linux/net/can/isotp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
   3 *
   4 * This implementation does not provide ISO-TP specific return values to the
   5 * userspace.
   6 *
   7 * - RX path timeout of data reception leads to -ETIMEDOUT
   8 * - RX path SN mismatch leads to -EILSEQ
   9 * - RX path data reception with wrong padding leads to -EBADMSG
  10 * - TX path flowcontrol reception timeout leads to -ECOMM
  11 * - TX path flowcontrol reception overflow leads to -EMSGSIZE
  12 * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
  13 * - when a transfer (tx) is on the run the next write() blocks until it's done
  14 * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
  15 * - as we have static buffers the check whether the PDU fits into the buffer
  16 *   is done at FF reception time (no support for sending 'wait frames')
  17 * - take care of the tx-queue-len as traffic shaping is still on the TODO list
  18 *
  19 * Copyright (c) 2020 Volkswagen Group Electronic Research
  20 * All rights reserved.
  21 *
  22 * Redistribution and use in source and binary forms, with or without
  23 * modification, are permitted provided that the following conditions
  24 * are met:
  25 * 1. Redistributions of source code must retain the above copyright
  26 *    notice, this list of conditions and the following disclaimer.
  27 * 2. Redistributions in binary form must reproduce the above copyright
  28 *    notice, this list of conditions and the following disclaimer in the
  29 *    documentation and/or other materials provided with the distribution.
  30 * 3. Neither the name of Volkswagen nor the names of its contributors
  31 *    may be used to endorse or promote products derived from this software
  32 *    without specific prior written permission.
  33 *
  34 * Alternatively, provided that this notice is retained in full, this
  35 * software may be distributed under the terms of the GNU General
  36 * Public License ("GPL") version 2, in which case the provisions of the
  37 * GPL apply INSTEAD OF those given above.
  38 *
  39 * The provided data structures and external interfaces from this code
  40 * are not restricted to be used by modules with a GPL compatible license.
  41 *
  42 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  43 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  44 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  45 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  46 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  47 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  48 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  49 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  50 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  51 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  52 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  53 * DAMAGE.
  54 */
  55
  56#include <linux/module.h>
  57#include <linux/init.h>
  58#include <linux/interrupt.h>
  59#include <linux/spinlock.h>
  60#include <linux/hrtimer.h>
  61#include <linux/wait.h>
  62#include <linux/uio.h>
  63#include <linux/net.h>
  64#include <linux/netdevice.h>
  65#include <linux/socket.h>
  66#include <linux/if_arp.h>
  67#include <linux/skbuff.h>
  68#include <linux/can.h>
  69#include <linux/can/core.h>
  70#include <linux/can/skb.h>
  71#include <linux/can/isotp.h>
  72#include <linux/slab.h>
  73#include <net/sock.h>
  74#include <net/net_namespace.h>
  75
  76MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
  77MODULE_LICENSE("Dual BSD/GPL");
  78MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
  79MODULE_ALIAS("can-proto-6");
  80
  81#define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
  82
  83#define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
  84                         (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
  85                         (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
  86
  87/* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
  88 * take full 32 bit values (4 Gbyte). We would need some good concept to handle
  89 * this between user space and kernel space. For now increase the static buffer
  90 * to something about 8 kbyte to be able to test this new functionality.
  91 */
  92#define MAX_MSG_LENGTH 8200
  93
  94/* N_PCI type values in bits 7-4 of N_PCI bytes */
  95#define N_PCI_SF 0x00   /* single frame */
  96#define N_PCI_FF 0x10   /* first frame */
  97#define N_PCI_CF 0x20   /* consecutive frame */
  98#define N_PCI_FC 0x30   /* flow control */
  99
 100#define N_PCI_SZ 1      /* size of the PCI byte #1 */
 101#define SF_PCI_SZ4 1    /* size of SingleFrame PCI including 4 bit SF_DL */
 102#define SF_PCI_SZ8 2    /* size of SingleFrame PCI including 8 bit SF_DL */
 103#define FF_PCI_SZ12 2   /* size of FirstFrame PCI including 12 bit FF_DL */
 104#define FF_PCI_SZ32 6   /* size of FirstFrame PCI including 32 bit FF_DL */
 105#define FC_CONTENT_SZ 3 /* flow control content size in byte (FS/BS/STmin) */
 106
 107#define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
 108
 109/* Flow Status given in FC frame */
 110#define ISOTP_FC_CTS 0          /* clear to send */
 111#define ISOTP_FC_WT 1           /* wait */
 112#define ISOTP_FC_OVFLW 2        /* overflow */
 113
 114enum {
 115        ISOTP_IDLE = 0,
 116        ISOTP_WAIT_FIRST_FC,
 117        ISOTP_WAIT_FC,
 118        ISOTP_WAIT_DATA,
 119        ISOTP_SENDING
 120};
 121
 122struct tpcon {
 123        unsigned int idx;
 124        unsigned int len;
 125        u32 state;
 126        u8 bs;
 127        u8 sn;
 128        u8 ll_dl;
 129        u8 buf[MAX_MSG_LENGTH + 1];
 130};
 131
 132struct isotp_sock {
 133        struct sock sk;
 134        int bound;
 135        int ifindex;
 136        canid_t txid;
 137        canid_t rxid;
 138        ktime_t tx_gap;
 139        ktime_t lastrxcf_tstamp;
 140        struct hrtimer rxtimer, txtimer;
 141        struct can_isotp_options opt;
 142        struct can_isotp_fc_options rxfc, txfc;
 143        struct can_isotp_ll_options ll;
 144        u32 force_tx_stmin;
 145        u32 force_rx_stmin;
 146        struct tpcon rx, tx;
 147        struct list_head notifier;
 148        wait_queue_head_t wait;
 149        spinlock_t rx_lock; /* protect single thread state machine */
 150};
 151
 152static LIST_HEAD(isotp_notifier_list);
 153static DEFINE_SPINLOCK(isotp_notifier_lock);
 154static struct isotp_sock *isotp_busy_notifier;
 155
 156static inline struct isotp_sock *isotp_sk(const struct sock *sk)
 157{
 158        return (struct isotp_sock *)sk;
 159}
 160
 161static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
 162{
 163        struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
 164                                             rxtimer);
 165        struct sock *sk = &so->sk;
 166
 167        if (so->rx.state == ISOTP_WAIT_DATA) {
 168                /* we did not get new data frames in time */
 169
 170                /* report 'connection timed out' */
 171                sk->sk_err = ETIMEDOUT;
 172                if (!sock_flag(sk, SOCK_DEAD))
 173                        sk_error_report(sk);
 174
 175                /* reset rx state */
 176                so->rx.state = ISOTP_IDLE;
 177        }
 178
 179        return HRTIMER_NORESTART;
 180}
 181
 182static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
 183{
 184        struct net_device *dev;
 185        struct sk_buff *nskb;
 186        struct canfd_frame *ncf;
 187        struct isotp_sock *so = isotp_sk(sk);
 188        int can_send_ret;
 189
 190        nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
 191        if (!nskb)
 192                return 1;
 193
 194        dev = dev_get_by_index(sock_net(sk), so->ifindex);
 195        if (!dev) {
 196                kfree_skb(nskb);
 197                return 1;
 198        }
 199
 200        can_skb_reserve(nskb);
 201        can_skb_prv(nskb)->ifindex = dev->ifindex;
 202        can_skb_prv(nskb)->skbcnt = 0;
 203
 204        nskb->dev = dev;
 205        can_skb_set_owner(nskb, sk);
 206        ncf = (struct canfd_frame *)nskb->data;
 207        skb_put_zero(nskb, so->ll.mtu);
 208
 209        /* create & send flow control reply */
 210        ncf->can_id = so->txid;
 211
 212        if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
 213                memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
 214                ncf->len = CAN_MAX_DLEN;
 215        } else {
 216                ncf->len = ae + FC_CONTENT_SZ;
 217        }
 218
 219        ncf->data[ae] = N_PCI_FC | flowstatus;
 220        ncf->data[ae + 1] = so->rxfc.bs;
 221        ncf->data[ae + 2] = so->rxfc.stmin;
 222
 223        if (ae)
 224                ncf->data[0] = so->opt.ext_address;
 225
 226        ncf->flags = so->ll.tx_flags;
 227
 228        can_send_ret = can_send(nskb, 1);
 229        if (can_send_ret)
 230                pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
 231                               __func__, ERR_PTR(can_send_ret));
 232
 233        dev_put(dev);
 234
 235        /* reset blocksize counter */
 236        so->rx.bs = 0;
 237
 238        /* reset last CF frame rx timestamp for rx stmin enforcement */
 239        so->lastrxcf_tstamp = ktime_set(0, 0);
 240
 241        /* start rx timeout watchdog */
 242        hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
 243        return 0;
 244}
 245
 246static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
 247{
 248        struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
 249
 250        BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
 251
 252        memset(addr, 0, sizeof(*addr));
 253        addr->can_family = AF_CAN;
 254        addr->can_ifindex = skb->dev->ifindex;
 255
 256        if (sock_queue_rcv_skb(sk, skb) < 0)
 257                kfree_skb(skb);
 258}
 259
 260static u8 padlen(u8 datalen)
 261{
 262        static const u8 plen[] = {
 263                8, 8, 8, 8, 8, 8, 8, 8, 8,      /* 0 - 8 */
 264                12, 12, 12, 12,                 /* 9 - 12 */
 265                16, 16, 16, 16,                 /* 13 - 16 */
 266                20, 20, 20, 20,                 /* 17 - 20 */
 267                24, 24, 24, 24,                 /* 21 - 24 */
 268                32, 32, 32, 32, 32, 32, 32, 32, /* 25 - 32 */
 269                48, 48, 48, 48, 48, 48, 48, 48, /* 33 - 40 */
 270                48, 48, 48, 48, 48, 48, 48, 48  /* 41 - 48 */
 271        };
 272
 273        if (datalen > 48)
 274                return 64;
 275
 276        return plen[datalen];
 277}
 278
 279/* check for length optimization and return 1/true when the check fails */
 280static int check_optimized(struct canfd_frame *cf, int start_index)
 281{
 282        /* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
 283         * padding would start at this point. E.g. if the padding would
 284         * start at cf.data[7] cf->len has to be 7 to be optimal.
 285         * Note: The data[] index starts with zero.
 286         */
 287        if (cf->len <= CAN_MAX_DLEN)
 288                return (cf->len != start_index);
 289
 290        /* This relation is also valid in the non-linear DLC range, where
 291         * we need to take care of the minimal next possible CAN_DL.
 292         * The correct check would be (padlen(cf->len) != padlen(start_index)).
 293         * But as cf->len can only take discrete values from 12, .., 64 at this
 294         * point the padlen(cf->len) is always equal to cf->len.
 295         */
 296        return (cf->len != padlen(start_index));
 297}
 298
 299/* check padding and return 1/true when the check fails */
 300static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
 301                     int start_index, u8 content)
 302{
 303        int i;
 304
 305        /* no RX_PADDING value => check length of optimized frame length */
 306        if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
 307                if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
 308                        return check_optimized(cf, start_index);
 309
 310                /* no valid test against empty value => ignore frame */
 311                return 1;
 312        }
 313
 314        /* check datalength of correctly padded CAN frame */
 315        if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
 316            cf->len != padlen(cf->len))
 317                return 1;
 318
 319        /* check padding content */
 320        if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
 321                for (i = start_index; i < cf->len; i++)
 322                        if (cf->data[i] != content)
 323                                return 1;
 324        }
 325        return 0;
 326}
 327
 328static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
 329{
 330        struct sock *sk = &so->sk;
 331
 332        if (so->tx.state != ISOTP_WAIT_FC &&
 333            so->tx.state != ISOTP_WAIT_FIRST_FC)
 334                return 0;
 335
 336        hrtimer_cancel(&so->txtimer);
 337
 338        if ((cf->len < ae + FC_CONTENT_SZ) ||
 339            ((so->opt.flags & ISOTP_CHECK_PADDING) &&
 340             check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
 341                /* malformed PDU - report 'not a data message' */
 342                sk->sk_err = EBADMSG;
 343                if (!sock_flag(sk, SOCK_DEAD))
 344                        sk_error_report(sk);
 345
 346                so->tx.state = ISOTP_IDLE;
 347                wake_up_interruptible(&so->wait);
 348                return 1;
 349        }
 350
 351        /* get communication parameters only from the first FC frame */
 352        if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
 353                so->txfc.bs = cf->data[ae + 1];
 354                so->txfc.stmin = cf->data[ae + 2];
 355
 356                /* fix wrong STmin values according spec */
 357                if (so->txfc.stmin > 0x7F &&
 358                    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
 359                        so->txfc.stmin = 0x7F;
 360
 361                so->tx_gap = ktime_set(0, 0);
 362                /* add transmission time for CAN frame N_As */
 363                so->tx_gap = ktime_add_ns(so->tx_gap, so->opt.frame_txtime);
 364                /* add waiting time for consecutive frames N_Cs */
 365                if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
 366                        so->tx_gap = ktime_add_ns(so->tx_gap,
 367                                                  so->force_tx_stmin);
 368                else if (so->txfc.stmin < 0x80)
 369                        so->tx_gap = ktime_add_ns(so->tx_gap,
 370                                                  so->txfc.stmin * 1000000);
 371                else
 372                        so->tx_gap = ktime_add_ns(so->tx_gap,
 373                                                  (so->txfc.stmin - 0xF0)
 374                                                  * 100000);
 375                so->tx.state = ISOTP_WAIT_FC;
 376        }
 377
 378        switch (cf->data[ae] & 0x0F) {
 379        case ISOTP_FC_CTS:
 380                so->tx.bs = 0;
 381                so->tx.state = ISOTP_SENDING;
 382                /* start cyclic timer for sending CF frame */
 383                hrtimer_start(&so->txtimer, so->tx_gap,
 384                              HRTIMER_MODE_REL_SOFT);
 385                break;
 386
 387        case ISOTP_FC_WT:
 388                /* start timer to wait for next FC frame */
 389                hrtimer_start(&so->txtimer, ktime_set(1, 0),
 390                              HRTIMER_MODE_REL_SOFT);
 391                break;
 392
 393        case ISOTP_FC_OVFLW:
 394                /* overflow on receiver side - report 'message too long' */
 395                sk->sk_err = EMSGSIZE;
 396                if (!sock_flag(sk, SOCK_DEAD))
 397                        sk_error_report(sk);
 398                fallthrough;
 399
 400        default:
 401                /* stop this tx job */
 402                so->tx.state = ISOTP_IDLE;
 403                wake_up_interruptible(&so->wait);
 404        }
 405        return 0;
 406}
 407
 408static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
 409                        struct sk_buff *skb, int len)
 410{
 411        struct isotp_sock *so = isotp_sk(sk);
 412        struct sk_buff *nskb;
 413
 414        hrtimer_cancel(&so->rxtimer);
 415        so->rx.state = ISOTP_IDLE;
 416
 417        if (!len || len > cf->len - pcilen)
 418                return 1;
 419
 420        if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
 421            check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
 422                /* malformed PDU - report 'not a data message' */
 423                sk->sk_err = EBADMSG;
 424                if (!sock_flag(sk, SOCK_DEAD))
 425                        sk_error_report(sk);
 426                return 1;
 427        }
 428
 429        nskb = alloc_skb(len, gfp_any());
 430        if (!nskb)
 431                return 1;
 432
 433        memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
 434
 435        nskb->tstamp = skb->tstamp;
 436        nskb->dev = skb->dev;
 437        isotp_rcv_skb(nskb, sk);
 438        return 0;
 439}
 440
 441static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
 442{
 443        struct isotp_sock *so = isotp_sk(sk);
 444        int i;
 445        int off;
 446        int ff_pci_sz;
 447
 448        hrtimer_cancel(&so->rxtimer);
 449        so->rx.state = ISOTP_IDLE;
 450
 451        /* get the used sender LL_DL from the (first) CAN frame data length */
 452        so->rx.ll_dl = padlen(cf->len);
 453
 454        /* the first frame has to use the entire frame up to LL_DL length */
 455        if (cf->len != so->rx.ll_dl)
 456                return 1;
 457
 458        /* get the FF_DL */
 459        so->rx.len = (cf->data[ae] & 0x0F) << 8;
 460        so->rx.len += cf->data[ae + 1];
 461
 462        /* Check for FF_DL escape sequence supporting 32 bit PDU length */
 463        if (so->rx.len) {
 464                ff_pci_sz = FF_PCI_SZ12;
 465        } else {
 466                /* FF_DL = 0 => get real length from next 4 bytes */
 467                so->rx.len = cf->data[ae + 2] << 24;
 468                so->rx.len += cf->data[ae + 3] << 16;
 469                so->rx.len += cf->data[ae + 4] << 8;
 470                so->rx.len += cf->data[ae + 5];
 471                ff_pci_sz = FF_PCI_SZ32;
 472        }
 473
 474        /* take care of a potential SF_DL ESC offset for TX_DL > 8 */
 475        off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
 476
 477        if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
 478                return 1;
 479
 480        if (so->rx.len > MAX_MSG_LENGTH) {
 481                /* send FC frame with overflow status */
 482                isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
 483                return 1;
 484        }
 485
 486        /* copy the first received data bytes */
 487        so->rx.idx = 0;
 488        for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
 489                so->rx.buf[so->rx.idx++] = cf->data[i];
 490
 491        /* initial setup for this pdu reception */
 492        so->rx.sn = 1;
 493        so->rx.state = ISOTP_WAIT_DATA;
 494
 495        /* no creation of flow control frames */
 496        if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
 497                return 0;
 498
 499        /* send our first FC frame */
 500        isotp_send_fc(sk, ae, ISOTP_FC_CTS);
 501        return 0;
 502}
 503
 504static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
 505                        struct sk_buff *skb)
 506{
 507        struct isotp_sock *so = isotp_sk(sk);
 508        struct sk_buff *nskb;
 509        int i;
 510
 511        if (so->rx.state != ISOTP_WAIT_DATA)
 512                return 0;
 513
 514        /* drop if timestamp gap is less than force_rx_stmin nano secs */
 515        if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
 516                if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
 517                    so->force_rx_stmin)
 518                        return 0;
 519
 520                so->lastrxcf_tstamp = skb->tstamp;
 521        }
 522
 523        hrtimer_cancel(&so->rxtimer);
 524
 525        /* CFs are never longer than the FF */
 526        if (cf->len > so->rx.ll_dl)
 527                return 1;
 528
 529        /* CFs have usually the LL_DL length */
 530        if (cf->len < so->rx.ll_dl) {
 531                /* this is only allowed for the last CF */
 532                if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
 533                        return 1;
 534        }
 535
 536        if ((cf->data[ae] & 0x0F) != so->rx.sn) {
 537                /* wrong sn detected - report 'illegal byte sequence' */
 538                sk->sk_err = EILSEQ;
 539                if (!sock_flag(sk, SOCK_DEAD))
 540                        sk_error_report(sk);
 541
 542                /* reset rx state */
 543                so->rx.state = ISOTP_IDLE;
 544                return 1;
 545        }
 546        so->rx.sn++;
 547        so->rx.sn %= 16;
 548
 549        for (i = ae + N_PCI_SZ; i < cf->len; i++) {
 550                so->rx.buf[so->rx.idx++] = cf->data[i];
 551                if (so->rx.idx >= so->rx.len)
 552                        break;
 553        }
 554
 555        if (so->rx.idx >= so->rx.len) {
 556                /* we are done */
 557                so->rx.state = ISOTP_IDLE;
 558
 559                if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
 560                    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
 561                        /* malformed PDU - report 'not a data message' */
 562                        sk->sk_err = EBADMSG;
 563                        if (!sock_flag(sk, SOCK_DEAD))
 564                                sk_error_report(sk);
 565                        return 1;
 566                }
 567
 568                nskb = alloc_skb(so->rx.len, gfp_any());
 569                if (!nskb)
 570                        return 1;
 571
 572                memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
 573                       so->rx.len);
 574
 575                nskb->tstamp = skb->tstamp;
 576                nskb->dev = skb->dev;
 577                isotp_rcv_skb(nskb, sk);
 578                return 0;
 579        }
 580
 581        /* perform blocksize handling, if enabled */
 582        if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
 583                /* start rx timeout watchdog */
 584                hrtimer_start(&so->rxtimer, ktime_set(1, 0),
 585                              HRTIMER_MODE_REL_SOFT);
 586                return 0;
 587        }
 588
 589        /* no creation of flow control frames */
 590        if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
 591                return 0;
 592
 593        /* we reached the specified blocksize so->rxfc.bs */
 594        isotp_send_fc(sk, ae, ISOTP_FC_CTS);
 595        return 0;
 596}
 597
 598static void isotp_rcv(struct sk_buff *skb, void *data)
 599{
 600        struct sock *sk = (struct sock *)data;
 601        struct isotp_sock *so = isotp_sk(sk);
 602        struct canfd_frame *cf;
 603        int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
 604        u8 n_pci_type, sf_dl;
 605
 606        /* Strictly receive only frames with the configured MTU size
 607         * => clear separation of CAN2.0 / CAN FD transport channels
 608         */
 609        if (skb->len != so->ll.mtu)
 610                return;
 611
 612        cf = (struct canfd_frame *)skb->data;
 613
 614        /* if enabled: check reception of my configured extended address */
 615        if (ae && cf->data[0] != so->opt.rx_ext_address)
 616                return;
 617
 618        n_pci_type = cf->data[ae] & 0xF0;
 619
 620        /* Make sure the state changes and data structures stay consistent at
 621         * CAN frame reception time. This locking is not needed in real world
 622         * use cases but the inconsistency can be triggered with syzkaller.
 623         */
 624        spin_lock(&so->rx_lock);
 625
 626        if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
 627                /* check rx/tx path half duplex expectations */
 628                if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
 629                    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
 630                        goto out_unlock;
 631        }
 632
 633        switch (n_pci_type) {
 634        case N_PCI_FC:
 635                /* tx path: flow control frame containing the FC parameters */
 636                isotp_rcv_fc(so, cf, ae);
 637                break;
 638
 639        case N_PCI_SF:
 640                /* rx path: single frame
 641                 *
 642                 * As we do not have a rx.ll_dl configuration, we can only test
 643                 * if the CAN frames payload length matches the LL_DL == 8
 644                 * requirements - no matter if it's CAN 2.0 or CAN FD
 645                 */
 646
 647                /* get the SF_DL from the N_PCI byte */
 648                sf_dl = cf->data[ae] & 0x0F;
 649
 650                if (cf->len <= CAN_MAX_DLEN) {
 651                        isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
 652                } else {
 653                        if (skb->len == CANFD_MTU) {
 654                                /* We have a CAN FD frame and CAN_DL is greater than 8:
 655                                 * Only frames with the SF_DL == 0 ESC value are valid.
 656                                 *
 657                                 * If so take care of the increased SF PCI size
 658                                 * (SF_PCI_SZ8) to point to the message content behind
 659                                 * the extended SF PCI info and get the real SF_DL
 660                                 * length value from the formerly first data byte.
 661                                 */
 662                                if (sf_dl == 0)
 663                                        isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
 664                                                     cf->data[SF_PCI_SZ4 + ae]);
 665                        }
 666                }
 667                break;
 668
 669        case N_PCI_FF:
 670                /* rx path: first frame */
 671                isotp_rcv_ff(sk, cf, ae);
 672                break;
 673
 674        case N_PCI_CF:
 675                /* rx path: consecutive frame */
 676                isotp_rcv_cf(sk, cf, ae, skb);
 677                break;
 678        }
 679
 680out_unlock:
 681        spin_unlock(&so->rx_lock);
 682}
 683
 684static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
 685                                 int ae, int off)
 686{
 687        int pcilen = N_PCI_SZ + ae + off;
 688        int space = so->tx.ll_dl - pcilen;
 689        int num = min_t(int, so->tx.len - so->tx.idx, space);
 690        int i;
 691
 692        cf->can_id = so->txid;
 693        cf->len = num + pcilen;
 694
 695        if (num < space) {
 696                if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
 697                        /* user requested padding */
 698                        cf->len = padlen(cf->len);
 699                        memset(cf->data, so->opt.txpad_content, cf->len);
 700                } else if (cf->len > CAN_MAX_DLEN) {
 701                        /* mandatory padding for CAN FD frames */
 702                        cf->len = padlen(cf->len);
 703                        memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
 704                               cf->len);
 705                }
 706        }
 707
 708        for (i = 0; i < num; i++)
 709                cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
 710
 711        if (ae)
 712                cf->data[0] = so->opt.ext_address;
 713}
 714
 715static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
 716                                int ae)
 717{
 718        int i;
 719        int ff_pci_sz;
 720
 721        cf->can_id = so->txid;
 722        cf->len = so->tx.ll_dl;
 723        if (ae)
 724                cf->data[0] = so->opt.ext_address;
 725
 726        /* create N_PCI bytes with 12/32 bit FF_DL data length */
 727        if (so->tx.len > 4095) {
 728                /* use 32 bit FF_DL notation */
 729                cf->data[ae] = N_PCI_FF;
 730                cf->data[ae + 1] = 0;
 731                cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
 732                cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
 733                cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
 734                cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
 735                ff_pci_sz = FF_PCI_SZ32;
 736        } else {
 737                /* use 12 bit FF_DL notation */
 738                cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
 739                cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
 740                ff_pci_sz = FF_PCI_SZ12;
 741        }
 742
 743        /* add first data bytes depending on ae */
 744        for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
 745                cf->data[i] = so->tx.buf[so->tx.idx++];
 746
 747        so->tx.sn = 1;
 748        so->tx.state = ISOTP_WAIT_FIRST_FC;
 749}
 750
 751static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
 752{
 753        struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
 754                                             txtimer);
 755        struct sock *sk = &so->sk;
 756        struct sk_buff *skb;
 757        struct net_device *dev;
 758        struct canfd_frame *cf;
 759        enum hrtimer_restart restart = HRTIMER_NORESTART;
 760        int can_send_ret;
 761        int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
 762
 763        switch (so->tx.state) {
 764        case ISOTP_WAIT_FC:
 765        case ISOTP_WAIT_FIRST_FC:
 766
 767                /* we did not get any flow control frame in time */
 768
 769                /* report 'communication error on send' */
 770                sk->sk_err = ECOMM;
 771                if (!sock_flag(sk, SOCK_DEAD))
 772                        sk_error_report(sk);
 773
 774                /* reset tx state */
 775                so->tx.state = ISOTP_IDLE;
 776                wake_up_interruptible(&so->wait);
 777                break;
 778
 779        case ISOTP_SENDING:
 780
 781                /* push out the next segmented pdu */
 782                dev = dev_get_by_index(sock_net(sk), so->ifindex);
 783                if (!dev)
 784                        break;
 785
 786isotp_tx_burst:
 787                skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv),
 788                                GFP_ATOMIC);
 789                if (!skb) {
 790                        dev_put(dev);
 791                        break;
 792                }
 793
 794                can_skb_reserve(skb);
 795                can_skb_prv(skb)->ifindex = dev->ifindex;
 796                can_skb_prv(skb)->skbcnt = 0;
 797
 798                cf = (struct canfd_frame *)skb->data;
 799                skb_put_zero(skb, so->ll.mtu);
 800
 801                /* create consecutive frame */
 802                isotp_fill_dataframe(cf, so, ae, 0);
 803
 804                /* place consecutive frame N_PCI in appropriate index */
 805                cf->data[ae] = N_PCI_CF | so->tx.sn++;
 806                so->tx.sn %= 16;
 807                so->tx.bs++;
 808
 809                cf->flags = so->ll.tx_flags;
 810
 811                skb->dev = dev;
 812                can_skb_set_owner(skb, sk);
 813
 814                can_send_ret = can_send(skb, 1);
 815                if (can_send_ret) {
 816                        pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
 817                                       __func__, ERR_PTR(can_send_ret));
 818                        if (can_send_ret == -ENOBUFS)
 819                                pr_notice_once("can-isotp: tx queue is full, increasing txqueuelen may prevent this error\n");
 820                }
 821                if (so->tx.idx >= so->tx.len) {
 822                        /* we are done */
 823                        so->tx.state = ISOTP_IDLE;
 824                        dev_put(dev);
 825                        wake_up_interruptible(&so->wait);
 826                        break;
 827                }
 828
 829                if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
 830                        /* stop and wait for FC */
 831                        so->tx.state = ISOTP_WAIT_FC;
 832                        dev_put(dev);
 833                        hrtimer_set_expires(&so->txtimer,
 834                                            ktime_add(ktime_get(),
 835                                                      ktime_set(1, 0)));
 836                        restart = HRTIMER_RESTART;
 837                        break;
 838                }
 839
 840                /* no gap between data frames needed => use burst mode */
 841                if (!so->tx_gap)
 842                        goto isotp_tx_burst;
 843
 844                /* start timer to send next data frame with correct delay */
 845                dev_put(dev);
 846                hrtimer_set_expires(&so->txtimer,
 847                                    ktime_add(ktime_get(), so->tx_gap));
 848                restart = HRTIMER_RESTART;
 849                break;
 850
 851        default:
 852                WARN_ON_ONCE(1);
 853        }
 854
 855        return restart;
 856}
 857
 858static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 859{
 860        struct sock *sk = sock->sk;
 861        struct isotp_sock *so = isotp_sk(sk);
 862        u32 old_state = so->tx.state;
 863        struct sk_buff *skb;
 864        struct net_device *dev;
 865        struct canfd_frame *cf;
 866        int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
 867        int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
 868        int off;
 869        int err;
 870
 871        if (!so->bound)
 872                return -EADDRNOTAVAIL;
 873
 874        /* we do not support multiple buffers - for now */
 875        if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
 876            wq_has_sleeper(&so->wait)) {
 877                if (msg->msg_flags & MSG_DONTWAIT) {
 878                        err = -EAGAIN;
 879                        goto err_out;
 880                }
 881
 882                /* wait for complete transmission of current pdu */
 883                err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
 884                if (err)
 885                        goto err_out;
 886        }
 887
 888        if (!size || size > MAX_MSG_LENGTH) {
 889                err = -EINVAL;
 890                goto err_out_drop;
 891        }
 892
 893        /* take care of a potential SF_DL ESC offset for TX_DL > 8 */
 894        off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
 895
 896        /* does the given data fit into a single frame for SF_BROADCAST? */
 897        if ((so->opt.flags & CAN_ISOTP_SF_BROADCAST) &&
 898            (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
 899                err = -EINVAL;
 900                goto err_out_drop;
 901        }
 902
 903        err = memcpy_from_msg(so->tx.buf, msg, size);
 904        if (err < 0)
 905                goto err_out_drop;
 906
 907        dev = dev_get_by_index(sock_net(sk), so->ifindex);
 908        if (!dev) {
 909                err = -ENXIO;
 910                goto err_out_drop;
 911        }
 912
 913        skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
 914                                  msg->msg_flags & MSG_DONTWAIT, &err);
 915        if (!skb) {
 916                dev_put(dev);
 917                goto err_out_drop;
 918        }
 919
 920        can_skb_reserve(skb);
 921        can_skb_prv(skb)->ifindex = dev->ifindex;
 922        can_skb_prv(skb)->skbcnt = 0;
 923
 924        so->tx.len = size;
 925        so->tx.idx = 0;
 926
 927        cf = (struct canfd_frame *)skb->data;
 928        skb_put_zero(skb, so->ll.mtu);
 929
 930        /* check for single frame transmission depending on TX_DL */
 931        if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
 932                /* The message size generally fits into a SingleFrame - good.
 933                 *
 934                 * SF_DL ESC offset optimization:
 935                 *
 936                 * When TX_DL is greater 8 but the message would still fit
 937                 * into a 8 byte CAN frame, we can omit the offset.
 938                 * This prevents a protocol caused length extension from
 939                 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
 940                 */
 941                if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
 942                        off = 0;
 943
 944                isotp_fill_dataframe(cf, so, ae, off);
 945
 946                /* place single frame N_PCI w/o length in appropriate index */
 947                cf->data[ae] = N_PCI_SF;
 948
 949                /* place SF_DL size value depending on the SF_DL ESC offset */
 950                if (off)
 951                        cf->data[SF_PCI_SZ4 + ae] = size;
 952                else
 953                        cf->data[ae] |= size;
 954
 955                so->tx.state = ISOTP_IDLE;
 956                wake_up_interruptible(&so->wait);
 957
 958                /* don't enable wait queue for a single frame transmission */
 959                wait_tx_done = 0;
 960        } else {
 961                /* send first frame and wait for FC */
 962
 963                isotp_create_fframe(cf, so, ae);
 964
 965                /* start timeout for FC */
 966                hrtimer_start(&so->txtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
 967        }
 968
 969        /* send the first or only CAN frame */
 970        cf->flags = so->ll.tx_flags;
 971
 972        skb->dev = dev;
 973        skb->sk = sk;
 974        err = can_send(skb, 1);
 975        dev_put(dev);
 976        if (err) {
 977                pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
 978                               __func__, ERR_PTR(err));
 979                goto err_out_drop;
 980        }
 981
 982        if (wait_tx_done) {
 983                /* wait for complete transmission of current pdu */
 984                wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
 985
 986                if (sk->sk_err)
 987                        return -sk->sk_err;
 988        }
 989
 990        return size;
 991
 992err_out_drop:
 993        /* drop this PDU and unlock a potential wait queue */
 994        old_state = ISOTP_IDLE;
 995err_out:
 996        so->tx.state = old_state;
 997        if (so->tx.state == ISOTP_IDLE)
 998                wake_up_interruptible(&so->wait);
 999
1000        return err;
1001}
1002
1003static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1004                         int flags)
1005{
1006        struct sock *sk = sock->sk;
1007        struct sk_buff *skb;
1008        int err = 0;
1009        int noblock;
1010
1011        noblock = flags & MSG_DONTWAIT;
1012        flags &= ~MSG_DONTWAIT;
1013
1014        skb = skb_recv_datagram(sk, flags, noblock, &err);
1015        if (!skb)
1016                return err;
1017
1018        if (size < skb->len)
1019                msg->msg_flags |= MSG_TRUNC;
1020        else
1021                size = skb->len;
1022
1023        err = memcpy_to_msg(msg, skb->data, size);
1024        if (err < 0) {
1025                skb_free_datagram(sk, skb);
1026                return err;
1027        }
1028
1029        sock_recv_timestamp(msg, sk, skb);
1030
1031        if (msg->msg_name) {
1032                __sockaddr_check_size(ISOTP_MIN_NAMELEN);
1033                msg->msg_namelen = ISOTP_MIN_NAMELEN;
1034                memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1035        }
1036
1037        skb_free_datagram(sk, skb);
1038
1039        return size;
1040}
1041
1042static int isotp_release(struct socket *sock)
1043{
1044        struct sock *sk = sock->sk;
1045        struct isotp_sock *so;
1046        struct net *net;
1047
1048        if (!sk)
1049                return 0;
1050
1051        so = isotp_sk(sk);
1052        net = sock_net(sk);
1053
1054        /* wait for complete transmission of current pdu */
1055        wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1056
1057        spin_lock(&isotp_notifier_lock);
1058        while (isotp_busy_notifier == so) {
1059                spin_unlock(&isotp_notifier_lock);
1060                schedule_timeout_uninterruptible(1);
1061                spin_lock(&isotp_notifier_lock);
1062        }
1063        list_del(&so->notifier);
1064        spin_unlock(&isotp_notifier_lock);
1065
1066        lock_sock(sk);
1067
1068        /* remove current filters & unregister */
1069        if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
1070                if (so->ifindex) {
1071                        struct net_device *dev;
1072
1073                        dev = dev_get_by_index(net, so->ifindex);
1074                        if (dev) {
1075                                can_rx_unregister(net, dev, so->rxid,
1076                                                  SINGLE_MASK(so->rxid),
1077                                                  isotp_rcv, sk);
1078                                dev_put(dev);
1079                                synchronize_rcu();
1080                        }
1081                }
1082        }
1083
1084        hrtimer_cancel(&so->txtimer);
1085        hrtimer_cancel(&so->rxtimer);
1086
1087        so->ifindex = 0;
1088        so->bound = 0;
1089
1090        sock_orphan(sk);
1091        sock->sk = NULL;
1092
1093        release_sock(sk);
1094        sock_put(sk);
1095
1096        return 0;
1097}
1098
1099static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1100{
1101        struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1102        struct sock *sk = sock->sk;
1103        struct isotp_sock *so = isotp_sk(sk);
1104        struct net *net = sock_net(sk);
1105        int ifindex;
1106        struct net_device *dev;
1107        int err = 0;
1108        int notify_enetdown = 0;
1109        int do_rx_reg = 1;
1110
1111        if (len < ISOTP_MIN_NAMELEN)
1112                return -EINVAL;
1113
1114        if (addr->can_addr.tp.tx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG))
1115                return -EADDRNOTAVAIL;
1116
1117        if (!addr->can_ifindex)
1118                return -ENODEV;
1119
1120        lock_sock(sk);
1121
1122        /* do not register frame reception for functional addressing */
1123        if (so->opt.flags & CAN_ISOTP_SF_BROADCAST)
1124                do_rx_reg = 0;
1125
1126        /* do not validate rx address for functional addressing */
1127        if (do_rx_reg) {
1128                if (addr->can_addr.tp.rx_id == addr->can_addr.tp.tx_id) {
1129                        err = -EADDRNOTAVAIL;
1130                        goto out;
1131                }
1132
1133                if (addr->can_addr.tp.rx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG)) {
1134                        err = -EADDRNOTAVAIL;
1135                        goto out;
1136                }
1137        }
1138
1139        if (so->bound && addr->can_ifindex == so->ifindex &&
1140            addr->can_addr.tp.rx_id == so->rxid &&
1141            addr->can_addr.tp.tx_id == so->txid)
1142                goto out;
1143
1144        dev = dev_get_by_index(net, addr->can_ifindex);
1145        if (!dev) {
1146                err = -ENODEV;
1147                goto out;
1148        }
1149        if (dev->type != ARPHRD_CAN) {
1150                dev_put(dev);
1151                err = -ENODEV;
1152                goto out;
1153        }
1154        if (dev->mtu < so->ll.mtu) {
1155                dev_put(dev);
1156                err = -EINVAL;
1157                goto out;
1158        }
1159        if (!(dev->flags & IFF_UP))
1160                notify_enetdown = 1;
1161
1162        ifindex = dev->ifindex;
1163
1164        if (do_rx_reg)
1165                can_rx_register(net, dev, addr->can_addr.tp.rx_id,
1166                                SINGLE_MASK(addr->can_addr.tp.rx_id),
1167                                isotp_rcv, sk, "isotp", sk);
1168
1169        dev_put(dev);
1170
1171        if (so->bound && do_rx_reg) {
1172                /* unregister old filter */
1173                if (so->ifindex) {
1174                        dev = dev_get_by_index(net, so->ifindex);
1175                        if (dev) {
1176                                can_rx_unregister(net, dev, so->rxid,
1177                                                  SINGLE_MASK(so->rxid),
1178                                                  isotp_rcv, sk);
1179                                dev_put(dev);
1180                        }
1181                }
1182        }
1183
1184        /* switch to new settings */
1185        so->ifindex = ifindex;
1186        so->rxid = addr->can_addr.tp.rx_id;
1187        so->txid = addr->can_addr.tp.tx_id;
1188        so->bound = 1;
1189
1190out:
1191        release_sock(sk);
1192
1193        if (notify_enetdown) {
1194                sk->sk_err = ENETDOWN;
1195                if (!sock_flag(sk, SOCK_DEAD))
1196                        sk_error_report(sk);
1197        }
1198
1199        return err;
1200}
1201
1202static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1203{
1204        struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1205        struct sock *sk = sock->sk;
1206        struct isotp_sock *so = isotp_sk(sk);
1207
1208        if (peer)
1209                return -EOPNOTSUPP;
1210
1211        memset(addr, 0, ISOTP_MIN_NAMELEN);
1212        addr->can_family = AF_CAN;
1213        addr->can_ifindex = so->ifindex;
1214        addr->can_addr.tp.rx_id = so->rxid;
1215        addr->can_addr.tp.tx_id = so->txid;
1216
1217        return ISOTP_MIN_NAMELEN;
1218}
1219
1220static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1221                            sockptr_t optval, unsigned int optlen)
1222{
1223        struct sock *sk = sock->sk;
1224        struct isotp_sock *so = isotp_sk(sk);
1225        int ret = 0;
1226
1227        if (so->bound)
1228                return -EISCONN;
1229
1230        switch (optname) {
1231        case CAN_ISOTP_OPTS:
1232                if (optlen != sizeof(struct can_isotp_options))
1233                        return -EINVAL;
1234
1235                if (copy_from_sockptr(&so->opt, optval, optlen))
1236                        return -EFAULT;
1237
1238                /* no separate rx_ext_address is given => use ext_address */
1239                if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1240                        so->opt.rx_ext_address = so->opt.ext_address;
1241                break;
1242
1243        case CAN_ISOTP_RECV_FC:
1244                if (optlen != sizeof(struct can_isotp_fc_options))
1245                        return -EINVAL;
1246
1247                if (copy_from_sockptr(&so->rxfc, optval, optlen))
1248                        return -EFAULT;
1249                break;
1250
1251        case CAN_ISOTP_TX_STMIN:
1252                if (optlen != sizeof(u32))
1253                        return -EINVAL;
1254
1255                if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1256                        return -EFAULT;
1257                break;
1258
1259        case CAN_ISOTP_RX_STMIN:
1260                if (optlen != sizeof(u32))
1261                        return -EINVAL;
1262
1263                if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1264                        return -EFAULT;
1265                break;
1266
1267        case CAN_ISOTP_LL_OPTS:
1268                if (optlen == sizeof(struct can_isotp_ll_options)) {
1269                        struct can_isotp_ll_options ll;
1270
1271                        if (copy_from_sockptr(&ll, optval, optlen))
1272                                return -EFAULT;
1273
1274                        /* check for correct ISO 11898-1 DLC data length */
1275                        if (ll.tx_dl != padlen(ll.tx_dl))
1276                                return -EINVAL;
1277
1278                        if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1279                                return -EINVAL;
1280
1281                        if (ll.mtu == CAN_MTU &&
1282                            (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1283                                return -EINVAL;
1284
1285                        memcpy(&so->ll, &ll, sizeof(ll));
1286
1287                        /* set ll_dl for tx path to similar place as for rx */
1288                        so->tx.ll_dl = ll.tx_dl;
1289                } else {
1290                        return -EINVAL;
1291                }
1292                break;
1293
1294        default:
1295                ret = -ENOPROTOOPT;
1296        }
1297
1298        return ret;
1299}
1300
1301static int isotp_setsockopt(struct socket *sock, int level, int optname,
1302                            sockptr_t optval, unsigned int optlen)
1303
1304{
1305        struct sock *sk = sock->sk;
1306        int ret;
1307
1308        if (level != SOL_CAN_ISOTP)
1309                return -EINVAL;
1310
1311        lock_sock(sk);
1312        ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1313        release_sock(sk);
1314        return ret;
1315}
1316
1317static int isotp_getsockopt(struct socket *sock, int level, int optname,
1318                            char __user *optval, int __user *optlen)
1319{
1320        struct sock *sk = sock->sk;
1321        struct isotp_sock *so = isotp_sk(sk);
1322        int len;
1323        void *val;
1324
1325        if (level != SOL_CAN_ISOTP)
1326                return -EINVAL;
1327        if (get_user(len, optlen))
1328                return -EFAULT;
1329        if (len < 0)
1330                return -EINVAL;
1331
1332        switch (optname) {
1333        case CAN_ISOTP_OPTS:
1334                len = min_t(int, len, sizeof(struct can_isotp_options));
1335                val = &so->opt;
1336                break;
1337
1338        case CAN_ISOTP_RECV_FC:
1339                len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1340                val = &so->rxfc;
1341                break;
1342
1343        case CAN_ISOTP_TX_STMIN:
1344                len = min_t(int, len, sizeof(u32));
1345                val = &so->force_tx_stmin;
1346                break;
1347
1348        case CAN_ISOTP_RX_STMIN:
1349                len = min_t(int, len, sizeof(u32));
1350                val = &so->force_rx_stmin;
1351                break;
1352
1353        case CAN_ISOTP_LL_OPTS:
1354                len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1355                val = &so->ll;
1356                break;
1357
1358        default:
1359                return -ENOPROTOOPT;
1360        }
1361
1362        if (put_user(len, optlen))
1363                return -EFAULT;
1364        if (copy_to_user(optval, val, len))
1365                return -EFAULT;
1366        return 0;
1367}
1368
1369static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1370                         struct net_device *dev)
1371{
1372        struct sock *sk = &so->sk;
1373
1374        if (!net_eq(dev_net(dev), sock_net(sk)))
1375                return;
1376
1377        if (so->ifindex != dev->ifindex)
1378                return;
1379
1380        switch (msg) {
1381        case NETDEV_UNREGISTER:
1382                lock_sock(sk);
1383                /* remove current filters & unregister */
1384                if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST)))
1385                        can_rx_unregister(dev_net(dev), dev, so->rxid,
1386                                          SINGLE_MASK(so->rxid),
1387                                          isotp_rcv, sk);
1388
1389                so->ifindex = 0;
1390                so->bound  = 0;
1391                release_sock(sk);
1392
1393                sk->sk_err = ENODEV;
1394                if (!sock_flag(sk, SOCK_DEAD))
1395                        sk_error_report(sk);
1396                break;
1397
1398        case NETDEV_DOWN:
1399                sk->sk_err = ENETDOWN;
1400                if (!sock_flag(sk, SOCK_DEAD))
1401                        sk_error_report(sk);
1402                break;
1403        }
1404}
1405
1406static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1407                          void *ptr)
1408{
1409        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1410
1411        if (dev->type != ARPHRD_CAN)
1412                return NOTIFY_DONE;
1413        if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1414                return NOTIFY_DONE;
1415        if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1416                return NOTIFY_DONE;
1417
1418        spin_lock(&isotp_notifier_lock);
1419        list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1420                spin_unlock(&isotp_notifier_lock);
1421                isotp_notify(isotp_busy_notifier, msg, dev);
1422                spin_lock(&isotp_notifier_lock);
1423        }
1424        isotp_busy_notifier = NULL;
1425        spin_unlock(&isotp_notifier_lock);
1426        return NOTIFY_DONE;
1427}
1428
1429static int isotp_init(struct sock *sk)
1430{
1431        struct isotp_sock *so = isotp_sk(sk);
1432
1433        so->ifindex = 0;
1434        so->bound = 0;
1435
1436        so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1437        so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1438        so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1439        so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1440        so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1441        so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1442        so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1443        so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1444        so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1445        so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1446        so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1447        so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1448
1449        /* set ll_dl for tx path to similar place as for rx */
1450        so->tx.ll_dl = so->ll.tx_dl;
1451
1452        so->rx.state = ISOTP_IDLE;
1453        so->tx.state = ISOTP_IDLE;
1454
1455        hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1456        so->rxtimer.function = isotp_rx_timer_handler;
1457        hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1458        so->txtimer.function = isotp_tx_timer_handler;
1459
1460        init_waitqueue_head(&so->wait);
1461        spin_lock_init(&so->rx_lock);
1462
1463        spin_lock(&isotp_notifier_lock);
1464        list_add_tail(&so->notifier, &isotp_notifier_list);
1465        spin_unlock(&isotp_notifier_lock);
1466
1467        return 0;
1468}
1469
1470static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1471                                  unsigned long arg)
1472{
1473        /* no ioctls for socket layer -> hand it down to NIC layer */
1474        return -ENOIOCTLCMD;
1475}
1476
1477static const struct proto_ops isotp_ops = {
1478        .family = PF_CAN,
1479        .release = isotp_release,
1480        .bind = isotp_bind,
1481        .connect = sock_no_connect,
1482        .socketpair = sock_no_socketpair,
1483        .accept = sock_no_accept,
1484        .getname = isotp_getname,
1485        .poll = datagram_poll,
1486        .ioctl = isotp_sock_no_ioctlcmd,
1487        .gettstamp = sock_gettstamp,
1488        .listen = sock_no_listen,
1489        .shutdown = sock_no_shutdown,
1490        .setsockopt = isotp_setsockopt,
1491        .getsockopt = isotp_getsockopt,
1492        .sendmsg = isotp_sendmsg,
1493        .recvmsg = isotp_recvmsg,
1494        .mmap = sock_no_mmap,
1495        .sendpage = sock_no_sendpage,
1496};
1497
1498static struct proto isotp_proto __read_mostly = {
1499        .name = "CAN_ISOTP",
1500        .owner = THIS_MODULE,
1501        .obj_size = sizeof(struct isotp_sock),
1502        .init = isotp_init,
1503};
1504
1505static const struct can_proto isotp_can_proto = {
1506        .type = SOCK_DGRAM,
1507        .protocol = CAN_ISOTP,
1508        .ops = &isotp_ops,
1509        .prot = &isotp_proto,
1510};
1511
1512static struct notifier_block canisotp_notifier = {
1513        .notifier_call = isotp_notifier
1514};
1515
1516static __init int isotp_module_init(void)
1517{
1518        int err;
1519
1520        pr_info("can: isotp protocol\n");
1521
1522        err = can_proto_register(&isotp_can_proto);
1523        if (err < 0)
1524                pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1525        else
1526                register_netdevice_notifier(&canisotp_notifier);
1527
1528        return err;
1529}
1530
1531static __exit void isotp_module_exit(void)
1532{
1533        can_proto_unregister(&isotp_can_proto);
1534        unregister_netdevice_notifier(&canisotp_notifier);
1535}
1536
1537module_init(isotp_module_init);
1538module_exit(isotp_module_exit);
1539