy the caller's allocation
3448 * request.
3449 *
3450 * If a zone is deemed to be full of pinned pages then just give it a light
3451 * scan then give up on it.
3452 */
3453static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3454{
3455        struct zoneref *z;
3456        struct zone *zone;
3457        unsigned long nr_soft_reclaimed;
3458        unsigned long nr_soft_scanned;
3459        gfp_t orig_mask;
3460        pg_data_t *last_pgdat = NULL;
3461        pg_data_t *first_pgdat = NULL;
3462
3463        /*
3464         * If the number of buffer_heads in the machine exceeds the maximum
3465         * allowed level, force direct reclaim to scan the highmem zone as
3466         * highmem pages could be pinning lowmem pages storing buffer_heads
3467         */
3468        orig_mask = sc->gfp_mask;
3469        if (buffer_heads_over_limit) {
3470                sc->gfp_mask |= __GFP_HIGHMEM;
3471                sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3472        }
3473
3474        for_each_zone_zonelist_nodemask(zone, z, zonelist,
3475                                        sc->reclaim_idx, sc->nodemask) {
3476                /*
3477                 * Take care memory controller reclaiming has small influence
3478                 * to global LRU.
3479                 */
3480                if (!cgroup_reclaim(sc)) {
3481                        if (!cpuset_zone_allowed(zone,
3482                                                 GFP_KERNEL | __GFP_HARDWALL))
3483                                continue;
3484
3485                        /*
3486                         * If we already have plenty of memory free for
3487                         * compaction in this zone, don't free any more.
3488                         * Even though compaction is invoked for any
3489                         * non-zero order, only frequent costly order
3490                         * reclamation is disruptive enough to become a
3491                         * noticeable problem, like transparent huge
3492                         * page allocations.
3493                         */
3494                        if (IS_ENABLED(CONFIG_COMPACTION) &&
3495                            sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3496                            compaction_ready(zone, sc)) {
3497                                sc->compaction_ready = true;
3498                                continue;
3499                        }
3500
3501                        /*
3502                         * Shrink each node in the zonelist once. If the
3503                         * zonelist is ordered by zone (not the default) then a
3504                         * node may be shrunk multiple times but in that case
3505                         * the user prefers lower zones being preserved.
3506                         */
3507                        if (zone->zone_pgdat == last_pgdat)
3508                                continue;
3509
3510                        /*
3511                         * This steals pages from memory cgroups over softlimit
3512                         * and returns the number of reclaimed pages and
3513                         * scanned pages. This works for global memory pressure
3514                         * and balancing, not for a memcg's limit.
3515                         */
3516                        nr_soft_scanned = 0;
3517                        nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3518                                                sc->order, sc->gfp_mask,
3519                                                &nr_soft_scanned);
3520                        sc->nr_reclaimed += nr_soft_reclaimed;
3521                        sc->nr_scanned += nr_soft_scanned;
3522                        /* need some check for avoid more shrink_zone() */
3523                }
3524
3525                if (!first_pgdat)
3526                        first_pgdat = zone->zone_pgdat;
3527
3528                /* See comment about same check for global reclaim above */
3529                if (zone->zone_pgdat == last_pgdat)
3530                        continue;
3531                last_pgdat = zone->zone_pgdat;
3532                shrink_node(zone->zone_pgdat, sc);
3533        }
3534
3535        if (first_pgdat)
3536                consider_reclaim_throttle(first_pgdat, sc);
3537
3538        /*
3539         * Restore to original mask to avoid the impact on the caller if we
3540         * promoted it to __GFP_HIGHMEM.
3541         */
3542        sc->gfp_mask = orig_mask;
3543}
3544
3545static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3546{
3547        struct lruvec *target_lruvec;
3548        unsigned long refaults;
3549
3550        target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3551        refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3552        target_lruvec->refaults[0] = refaults;
3553        refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3554        target_lruvec->refaults[1] = refaults;
3555}
3556
3557/*
3558 * This is the main entry point to direct page reclaim.
3559 *
3560 * If a full scan of the inactive list fails to free enough memory then we
3561 * are "out of memory" and something needs to be killed.
3562 *
3563 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3564 * high - the zone may be full of dirty or under-writeback pages, which this
3565 * caller can't do much about.  We kick the writeback threads and take explicit
3566 * naps in the hope that some of these pages can be written.  But if the
3567 * allocating task holds filesystem locks which prevent writeout this might not
3568 * work, and the allocation attempt will fail.
3569 *
3570 * returns:     0, if no pages reclaimed
3571 *              else, the number of pages reclaimed
3572 */
3573static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3574                                          struct scan_control *sc)
3575{
3576        int initial_priority = sc->priority;
3577        pg_data_t *last_pgdat;
3578        struct zoneref *z;
3579        struct zone *zone;
3580retry:
3581        delayacct_freepages_start();
3582
3583        if (!cgroup_reclaim(sc))
3584                __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3585
3586        do {
3587                vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3588                                sc->priority);
3589                sc->nr_scanned = 0;
3590                shrink_zones(zonelist, sc);
3591
3592                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3593                        break;
3594
3595                if (sc->compaction_ready)
3596                        break;
3597
3598                /*
3599                 * If we're getting trouble reclaiming, start doing
3600                 * writepage even in laptop mode.
3601                 */
3602                if (sc->priority < DEF_PRIORITY - 2)
3603                        sc->may_writepage = 1;
3604        } while (--sc->priority >= 0);
3605
3606        last_pgdat = NULL;
3607        for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3608                                        sc->nodemask) {
3609                if (zone->zone_pgdat == last_pgdat)
3610                        continue;
3611                last_pgdat = zone->zone_pgdat;
3612
3613                snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3614
3615                if (cgroup_reclaim(sc)) {
3616                        struct lruvec *lruvec;
3617
3618                        lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3619                                                   zone->zone_pgdat);
3620                        clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3621                }
3622        }
3623
3624        delayacct_freepages_end();
3625
3626        if (sc->nr_reclaimed)
3627                return sc->nr_reclaimed;
3628
3629        /* Aborted reclaim to try compaction? don't OOM, then */
3630        if (sc->compaction_ready)
3631                return 1;
3632
3633        /*
3634         * We make inactive:active ratio decisions based on the node's
3635         * composition of memory, but a restrictive reclaim_idx or a
3636         * memory.low cgroup setting can exempt large amounts of
3637         * memory from reclaim. Neither of which are very common, so
3638         * instead of doing costly eligibility calculations of the
3639         * entire cgroup subtree up front, we assume the estimates are
3640         * good, and retry with forcible deactivation if that fails.
3641         */
3642        if (sc->skipped_deactivate) {
3643                sc->priority = initial_priority;
3644                sc->force_deactivate = 1;
3645                sc->skipped_deactivate = 0;
3646                goto retry;
3647        }
3648
3649        /* Untapped cgroup reserves?  Don't OOM, retry. */
3650        if (sc->memcg_low_skipped) {
3651                sc->priority = initial_priority;
3652                sc->force_deactivate = 0;
3653                sc->memcg_low_reclaim = 1;
3654                sc->memcg_low_skipped = 0;
3655                goto retry;
3656        }
3657
3658        return 0;
3659}
3660
3661static bool allow_direct_reclaim(pg_data_t *pgdat)
3662{
3663        struct zone *zone;
3664        unsigned long pfmemalloc_reserve = 0;
3665        unsigned long free_pages = 0;
3666        int i;
3667        bool wmark_ok;
3668
3669        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3670                return true;
3671
3672        for (i = 0; i <= ZONE_NORMAL; i++) {
3673                zone = &pgdat->node_zones[i];
3674                if (!managed_zone(zone))
3675                        continue;
3676
3677                if (!zone_reclaimable_pages(zone))
3678                        continue;
3679
3680                pfmemalloc_reserve += min_wmark_pages(zone);
3681                free_pages += zone_page_state(zone, NR_FREE_PAGES);
3682        }
3683
3684        /* If there are no reserves (unexpected config) then do not throttle */
3685        if (!pfmemalloc_reserve)
3686                return true;
3687
3688        wmark_ok = free_pages > pfmemalloc_reserve / 2;
3689
3690        /* kswapd must be awake if processes are being throttled */
3691        if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3692                if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3693                        WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3694
3695                wake_up_interruptible(&pgdat->kswapd_wait);
3696        }
3697
3698        return wmark_ok;
3699}
3700
3701/*
3702 * Throttle direct reclaimers if backing storage is backed by the network
3703 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3704 * depleted. kswapd will continue to make progress and wake the processes
3705 * when the low watermark is reached.
3706 *
3707 * Returns true if a fatal signal was delivered during throttling. If this
3708 * happens, the page allocator should not consider triggering the OOM killer.
3709 */
3710static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3711                                        nodemask_t *nodemask)
3712{
3713        struct zoneref *z;
3714        struct zone *zone;
3715        pg_data_t *pgdat = NULL;
3716
3717        /*
3718         * Kernel threads should not be throttled as they may be indirectly
3719         * responsible for cleaning pages necessary for reclaim to make forward
3720         * progress. kjournald for example may enter direct reclaim while
3721         * committing a transaction where throttling it could forcing other
3722         * processes to block on log_wait_commit().
3723         */
3724        if (current->flags & PF_KTHREAD)
3725                goto out;
3726
3727        /*
3728         * If a fatal signal is pending, this process should not throttle.
3729         * It should return quickly so it can exit and free its memory
3730         */
3731        if (fatal_signal_pending(current))
3732                goto out;
3733
3734        /*
3735         * Check if the pfmemalloc reserves are ok by finding the first node
3736         * with a usable ZONE_NORMAL or lower zone. The expectation is that
3737         * GFP_KERNEL will be required for allocating network buffers when
3738         * swapping over the network so ZONE_HIGHMEM is unusable.
3739         *
3740         * Throttling is based on the first usable node and throttled processes
3741         * wait on a queue until kswapd makes progress and wakes them. There
3742         * is an affinity then between processes waking up and where reclaim
3743         * progress has been made assuming the process wakes on the same node.
3744         * More importantly, processes running on remote nodes will not compete
3745         * for remote pfmemalloc reserves and processes on different nodes
3746         * should make reasonable progress.
3747         */
3748        for_each_zone_zonelist_nodemask(zone, z, zonelist,
3749                                        gfp_zone(gfp_mask), nodemask) {
3750                if (zone_idx(zone) > ZONE_NORMAL)
3751                        continue;
3752
3753                /* Throttle based on the first usable node */
3754                pgdat = zone->zone_pgdat;
3755                if (allow_direct_reclaim(pgdat))
3756                        goto out;
3757                break;
3758        }
3759
3760        /* If no zone was usable by the allocation flags then do not throttle */
3761        if (!pgdat)
3762                goto out;
3763
3764        /* Account for the throttling */
3765        count_vm_event(PGSCAN_DIRECT_THROTTLE);
3766
3767        /*
3768         * If the caller cannot enter the filesystem, it's possible that it
3769         * is due to the caller holding an FS lock or performing a journal
3770         * transaction in the case of a filesystem like ext[3|4]. In this case,
3771         * it is not safe to block on pfmemalloc_wait as kswapd could be
3772         * blocked waiting on the same lock. Instead, throttle for up to a
3773         * second before continuing.
3774         */
3775        if (!(gfp_mask & __GFP_FS))
3776                wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3777                        allow_direct_reclaim(pgdat), HZ);
3778        else
3779                /* Throttle until kswapd wakes the process */
3780                wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3781                        allow_direct_reclaim(pgdat));
3782
3783        if (fatal_signal_pending(current))
3784                return true;
3785
3786out:
3787        return false;
3788}
3789
3790unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3791                                gfp_t gfp_mask, nodemask_t *nodemask)
3792{
3793        unsigned long nr_reclaimed;
3794        struct scan_control sc = {
3795                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3796                .gfp_mask = current_gfp_context(gfp_mask),
3797                .reclaim_idx = gfp_zone(gfp_mask),
3798                .order = order,
3799                .nodemask = nodemask,
3800                .priority = DEF_PRIORITY,
3801                .may_writepage = !laptop_mode,
3802                .may_unmap = 1,
3803                .may_swap = 1,
3804        };
3805
3806        /*
3807         * scan_control uses s8 fields for order, priority, and reclaim_idx.
3808         * Confirm they are large enough for max values.
3809         */
3810        BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3811        BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3812        BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3813
3814        /*
3815         * Do not enter reclaim if fatal signal was delivered while throttled.
3816         * 1 is returned so that the page allocator does not OOM kill at this
3817         * point.
3818         */
3819        if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3820                return 1;
3821
3822        set_task_reclaim_state(current, &sc.reclaim_state);
3823        trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3824
3825        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3826
3827        trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3828        set_task_reclaim_state(current, NULL);
3829
3830        return nr_reclaimed;
3831}
3832
3833#ifdef CONFIG_MEMCG
3834
3835/* Only used by soft limit reclaim. Do not reuse for anything else. */
3836unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3837                                                gfp_t gfp_mask, bool noswap,
3838                                                pg_data_t *pgdat,
3839                                                unsigned long *nr_scanned)
3840{
3841        struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3842        struct scan_control sc = {
3843                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3844                .target_mem_cgroup = memcg,
3845                .may_writepage = !laptop_mode,
3846                .may_unmap = 1,
3847                .reclaim_idx = MAX_NR_ZONES - 1,
3848                .may_swap = !noswap,
3849        };
3850
3851        WARN_ON_ONCE(!current->reclaim_state);
3852
3853        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3854                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3855
3856        trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3857                                                      sc.gfp_mask);
3858
3859        /*
3860         * NOTE: Although we can get the priority field, using it
3861         * here is not a good idea, since it limits the pages we can scan.
3862         * if we don't reclaim here, the shrink_node from balance_pgdat
3863         * will pick up pages from other mem cgroup's as well. We hack
3864         * the priority and make it zero.
3865         */
3866        shrink_lruvec(lruvec, &sc);
3867
3868        trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3869
3870        *nr_scanned = sc.nr_scanned;
3871
3872        return sc.nr_reclaimed;
3873}
3874
3875unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3876                                           unsigned long nr_pages,
3877                                           gfp_t gfp_mask,
3878                                           bool may_swap)
3879{
3880        unsigned long nr_reclaimed;
3881        unsigned int noreclaim_flag;
3882        struct scan_control sc = {
3883                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3884                .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3885                                (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3886                .reclaim_idx = MAX_NR_ZONES - 1,
3887                .target_mem_cgroup = memcg,
3888                .priority = DEF_PRIORITY,
3889                .may_writepage = !laptop_mode,
3890                .may_unmap = 1,
3891                .may_swap = may_swap,
3892        };
3893        /*
3894         * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3895         * equal pressure on all the nodes. This is based on the assumption that
3896         * the reclaim does not bail out early.
3897         */
3898        struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3899
3900        set_task_reclaim_state(current, &sc.reclaim_state);
3901        trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3902        noreclaim_flag = memalloc_noreclaim_save();
3903
3904        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3905
3906        memalloc_noreclaim_restore(noreclaim_flag);
3907        trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3908        set_task_reclaim_state(current, NULL);
3909
3910        return nr_reclaimed;
3911}
3912#endif
3913
3914static void age_active_anon(struct pglist_data *pgdat,
3915                                struct scan_control *sc)
3916{
3917        struct mem_cgroup *memcg;
3918        struct lruvec *lruvec;
3919
3920        if (!can_age_anon_pages(pgdat, sc))
3921                return;
3922
3923        lruvec = mem_cgroup_lruvec(NULL, pgdat);
3924        if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3925                return;
3926
3927        memcg = mem_cgroup_iter(NULL, NULL, NULL);
3928        do {
3929                lruvec = mem_cgroup_lruvec(memcg, pgdat);
3930                shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3931                                   sc, LRU_ACTIVE_ANON);
3932                memcg = mem_cgroup_iter(NULL, memcg, NULL);
3933        } while (memcg);
3934}
3935
3936static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3937{
3938        int i;
3939        struct zone *zone;
3940
3941        /*
3942         * Check for watermark boosts top-down as the higher zones
3943         * are more likely to be boosted. Both watermarks and boosts
3944         * should not be checked at the same time as reclaim would
3945         * start prematurely when there is no boosting and a lower
3946         * zone is balanced.
3947         */
3948        for (i = highest_zoneidx; i >= 0; i--) {
3949                zone = pgdat->node_zones + i;
3950                if (!managed_zone(zone))
3951                        continue;
3952
3953                if (zone->watermark_boost)
3954                        return true;
3955        }
3956
3957        return false;
3958}
3959
3960/*
3961 * Returns true if there is an eligible zone balanced for the request order
3962 * and highest_zoneidx
3963 */
3964static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3965{
3966        int i;
3967        unsigned long mark = -1;
3968        struct zone *zone;
3969
3970        /*
3971         * Check watermarks bottom-up as lower zones are more likely to
3972         * meet watermarks.
3973         */
3974        for (i = 0; i <= highest_zoneidx; i++) {
3975                zone = pgdat->node_zones + i;
3976
3977                if (!managed_zone(zone))
3978                        continue;
3979
3980                mark = high_wmark_pages(zone);
3981                if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3982                        return true;
3983        }
3984
3985        /*
3986         * If a node has no populated zone within highest_zoneidx, it does not
3987         * need balancing by definition. This can happen if a zone-restricted
3988         * allocation tries to wake a remote kswapd.
3989         */
3990        if (mark == -1)
3991                return true;
3992
3993        return false;
3994}
3995
3996/* Clear pgdat state for congested, dirty or under writeback. */
3997static void clear_pgdat_congested(pg_data_t *pgdat)
3998{
3999        struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4000
4001        clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
4002        clear_bit(PGDAT_DIRTY, &pgdat->flags);
4003        clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4004}
4005
4006/*
4007 * Prepare kswapd for sleeping. This verifies that there are no processes
4008 * waiting in throttle_direct_reclaim() and that watermarks have been met.
4009 *
4010 * Returns true if kswapd is ready to sleep
4011 */
4012static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4013                                int highest_zoneidx)
4014{
4015        /*
4016         * The throttled processes are normally woken up in balance_pgdat() as
4017         * soon as allow_direct_reclaim() is true. But there is a potential
4018         * race between when kswapd checks the watermarks and a process gets
4019         * throttled. There is also a potential race if processes get
4020         * throttled, kswapd wakes, a large process exits thereby balancing the
4021         * zones, which causes kswapd to exit balance_pgdat() before reaching
4022         * the wake up checks. If kswapd is going to sleep, no process should
4023         * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4024         * the wake up is premature, processes will wake kswapd and get
4025         * throttled again. The difference from wake ups in balance_pgdat() is
4026         * that here we are under prepare_to_wait().
4027         */
4028        if (waitqueue_active(&pgdat->pfmemalloc_wait))
4029                wake_up_all(&pgdat->pfmemalloc_wait);
4030
4031        /* Hopeless node, leave it to direct reclaim */
4032        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4033                return true;
4034
4035        if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4036                clear_pgdat_congested(pgdat);
4037                return true;
4038        }
4039
4040        return false;
4041}
4042
4043/*
4044 * kswapd shrinks a node of pages that are at or below the highest usable
4045 * zone that is currently unbalanced.
4046 *
4047 * Returns true if kswapd scanned at least the requested number of pages to
4048 * reclaim or if the lack of progress was due to pages under writeback.
4049 * This is used to determine if the scanning priority needs to be raised.
4050 */
4051static bool kswapd_shrink_node(pg_data_t *pgdat,
4052                               struct scan_control *sc)
4053{
4054        struct zone *zone;
4055        int z;
4056
4057        /* Reclaim a number of pages proportional to the number of zones */
4058        sc->nr_to_reclaim = 0;
4059        for (z = 0; z <= sc->reclaim_idx; z++) {
4060                zone = pgdat->node_zones + z;
4061                if (!managed_zone(zone))
4062                        continue;
4063
4064                sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4065        }
4066
4067        /*
4068         * Historically care was taken to put equal pressure on all zones but
4069         * now pressure is applied based on node LRU order.
4070         */
4071        shrink_node(pgdat, sc);
4072
4073        /*
4074         * Fragmentation may mean that the system cannot be rebalanced for
4075         * high-order allocations. If twice the allocation size has been
4076         * reclaimed then recheck watermarks only at order-0 to prevent
4077         * excessive reclaim. Assume that a process requested a high-order
4078         * can direct reclaim/compact.
4079         */
4080        if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4081                sc->order = 0;
4082
4083        return sc->nr_scanned >= sc->nr_to_reclaim;
4084}
4085
4086/* Page allocator PCP high watermark is lowered if reclaim is active. */
4087static inline void
4088update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4089{
4090        int i;
4091        struct zone *zone;
4092
4093        for (i = 0; i <= highest_zoneidx; i++) {
4094                zone = pgdat->node_zones + i;
4095
4096                if (!managed_zone(zone))
4097                        continue;
4098
4099                if (active)
4100                        set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4101                else
4102                        clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4103        }
4104}
4105
4106static inline void
4107set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4108{
4109        update_reclaim_active(pgdat, highest_zoneidx, true);
4110}
4111
4112static inline void
4113clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4114{
4115        update_reclaim_active(pgdat, highest_zoneidx, false);
4116}
4117
4118/*
4119 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4120 * that are eligible for use by the caller until at least one zone is
4121 * balanced.
4122 *
4123 * Returns the order kswapd finished reclaiming at.
4124 *
4125 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4126 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4127 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4128 * or lower is eligible for reclaim until at least one usable zone is
4129 * balanced.
4130 */
4131static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4132{
4133        int i;
4134        unsigned long nr_soft_reclaimed;
4135        unsigned long nr_soft_scanned;
4136        unsigned long pflags;
4137        unsigned long nr_boost_reclaim;
4138        unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4139        bool boosted;
4140        struct zone *zone;
4141        struct scan_control sc = {
4142                .gfp_mask = GFP_KERNEL,
4143                .order = order,
4144                .may_unmap = 1,
4145        };
4146
4147        set_task_reclaim_state(current, &sc.reclaim_state);
4148        psi_memstall_enter(&pflags);
4149        __fs_reclaim_acquire(_THIS_IP_);
4150
4151        count_vm_event(PAGEOUTRUN);
4152
4153        /*
4154         * Account for the reclaim boost. Note that the zone boost is left in
4155         * place so that parallel allocations that are near the watermark will
4156         * stall or direct reclaim until kswapd is finished.
4157         */
4158        nr_boost_reclaim = 0;
4159        for (i = 0; i <= highest_zoneidx; i++) {
4160                zone = pgdat->node_zones + i;
4161                if (!managed_zone(zone))
4162                        continue;
4163
4164                nr_boost_reclaim += zone->watermark_boost;
4165                zone_boosts[i] = zone->watermark_boost;
4166        }
4167        boosted = nr_boost_reclaim;
4168
4169restart:
4170        set_reclaim_active(pgdat, highest_zoneidx);
4171        sc.priority = DEF_PRIORITY;
4172        do {
4173                unsigned long nr_reclaimed = sc.nr_reclaimed;
4174                bool raise_priority = true;
4175                bool balanced;
4176                bool ret;
4177
4178                sc.reclaim_idx = highest_zoneidx;
4179
4180                /*
4181                 * If the number of buffer_heads exceeds the maximum allowed
4182                 * then consider reclaiming from all zones. This has a dual
4183                 * purpose -- on 64-bit systems it is expected that
4184                 * buffer_heads are stripped during active rotation. On 32-bit
4185                 * systems, highmem pages can pin lowmem memory and shrinking
4186                 * buffers can relieve lowmem pressure. Reclaim may still not
4187                 * go ahead if all eligible zones for the original allocation
4188                 * request are balanced to avoid excessive reclaim from kswapd.
4189                 */
4190                if (buffer_heads_over_limit) {
4191                        for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4192                                zone = pgdat->node_zones + i;
4193                                if (!managed_zone(zone))
4194                                        continue;
4195
4196                                sc.reclaim_idx = i;
4197                                break;
4198                        }
4199                }
4200
4201                /*
4202                 * If the pgdat is imbalanced then ignore boosting and preserve
4203                 * the watermarks for a later time and restart. Note that the
4204                 * zone watermarks will be still reset at the end of balancing
4205                 * on the grounds that the normal reclaim should be enough to
4206                 * re-evaluate if boosting is required when kswapd next wakes.
4207                 */
4208                balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4209                if (!balanced && nr_boost_reclaim) {
4210                        nr_boost_reclaim = 0;
4211                        goto restart;
4212                }
4213
4214                /*
4215                 * If boosting is not active then only reclaim if there are no
4216                 * eligible zones. Note that sc.reclaim_idx is not used as
4217                 * buffer_heads_over_limit may have adjusted it.
4218                 */
4219                if (!nr_boost_reclaim && balanced)
4220                        goto out;
4221
4222                /* Limit the priority of boosting to avoid reclaim writeback */
4223                if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4224                        raise_priority = false;
4225
4226                /*
4227                 * Do not writeback or swap pages for boosted reclaim. The
4228                 * intent is to relieve pressure not issue sub-optimal IO
4229                 * from reclaim context. If no pages are reclaimed, the
4230                 * reclaim will be aborted.
4231                 */
4232                sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4233                sc.may_swap = !nr_boost_reclaim;
4234
4235                /*
4236                 * Do some background aging of the anon list, to give
4237                 * pages a chance to be referenced before reclaiming. All
4238                 * pages are rotated regardless of classzone as this is
4239                 * about consistent aging.
4240                 */
4241                age_active_anon(pgdat, &sc);
4242
4243                /*
4244                 * If we're getting trouble reclaiming, start doing writepage
4245                 * even in laptop mode.
4246                 */
4247                if (sc.priority < DEF_PRIORITY - 2)
4248                        sc.may_writepage = 1;
4249
4250                /* Call soft limit reclaim before calling shrink_node. */
4251                sc.nr_scanned = 0;
4252                nr_soft_scanned = 0;
4253                nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4254                                                sc.gfp_mask, &nr_soft_scanned);
4255                sc.nr_reclaimed += nr_soft_reclaimed;
4256
4257                /*
4258                 * There should be no need to raise the scanning priority if
4259                 * enough pages are already being scanned that that high
4260                 * watermark would be met at 100% efficiency.
4261                 */
4262                if (kswapd_shrink_node(pgdat, &sc))
4263                        raise_priority = false;
4264
4265                /*
4266                 * If the low watermark is met there is no need for processes
4267                 * to be throttled on pfmemalloc_wait as they should not be
4268                 * able to safely make forward progress. Wake them
4269                 */
4270                if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4271                                allow_direct_reclaim(pgdat))
4272                        wake_up_all(&pgdat->pfmemalloc_wait);
4273
4274                /* Check if kswapd should be suspending */
4275                __fs_reclaim_release(_THIS_IP_);
4276                ret = try_to_freeze();
4277                __fs_reclaim_acquire(_THIS_IP_);
4278                if (ret || kthread_should_stop())
4279                        break;
4280
4281                /*
4282                 * Raise priority if scanning rate is too low or there was no
4283                 * progress in reclaiming pages
4284                 */
4285                nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4286                nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4287
4288                /*
4289                 * If reclaim made no progress for a boost, stop reclaim as
4290                 * IO cannot be queued and it could be an infinite loop in
4291                 * extreme circumstances.
4292                 */
4293                if (nr_boost_reclaim && !nr_reclaimed)
4294                        break;
4295
4296                if (raise_priority || !nr_reclaimed)
4297                        sc.priority--;
4298        } while (sc.priority >= 1);
4299
4300        if (!sc.nr_reclaimed)
4301                pgdat->kswapd_failures++;
4302
4303out:
4304        clear_reclaim_active(pgdat, highest_zoneidx);
4305
4306        /* If reclaim was boosted, account for the reclaim done in this pass */
4307        if (boosted) {
4308                unsigned long flags;
4309
4310                for (i = 0; i <= highest_zoneidx; i++) {
4311                        if (!zone_boosts[i])
4312                                continue;
4313
4314                        /* Increments are under the zone lock */
4315                        zone = pgdat->node_zones + i;
4316                        spin_lock_irqsave(&zone->lock, flags);
4317                        zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4318                        spin_unlock_irqrestore(&zone->lock, flags);
4319                }
4320
4321                /*
4322                 * As there is now likely space, wakeup kcompact to defragment
4323                 * pageblocks.
4324                 */
4325                wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4326        }
4327
4328        snapshot_refaults(NULL, pgdat);
4329        __fs_reclaim_release(_THIS_IP_);
4330        psi_memstall_leave(&pflags);
4331        set_task_reclaim_state(current, NULL);
4332
4333        /*
4334         * Return the order kswapd stopped reclaiming at as
4335         * prepare_kswapd_sleep() takes it into account. If another caller
4336         * entered the allocator slow path while kswapd was awake, order will
4337         * remain at the higher level.
4338         */
4339        return sc.order;
4340}
4341
4342/*
4343 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4344 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4345 * not a valid index then either kswapd runs for first time or kswapd couldn't
4346 * sleep after previous reclaim attempt (node is still unbalanced). In that
4347 * case return the zone index of the previous kswapd reclaim cycle.
4348 */
4349static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4350                                           enum zone_type prev_highest_zoneidx)
4351{
4352        enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4353
4354        return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4355}
4356
4357static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4358                                unsigned int highest_zoneidx)
4359{
4360        long remaining = 0;
4361        DEFINE_WAIT(wait);
4362
4363        if (freezing(current) || kthread_should_stop())
4364                return;
4365
4366        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4367
4368        /*
4369         * Try to sleep for a short interval. Note that kcompactd will only be
4370         * woken if it is possible to sleep for a short interval. This is
4371         * deliberate on the assumption that if reclaim cannot keep an
4372         * eligible zone balanced that it's also unlikely that compaction will
4373         * succeed.
4374         */
4375        if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4376                /*
4377                 * Compaction records what page blocks it recently failed to
4378                 * isolate pages from and skips them in the future scanning.
4379                 * When kswapd is going to sleep, it is reasonable to assume
4380                 * that pages and compaction may succeed so reset the cache.
4381                 */
4382                reset_isolation_suitable(pgdat);
4383
4384                /*
4385                 * We have freed the memory, now we should compact it to make
4386                 * allocation of the requested order possible.
4387                 */
4388                wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4389
4390                remaining = schedule_timeout(HZ/10);
4391
4392                /*
4393                 * If woken prematurely then reset kswapd_highest_zoneidx and
4394                 * order. The values will either be from a wakeup request or
4395                 * the previous request that slept prematurely.
4396                 */
4397                if (remaining) {
4398                        WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4399                                        kswapd_highest_zoneidx(pgdat,
4400                                                        highest_zoneidx));
4401
4402                        if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4403                                WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4404                }
4405
4406                finish_wait(&pgdat->kswapd_wait, &wait);
4407                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4408        }
4409
4410        /*
4411         * After a short sleep, check if it was a premature sleep. If not, then
4412         * go fully to sleep until explicitly woken up.
4413         */
4414        if (!remaining &&
4415            prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4416                trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4417
4418                /*
4419                 * vmstat counters are not perfectly accurate and the estimated
4420                 * value for counters such as NR_FREE_PAGES can deviate from the
4421                 * true value by nr_online_cpus * threshold. To avoid the zone
4422                 * watermarks being breached while under pressure, we reduce the
4423                 * per-cpu vmstat threshold while kswapd is awake and restore
4424                 * them before going back to sleep.
4425                 */
4426                set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4427
4428                if (!kthread_should_stop())
4429                        schedule();
4430
4431                set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4432        } else {
4433                if (remaining)
4434                        count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4435                else
4436                        count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4437        }
4438        finish_wait(&pgdat->kswapd_wait, &wait);
4439}
4440
4441/*
4442 * The background pageout daemon, started as a kernel thread
4443 * from the init process.
4444 *
4445 * This basically trickles out pages so that we have _some_
4446 * free memory available even if there is no other activity
4447 * that frees anything up. This is needed for things like routing
4448 * etc, where we otherwise might have all activity going on in
4449 * asynchronous contexts that cannot page things out.
4450 *
4451 * If there are applications that are active memory-allocators
4452 * (most normal use), this basically shouldn't matter.
4453 */
4454static int kswapd(void *p)
4455{
4456        unsigned int alloc_order, reclaim_order;
4457        unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4458        pg_data_t *pgdat = (pg_data_t *)p;
4459        struct task_struct *tsk = current;
4460        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4461
4462        if (!cpumask_empty(cpumask))
4463                set_cpus_allowed_ptr(tsk, cpumask);
4464
4465        /*
4466         * Tell the memory management that we're a "memory allocator",
4467         * and that if we need more memory we should get access to it
4468         * regardless (see "__alloc_pages()"). "kswapd" should
4469         * never get caught in the normal page freeing logic.
4470         *
4471         * (Kswapd normally doesn't need memory anyway, but sometimes
4472         * you need a small amount of memory in order to be able to
4473         * page out something else, and this flag essentially protects
4474         * us from recursively trying to free more memory as we're
4475         * trying to free the first piece of memory in the first place).
4476         */
4477        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4478        set_freezable();
4479
4480        WRITE_ONCE(pgdat->kswapd_order, 0);
4481        WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4482        atomic_set(&pgdat->nr_writeback_throttled, 0);
4483        for ( ; ; ) {
4484                bool ret;
4485
4486                alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4487                highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4488                                                        highest_zoneidx);
4489
4490kswapd_try_sleep:
4491                kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4492                                        highest_zoneidx);
4493
4494                /* Read the new order and highest_zoneidx */
4495                alloc_order = READ_ONCE(pgdat->kswapd_order);
4496                highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4497                                                        highest_zoneidx);
4498                WRITE_ONCE(pgdat->kswapd_order, 0);
4499                WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4500
4501                ret = try_to_freeze();
4502                if (kthread_should_stop())
4503                        break;
4504
4505                /*
4506                 * We can speed up thawing tasks if we don't call balance_pgdat
4507                 * after returning from the refrigerator
4508                 */
4509                if (ret)
4510                        continue;
4511
4512                /*
4513                 * Reclaim begins at the requested order but if a high-order
4514                 * reclaim fails then kswapd falls back to reclaiming for
4515                 * order-0. If that happens, kswapd will consider sleeping
4516                 * for the order it finished reclaiming at (reclaim_order)
4517                 * but kcompactd is woken to compact for the original
4518                 * request (alloc_order).
4519                 */
4520                trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4521                                                alloc_order);
4522                reclaim_order = balance_pgdat(pgdat, alloc_order,
4523                                                highest_zoneidx);
4524                if (reclaim_order < alloc_order)
4525                        goto kswapd_try_sleep;
4526        }
4527
4528        tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4529
4530        return 0;
4531}
4532
4533/*
4534 * A zone is low on free memory or too fragmented for high-order memory.  If
4535 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4536 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4537 * has failed or is not needed, still wake up kcompactd if only compaction is
4538 * needed.
4539 */
4540void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4541                   enum zone_type highest_zoneidx)
4542{
4543        pg_data_t *pgdat;
4544        enum zone_type curr_idx;
4545
4546        if (!managed_zone(zone))
4547                return;
4548
4549        if (!cpuset_zone_allowed(zone, gfp_flags))
4550                return;
4551
4552        pgdat = zone->zone_pgdat;
4553        curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4554
4555        if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4556                WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4557
4558        if (READ_ONCE(pgdat->kswapd_order) < order)
4559                WRITE_ONCE(pgdat->kswapd_order, order);
4560
4561        if (!waitqueue_active(&pgdat->kswapd_wait))
4562                return;
4563
4564        /* Hopeless node, leave it to direct reclaim if possible */
4565        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4566            (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4567             !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4568                /*
4569                 * There may be plenty of free memory available, but it's too
4570                 * fragmented for high-order allocations.  Wake up kcompactd
4571                 * and rely on compaction_suitable() to determine if it's
4572                 * needed.  If it fails, it will defer subsequent attempts to
4573                 * ratelimit its work.
4574                 */
4575                if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4576                        wakeup_kcompactd(pgdat, order, highest_zoneidx);
4577                return;
4578        }
4579
4580        trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4581                                      gfp_flags);
4582        wake_up_interruptible(&pgdat->kswapd_wait);
4583}
4584
4585#ifdef CONFIG_HIBERNATION
4586/*
4587 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4588 * freed pages.
4589 *
4590 * Rather than trying to age LRUs the aim is to preserve the overall
4591 * LRU order by reclaiming preferentially
4592 * inactive > active > active referenced > active mapped
4593 */
4594unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4595{
4596        struct scan_control sc = {
4597                .nr_to_reclaim = nr_to_reclaim,
4598                .gfp_mask = GFP_HIGHUSER_MOVABLE,
4599                .reclaim_idx = MAX_NR_ZONES - 1,
4600                .priority = DEF_PRIORITY,
4601                .may_writepage = 1,
4602                .may_unmap = 1,
4603                .may_swap = 1,
4604                .hibernation_mode = 1,
4605        };
4606        struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4607        unsigned long nr_reclaimed;
4608        unsigned int noreclaim_flag;
4609
4610        fs_reclaim_acquire(sc.gfp_mask);
4611        noreclaim_flag = memalloc_noreclaim_save();
4612        set_task_reclaim_state(current, &sc.reclaim_state);
4613
4614        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4615
4616        set_task_reclaim_state(current, NULL);
4617        memalloc_noreclaim_restore(noreclaim_flag);
4618        fs_reclaim_release(sc.gfp_mask);
4619
4620        return nr_reclaimed;
4621}
4622#endif /* CONFIG_HIBERNATION */
4623
4624/*
4625 * This kswapd start function will be called by init and node-hot-add.
4626 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4627 */
4628void kswapd_run(int nid)
4629{
4630        pg_data_t *pgdat = NODE_DATA(nid);
4631
4632        if (pgdat->kswapd)
4633                return;
4634
4635        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4636        if (IS_ERR(pgdat->kswapd)) {
4637                /* failure at boot is fatal */
4638                BUG_ON(system_state < SYSTEM_RUNNING);
4639                pr_err("Failed to start kswapd on node %d\n", nid);
4640                pgdat->kswapd = NULL;
4641        }
4642}
4643
4644/*
4645 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4646 * hold mem_hotplug_begin/end().
4647 */
4648void kswapd_stop(int nid)
4649{
4650        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4651
4652        if (kswapd) {
4653                kthread_stop(kswapd);
4654                NODE_DATA(nid)->kswapd = NULL;
4655        }
4656}
4657
4658static int __init kswapd_init(void)
4659{
4660        int nid;
4661
4662        swap_setup();
4663        for_each_node_state(nid, N_MEMORY)
4664                kswapd_run(nid);
4665        return 0;
4666}
4667
4668module_init(kswapd_init)
4669
4670#ifdef CONFIG_NUMA
4671/*
4672 * Node reclaim mode
4673 *
4674 * If non-zero call node_reclaim when the number of free pages falls below
4675 * the watermarks.
4676 */
4677int node_reclaim_mode __read_mostly;
4678
4679/*
4680 * Priority for NODE_RECLAIM. This determines the fraction of pages
4681 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4682 * a zone.
4683 */
4684#define NODE_RECLAIM_PRIORITY 4
4685
4686/*
4687 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4688 * occur.
4689 */
4690int sysctl_min_unmapped_ratio = 1;
4691
4692/*
4693 * If the number of slab pages in a zone grows beyond this percentage then
4694 * slab reclaim needs to occur.
4695 */
4696int sysctl_min_slab_ratio = 5;
4697
4698static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4699{
4700        unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4701        unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4702                node_page_state(pgdat, NR_ACTIVE_FILE);
4703
4704        /*
4705         * It's possible for there to be more file mapped pages than
4706         * accounted for by the pages on the file LRU lists because
4707         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4708         */
4709        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4710}
4711
4712/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4713static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4714{
4715        unsigned long nr_pagecache_reclaimable;
4716        unsigned long delta = 0;
4717
4718        /*
4719         * If RECLAIM_UNMAP is set, then all file pages are considered
4720         * potentially reclaimable. Otherwise, we have to worry about
4721         * pages like swapcache and node_unmapped_file_pages() provides
4722         * a better estimate
4723         */
4724        if (node_reclaim_mode & RECLAIM_UNMAP)
4725                nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4726        else
4727                nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4728
4729        /* If we can't clean pages, remove dirty pages from consideration */
4730        if (!(node_reclaim_mode & RECLAIM_WRITE))
4731                delta += node_page_state(pgdat, NR_FILE_DIRTY);
4732
4733        /* Watch for any possible underflows due to delta */
4734        if (unlikely(delta > nr_pagecache_reclaimable))
4735                delta = nr_pagecache_reclaimable;
4736
4737        return nr_pagecache_reclaimable - delta;
4738}
4739
4740/*
4741 * Try to free up some pages from this node through reclaim.
4742 */
4743static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4744{
4745        /* Minimum pages needed in order to stay on node */
4746        const unsigned long nr_pages = 1 << order;
4747        struct task_struct *p = current;
4748        unsigned int noreclaim_flag;
4749        struct scan_control sc = {
4750                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4751                .gfp_mask = current_gfp_context(gfp_mask),
4752                .order = order,
4753                .priority = NODE_RECLAIM_PRIORITY,
4754                .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4755                .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4756                .may_swap = 1,
4757                .reclaim_idx = gfp_zone(gfp_mask),
4758        };
4759        unsigned long pflags;
4760
4761        trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4762                                           sc.gfp_mask);
4763
4764        cond_resched();
4765        psi_memstall_enter(&pflags);
4766        fs_reclaim_acquire(sc.gfp_mask);
4767        /*
4768         * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4769         * and we also need to be able to write out pages for RECLAIM_WRITE
4770         * and RECLAIM_UNMAP.
4771         */
4772        noreclaim_flag = memalloc_noreclaim_save();
4773        p->flags |= PF_SWAPWRITE;
4774        set_task_reclaim_state(p, &sc.reclaim_state);
4775
4776        if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4777                /*
4778                 * Free memory by calling shrink node with increasing
4779                 * priorities until we have enough memory freed.
4780                 */
4781                do {
4782                        shrink_node(pgdat, &sc);
4783                } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4784        }
4785
4786        set_task_reclaim_state(p, NULL);
4787        current->flags &= ~PF_SWAPWRITE;
4788        memalloc_noreclaim_restore(noreclaim_flag);
4789        fs_reclaim_release(sc.gfp_mask);
4790        psi_memstall_leave(&pflags);
4791
4792        trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4793
4794        return sc.nr_reclaimed >= nr_pages;
4795}
4796
4797int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4798{
4799        int ret;
4800
4801        /*
4802         * Node reclaim reclaims unmapped file backed pages and
4803         * slab pages if we are over the defined limits.
4804         *
4805         * A small portion of unmapped file backed pages is needed for
4806         * file I/O otherwise pages read by file I/O will be immediately
4807         * thrown out if the node is overallocated. So we do not reclaim
4808         * if less than a specified percentage of the node is used by
4809         * unmapped file backed pages.
4810         */
4811        if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4812            node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4813            pgdat->min_slab_pages)
4814                return NODE_RECLAIM_FULL;
4815
4816        /*
4817         * Do not scan if the allocation should not be delayed.
4818         */
4819        if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4820                return NODE_RECLAIM_NOSCAN;
4821
4822        /*
4823         * Only run node reclaim on the local node or on nodes that do not
4824         * have associated processors. This will favor the local processor
4825         * over remote processors and spread off node memory allocations
4826         * as wide as possible.
4827         */
4828        if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4829                return NODE_RECLAIM_NOSCAN;
4830
4831        if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4832                return NODE_RECLAIM_NOSCAN;
4833
4834        ret = __node_reclaim(pgdat, gfp_mask, order);
4835        clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4836
4837        if (!ret)
4838                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4839
4840        return ret;
4841}
4842#endif
4843
4844/**
4845 * check_move_unevictable_pages - check pages for evictability and move to
4846 * appropriate zone lru list
4847 * @pvec: pagevec with lru pages to check
4848 *
4849 * Checks pages for evictability, if an evictable page is in the unevictable
4850 * lru list, moves it to the appropriate evictable lru list. This function
4851 * should be only used for lru pages.
4852 */
4853void check_move_unevictable_pages(struct pagevec *pvec)
4854{
4855        struct lruvec *lruvec = NULL;
4856        int pgscanned = 0;
4857        int pgrescued = 0;
4858        int i;
4859
4860        for (i = 0; i < pvec->nr; i++) {
4861                struct page *page = pvec->pages[i];
4862                struct folio *folio = page_folio(page);
4863                int nr_pages;
4864
4865                if (PageTransTail(page))
4866                        continue;
4867
4868                nr_pages = thp_nr_pages(page);
4869                pgscanned += nr_pages;
4870
4871                /* block memcg migration during page moving between lru */
4872                if (!TestClearPageLRU(page))
4873                        continue;
4874
4875                lruvec = folio_lruvec_relock_irq(folio, lruvec);
4876                if (page_evictable(page) && PageUnevictable(page)) {
4877                        del_page_from_lru_list(page, lruvec);
4878                        ClearPageUnevictable(page);
4879                        add_page_to_lru_list(page, lruvec);
4880                        pgrescued += nr_pages;
4881                }
4882                SetPageLRU(page);
4883        }
4884
4885        if (lruvec) {
4886                __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4887                __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4888                unlock_page_lruvec_irq(lruvec);
4889        } else if (pgscanned) {
4890                count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4891        }
4892}
4893EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4894