linux/net/core/dev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      NET3    Protocol independent device support routines.
   4 *
   5 *      Derived from the non IP parts of dev.c 1.0.19
   6 *              Authors:        Ross Biro
   7 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   8 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
   9 *
  10 *      Additional Authors:
  11 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  12 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  13 *              David Hinds <dahinds@users.sourceforge.net>
  14 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  15 *              Adam Sulmicki <adam@cfar.umd.edu>
  16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  17 *
  18 *      Changes:
  19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  20 *                                      to 2 if register_netdev gets called
  21 *                                      before net_dev_init & also removed a
  22 *                                      few lines of code in the process.
  23 *              Alan Cox        :       device private ioctl copies fields back.
  24 *              Alan Cox        :       Transmit queue code does relevant
  25 *                                      stunts to keep the queue safe.
  26 *              Alan Cox        :       Fixed double lock.
  27 *              Alan Cox        :       Fixed promisc NULL pointer trap
  28 *              ????????        :       Support the full private ioctl range
  29 *              Alan Cox        :       Moved ioctl permission check into
  30 *                                      drivers
  31 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  32 *              Alan Cox        :       100 backlog just doesn't cut it when
  33 *                                      you start doing multicast video 8)
  34 *              Alan Cox        :       Rewrote net_bh and list manager.
  35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  36 *              Alan Cox        :       Took out transmit every packet pass
  37 *                                      Saved a few bytes in the ioctl handler
  38 *              Alan Cox        :       Network driver sets packet type before
  39 *                                      calling netif_rx. Saves a function
  40 *                                      call a packet.
  41 *              Alan Cox        :       Hashed net_bh()
  42 *              Richard Kooijman:       Timestamp fixes.
  43 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  44 *              Alan Cox        :       Device lock protection.
  45 *              Alan Cox        :       Fixed nasty side effect of device close
  46 *                                      changes.
  47 *              Rudi Cilibrasi  :       Pass the right thing to
  48 *                                      set_mac_address()
  49 *              Dave Miller     :       32bit quantity for the device lock to
  50 *                                      make it work out on a Sparc.
  51 *              Bjorn Ekwall    :       Added KERNELD hack.
  52 *              Alan Cox        :       Cleaned up the backlog initialise.
  53 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  54 *                                      1 device.
  55 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  56 *                                      is no device open function.
  57 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  58 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  59 *              Cyrus Durgin    :       Cleaned for KMOD
  60 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  61 *                                      A network device unload needs to purge
  62 *                                      the backlog queue.
  63 *      Paul Rusty Russell      :       SIOCSIFNAME
  64 *              Pekka Riikonen  :       Netdev boot-time settings code
  65 *              Andrew Morton   :       Make unregister_netdevice wait
  66 *                                      indefinitely on dev->refcnt
  67 *              J Hadi Salim    :       - Backlog queue sampling
  68 *                                      - netif_rx() feedback
  69 */
  70
  71#include <linux/uaccess.h>
  72#include <linux/bitops.h>
  73#include <linux/capability.h>
  74#include <linux/cpu.h>
  75#include <linux/types.h>
  76#include <linux/kernel.h>
  77#include <linux/hash.h>
  78#include <linux/slab.h>
  79#include <linux/sched.h>
  80#include <linux/sched/mm.h>
  81#include <linux/mutex.h>
  82#include <linux/rwsem.h>
  83#include <linux/string.h>
  84#include <linux/mm.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/errno.h>
  88#include <linux/interrupt.h>
  89#include <linux/if_ether.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/ethtool.h>
  93#include <linux/skbuff.h>
  94#include <linux/kthread.h>
  95#include <linux/bpf.h>
  96#include <linux/bpf_trace.h>
  97#include <net/net_namespace.h>
  98#include <net/sock.h>
  99#include <net/busy_poll.h>
 100#include <linux/rtnetlink.h>
 101#include <linux/stat.h>
 102#include <net/dsa.h>
 103#include <net/dst.h>
 104#include <net/dst_metadata.h>
 105#include <net/gro.h>
 106#include <net/pkt_sched.h>
 107#include <net/pkt_cls.h>
 108#include <net/checksum.h>
 109#include <net/xfrm.h>
 110#include <linux/highmem.h>
 111#include <linux/init.h>
 112#include <linux/module.h>
 113#include <linux/netpoll.h>
 114#include <linux/rcupdate.h>
 115#include <linux/delay.h>
 116#include <net/iw_handler.h>
 117#include <asm/current.h>
 118#include <linux/audit.h>
 119#include <linux/dmaengine.h>
 120#include <linux/err.h>
 121#include <linux/ctype.h>
 122#include <linux/if_arp.h>
 123#include <linux/if_vlan.h>
 124#include <linux/ip.h>
 125#include <net/ip.h>
 126#include <net/mpls.h>
 127#include <linux/ipv6.h>
 128#include <linux/in.h>
 129#include <linux/jhash.h>
 130#include <linux/random.h>
 131#include <trace/events/napi.h>
 132#include <trace/events/net.h>
 133#include <trace/events/skb.h>
 134#include <trace/events/qdisc.h>
 135#include <linux/inetdevice.h>
 136#include <linux/cpu_rmap.h>
 137#include <linux/static_key.h>
 138#include <linux/hashtable.h>
 139#include <linux/vmalloc.h>
 140#include <linux/if_macvlan.h>
 141#include <linux/errqueue.h>
 142#include <linux/hrtimer.h>
 143#include <linux/netfilter_netdev.h>
 144#include <linux/crash_dump.h>
 145#include <linux/sctp.h>
 146#include <net/udp_tunnel.h>
 147#include <linux/net_namespace.h>
 148#include <linux/indirect_call_wrapper.h>
 149#include <net/devlink.h>
 150#include <linux/pm_runtime.h>
 151#include <linux/prandom.h>
 152#include <linux/once_lite.h>
 153
 154#include "net-sysfs.h"
 155
 156
 157static DEFINE_SPINLOCK(ptype_lock);
 158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 159struct list_head ptype_all __read_mostly;       /* Taps */
 160
 161static int netif_rx_internal(struct sk_buff *skb);
 162static int call_netdevice_notifiers_info(unsigned long val,
 163                                         struct netdev_notifier_info *info);
 164static int call_netdevice_notifiers_extack(unsigned long val,
 165                                           struct net_device *dev,
 166                                           struct netlink_ext_ack *extack);
 167static struct napi_struct *napi_by_id(unsigned int napi_id);
 168
 169/*
 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 171 * semaphore.
 172 *
 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 174 *
 175 * Writers must hold the rtnl semaphore while they loop through the
 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
 177 * actual updates.  This allows pure readers to access the list even
 178 * while a writer is preparing to update it.
 179 *
 180 * To put it another way, dev_base_lock is held for writing only to
 181 * protect against pure readers; the rtnl semaphore provides the
 182 * protection against other writers.
 183 *
 184 * See, for example usages, register_netdevice() and
 185 * unregister_netdevice(), which must be called with the rtnl
 186 * semaphore held.
 187 */
 188DEFINE_RWLOCK(dev_base_lock);
 189EXPORT_SYMBOL(dev_base_lock);
 190
 191static DEFINE_MUTEX(ifalias_mutex);
 192
 193/* protects napi_hash addition/deletion and napi_gen_id */
 194static DEFINE_SPINLOCK(napi_hash_lock);
 195
 196static unsigned int napi_gen_id = NR_CPUS;
 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 198
 199static DECLARE_RWSEM(devnet_rename_sem);
 200
 201static inline void dev_base_seq_inc(struct net *net)
 202{
 203        while (++net->dev_base_seq == 0)
 204                ;
 205}
 206
 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 208{
 209        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 210
 211        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 212}
 213
 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 215{
 216        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 217}
 218
 219static inline void rps_lock(struct softnet_data *sd)
 220{
 221#ifdef CONFIG_RPS
 222        spin_lock(&sd->input_pkt_queue.lock);
 223#endif
 224}
 225
 226static inline void rps_unlock(struct softnet_data *sd)
 227{
 228#ifdef CONFIG_RPS
 229        spin_unlock(&sd->input_pkt_queue.lock);
 230#endif
 231}
 232
 233static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
 234                                                       const char *name)
 235{
 236        struct netdev_name_node *name_node;
 237
 238        name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
 239        if (!name_node)
 240                return NULL;
 241        INIT_HLIST_NODE(&name_node->hlist);
 242        name_node->dev = dev;
 243        name_node->name = name;
 244        return name_node;
 245}
 246
 247static struct netdev_name_node *
 248netdev_name_node_head_alloc(struct net_device *dev)
 249{
 250        struct netdev_name_node *name_node;
 251
 252        name_node = netdev_name_node_alloc(dev, dev->name);
 253        if (!name_node)
 254                return NULL;
 255        INIT_LIST_HEAD(&name_node->list);
 256        return name_node;
 257}
 258
 259static void netdev_name_node_free(struct netdev_name_node *name_node)
 260{
 261        kfree(name_node);
 262}
 263
 264static void netdev_name_node_add(struct net *net,
 265                                 struct netdev_name_node *name_node)
 266{
 267        hlist_add_head_rcu(&name_node->hlist,
 268                           dev_name_hash(net, name_node->name));
 269}
 270
 271static void netdev_name_node_del(struct netdev_name_node *name_node)
 272{
 273        hlist_del_rcu(&name_node->hlist);
 274}
 275
 276static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
 277                                                        const char *name)
 278{
 279        struct hlist_head *head = dev_name_hash(net, name);
 280        struct netdev_name_node *name_node;
 281
 282        hlist_for_each_entry(name_node, head, hlist)
 283                if (!strcmp(name_node->name, name))
 284                        return name_node;
 285        return NULL;
 286}
 287
 288static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
 289                                                            const char *name)
 290{
 291        struct hlist_head *head = dev_name_hash(net, name);
 292        struct netdev_name_node *name_node;
 293
 294        hlist_for_each_entry_rcu(name_node, head, hlist)
 295                if (!strcmp(name_node->name, name))
 296                        return name_node;
 297        return NULL;
 298}
 299
 300bool netdev_name_in_use(struct net *net, const char *name)
 301{
 302        return netdev_name_node_lookup(net, name);
 303}
 304EXPORT_SYMBOL(netdev_name_in_use);
 305
 306int netdev_name_node_alt_create(struct net_device *dev, const char *name)
 307{
 308        struct netdev_name_node *name_node;
 309        struct net *net = dev_net(dev);
 310
 311        name_node = netdev_name_node_lookup(net, name);
 312        if (name_node)
 313                return -EEXIST;
 314        name_node = netdev_name_node_alloc(dev, name);
 315        if (!name_node)
 316                return -ENOMEM;
 317        netdev_name_node_add(net, name_node);
 318        /* The node that holds dev->name acts as a head of per-device list. */
 319        list_add_tail(&name_node->list, &dev->name_node->list);
 320
 321        return 0;
 322}
 323EXPORT_SYMBOL(netdev_name_node_alt_create);
 324
 325static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
 326{
 327        list_del(&name_node->list);
 328        netdev_name_node_del(name_node);
 329        kfree(name_node->name);
 330        netdev_name_node_free(name_node);
 331}
 332
 333int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
 334{
 335        struct netdev_name_node *name_node;
 336        struct net *net = dev_net(dev);
 337
 338        name_node = netdev_name_node_lookup(net, name);
 339        if (!name_node)
 340                return -ENOENT;
 341        /* lookup might have found our primary name or a name belonging
 342         * to another device.
 343         */
 344        if (name_node == dev->name_node || name_node->dev != dev)
 345                return -EINVAL;
 346
 347        __netdev_name_node_alt_destroy(name_node);
 348
 349        return 0;
 350}
 351EXPORT_SYMBOL(netdev_name_node_alt_destroy);
 352
 353static void netdev_name_node_alt_flush(struct net_device *dev)
 354{
 355        struct netdev_name_node *name_node, *tmp;
 356
 357        list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
 358                __netdev_name_node_alt_destroy(name_node);
 359}
 360
 361/* Device list insertion */
 362static void list_netdevice(struct net_device *dev)
 363{
 364        struct net *net = dev_net(dev);
 365
 366        ASSERT_RTNL();
 367
 368        write_lock(&dev_base_lock);
 369        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 370        netdev_name_node_add(net, dev->name_node);
 371        hlist_add_head_rcu(&dev->index_hlist,
 372                           dev_index_hash(net, dev->ifindex));
 373        write_unlock(&dev_base_lock);
 374
 375        dev_base_seq_inc(net);
 376}
 377
 378/* Device list removal
 379 * caller must respect a RCU grace period before freeing/reusing dev
 380 */
 381static void unlist_netdevice(struct net_device *dev)
 382{
 383        ASSERT_RTNL();
 384
 385        /* Unlink dev from the device chain */
 386        write_lock(&dev_base_lock);
 387        list_del_rcu(&dev->dev_list);
 388        netdev_name_node_del(dev->name_node);
 389        hlist_del_rcu(&dev->index_hlist);
 390        write_unlock(&dev_base_lock);
 391
 392        dev_base_seq_inc(dev_net(dev));
 393}
 394
 395/*
 396 *      Our notifier list
 397 */
 398
 399static RAW_NOTIFIER_HEAD(netdev_chain);
 400
 401/*
 402 *      Device drivers call our routines to queue packets here. We empty the
 403 *      queue in the local softnet handler.
 404 */
 405
 406DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 407EXPORT_PER_CPU_SYMBOL(softnet_data);
 408
 409#ifdef CONFIG_LOCKDEP
 410/*
 411 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 412 * according to dev->type
 413 */
 414static const unsigned short netdev_lock_type[] = {
 415         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 416         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 417         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 418         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 419         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 420         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 421         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 422         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 423         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 424         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 425         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 426         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 427         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 428         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 429         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 430
 431static const char *const netdev_lock_name[] = {
 432        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 433        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 434        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 435        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 436        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 437        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 438        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 439        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 440        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 441        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 442        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 443        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 444        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 445        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 446        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 447
 448static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 449static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 450
 451static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 452{
 453        int i;
 454
 455        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 456                if (netdev_lock_type[i] == dev_type)
 457                        return i;
 458        /* the last key is used by default */
 459        return ARRAY_SIZE(netdev_lock_type) - 1;
 460}
 461
 462static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 463                                                 unsigned short dev_type)
 464{
 465        int i;
 466
 467        i = netdev_lock_pos(dev_type);
 468        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 469                                   netdev_lock_name[i]);
 470}
 471
 472static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 473{
 474        int i;
 475
 476        i = netdev_lock_pos(dev->type);
 477        lockdep_set_class_and_name(&dev->addr_list_lock,
 478                                   &netdev_addr_lock_key[i],
 479                                   netdev_lock_name[i]);
 480}
 481#else
 482static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 483                                                 unsigned short dev_type)
 484{
 485}
 486
 487static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 488{
 489}
 490#endif
 491
 492/*******************************************************************************
 493 *
 494 *              Protocol management and registration routines
 495 *
 496 *******************************************************************************/
 497
 498
 499/*
 500 *      Add a protocol ID to the list. Now that the input handler is
 501 *      smarter we can dispense with all the messy stuff that used to be
 502 *      here.
 503 *
 504 *      BEWARE!!! Protocol handlers, mangling input packets,
 505 *      MUST BE last in hash buckets and checking protocol handlers
 506 *      MUST start from promiscuous ptype_all chain in net_bh.
 507 *      It is true now, do not change it.
 508 *      Explanation follows: if protocol handler, mangling packet, will
 509 *      be the first on list, it is not able to sense, that packet
 510 *      is cloned and should be copied-on-write, so that it will
 511 *      change it and subsequent readers will get broken packet.
 512 *                                                      --ANK (980803)
 513 */
 514
 515static inline struct list_head *ptype_head(const struct packet_type *pt)
 516{
 517        if (pt->type == htons(ETH_P_ALL))
 518                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 519        else
 520                return pt->dev ? &pt->dev->ptype_specific :
 521                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 522}
 523
 524/**
 525 *      dev_add_pack - add packet handler
 526 *      @pt: packet type declaration
 527 *
 528 *      Add a protocol handler to the networking stack. The passed &packet_type
 529 *      is linked into kernel lists and may not be freed until it has been
 530 *      removed from the kernel lists.
 531 *
 532 *      This call does not sleep therefore it can not
 533 *      guarantee all CPU's that are in middle of receiving packets
 534 *      will see the new packet type (until the next received packet).
 535 */
 536
 537void dev_add_pack(struct packet_type *pt)
 538{
 539        struct list_head *head = ptype_head(pt);
 540
 541        spin_lock(&ptype_lock);
 542        list_add_rcu(&pt->list, head);
 543        spin_unlock(&ptype_lock);
 544}
 545EXPORT_SYMBOL(dev_add_pack);
 546
 547/**
 548 *      __dev_remove_pack        - remove packet handler
 549 *      @pt: packet type declaration
 550 *
 551 *      Remove a protocol handler that was previously added to the kernel
 552 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 553 *      from the kernel lists and can be freed or reused once this function
 554 *      returns.
 555 *
 556 *      The packet type might still be in use by receivers
 557 *      and must not be freed until after all the CPU's have gone
 558 *      through a quiescent state.
 559 */
 560void __dev_remove_pack(struct packet_type *pt)
 561{
 562        struct list_head *head = ptype_head(pt);
 563        struct packet_type *pt1;
 564
 565        spin_lock(&ptype_lock);
 566
 567        list_for_each_entry(pt1, head, list) {
 568                if (pt == pt1) {
 569                        list_del_rcu(&pt->list);
 570                        goto out;
 571                }
 572        }
 573
 574        pr_warn("dev_remove_pack: %p not found\n", pt);
 575out:
 576        spin_unlock(&ptype_lock);
 577}
 578EXPORT_SYMBOL(__dev_remove_pack);
 579
 580/**
 581 *      dev_remove_pack  - remove packet handler
 582 *      @pt: packet type declaration
 583 *
 584 *      Remove a protocol handler that was previously added to the kernel
 585 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 586 *      from the kernel lists and can be freed or reused once this function
 587 *      returns.
 588 *
 589 *      This call sleeps to guarantee that no CPU is looking at the packet
 590 *      type after return.
 591 */
 592void dev_remove_pack(struct packet_type *pt)
 593{
 594        __dev_remove_pack(pt);
 595
 596        synchronize_net();
 597}
 598EXPORT_SYMBOL(dev_remove_pack);
 599
 600
 601/*******************************************************************************
 602 *
 603 *                          Device Interface Subroutines
 604 *
 605 *******************************************************************************/
 606
 607/**
 608 *      dev_get_iflink  - get 'iflink' value of a interface
 609 *      @dev: targeted interface
 610 *
 611 *      Indicates the ifindex the interface is linked to.
 612 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 613 */
 614
 615int dev_get_iflink(const struct net_device *dev)
 616{
 617        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 618                return dev->netdev_ops->ndo_get_iflink(dev);
 619
 620        return dev->ifindex;
 621}
 622EXPORT_SYMBOL(dev_get_iflink);
 623
 624/**
 625 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 626 *      @dev: targeted interface
 627 *      @skb: The packet.
 628 *
 629 *      For better visibility of tunnel traffic OVS needs to retrieve
 630 *      egress tunnel information for a packet. Following API allows
 631 *      user to get this info.
 632 */
 633int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 634{
 635        struct ip_tunnel_info *info;
 636
 637        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 638                return -EINVAL;
 639
 640        info = skb_tunnel_info_unclone(skb);
 641        if (!info)
 642                return -ENOMEM;
 643        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 644                return -EINVAL;
 645
 646        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 647}
 648EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 649
 650static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
 651{
 652        int k = stack->num_paths++;
 653
 654        if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
 655                return NULL;
 656
 657        return &stack->path[k];
 658}
 659
 660int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
 661                          struct net_device_path_stack *stack)
 662{
 663        const struct net_device *last_dev;
 664        struct net_device_path_ctx ctx = {
 665                .dev    = dev,
 666                .daddr  = daddr,
 667        };
 668        struct net_device_path *path;
 669        int ret = 0;
 670
 671        stack->num_paths = 0;
 672        while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
 673                last_dev = ctx.dev;
 674                path = dev_fwd_path(stack);
 675                if (!path)
 676                        return -1;
 677
 678                memset(path, 0, sizeof(struct net_device_path));
 679                ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
 680                if (ret < 0)
 681                        return -1;
 682
 683                if (WARN_ON_ONCE(last_dev == ctx.dev))
 684                        return -1;
 685        }
 686        path = dev_fwd_path(stack);
 687        if (!path)
 688                return -1;
 689        path->type = DEV_PATH_ETHERNET;
 690        path->dev = ctx.dev;
 691
 692        return ret;
 693}
 694EXPORT_SYMBOL_GPL(dev_fill_forward_path);
 695
 696/**
 697 *      __dev_get_by_name       - find a device by its name
 698 *      @net: the applicable net namespace
 699 *      @name: name to find
 700 *
 701 *      Find an interface by name. Must be called under RTNL semaphore
 702 *      or @dev_base_lock. If the name is found a pointer to the device
 703 *      is returned. If the name is not found then %NULL is returned. The
 704 *      reference counters are not incremented so the caller must be
 705 *      careful with locks.
 706 */
 707
 708struct net_device *__dev_get_by_name(struct net *net, const char *name)
 709{
 710        struct netdev_name_node *node_name;
 711
 712        node_name = netdev_name_node_lookup(net, name);
 713        return node_name ? node_name->dev : NULL;
 714}
 715EXPORT_SYMBOL(__dev_get_by_name);
 716
 717/**
 718 * dev_get_by_name_rcu  - find a device by its name
 719 * @net: the applicable net namespace
 720 * @name: name to find
 721 *
 722 * Find an interface by name.
 723 * If the name is found a pointer to the device is returned.
 724 * If the name is not found then %NULL is returned.
 725 * The reference counters are not incremented so the caller must be
 726 * careful with locks. The caller must hold RCU lock.
 727 */
 728
 729struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 730{
 731        struct netdev_name_node *node_name;
 732
 733        node_name = netdev_name_node_lookup_rcu(net, name);
 734        return node_name ? node_name->dev : NULL;
 735}
 736EXPORT_SYMBOL(dev_get_by_name_rcu);
 737
 738/**
 739 *      dev_get_by_name         - find a device by its name
 740 *      @net: the applicable net namespace
 741 *      @name: name to find
 742 *
 743 *      Find an interface by name. This can be called from any
 744 *      context and does its own locking. The returned handle has
 745 *      the usage count incremented and the caller must use dev_put() to
 746 *      release it when it is no longer needed. %NULL is returned if no
 747 *      matching device is found.
 748 */
 749
 750struct net_device *dev_get_by_name(struct net *net, const char *name)
 751{
 752        struct net_device *dev;
 753
 754        rcu_read_lock();
 755        dev = dev_get_by_name_rcu(net, name);
 756        dev_hold(dev);
 757        rcu_read_unlock();
 758        return dev;
 759}
 760EXPORT_SYMBOL(dev_get_by_name);
 761
 762/**
 763 *      __dev_get_by_index - find a device by its ifindex
 764 *      @net: the applicable net namespace
 765 *      @ifindex: index of device
 766 *
 767 *      Search for an interface by index. Returns %NULL if the device
 768 *      is not found or a pointer to the device. The device has not
 769 *      had its reference counter increased so the caller must be careful
 770 *      about locking. The caller must hold either the RTNL semaphore
 771 *      or @dev_base_lock.
 772 */
 773
 774struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 775{
 776        struct net_device *dev;
 777        struct hlist_head *head = dev_index_hash(net, ifindex);
 778
 779        hlist_for_each_entry(dev, head, index_hlist)
 780                if (dev->ifindex == ifindex)
 781                        return dev;
 782
 783        return NULL;
 784}
 785EXPORT_SYMBOL(__dev_get_by_index);
 786
 787/**
 788 *      dev_get_by_index_rcu - find a device by its ifindex
 789 *      @net: the applicable net namespace
 790 *      @ifindex: index of device
 791 *
 792 *      Search for an interface by index. Returns %NULL if the device
 793 *      is not found or a pointer to the device. The device has not
 794 *      had its reference counter increased so the caller must be careful
 795 *      about locking. The caller must hold RCU lock.
 796 */
 797
 798struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 799{
 800        struct net_device *dev;
 801        struct hlist_head *head = dev_index_hash(net, ifindex);
 802
 803        hlist_for_each_entry_rcu(dev, head, index_hlist)
 804                if (dev->ifindex == ifindex)
 805                        return dev;
 806
 807        return NULL;
 808}
 809EXPORT_SYMBOL(dev_get_by_index_rcu);
 810
 811
 812/**
 813 *      dev_get_by_index - find a device by its ifindex
 814 *      @net: the applicable net namespace
 815 *      @ifindex: index of device
 816 *
 817 *      Search for an interface by index. Returns NULL if the device
 818 *      is not found or a pointer to the device. The device returned has
 819 *      had a reference added and the pointer is safe until the user calls
 820 *      dev_put to indicate they have finished with it.
 821 */
 822
 823struct net_device *dev_get_by_index(struct net *net, int ifindex)
 824{
 825        struct net_device *dev;
 826
 827        rcu_read_lock();
 828        dev = dev_get_by_index_rcu(net, ifindex);
 829        dev_hold(dev);
 830        rcu_read_unlock();
 831        return dev;
 832}
 833EXPORT_SYMBOL(dev_get_by_index);
 834
 835/**
 836 *      dev_get_by_napi_id - find a device by napi_id
 837 *      @napi_id: ID of the NAPI struct
 838 *
 839 *      Search for an interface by NAPI ID. Returns %NULL if the device
 840 *      is not found or a pointer to the device. The device has not had
 841 *      its reference counter increased so the caller must be careful
 842 *      about locking. The caller must hold RCU lock.
 843 */
 844
 845struct net_device *dev_get_by_napi_id(unsigned int napi_id)
 846{
 847        struct napi_struct *napi;
 848
 849        WARN_ON_ONCE(!rcu_read_lock_held());
 850
 851        if (napi_id < MIN_NAPI_ID)
 852                return NULL;
 853
 854        napi = napi_by_id(napi_id);
 855
 856        return napi ? napi->dev : NULL;
 857}
 858EXPORT_SYMBOL(dev_get_by_napi_id);
 859
 860/**
 861 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 862 *      @net: network namespace
 863 *      @name: a pointer to the buffer where the name will be stored.
 864 *      @ifindex: the ifindex of the interface to get the name from.
 865 */
 866int netdev_get_name(struct net *net, char *name, int ifindex)
 867{
 868        struct net_device *dev;
 869        int ret;
 870
 871        down_read(&devnet_rename_sem);
 872        rcu_read_lock();
 873
 874        dev = dev_get_by_index_rcu(net, ifindex);
 875        if (!dev) {
 876                ret = -ENODEV;
 877                goto out;
 878        }
 879
 880        strcpy(name, dev->name);
 881
 882        ret = 0;
 883out:
 884        rcu_read_unlock();
 885        up_read(&devnet_rename_sem);
 886        return ret;
 887}
 888
 889/**
 890 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 891 *      @net: the applicable net namespace
 892 *      @type: media type of device
 893 *      @ha: hardware address
 894 *
 895 *      Search for an interface by MAC address. Returns NULL if the device
 896 *      is not found or a pointer to the device.
 897 *      The caller must hold RCU or RTNL.
 898 *      The returned device has not had its ref count increased
 899 *      and the caller must therefore be careful about locking
 900 *
 901 */
 902
 903struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 904                                       const char *ha)
 905{
 906        struct net_device *dev;
 907
 908        for_each_netdev_rcu(net, dev)
 909                if (dev->type == type &&
 910                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 911                        return dev;
 912
 913        return NULL;
 914}
 915EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 916
 917struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 918{
 919        struct net_device *dev, *ret = NULL;
 920
 921        rcu_read_lock();
 922        for_each_netdev_rcu(net, dev)
 923                if (dev->type == type) {
 924                        dev_hold(dev);
 925                        ret = dev;
 926                        break;
 927                }
 928        rcu_read_unlock();
 929        return ret;
 930}
 931EXPORT_SYMBOL(dev_getfirstbyhwtype);
 932
 933/**
 934 *      __dev_get_by_flags - find any device with given flags
 935 *      @net: the applicable net namespace
 936 *      @if_flags: IFF_* values
 937 *      @mask: bitmask of bits in if_flags to check
 938 *
 939 *      Search for any interface with the given flags. Returns NULL if a device
 940 *      is not found or a pointer to the device. Must be called inside
 941 *      rtnl_lock(), and result refcount is unchanged.
 942 */
 943
 944struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 945                                      unsigned short mask)
 946{
 947        struct net_device *dev, *ret;
 948
 949        ASSERT_RTNL();
 950
 951        ret = NULL;
 952        for_each_netdev(net, dev) {
 953                if (((dev->flags ^ if_flags) & mask) == 0) {
 954                        ret = dev;
 955                        break;
 956                }
 957        }
 958        return ret;
 959}
 960EXPORT_SYMBOL(__dev_get_by_flags);
 961
 962/**
 963 *      dev_valid_name - check if name is okay for network device
 964 *      @name: name string
 965 *
 966 *      Network device names need to be valid file names to
 967 *      allow sysfs to work.  We also disallow any kind of
 968 *      whitespace.
 969 */
 970bool dev_valid_name(const char *name)
 971{
 972        if (*name == '\0')
 973                return false;
 974        if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
 975                return false;
 976        if (!strcmp(name, ".") || !strcmp(name, ".."))
 977                return false;
 978
 979        while (*name) {
 980                if (*name == '/' || *name == ':' || isspace(*name))
 981                        return false;
 982                name++;
 983        }
 984        return true;
 985}
 986EXPORT_SYMBOL(dev_valid_name);
 987
 988/**
 989 *      __dev_alloc_name - allocate a name for a device
 990 *      @net: network namespace to allocate the device name in
 991 *      @name: name format string
 992 *      @buf:  scratch buffer and result name string
 993 *
 994 *      Passed a format string - eg "lt%d" it will try and find a suitable
 995 *      id. It scans list of devices to build up a free map, then chooses
 996 *      the first empty slot. The caller must hold the dev_base or rtnl lock
 997 *      while allocating the name and adding the device in order to avoid
 998 *      duplicates.
 999 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1000 *      Returns the number of the unit assigned or a negative errno code.
1001 */
1002
1003static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1004{
1005        int i = 0;
1006        const char *p;
1007        const int max_netdevices = 8*PAGE_SIZE;
1008        unsigned long *inuse;
1009        struct net_device *d;
1010
1011        if (!dev_valid_name(name))
1012                return -EINVAL;
1013
1014        p = strchr(name, '%');
1015        if (p) {
1016                /*
1017                 * Verify the string as this thing may have come from
1018                 * the user.  There must be either one "%d" and no other "%"
1019                 * characters.
1020                 */
1021                if (p[1] != 'd' || strchr(p + 2, '%'))
1022                        return -EINVAL;
1023
1024                /* Use one page as a bit array of possible slots */
1025                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1026                if (!inuse)
1027                        return -ENOMEM;
1028
1029                for_each_netdev(net, d) {
1030                        struct netdev_name_node *name_node;
1031                        list_for_each_entry(name_node, &d->name_node->list, list) {
1032                                if (!sscanf(name_node->name, name, &i))
1033                                        continue;
1034                                if (i < 0 || i >= max_netdevices)
1035                                        continue;
1036
1037                                /*  avoid cases where sscanf is not exact inverse of printf */
1038                                snprintf(buf, IFNAMSIZ, name, i);
1039                                if (!strncmp(buf, name_node->name, IFNAMSIZ))
1040                                        set_bit(i, inuse);
1041                        }
1042                        if (!sscanf(d->name, name, &i))
1043                                continue;
1044                        if (i < 0 || i >= max_netdevices)
1045                                continue;
1046
1047                        /*  avoid cases where sscanf is not exact inverse of printf */
1048                        snprintf(buf, IFNAMSIZ, name, i);
1049                        if (!strncmp(buf, d->name, IFNAMSIZ))
1050                                set_bit(i, inuse);
1051                }
1052
1053                i = find_first_zero_bit(inuse, max_netdevices);
1054                free_page((unsigned long) inuse);
1055        }
1056
1057        snprintf(buf, IFNAMSIZ, name, i);
1058        if (!netdev_name_in_use(net, buf))
1059                return i;
1060
1061        /* It is possible to run out of possible slots
1062         * when the name is long and there isn't enough space left
1063         * for the digits, or if all bits are used.
1064         */
1065        return -ENFILE;
1066}
1067
1068static int dev_alloc_name_ns(struct net *net,
1069                             struct net_device *dev,
1070                             const char *name)
1071{
1072        char buf[IFNAMSIZ];
1073        int ret;
1074
1075        BUG_ON(!net);
1076        ret = __dev_alloc_name(net, name, buf);
1077        if (ret >= 0)
1078                strlcpy(dev->name, buf, IFNAMSIZ);
1079        return ret;
1080}
1081
1082/**
1083 *      dev_alloc_name - allocate a name for a device
1084 *      @dev: device
1085 *      @name: name format string
1086 *
1087 *      Passed a format string - eg "lt%d" it will try and find a suitable
1088 *      id. It scans list of devices to build up a free map, then chooses
1089 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1090 *      while allocating the name and adding the device in order to avoid
1091 *      duplicates.
1092 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1093 *      Returns the number of the unit assigned or a negative errno code.
1094 */
1095
1096int dev_alloc_name(struct net_device *dev, const char *name)
1097{
1098        return dev_alloc_name_ns(dev_net(dev), dev, name);
1099}
1100EXPORT_SYMBOL(dev_alloc_name);
1101
1102static int dev_get_valid_name(struct net *net, struct net_device *dev,
1103                              const char *name)
1104{
1105        BUG_ON(!net);
1106
1107        if (!dev_valid_name(name))
1108                return -EINVAL;
1109
1110        if (strchr(name, '%'))
1111                return dev_alloc_name_ns(net, dev, name);
1112        else if (netdev_name_in_use(net, name))
1113                return -EEXIST;
1114        else if (dev->name != name)
1115                strlcpy(dev->name, name, IFNAMSIZ);
1116
1117        return 0;
1118}
1119
1120/**
1121 *      dev_change_name - change name of a device
1122 *      @dev: device
1123 *      @newname: name (or format string) must be at least IFNAMSIZ
1124 *
1125 *      Change name of a device, can pass format strings "eth%d".
1126 *      for wildcarding.
1127 */
1128int dev_change_name(struct net_device *dev, const char *newname)
1129{
1130        unsigned char old_assign_type;
1131        char oldname[IFNAMSIZ];
1132        int err = 0;
1133        int ret;
1134        struct net *net;
1135
1136        ASSERT_RTNL();
1137        BUG_ON(!dev_net(dev));
1138
1139        net = dev_net(dev);
1140
1141        /* Some auto-enslaved devices e.g. failover slaves are
1142         * special, as userspace might rename the device after
1143         * the interface had been brought up and running since
1144         * the point kernel initiated auto-enslavement. Allow
1145         * live name change even when these slave devices are
1146         * up and running.
1147         *
1148         * Typically, users of these auto-enslaving devices
1149         * don't actually care about slave name change, as
1150         * they are supposed to operate on master interface
1151         * directly.
1152         */
1153        if (dev->flags & IFF_UP &&
1154            likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1155                return -EBUSY;
1156
1157        down_write(&devnet_rename_sem);
1158
1159        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1160                up_write(&devnet_rename_sem);
1161                return 0;
1162        }
1163
1164        memcpy(oldname, dev->name, IFNAMSIZ);
1165
1166        err = dev_get_valid_name(net, dev, newname);
1167        if (err < 0) {
1168                up_write(&devnet_rename_sem);
1169                return err;
1170        }
1171
1172        if (oldname[0] && !strchr(oldname, '%'))
1173                netdev_info(dev, "renamed from %s\n", oldname);
1174
1175        old_assign_type = dev->name_assign_type;
1176        dev->name_assign_type = NET_NAME_RENAMED;
1177
1178rollback:
1179        ret = device_rename(&dev->dev, dev->name);
1180        if (ret) {
1181                memcpy(dev->name, oldname, IFNAMSIZ);
1182                dev->name_assign_type = old_assign_type;
1183                up_write(&devnet_rename_sem);
1184                return ret;
1185        }
1186
1187        up_write(&devnet_rename_sem);
1188
1189        netdev_adjacent_rename_links(dev, oldname);
1190
1191        write_lock(&dev_base_lock);
1192        netdev_name_node_del(dev->name_node);
1193        write_unlock(&dev_base_lock);
1194
1195        synchronize_rcu();
1196
1197        write_lock(&dev_base_lock);
1198        netdev_name_node_add(net, dev->name_node);
1199        write_unlock(&dev_base_lock);
1200
1201        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1202        ret = notifier_to_errno(ret);
1203
1204        if (ret) {
1205                /* err >= 0 after dev_alloc_name() or stores the first errno */
1206                if (err >= 0) {
1207                        err = ret;
1208                        down_write(&devnet_rename_sem);
1209                        memcpy(dev->name, oldname, IFNAMSIZ);
1210                        memcpy(oldname, newname, IFNAMSIZ);
1211                        dev->name_assign_type = old_assign_type;
1212                        old_assign_type = NET_NAME_RENAMED;
1213                        goto rollback;
1214                } else {
1215                        netdev_err(dev, "name change rollback failed: %d\n",
1216                                   ret);
1217                }
1218        }
1219
1220        return err;
1221}
1222
1223/**
1224 *      dev_set_alias - change ifalias of a device
1225 *      @dev: device
1226 *      @alias: name up to IFALIASZ
1227 *      @len: limit of bytes to copy from info
1228 *
1229 *      Set ifalias for a device,
1230 */
1231int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1232{
1233        struct dev_ifalias *new_alias = NULL;
1234
1235        if (len >= IFALIASZ)
1236                return -EINVAL;
1237
1238        if (len) {
1239                new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1240                if (!new_alias)
1241                        return -ENOMEM;
1242
1243                memcpy(new_alias->ifalias, alias, len);
1244                new_alias->ifalias[len] = 0;
1245        }
1246
1247        mutex_lock(&ifalias_mutex);
1248        new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1249                                        mutex_is_locked(&ifalias_mutex));
1250        mutex_unlock(&ifalias_mutex);
1251
1252        if (new_alias)
1253                kfree_rcu(new_alias, rcuhead);
1254
1255        return len;
1256}
1257EXPORT_SYMBOL(dev_set_alias);
1258
1259/**
1260 *      dev_get_alias - get ifalias of a device
1261 *      @dev: device
1262 *      @name: buffer to store name of ifalias
1263 *      @len: size of buffer
1264 *
1265 *      get ifalias for a device.  Caller must make sure dev cannot go
1266 *      away,  e.g. rcu read lock or own a reference count to device.
1267 */
1268int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1269{
1270        const struct dev_ifalias *alias;
1271        int ret = 0;
1272
1273        rcu_read_lock();
1274        alias = rcu_dereference(dev->ifalias);
1275        if (alias)
1276                ret = snprintf(name, len, "%s", alias->ifalias);
1277        rcu_read_unlock();
1278
1279        return ret;
1280}
1281
1282/**
1283 *      netdev_features_change - device changes features
1284 *      @dev: device to cause notification
1285 *
1286 *      Called to indicate a device has changed features.
1287 */
1288void netdev_features_change(struct net_device *dev)
1289{
1290        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1291}
1292EXPORT_SYMBOL(netdev_features_change);
1293
1294/**
1295 *      netdev_state_change - device changes state
1296 *      @dev: device to cause notification
1297 *
1298 *      Called to indicate a device has changed state. This function calls
1299 *      the notifier chains for netdev_chain and sends a NEWLINK message
1300 *      to the routing socket.
1301 */
1302void netdev_state_change(struct net_device *dev)
1303{
1304        if (dev->flags & IFF_UP) {
1305                struct netdev_notifier_change_info change_info = {
1306                        .info.dev = dev,
1307                };
1308
1309                call_netdevice_notifiers_info(NETDEV_CHANGE,
1310                                              &change_info.info);
1311                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1312        }
1313}
1314EXPORT_SYMBOL(netdev_state_change);
1315
1316/**
1317 * __netdev_notify_peers - notify network peers about existence of @dev,
1318 * to be called when rtnl lock is already held.
1319 * @dev: network device
1320 *
1321 * Generate traffic such that interested network peers are aware of
1322 * @dev, such as by generating a gratuitous ARP. This may be used when
1323 * a device wants to inform the rest of the network about some sort of
1324 * reconfiguration such as a failover event or virtual machine
1325 * migration.
1326 */
1327void __netdev_notify_peers(struct net_device *dev)
1328{
1329        ASSERT_RTNL();
1330        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1331        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1332}
1333EXPORT_SYMBOL(__netdev_notify_peers);
1334
1335/**
1336 * netdev_notify_peers - notify network peers about existence of @dev
1337 * @dev: network device
1338 *
1339 * Generate traffic such that interested network peers are aware of
1340 * @dev, such as by generating a gratuitous ARP. This may be used when
1341 * a device wants to inform the rest of the network about some sort of
1342 * reconfiguration such as a failover event or virtual machine
1343 * migration.
1344 */
1345void netdev_notify_peers(struct net_device *dev)
1346{
1347        rtnl_lock();
1348        __netdev_notify_peers(dev);
1349        rtnl_unlock();
1350}
1351EXPORT_SYMBOL(netdev_notify_peers);
1352
1353static int napi_threaded_poll(void *data);
1354
1355static int napi_kthread_create(struct napi_struct *n)
1356{
1357        int err = 0;
1358
1359        /* Create and wake up the kthread once to put it in
1360         * TASK_INTERRUPTIBLE mode to avoid the blocked task
1361         * warning and work with loadavg.
1362         */
1363        n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1364                                n->dev->name, n->napi_id);
1365        if (IS_ERR(n->thread)) {
1366                err = PTR_ERR(n->thread);
1367                pr_err("kthread_run failed with err %d\n", err);
1368                n->thread = NULL;
1369        }
1370
1371        return err;
1372}
1373
1374static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1375{
1376        const struct net_device_ops *ops = dev->netdev_ops;
1377        int ret;
1378
1379        ASSERT_RTNL();
1380        dev_addr_check(dev);
1381
1382        if (!netif_device_present(dev)) {
1383                /* may be detached because parent is runtime-suspended */
1384                if (dev->dev.parent)
1385                        pm_runtime_resume(dev->dev.parent);
1386                if (!netif_device_present(dev))
1387                        return -ENODEV;
1388        }
1389
1390        /* Block netpoll from trying to do any rx path servicing.
1391         * If we don't do this there is a chance ndo_poll_controller
1392         * or ndo_poll may be running while we open the device
1393         */
1394        netpoll_poll_disable(dev);
1395
1396        ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1397        ret = notifier_to_errno(ret);
1398        if (ret)
1399                return ret;
1400
1401        set_bit(__LINK_STATE_START, &dev->state);
1402
1403        if (ops->ndo_validate_addr)
1404                ret = ops->ndo_validate_addr(dev);
1405
1406        if (!ret && ops->ndo_open)
1407                ret = ops->ndo_open(dev);
1408
1409        netpoll_poll_enable(dev);
1410
1411        if (ret)
1412                clear_bit(__LINK_STATE_START, &dev->state);
1413        else {
1414                dev->flags |= IFF_UP;
1415                dev_set_rx_mode(dev);
1416                dev_activate(dev);
1417                add_device_randomness(dev->dev_addr, dev->addr_len);
1418        }
1419
1420        return ret;
1421}
1422
1423/**
1424 *      dev_open        - prepare an interface for use.
1425 *      @dev: device to open
1426 *      @extack: netlink extended ack
1427 *
1428 *      Takes a device from down to up state. The device's private open
1429 *      function is invoked and then the multicast lists are loaded. Finally
1430 *      the device is moved into the up state and a %NETDEV_UP message is
1431 *      sent to the netdev notifier chain.
1432 *
1433 *      Calling this function on an active interface is a nop. On a failure
1434 *      a negative errno code is returned.
1435 */
1436int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1437{
1438        int ret;
1439
1440        if (dev->flags & IFF_UP)
1441                return 0;
1442
1443        ret = __dev_open(dev, extack);
1444        if (ret < 0)
1445                return ret;
1446
1447        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1448        call_netdevice_notifiers(NETDEV_UP, dev);
1449
1450        return ret;
1451}
1452EXPORT_SYMBOL(dev_open);
1453
1454static void __dev_close_many(struct list_head *head)
1455{
1456        struct net_device *dev;
1457
1458        ASSERT_RTNL();
1459        might_sleep();
1460
1461        list_for_each_entry(dev, head, close_list) {
1462                /* Temporarily disable netpoll until the interface is down */
1463                netpoll_poll_disable(dev);
1464
1465                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1466
1467                clear_bit(__LINK_STATE_START, &dev->state);
1468
1469                /* Synchronize to scheduled poll. We cannot touch poll list, it
1470                 * can be even on different cpu. So just clear netif_running().
1471                 *
1472                 * dev->stop() will invoke napi_disable() on all of it's
1473                 * napi_struct instances on this device.
1474                 */
1475                smp_mb__after_atomic(); /* Commit netif_running(). */
1476        }
1477
1478        dev_deactivate_many(head);
1479
1480        list_for_each_entry(dev, head, close_list) {
1481                const struct net_device_ops *ops = dev->netdev_ops;
1482
1483                /*
1484                 *      Call the device specific close. This cannot fail.
1485                 *      Only if device is UP
1486                 *
1487                 *      We allow it to be called even after a DETACH hot-plug
1488                 *      event.
1489                 */
1490                if (ops->ndo_stop)
1491                        ops->ndo_stop(dev);
1492
1493                dev->flags &= ~IFF_UP;
1494                netpoll_poll_enable(dev);
1495        }
1496}
1497
1498static void __dev_close(struct net_device *dev)
1499{
1500        LIST_HEAD(single);
1501
1502        list_add(&dev->close_list, &single);
1503        __dev_close_many(&single);
1504        list_del(&single);
1505}
1506
1507void dev_close_many(struct list_head *head, bool unlink)
1508{
1509        struct net_device *dev, *tmp;
1510
1511        /* Remove the devices that don't need to be closed */
1512        list_for_each_entry_safe(dev, tmp, head, close_list)
1513                if (!(dev->flags & IFF_UP))
1514                        list_del_init(&dev->close_list);
1515
1516        __dev_close_many(head);
1517
1518        list_for_each_entry_safe(dev, tmp, head, close_list) {
1519                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1520                call_netdevice_notifiers(NETDEV_DOWN, dev);
1521                if (unlink)
1522                        list_del_init(&dev->close_list);
1523        }
1524}
1525EXPORT_SYMBOL(dev_close_many);
1526
1527/**
1528 *      dev_close - shutdown an interface.
1529 *      @dev: device to shutdown
1530 *
1531 *      This function moves an active device into down state. A
1532 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1533 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1534 *      chain.
1535 */
1536void dev_close(struct net_device *dev)
1537{
1538        if (dev->flags & IFF_UP) {
1539                LIST_HEAD(single);
1540
1541                list_add(&dev->close_list, &single);
1542                dev_close_many(&single, true);
1543                list_del(&single);
1544        }
1545}
1546EXPORT_SYMBOL(dev_close);
1547
1548
1549/**
1550 *      dev_disable_lro - disable Large Receive Offload on a device
1551 *      @dev: device
1552 *
1553 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1554 *      called under RTNL.  This is needed if received packets may be
1555 *      forwarded to another interface.
1556 */
1557void dev_disable_lro(struct net_device *dev)
1558{
1559        struct net_device *lower_dev;
1560        struct list_head *iter;
1561
1562        dev->wanted_features &= ~NETIF_F_LRO;
1563        netdev_update_features(dev);
1564
1565        if (unlikely(dev->features & NETIF_F_LRO))
1566                netdev_WARN(dev, "failed to disable LRO!\n");
1567
1568        netdev_for_each_lower_dev(dev, lower_dev, iter)
1569                dev_disable_lro(lower_dev);
1570}
1571EXPORT_SYMBOL(dev_disable_lro);
1572
1573/**
1574 *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1575 *      @dev: device
1576 *
1577 *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1578 *      called under RTNL.  This is needed if Generic XDP is installed on
1579 *      the device.
1580 */
1581static void dev_disable_gro_hw(struct net_device *dev)
1582{
1583        dev->wanted_features &= ~NETIF_F_GRO_HW;
1584        netdev_update_features(dev);
1585
1586        if (unlikely(dev->features & NETIF_F_GRO_HW))
1587                netdev_WARN(dev, "failed to disable GRO_HW!\n");
1588}
1589
1590const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1591{
1592#define N(val)                                          \
1593        case NETDEV_##val:                              \
1594                return "NETDEV_" __stringify(val);
1595        switch (cmd) {
1596        N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1597        N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1598        N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1599        N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1600        N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1601        N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1602        N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1603        N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1604        N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1605        N(PRE_CHANGEADDR)
1606        }
1607#undef N
1608        return "UNKNOWN_NETDEV_EVENT";
1609}
1610EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1611
1612static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1613                                   struct net_device *dev)
1614{
1615        struct netdev_notifier_info info = {
1616                .dev = dev,
1617        };
1618
1619        return nb->notifier_call(nb, val, &info);
1620}
1621
1622static int call_netdevice_register_notifiers(struct notifier_block *nb,
1623                                             struct net_device *dev)
1624{
1625        int err;
1626
1627        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1628        err = notifier_to_errno(err);
1629        if (err)
1630                return err;
1631
1632        if (!(dev->flags & IFF_UP))
1633                return 0;
1634
1635        call_netdevice_notifier(nb, NETDEV_UP, dev);
1636        return 0;
1637}
1638
1639static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1640                                                struct net_device *dev)
1641{
1642        if (dev->flags & IFF_UP) {
1643                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1644                                        dev);
1645                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1646        }
1647        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1648}
1649
1650static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1651                                                 struct net *net)
1652{
1653        struct net_device *dev;
1654        int err;
1655
1656        for_each_netdev(net, dev) {
1657                err = call_netdevice_register_notifiers(nb, dev);
1658                if (err)
1659                        goto rollback;
1660        }
1661        return 0;
1662
1663rollback:
1664        for_each_netdev_continue_reverse(net, dev)
1665                call_netdevice_unregister_notifiers(nb, dev);
1666        return err;
1667}
1668
1669static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1670                                                    struct net *net)
1671{
1672        struct net_device *dev;
1673
1674        for_each_netdev(net, dev)
1675                call_netdevice_unregister_notifiers(nb, dev);
1676}
1677
1678static int dev_boot_phase = 1;
1679
1680/**
1681 * register_netdevice_notifier - register a network notifier block
1682 * @nb: notifier
1683 *
1684 * Register a notifier to be called when network device events occur.
1685 * The notifier passed is linked into the kernel structures and must
1686 * not be reused until it has been unregistered. A negative errno code
1687 * is returned on a failure.
1688 *
1689 * When registered all registration and up events are replayed
1690 * to the new notifier to allow device to have a race free
1691 * view of the network device list.
1692 */
1693
1694int register_netdevice_notifier(struct notifier_block *nb)
1695{
1696        struct net *net;
1697        int err;
1698
1699        /* Close race with setup_net() and cleanup_net() */
1700        down_write(&pernet_ops_rwsem);
1701        rtnl_lock();
1702        err = raw_notifier_chain_register(&netdev_chain, nb);
1703        if (err)
1704                goto unlock;
1705        if (dev_boot_phase)
1706                goto unlock;
1707        for_each_net(net) {
1708                err = call_netdevice_register_net_notifiers(nb, net);
1709                if (err)
1710                        goto rollback;
1711        }
1712
1713unlock:
1714        rtnl_unlock();
1715        up_write(&pernet_ops_rwsem);
1716        return err;
1717
1718rollback:
1719        for_each_net_continue_reverse(net)
1720                call_netdevice_unregister_net_notifiers(nb, net);
1721
1722        raw_notifier_chain_unregister(&netdev_chain, nb);
1723        goto unlock;
1724}
1725EXPORT_SYMBOL(register_netdevice_notifier);
1726
1727/**
1728 * unregister_netdevice_notifier - unregister a network notifier block
1729 * @nb: notifier
1730 *
1731 * Unregister a notifier previously registered by
1732 * register_netdevice_notifier(). The notifier is unlinked into the
1733 * kernel structures and may then be reused. A negative errno code
1734 * is returned on a failure.
1735 *
1736 * After unregistering unregister and down device events are synthesized
1737 * for all devices on the device list to the removed notifier to remove
1738 * the need for special case cleanup code.
1739 */
1740
1741int unregister_netdevice_notifier(struct notifier_block *nb)
1742{
1743        struct net *net;
1744        int err;
1745
1746        /* Close race with setup_net() and cleanup_net() */
1747        down_write(&pernet_ops_rwsem);
1748        rtnl_lock();
1749        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1750        if (err)
1751                goto unlock;
1752
1753        for_each_net(net)
1754                call_netdevice_unregister_net_notifiers(nb, net);
1755
1756unlock:
1757        rtnl_unlock();
1758        up_write(&pernet_ops_rwsem);
1759        return err;
1760}
1761EXPORT_SYMBOL(unregister_netdevice_notifier);
1762
1763static int __register_netdevice_notifier_net(struct net *net,
1764                                             struct notifier_block *nb,
1765                                             bool ignore_call_fail)
1766{
1767        int err;
1768
1769        err = raw_notifier_chain_register(&net->netdev_chain, nb);
1770        if (err)
1771                return err;
1772        if (dev_boot_phase)
1773                return 0;
1774
1775        err = call_netdevice_register_net_notifiers(nb, net);
1776        if (err && !ignore_call_fail)
1777                goto chain_unregister;
1778
1779        return 0;
1780
1781chain_unregister:
1782        raw_notifier_chain_unregister(&net->netdev_chain, nb);
1783        return err;
1784}
1785
1786static int __unregister_netdevice_notifier_net(struct net *net,
1787                                               struct notifier_block *nb)
1788{
1789        int err;
1790
1791        err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1792        if (err)
1793                return err;
1794
1795        call_netdevice_unregister_net_notifiers(nb, net);
1796        return 0;
1797}
1798
1799/**
1800 * register_netdevice_notifier_net - register a per-netns network notifier block
1801 * @net: network namespace
1802 * @nb: notifier
1803 *
1804 * Register a notifier to be called when network device events occur.
1805 * The notifier passed is linked into the kernel structures and must
1806 * not be reused until it has been unregistered. A negative errno code
1807 * is returned on a failure.
1808 *
1809 * When registered all registration and up events are replayed
1810 * to the new notifier to allow device to have a race free
1811 * view of the network device list.
1812 */
1813
1814int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1815{
1816        int err;
1817
1818        rtnl_lock();
1819        err = __register_netdevice_notifier_net(net, nb, false);
1820        rtnl_unlock();
1821        return err;
1822}
1823EXPORT_SYMBOL(register_netdevice_notifier_net);
1824
1825/**
1826 * unregister_netdevice_notifier_net - unregister a per-netns
1827 *                                     network notifier block
1828 * @net: network namespace
1829 * @nb: notifier
1830 *
1831 * Unregister a notifier previously registered by
1832 * register_netdevice_notifier(). The notifier is unlinked into the
1833 * kernel structures and may then be reused. A negative errno code
1834 * is returned on a failure.
1835 *
1836 * After unregistering unregister and down device events are synthesized
1837 * for all devices on the device list to the removed notifier to remove
1838 * the need for special case cleanup code.
1839 */
1840
1841int unregister_netdevice_notifier_net(struct net *net,
1842                                      struct notifier_block *nb)
1843{
1844        int err;
1845
1846        rtnl_lock();
1847        err = __unregister_netdevice_notifier_net(net, nb);
1848        rtnl_unlock();
1849        return err;
1850}
1851EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1852
1853int register_netdevice_notifier_dev_net(struct net_device *dev,
1854                                        struct notifier_block *nb,
1855                                        struct netdev_net_notifier *nn)
1856{
1857        int err;
1858
1859        rtnl_lock();
1860        err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1861        if (!err) {
1862                nn->nb = nb;
1863                list_add(&nn->list, &dev->net_notifier_list);
1864        }
1865        rtnl_unlock();
1866        return err;
1867}
1868EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1869
1870int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1871                                          struct notifier_block *nb,
1872                                          struct netdev_net_notifier *nn)
1873{
1874        int err;
1875
1876        rtnl_lock();
1877        list_del(&nn->list);
1878        err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1879        rtnl_unlock();
1880        return err;
1881}
1882EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1883
1884static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1885                                             struct net *net)
1886{
1887        struct netdev_net_notifier *nn;
1888
1889        list_for_each_entry(nn, &dev->net_notifier_list, list) {
1890                __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1891                __register_netdevice_notifier_net(net, nn->nb, true);
1892        }
1893}
1894
1895/**
1896 *      call_netdevice_notifiers_info - call all network notifier blocks
1897 *      @val: value passed unmodified to notifier function
1898 *      @info: notifier information data
1899 *
1900 *      Call all network notifier blocks.  Parameters and return value
1901 *      are as for raw_notifier_call_chain().
1902 */
1903
1904static int call_netdevice_notifiers_info(unsigned long val,
1905                                         struct netdev_notifier_info *info)
1906{
1907        struct net *net = dev_net(info->dev);
1908        int ret;
1909
1910        ASSERT_RTNL();
1911
1912        /* Run per-netns notifier block chain first, then run the global one.
1913         * Hopefully, one day, the global one is going to be removed after
1914         * all notifier block registrators get converted to be per-netns.
1915         */
1916        ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1917        if (ret & NOTIFY_STOP_MASK)
1918                return ret;
1919        return raw_notifier_call_chain(&netdev_chain, val, info);
1920}
1921
1922static int call_netdevice_notifiers_extack(unsigned long val,
1923                                           struct net_device *dev,
1924                                           struct netlink_ext_ack *extack)
1925{
1926        struct netdev_notifier_info info = {
1927                .dev = dev,
1928                .extack = extack,
1929        };
1930
1931        return call_netdevice_notifiers_info(val, &info);
1932}
1933
1934/**
1935 *      call_netdevice_notifiers - call all network notifier blocks
1936 *      @val: value passed unmodified to notifier function
1937 *      @dev: net_device pointer passed unmodified to notifier function
1938 *
1939 *      Call all network notifier blocks.  Parameters and return value
1940 *      are as for raw_notifier_call_chain().
1941 */
1942
1943int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1944{
1945        return call_netdevice_notifiers_extack(val, dev, NULL);
1946}
1947EXPORT_SYMBOL(call_netdevice_notifiers);
1948
1949/**
1950 *      call_netdevice_notifiers_mtu - call all network notifier blocks
1951 *      @val: value passed unmodified to notifier function
1952 *      @dev: net_device pointer passed unmodified to notifier function
1953 *      @arg: additional u32 argument passed to the notifier function
1954 *
1955 *      Call all network notifier blocks.  Parameters and return value
1956 *      are as for raw_notifier_call_chain().
1957 */
1958static int call_netdevice_notifiers_mtu(unsigned long val,
1959                                        struct net_device *dev, u32 arg)
1960{
1961        struct netdev_notifier_info_ext info = {
1962                .info.dev = dev,
1963                .ext.mtu = arg,
1964        };
1965
1966        BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1967
1968        return call_netdevice_notifiers_info(val, &info.info);
1969}
1970
1971#ifdef CONFIG_NET_INGRESS
1972static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1973
1974void net_inc_ingress_queue(void)
1975{
1976        static_branch_inc(&ingress_needed_key);
1977}
1978EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1979
1980void net_dec_ingress_queue(void)
1981{
1982        static_branch_dec(&ingress_needed_key);
1983}
1984EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1985#endif
1986
1987#ifdef CONFIG_NET_EGRESS
1988static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1989
1990void net_inc_egress_queue(void)
1991{
1992        static_branch_inc(&egress_needed_key);
1993}
1994EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1995
1996void net_dec_egress_queue(void)
1997{
1998        static_branch_dec(&egress_needed_key);
1999}
2000EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2001#endif
2002
2003static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2004#ifdef CONFIG_JUMP_LABEL
2005static atomic_t netstamp_needed_deferred;
2006static atomic_t netstamp_wanted;
2007static void netstamp_clear(struct work_struct *work)
2008{
2009        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2010        int wanted;
2011
2012        wanted = atomic_add_return(deferred, &netstamp_wanted);
2013        if (wanted > 0)
2014                static_branch_enable(&netstamp_needed_key);
2015        else
2016                static_branch_disable(&netstamp_needed_key);
2017}
2018static DECLARE_WORK(netstamp_work, netstamp_clear);
2019#endif
2020
2021void net_enable_timestamp(void)
2022{
2023#ifdef CONFIG_JUMP_LABEL
2024        int wanted;
2025
2026        while (1) {
2027                wanted = atomic_read(&netstamp_wanted);
2028                if (wanted <= 0)
2029                        break;
2030                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2031                        return;
2032        }
2033        atomic_inc(&netstamp_needed_deferred);
2034        schedule_work(&netstamp_work);
2035#else
2036        static_branch_inc(&netstamp_needed_key);
2037#endif
2038}
2039EXPORT_SYMBOL(net_enable_timestamp);
2040
2041void net_disable_timestamp(void)
2042{
2043#ifdef CONFIG_JUMP_LABEL
2044        int wanted;
2045
2046        while (1) {
2047                wanted = atomic_read(&netstamp_wanted);
2048                if (wanted <= 1)
2049                        break;
2050                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2051                        return;
2052        }
2053        atomic_dec(&netstamp_needed_deferred);
2054        schedule_work(&netstamp_work);
2055#else
2056        static_branch_dec(&netstamp_needed_key);
2057#endif
2058}
2059EXPORT_SYMBOL(net_disable_timestamp);
2060
2061static inline void net_timestamp_set(struct sk_buff *skb)
2062{
2063        skb->tstamp = 0;
2064        if (static_branch_unlikely(&netstamp_needed_key))
2065                __net_timestamp(skb);
2066}
2067
2068#define net_timestamp_check(COND, SKB)                          \
2069        if (static_branch_unlikely(&netstamp_needed_key)) {     \
2070                if ((COND) && !(SKB)->tstamp)                   \
2071                        __net_timestamp(SKB);                   \
2072        }                                                       \
2073
2074bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2075{
2076        return __is_skb_forwardable(dev, skb, true);
2077}
2078EXPORT_SYMBOL_GPL(is_skb_forwardable);
2079
2080static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2081                              bool check_mtu)
2082{
2083        int ret = ____dev_forward_skb(dev, skb, check_mtu);
2084
2085        if (likely(!ret)) {
2086                skb->protocol = eth_type_trans(skb, dev);
2087                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2088        }
2089
2090        return ret;
2091}
2092
2093int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2094{
2095        return __dev_forward_skb2(dev, skb, true);
2096}
2097EXPORT_SYMBOL_GPL(__dev_forward_skb);
2098
2099/**
2100 * dev_forward_skb - loopback an skb to another netif
2101 *
2102 * @dev: destination network device
2103 * @skb: buffer to forward
2104 *
2105 * return values:
2106 *      NET_RX_SUCCESS  (no congestion)
2107 *      NET_RX_DROP     (packet was dropped, but freed)
2108 *
2109 * dev_forward_skb can be used for injecting an skb from the
2110 * start_xmit function of one device into the receive queue
2111 * of another device.
2112 *
2113 * The receiving device may be in another namespace, so
2114 * we have to clear all information in the skb that could
2115 * impact namespace isolation.
2116 */
2117int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2118{
2119        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2120}
2121EXPORT_SYMBOL_GPL(dev_forward_skb);
2122
2123int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2124{
2125        return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2126}
2127
2128static inline int deliver_skb(struct sk_buff *skb,
2129                              struct packet_type *pt_prev,
2130                              struct net_device *orig_dev)
2131{
2132        if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2133                return -ENOMEM;
2134        refcount_inc(&skb->users);
2135        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2136}
2137
2138static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2139                                          struct packet_type **pt,
2140                                          struct net_device *orig_dev,
2141                                          __be16 type,
2142                                          struct list_head *ptype_list)
2143{
2144        struct packet_type *ptype, *pt_prev = *pt;
2145
2146        list_for_each_entry_rcu(ptype, ptype_list, list) {
2147                if (ptype->type != type)
2148                        continue;
2149                if (pt_prev)
2150                        deliver_skb(skb, pt_prev, orig_dev);
2151                pt_prev = ptype;
2152        }
2153        *pt = pt_prev;
2154}
2155
2156static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2157{
2158        if (!ptype->af_packet_priv || !skb->sk)
2159                return false;
2160
2161        if (ptype->id_match)
2162                return ptype->id_match(ptype, skb->sk);
2163        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2164                return true;
2165
2166        return false;
2167}
2168
2169/**
2170 * dev_nit_active - return true if any network interface taps are in use
2171 *
2172 * @dev: network device to check for the presence of taps
2173 */
2174bool dev_nit_active(struct net_device *dev)
2175{
2176        return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2177}
2178EXPORT_SYMBOL_GPL(dev_nit_active);
2179
2180/*
2181 *      Support routine. Sends outgoing frames to any network
2182 *      taps currently in use.
2183 */
2184
2185void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2186{
2187        struct packet_type *ptype;
2188        struct sk_buff *skb2 = NULL;
2189        struct packet_type *pt_prev = NULL;
2190        struct list_head *ptype_list = &ptype_all;
2191
2192        rcu_read_lock();
2193again:
2194        list_for_each_entry_rcu(ptype, ptype_list, list) {
2195                if (ptype->ignore_outgoing)
2196                        continue;
2197
2198                /* Never send packets back to the socket
2199                 * they originated from - MvS (miquels@drinkel.ow.org)
2200                 */
2201                if (skb_loop_sk(ptype, skb))
2202                        continue;
2203
2204                if (pt_prev) {
2205                        deliver_skb(skb2, pt_prev, skb->dev);
2206                        pt_prev = ptype;
2207                        continue;
2208                }
2209
2210                /* need to clone skb, done only once */
2211                skb2 = skb_clone(skb, GFP_ATOMIC);
2212                if (!skb2)
2213                        goto out_unlock;
2214
2215                net_timestamp_set(skb2);
2216
2217                /* skb->nh should be correctly
2218                 * set by sender, so that the second statement is
2219                 * just protection against buggy protocols.
2220                 */
2221                skb_reset_mac_header(skb2);
2222
2223                if (skb_network_header(skb2) < skb2->data ||
2224                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2225                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2226                                             ntohs(skb2->protocol),
2227                                             dev->name);
2228                        skb_reset_network_header(skb2);
2229                }
2230
2231                skb2->transport_header = skb2->network_header;
2232                skb2->pkt_type = PACKET_OUTGOING;
2233                pt_prev = ptype;
2234        }
2235
2236        if (ptype_list == &ptype_all) {
2237                ptype_list = &dev->ptype_all;
2238                goto again;
2239        }
2240out_unlock:
2241        if (pt_prev) {
2242                if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2243                        pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2244                else
2245                        kfree_skb(skb2);
2246        }
2247        rcu_read_unlock();
2248}
2249EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2250
2251/**
2252 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2253 * @dev: Network device
2254 * @txq: number of queues available
2255 *
2256 * If real_num_tx_queues is changed the tc mappings may no longer be
2257 * valid. To resolve this verify the tc mapping remains valid and if
2258 * not NULL the mapping. With no priorities mapping to this
2259 * offset/count pair it will no longer be used. In the worst case TC0
2260 * is invalid nothing can be done so disable priority mappings. If is
2261 * expected that drivers will fix this mapping if they can before
2262 * calling netif_set_real_num_tx_queues.
2263 */
2264static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2265{
2266        int i;
2267        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2268
2269        /* If TC0 is invalidated disable TC mapping */
2270        if (tc->offset + tc->count > txq) {
2271                netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2272                dev->num_tc = 0;
2273                return;
2274        }
2275
2276        /* Invalidated prio to tc mappings set to TC0 */
2277        for (i = 1; i < TC_BITMASK + 1; i++) {
2278                int q = netdev_get_prio_tc_map(dev, i);
2279
2280                tc = &dev->tc_to_txq[q];
2281                if (tc->offset + tc->count > txq) {
2282                        netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2283                                    i, q);
2284                        netdev_set_prio_tc_map(dev, i, 0);
2285                }
2286        }
2287}
2288
2289int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2290{
2291        if (dev->num_tc) {
2292                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2293                int i;
2294
2295                /* walk through the TCs and see if it falls into any of them */
2296                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2297                        if ((txq - tc->offset) < tc->count)
2298                                return i;
2299                }
2300
2301                /* didn't find it, just return -1 to indicate no match */
2302                return -1;
2303        }
2304
2305        return 0;
2306}
2307EXPORT_SYMBOL(netdev_txq_to_tc);
2308
2309#ifdef CONFIG_XPS
2310static struct static_key xps_needed __read_mostly;
2311static struct static_key xps_rxqs_needed __read_mostly;
2312static DEFINE_MUTEX(xps_map_mutex);
2313#define xmap_dereference(P)             \
2314        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2315
2316static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2317                             struct xps_dev_maps *old_maps, int tci, u16 index)
2318{
2319        struct xps_map *map = NULL;
2320        int pos;
2321
2322        if (dev_maps)
2323                map = xmap_dereference(dev_maps->attr_map[tci]);
2324        if (!map)
2325                return false;
2326
2327        for (pos = map->len; pos--;) {
2328                if (map->queues[pos] != index)
2329                        continue;
2330
2331                if (map->len > 1) {
2332                        map->queues[pos] = map->queues[--map->len];
2333                        break;
2334                }
2335
2336                if (old_maps)
2337                        RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2338                RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2339                kfree_rcu(map, rcu);
2340                return false;
2341        }
2342
2343        return true;
2344}
2345
2346static bool remove_xps_queue_cpu(struct net_device *dev,
2347                                 struct xps_dev_maps *dev_maps,
2348                                 int cpu, u16 offset, u16 count)
2349{
2350        int num_tc = dev_maps->num_tc;
2351        bool active = false;
2352        int tci;
2353
2354        for (tci = cpu * num_tc; num_tc--; tci++) {
2355                int i, j;
2356
2357                for (i = count, j = offset; i--; j++) {
2358                        if (!remove_xps_queue(dev_maps, NULL, tci, j))
2359                                break;
2360                }
2361
2362                active |= i < 0;
2363        }
2364
2365        return active;
2366}
2367
2368static void reset_xps_maps(struct net_device *dev,
2369                           struct xps_dev_maps *dev_maps,
2370                           enum xps_map_type type)
2371{
2372        static_key_slow_dec_cpuslocked(&xps_needed);
2373        if (type == XPS_RXQS)
2374                static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2375
2376        RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2377
2378        kfree_rcu(dev_maps, rcu);
2379}
2380
2381static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2382                           u16 offset, u16 count)
2383{
2384        struct xps_dev_maps *dev_maps;
2385        bool active = false;
2386        int i, j;
2387
2388        dev_maps = xmap_dereference(dev->xps_maps[type]);
2389        if (!dev_maps)
2390                return;
2391
2392        for (j = 0; j < dev_maps->nr_ids; j++)
2393                active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2394        if (!active)
2395                reset_xps_maps(dev, dev_maps, type);
2396
2397        if (type == XPS_CPUS) {
2398                for (i = offset + (count - 1); count--; i--)
2399                        netdev_queue_numa_node_write(
2400                                netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2401        }
2402}
2403
2404static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2405                                   u16 count)
2406{
2407        if (!static_key_false(&xps_needed))
2408                return;
2409
2410        cpus_read_lock();
2411        mutex_lock(&xps_map_mutex);
2412
2413        if (static_key_false(&xps_rxqs_needed))
2414                clean_xps_maps(dev, XPS_RXQS, offset, count);
2415
2416        clean_xps_maps(dev, XPS_CPUS, offset, count);
2417
2418        mutex_unlock(&xps_map_mutex);
2419        cpus_read_unlock();
2420}
2421
2422static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2423{
2424        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2425}
2426
2427static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2428                                      u16 index, bool is_rxqs_map)
2429{
2430        struct xps_map *new_map;
2431        int alloc_len = XPS_MIN_MAP_ALLOC;
2432        int i, pos;
2433
2434        for (pos = 0; map && pos < map->len; pos++) {
2435                if (map->queues[pos] != index)
2436                        continue;
2437                return map;
2438        }
2439
2440        /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2441        if (map) {
2442                if (pos < map->alloc_len)
2443                        return map;
2444
2445                alloc_len = map->alloc_len * 2;
2446        }
2447
2448        /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2449         *  map
2450         */
2451        if (is_rxqs_map)
2452                new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2453        else
2454                new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2455                                       cpu_to_node(attr_index));
2456        if (!new_map)
2457                return NULL;
2458
2459        for (i = 0; i < pos; i++)
2460                new_map->queues[i] = map->queues[i];
2461        new_map->alloc_len = alloc_len;
2462        new_map->len = pos;
2463
2464        return new_map;
2465}
2466
2467/* Copy xps maps at a given index */
2468static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2469                              struct xps_dev_maps *new_dev_maps, int index,
2470                              int tc, bool skip_tc)
2471{
2472        int i, tci = index * dev_maps->num_tc;
2473        struct xps_map *map;
2474
2475        /* copy maps belonging to foreign traffic classes */
2476        for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2477                if (i == tc && skip_tc)
2478                        continue;
2479
2480                /* fill in the new device map from the old device map */
2481                map = xmap_dereference(dev_maps->attr_map[tci]);
2482                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2483        }
2484}
2485
2486/* Must be called under cpus_read_lock */
2487int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2488                          u16 index, enum xps_map_type type)
2489{
2490        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2491        const unsigned long *online_mask = NULL;
2492        bool active = false, copy = false;
2493        int i, j, tci, numa_node_id = -2;
2494        int maps_sz, num_tc = 1, tc = 0;
2495        struct xps_map *map, *new_map;
2496        unsigned int nr_ids;
2497
2498        if (dev->num_tc) {
2499                /* Do not allow XPS on subordinate device directly */
2500                num_tc = dev->num_tc;
2501                if (num_tc < 0)
2502                        return -EINVAL;
2503
2504                /* If queue belongs to subordinate dev use its map */
2505                dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2506
2507                tc = netdev_txq_to_tc(dev, index);
2508                if (tc < 0)
2509                        return -EINVAL;
2510        }
2511
2512        mutex_lock(&xps_map_mutex);
2513
2514        dev_maps = xmap_dereference(dev->xps_maps[type]);
2515        if (type == XPS_RXQS) {
2516                maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2517                nr_ids = dev->num_rx_queues;
2518        } else {
2519                maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2520                if (num_possible_cpus() > 1)
2521                        online_mask = cpumask_bits(cpu_online_mask);
2522                nr_ids = nr_cpu_ids;
2523        }
2524
2525        if (maps_sz < L1_CACHE_BYTES)
2526                maps_sz = L1_CACHE_BYTES;
2527
2528        /* The old dev_maps could be larger or smaller than the one we're
2529         * setting up now, as dev->num_tc or nr_ids could have been updated in
2530         * between. We could try to be smart, but let's be safe instead and only
2531         * copy foreign traffic classes if the two map sizes match.
2532         */
2533        if (dev_maps &&
2534            dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2535                copy = true;
2536
2537        /* allocate memory for queue storage */
2538        for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2539             j < nr_ids;) {
2540                if (!new_dev_maps) {
2541                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2542                        if (!new_dev_maps) {
2543                                mutex_unlock(&xps_map_mutex);
2544                                return -ENOMEM;
2545                        }
2546
2547                        new_dev_maps->nr_ids = nr_ids;
2548                        new_dev_maps->num_tc = num_tc;
2549                }
2550
2551                tci = j * num_tc + tc;
2552                map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2553
2554                map = expand_xps_map(map, j, index, type == XPS_RXQS);
2555                if (!map)
2556                        goto error;
2557
2558                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2559        }
2560
2561        if (!new_dev_maps)
2562                goto out_no_new_maps;
2563
2564        if (!dev_maps) {
2565                /* Increment static keys at most once per type */
2566                static_key_slow_inc_cpuslocked(&xps_needed);
2567                if (type == XPS_RXQS)
2568                        static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2569        }
2570
2571        for (j = 0; j < nr_ids; j++) {
2572                bool skip_tc = false;
2573
2574                tci = j * num_tc + tc;
2575                if (netif_attr_test_mask(j, mask, nr_ids) &&
2576                    netif_attr_test_online(j, online_mask, nr_ids)) {
2577                        /* add tx-queue to CPU/rx-queue maps */
2578                        int pos = 0;
2579
2580                        skip_tc = true;
2581
2582                        map = xmap_dereference(new_dev_maps->attr_map[tci]);
2583                        while ((pos < map->len) && (map->queues[pos] != index))
2584                                pos++;
2585
2586                        if (pos == map->len)
2587                                map->queues[map->len++] = index;
2588#ifdef CONFIG_NUMA
2589                        if (type == XPS_CPUS) {
2590                                if (numa_node_id == -2)
2591                                        numa_node_id = cpu_to_node(j);
2592                                else if (numa_node_id != cpu_to_node(j))
2593                                        numa_node_id = -1;
2594                        }
2595#endif
2596                }
2597
2598                if (copy)
2599                        xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2600                                          skip_tc);
2601        }
2602
2603        rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2604
2605        /* Cleanup old maps */
2606        if (!dev_maps)
2607                goto out_no_old_maps;
2608
2609        for (j = 0; j < dev_maps->nr_ids; j++) {
2610                for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2611                        map = xmap_dereference(dev_maps->attr_map[tci]);
2612                        if (!map)
2613                                continue;
2614
2615                        if (copy) {
2616                                new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2617                                if (map == new_map)
2618                                        continue;
2619                        }
2620
2621                        RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2622                        kfree_rcu(map, rcu);
2623                }
2624        }
2625
2626        old_dev_maps = dev_maps;
2627
2628out_no_old_maps:
2629        dev_maps = new_dev_maps;
2630        active = true;
2631
2632out_no_new_maps:
2633        if (type == XPS_CPUS)
2634                /* update Tx queue numa node */
2635                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2636                                             (numa_node_id >= 0) ?
2637                                             numa_node_id : NUMA_NO_NODE);
2638
2639        if (!dev_maps)
2640                goto out_no_maps;
2641
2642        /* removes tx-queue from unused CPUs/rx-queues */
2643        for (j = 0; j < dev_maps->nr_ids; j++) {
2644                tci = j * dev_maps->num_tc;
2645
2646                for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2647                        if (i == tc &&
2648                            netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2649                            netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2650                                continue;
2651
2652                        active |= remove_xps_queue(dev_maps,
2653                                                   copy ? old_dev_maps : NULL,
2654                                                   tci, index);
2655                }
2656        }
2657
2658        if (old_dev_maps)
2659                kfree_rcu(old_dev_maps, rcu);
2660
2661        /* free map if not active */
2662        if (!active)
2663                reset_xps_maps(dev, dev_maps, type);
2664
2665out_no_maps:
2666        mutex_unlock(&xps_map_mutex);
2667
2668        return 0;
2669error:
2670        /* remove any maps that we added */
2671        for (j = 0; j < nr_ids; j++) {
2672                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2673                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2674                        map = copy ?
2675                              xmap_dereference(dev_maps->attr_map[tci]) :
2676                              NULL;
2677                        if (new_map && new_map != map)
2678                                kfree(new_map);
2679                }
2680        }
2681
2682        mutex_unlock(&xps_map_mutex);
2683
2684        kfree(new_dev_maps);
2685        return -ENOMEM;
2686}
2687EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2688
2689int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2690                        u16 index)
2691{
2692        int ret;
2693
2694        cpus_read_lock();
2695        ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2696        cpus_read_unlock();
2697
2698        return ret;
2699}
2700EXPORT_SYMBOL(netif_set_xps_queue);
2701
2702#endif
2703static void netdev_unbind_all_sb_channels(struct net_device *dev)
2704{
2705        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2706
2707        /* Unbind any subordinate channels */
2708        while (txq-- != &dev->_tx[0]) {
2709                if (txq->sb_dev)
2710                        netdev_unbind_sb_channel(dev, txq->sb_dev);
2711        }
2712}
2713
2714void netdev_reset_tc(struct net_device *dev)
2715{
2716#ifdef CONFIG_XPS
2717        netif_reset_xps_queues_gt(dev, 0);
2718#endif
2719        netdev_unbind_all_sb_channels(dev);
2720
2721        /* Reset TC configuration of device */
2722        dev->num_tc = 0;
2723        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2724        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2725}
2726EXPORT_SYMBOL(netdev_reset_tc);
2727
2728int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2729{
2730        if (tc >= dev->num_tc)
2731                return -EINVAL;
2732
2733#ifdef CONFIG_XPS
2734        netif_reset_xps_queues(dev, offset, count);
2735#endif
2736        dev->tc_to_txq[tc].count = count;
2737        dev->tc_to_txq[tc].offset = offset;
2738        return 0;
2739}
2740EXPORT_SYMBOL(netdev_set_tc_queue);
2741
2742int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2743{
2744        if (num_tc > TC_MAX_QUEUE)
2745                return -EINVAL;
2746
2747#ifdef CONFIG_XPS
2748        netif_reset_xps_queues_gt(dev, 0);
2749#endif
2750        netdev_unbind_all_sb_channels(dev);
2751
2752        dev->num_tc = num_tc;
2753        return 0;
2754}
2755EXPORT_SYMBOL(netdev_set_num_tc);
2756
2757void netdev_unbind_sb_channel(struct net_device *dev,
2758                              struct net_device *sb_dev)
2759{
2760        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2761
2762#ifdef CONFIG_XPS
2763        netif_reset_xps_queues_gt(sb_dev, 0);
2764#endif
2765        memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2766        memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2767
2768        while (txq-- != &dev->_tx[0]) {
2769                if (txq->sb_dev == sb_dev)
2770                        txq->sb_dev = NULL;
2771        }
2772}
2773EXPORT_SYMBOL(netdev_unbind_sb_channel);
2774
2775int netdev_bind_sb_channel_queue(struct net_device *dev,
2776                                 struct net_device *sb_dev,
2777                                 u8 tc, u16 count, u16 offset)
2778{
2779        /* Make certain the sb_dev and dev are already configured */
2780        if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2781                return -EINVAL;
2782
2783        /* We cannot hand out queues we don't have */
2784        if ((offset + count) > dev->real_num_tx_queues)
2785                return -EINVAL;
2786
2787        /* Record the mapping */
2788        sb_dev->tc_to_txq[tc].count = count;
2789        sb_dev->tc_to_txq[tc].offset = offset;
2790
2791        /* Provide a way for Tx queue to find the tc_to_txq map or
2792         * XPS map for itself.
2793         */
2794        while (count--)
2795                netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2796
2797        return 0;
2798}
2799EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2800
2801int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2802{
2803        /* Do not use a multiqueue device to represent a subordinate channel */
2804        if (netif_is_multiqueue(dev))
2805                return -ENODEV;
2806
2807        /* We allow channels 1 - 32767 to be used for subordinate channels.
2808         * Channel 0 is meant to be "native" mode and used only to represent
2809         * the main root device. We allow writing 0 to reset the device back
2810         * to normal mode after being used as a subordinate channel.
2811         */
2812        if (channel > S16_MAX)
2813                return -EINVAL;
2814
2815        dev->num_tc = -channel;
2816
2817        return 0;
2818}
2819EXPORT_SYMBOL(netdev_set_sb_channel);
2820
2821/*
2822 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2823 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2824 */
2825int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2826{
2827        bool disabling;
2828        int rc;
2829
2830        disabling = txq < dev->real_num_tx_queues;
2831
2832        if (txq < 1 || txq > dev->num_tx_queues)
2833                return -EINVAL;
2834
2835        if (dev->reg_state == NETREG_REGISTERED ||
2836            dev->reg_state == NETREG_UNREGISTERING) {
2837                ASSERT_RTNL();
2838
2839                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2840                                                  txq);
2841                if (rc)
2842                        return rc;
2843
2844                if (dev->num_tc)
2845                        netif_setup_tc(dev, txq);
2846
2847                dev_qdisc_change_real_num_tx(dev, txq);
2848
2849                dev->real_num_tx_queues = txq;
2850
2851                if (disabling) {
2852                        synchronize_net();
2853                        qdisc_reset_all_tx_gt(dev, txq);
2854#ifdef CONFIG_XPS
2855                        netif_reset_xps_queues_gt(dev, txq);
2856#endif
2857                }
2858        } else {
2859                dev->real_num_tx_queues = txq;
2860        }
2861
2862        return 0;
2863}
2864EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2865
2866#ifdef CONFIG_SYSFS
2867/**
2868 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2869 *      @dev: Network device
2870 *      @rxq: Actual number of RX queues
2871 *
2872 *      This must be called either with the rtnl_lock held or before
2873 *      registration of the net device.  Returns 0 on success, or a
2874 *      negative error code.  If called before registration, it always
2875 *      succeeds.
2876 */
2877int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2878{
2879        int rc;
2880
2881        if (rxq < 1 || rxq > dev->num_rx_queues)
2882                return -EINVAL;
2883
2884        if (dev->reg_state == NETREG_REGISTERED) {
2885                ASSERT_RTNL();
2886
2887                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2888                                                  rxq);
2889                if (rc)
2890                        return rc;
2891        }
2892
2893        dev->real_num_rx_queues = rxq;
2894        return 0;
2895}
2896EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2897#endif
2898
2899/**
2900 *      netif_set_real_num_queues - set actual number of RX and TX queues used
2901 *      @dev: Network device
2902 *      @txq: Actual number of TX queues
2903 *      @rxq: Actual number of RX queues
2904 *
2905 *      Set the real number of both TX and RX queues.
2906 *      Does nothing if the number of queues is already correct.
2907 */
2908int netif_set_real_num_queues(struct net_device *dev,
2909                              unsigned int txq, unsigned int rxq)
2910{
2911        unsigned int old_rxq = dev->real_num_rx_queues;
2912        int err;
2913
2914        if (txq < 1 || txq > dev->num_tx_queues ||
2915            rxq < 1 || rxq > dev->num_rx_queues)
2916                return -EINVAL;
2917
2918        /* Start from increases, so the error path only does decreases -
2919         * decreases can't fail.
2920         */
2921        if (rxq > dev->real_num_rx_queues) {
2922                err = netif_set_real_num_rx_queues(dev, rxq);
2923                if (err)
2924                        return err;
2925        }
2926        if (txq > dev->real_num_tx_queues) {
2927                err = netif_set_real_num_tx_queues(dev, txq);
2928                if (err)
2929                        goto undo_rx;
2930        }
2931        if (rxq < dev->real_num_rx_queues)
2932                WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2933        if (txq < dev->real_num_tx_queues)
2934                WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2935
2936        return 0;
2937undo_rx:
2938        WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2939        return err;
2940}
2941EXPORT_SYMBOL(netif_set_real_num_queues);
2942
2943/**
2944 * netif_get_num_default_rss_queues - default number of RSS queues
2945 *
2946 * This routine should set an upper limit on the number of RSS queues
2947 * used by default by multiqueue devices.
2948 */
2949int netif_get_num_default_rss_queues(void)
2950{
2951        return is_kdump_kernel() ?
2952                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2953}
2954EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2955
2956static void __netif_reschedule(struct Qdisc *q)
2957{
2958        struct softnet_data *sd;
2959        unsigned long flags;
2960
2961        local_irq_save(flags);
2962        sd = this_cpu_ptr(&softnet_data);
2963        q->next_sched = NULL;
2964        *sd->output_queue_tailp = q;
2965        sd->output_queue_tailp = &q->next_sched;
2966        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2967        local_irq_restore(flags);
2968}
2969
2970void __netif_schedule(struct Qdisc *q)
2971{
2972        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2973                __netif_reschedule(q);
2974}
2975EXPORT_SYMBOL(__netif_schedule);
2976
2977struct dev_kfree_skb_cb {
2978        enum skb_free_reason reason;
2979};
2980
2981static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2982{
2983        return (struct dev_kfree_skb_cb *)skb->cb;
2984}
2985
2986void netif_schedule_queue(struct netdev_queue *txq)
2987{
2988        rcu_read_lock();
2989        if (!netif_xmit_stopped(txq)) {
2990                struct Qdisc *q = rcu_dereference(txq->qdisc);
2991
2992                __netif_schedule(q);
2993        }
2994        rcu_read_unlock();
2995}
2996EXPORT_SYMBOL(netif_schedule_queue);
2997
2998void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2999{
3000        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3001                struct Qdisc *q;
3002
3003                rcu_read_lock();
3004                q = rcu_dereference(dev_queue->qdisc);
3005                __netif_schedule(q);
3006                rcu_read_unlock();
3007        }
3008}
3009EXPORT_SYMBOL(netif_tx_wake_queue);
3010
3011void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3012{
3013        unsigned long flags;
3014
3015        if (unlikely(!skb))
3016                return;
3017
3018        if (likely(refcount_read(&skb->users) == 1)) {
3019                smp_rmb();
3020                refcount_set(&skb->users, 0);
3021        } else if (likely(!refcount_dec_and_test(&skb->users))) {
3022                return;
3023        }
3024        get_kfree_skb_cb(skb)->reason = reason;
3025        local_irq_save(flags);
3026        skb->next = __this_cpu_read(softnet_data.completion_queue);
3027        __this_cpu_write(softnet_data.completion_queue, skb);
3028        raise_softirq_irqoff(NET_TX_SOFTIRQ);
3029        local_irq_restore(flags);
3030}
3031EXPORT_SYMBOL(__dev_kfree_skb_irq);
3032
3033void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3034{
3035        if (in_hardirq() || irqs_disabled())
3036                __dev_kfree_skb_irq(skb, reason);
3037        else
3038                dev_kfree_skb(skb);
3039}
3040EXPORT_SYMBOL(__dev_kfree_skb_any);
3041
3042
3043/**
3044 * netif_device_detach - mark device as removed
3045 * @dev: network device
3046 *
3047 * Mark device as removed from system and therefore no longer available.
3048 */
3049void netif_device_detach(struct net_device *dev)
3050{
3051        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3052            netif_running(dev)) {
3053                netif_tx_stop_all_queues(dev);
3054        }
3055}
3056EXPORT_SYMBOL(netif_device_detach);
3057
3058/**
3059 * netif_device_attach - mark device as attached
3060 * @dev: network device
3061 *
3062 * Mark device as attached from system and restart if needed.
3063 */
3064void netif_device_attach(struct net_device *dev)
3065{
3066        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3067            netif_running(dev)) {
3068                netif_tx_wake_all_queues(dev);
3069                __netdev_watchdog_up(dev);
3070        }
3071}
3072EXPORT_SYMBOL(netif_device_attach);
3073
3074/*
3075 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3076 * to be used as a distribution range.
3077 */
3078static u16 skb_tx_hash(const struct net_device *dev,
3079                       const struct net_device *sb_dev,
3080                       struct sk_buff *skb)
3081{
3082        u32 hash;
3083        u16 qoffset = 0;
3084        u16 qcount = dev->real_num_tx_queues;
3085
3086        if (dev->num_tc) {
3087                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3088
3089                qoffset = sb_dev->tc_to_txq[tc].offset;
3090                qcount = sb_dev->tc_to_txq[tc].count;
3091                if (unlikely(!qcount)) {
3092                        net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3093                                             sb_dev->name, qoffset, tc);
3094                        qoffset = 0;
3095                        qcount = dev->real_num_tx_queues;
3096                }
3097        }
3098
3099        if (skb_rx_queue_recorded(skb)) {
3100                hash = skb_get_rx_queue(skb);
3101                if (hash >= qoffset)
3102                        hash -= qoffset;
3103                while (unlikely(hash >= qcount))
3104                        hash -= qcount;
3105                return hash + qoffset;
3106        }
3107
3108        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3109}
3110
3111static void skb_warn_bad_offload(const struct sk_buff *skb)
3112{
3113        static const netdev_features_t null_features;
3114        struct net_device *dev = skb->dev;
3115        const char *name = "";
3116
3117        if (!net_ratelimit())
3118                return;
3119
3120        if (dev) {
3121                if (dev->dev.parent)
3122                        name = dev_driver_string(dev->dev.parent);
3123                else
3124                        name = netdev_name(dev);
3125        }
3126        skb_dump(KERN_WARNING, skb, false);
3127        WARN(1, "%s: caps=(%pNF, %pNF)\n",
3128             name, dev ? &dev->features : &null_features,
3129             skb->sk ? &skb->sk->sk_route_caps : &null_features);
3130}
3131
3132/*
3133 * Invalidate hardware checksum when packet is to be mangled, and
3134 * complete checksum manually on outgoing path.
3135 */
3136int skb_checksum_help(struct sk_buff *skb)
3137{
3138        __wsum csum;
3139        int ret = 0, offset;
3140
3141        if (skb->ip_summed == CHECKSUM_COMPLETE)
3142                goto out_set_summed;
3143
3144        if (unlikely(skb_is_gso(skb))) {
3145                skb_warn_bad_offload(skb);
3146                return -EINVAL;
3147        }
3148
3149        /* Before computing a checksum, we should make sure no frag could
3150         * be modified by an external entity : checksum could be wrong.
3151         */
3152        if (skb_has_shared_frag(skb)) {
3153                ret = __skb_linearize(skb);
3154                if (ret)
3155                        goto out;
3156        }
3157
3158        offset = skb_checksum_start_offset(skb);
3159        BUG_ON(offset >= skb_headlen(skb));
3160        csum = skb_checksum(skb, offset, skb->len - offset, 0);
3161
3162        offset += skb->csum_offset;
3163        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3164
3165        ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3166        if (ret)
3167                goto out;
3168
3169        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3170out_set_summed:
3171        skb->ip_summed = CHECKSUM_NONE;
3172out:
3173        return ret;
3174}
3175EXPORT_SYMBOL(skb_checksum_help);
3176
3177int skb_crc32c_csum_help(struct sk_buff *skb)
3178{
3179        __le32 crc32c_csum;
3180        int ret = 0, offset, start;
3181
3182        if (skb->ip_summed != CHECKSUM_PARTIAL)
3183                goto out;
3184
3185        if (unlikely(skb_is_gso(skb)))
3186                goto out;
3187
3188        /* Before computing a checksum, we should make sure no frag could
3189         * be modified by an external entity : checksum could be wrong.
3190         */
3191        if (unlikely(skb_has_shared_frag(skb))) {
3192                ret = __skb_linearize(skb);
3193                if (ret)
3194                        goto out;
3195        }
3196        start = skb_checksum_start_offset(skb);
3197        offset = start + offsetof(struct sctphdr, checksum);
3198        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3199                ret = -EINVAL;
3200                goto out;
3201        }
3202
3203        ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3204        if (ret)
3205                goto out;
3206
3207        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3208                                                  skb->len - start, ~(__u32)0,
3209                                                  crc32c_csum_stub));
3210        *(__le32 *)(skb->data + offset) = crc32c_csum;
3211        skb->ip_summed = CHECKSUM_NONE;
3212        skb->csum_not_inet = 0;
3213out:
3214        return ret;
3215}
3216
3217__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3218{
3219        __be16 type = skb->protocol;
3220
3221        /* Tunnel gso handlers can set protocol to ethernet. */
3222        if (type == htons(ETH_P_TEB)) {
3223                struct ethhdr *eth;
3224
3225                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3226                        return 0;
3227
3228                eth = (struct ethhdr *)skb->data;
3229                type = eth->h_proto;
3230        }
3231
3232        return __vlan_get_protocol(skb, type, depth);
3233}
3234
3235/* openvswitch calls this on rx path, so we need a different check.
3236 */
3237static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3238{
3239        if (tx_path)
3240                return skb->ip_summed != CHECKSUM_PARTIAL &&
3241                       skb->ip_summed != CHECKSUM_UNNECESSARY;
3242
3243        return skb->ip_summed == CHECKSUM_NONE;
3244}
3245
3246/**
3247 *      __skb_gso_segment - Perform segmentation on skb.
3248 *      @skb: buffer to segment
3249 *      @features: features for the output path (see dev->features)
3250 *      @tx_path: whether it is called in TX path
3251 *
3252 *      This function segments the given skb and returns a list of segments.
3253 *
3254 *      It may return NULL if the skb requires no segmentation.  This is
3255 *      only possible when GSO is used for verifying header integrity.
3256 *
3257 *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3258 */
3259struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3260                                  netdev_features_t features, bool tx_path)
3261{
3262        struct sk_buff *segs;
3263
3264        if (unlikely(skb_needs_check(skb, tx_path))) {
3265                int err;
3266
3267                /* We're going to init ->check field in TCP or UDP header */
3268                err = skb_cow_head(skb, 0);
3269                if (err < 0)
3270                        return ERR_PTR(err);
3271        }
3272
3273        /* Only report GSO partial support if it will enable us to
3274         * support segmentation on this frame without needing additional
3275         * work.
3276         */
3277        if (features & NETIF_F_GSO_PARTIAL) {
3278                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3279                struct net_device *dev = skb->dev;
3280
3281                partial_features |= dev->features & dev->gso_partial_features;
3282                if (!skb_gso_ok(skb, features | partial_features))
3283                        features &= ~NETIF_F_GSO_PARTIAL;
3284        }
3285
3286        BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3287                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3288
3289        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3290        SKB_GSO_CB(skb)->encap_level = 0;
3291
3292        skb_reset_mac_header(skb);
3293        skb_reset_mac_len(skb);
3294
3295        segs = skb_mac_gso_segment(skb, features);
3296
3297        if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3298                skb_warn_bad_offload(skb);
3299
3300        return segs;
3301}
3302EXPORT_SYMBOL(__skb_gso_segment);
3303
3304/* Take action when hardware reception checksum errors are detected. */
3305#ifdef CONFIG_BUG
3306static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3307{
3308        netdev_err(dev, "hw csum failure\n");
3309        skb_dump(KERN_ERR, skb, true);
3310        dump_stack();
3311}
3312
3313void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3314{
3315        DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3316}
3317EXPORT_SYMBOL(netdev_rx_csum_fault);
3318#endif
3319
3320/* XXX: check that highmem exists at all on the given machine. */
3321static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3322{
3323#ifdef CONFIG_HIGHMEM
3324        int i;
3325
3326        if (!(dev->features & NETIF_F_HIGHDMA)) {
3327                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3328                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3329
3330                        if (PageHighMem(skb_frag_page(frag)))
3331                                return 1;
3332                }
3333        }
3334#endif
3335        return 0;
3336}
3337
3338/* If MPLS offload request, verify we are testing hardware MPLS features
3339 * instead of standard features for the netdev.
3340 */
3341#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3342static netdev_features_t net_mpls_features(struct sk_buff *skb,
3343                                           netdev_features_t features,
3344                                           __be16 type)
3345{
3346        if (eth_p_mpls(type))
3347                features &= skb->dev->mpls_features;
3348
3349        return features;
3350}
3351#else
3352static netdev_features_t net_mpls_features(struct sk_buff *skb,
3353                                           netdev_features_t features,
3354                                           __be16 type)
3355{
3356        return features;
3357}
3358#endif
3359
3360static netdev_features_t harmonize_features(struct sk_buff *skb,
3361        netdev_features_t features)
3362{
3363        __be16 type;
3364
3365        type = skb_network_protocol(skb, NULL);
3366        features = net_mpls_features(skb, features, type);
3367
3368        if (skb->ip_summed != CHECKSUM_NONE &&
3369            !can_checksum_protocol(features, type)) {
3370                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3371        }
3372        if (illegal_highdma(skb->dev, skb))
3373                features &= ~NETIF_F_SG;
3374
3375        return features;
3376}
3377
3378netdev_features_t passthru_features_check(struct sk_buff *skb,
3379                                          struct net_device *dev,
3380                                          netdev_features_t features)
3381{
3382        return features;
3383}
3384EXPORT_SYMBOL(passthru_features_check);
3385
3386static netdev_features_t dflt_features_check(struct sk_buff *skb,
3387                                             struct net_device *dev,
3388                                             netdev_features_t features)
3389{
3390        return vlan_features_check(skb, features);
3391}
3392
3393static netdev_features_t gso_features_check(const struct sk_buff *skb,
3394                                            struct net_device *dev,
3395                                            netdev_features_t features)
3396{
3397        u16 gso_segs = skb_shinfo(skb)->gso_segs;
3398
3399        if (gso_segs > READ_ONCE(dev->gso_max_segs))
3400                return features & ~NETIF_F_GSO_MASK;
3401
3402        if (!skb_shinfo(skb)->gso_type) {
3403                skb_warn_bad_offload(skb);
3404                return features & ~NETIF_F_GSO_MASK;
3405        }
3406
3407        /* Support for GSO partial features requires software
3408         * intervention before we can actually process the packets
3409         * so we need to strip support for any partial features now
3410         * and we can pull them back in after we have partially
3411         * segmented the frame.
3412         */
3413        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3414                features &= ~dev->gso_partial_features;
3415
3416        /* Make sure to clear the IPv4 ID mangling feature if the
3417         * IPv4 header has the potential to be fragmented.
3418         */
3419        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3420                struct iphdr *iph = skb->encapsulation ?
3421                                    inner_ip_hdr(skb) : ip_hdr(skb);
3422
3423                if (!(iph->frag_off & htons(IP_DF)))
3424                        features &= ~NETIF_F_TSO_MANGLEID;
3425        }
3426
3427        return features;
3428}
3429
3430netdev_features_t netif_skb_features(struct sk_buff *skb)
3431{
3432        struct net_device *dev = skb->dev;
3433        netdev_features_t features = dev->features;
3434
3435        if (skb_is_gso(skb))
3436                features = gso_features_check(skb, dev, features);
3437
3438        /* If encapsulation offload request, verify we are testing
3439         * hardware encapsulation features instead of standard
3440         * features for the netdev
3441         */
3442        if (skb->encapsulation)
3443                features &= dev->hw_enc_features;
3444
3445        if (skb_vlan_tagged(skb))
3446                features = netdev_intersect_features(features,
3447                                                     dev->vlan_features |
3448                                                     NETIF_F_HW_VLAN_CTAG_TX |
3449                                                     NETIF_F_HW_VLAN_STAG_TX);
3450
3451        if (dev->netdev_ops->ndo_features_check)
3452                features &= dev->netdev_ops->ndo_features_check(skb, dev,
3453                                                                features);
3454        else
3455                features &= dflt_features_check(skb, dev, features);
3456
3457        return harmonize_features(skb, features);
3458}
3459EXPORT_SYMBOL(netif_skb_features);
3460
3461static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3462                    struct netdev_queue *txq, bool more)
3463{
3464        unsigned int len;
3465        int rc;
3466
3467        if (dev_nit_active(dev))
3468                dev_queue_xmit_nit(skb, dev);
3469
3470        len = skb->len;
3471        PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3472        trace_net_dev_start_xmit(skb, dev);
3473        rc = netdev_start_xmit(skb, dev, txq, more);
3474        trace_net_dev_xmit(skb, rc, dev, len);
3475
3476        return rc;
3477}
3478
3479struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3480                                    struct netdev_queue *txq, int *ret)
3481{
3482        struct sk_buff *skb = first;
3483        int rc = NETDEV_TX_OK;
3484
3485        while (skb) {
3486                struct sk_buff *next = skb->next;
3487
3488                skb_mark_not_on_list(skb);
3489                rc = xmit_one(skb, dev, txq, next != NULL);
3490                if (unlikely(!dev_xmit_complete(rc))) {
3491                        skb->next = next;
3492                        goto out;
3493                }
3494
3495                skb = next;
3496                if (netif_tx_queue_stopped(txq) && skb) {
3497                        rc = NETDEV_TX_BUSY;
3498                        break;
3499                }
3500        }
3501
3502out:
3503        *ret = rc;
3504        return skb;
3505}
3506
3507static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3508                                          netdev_features_t features)
3509{
3510        if (skb_vlan_tag_present(skb) &&
3511            !vlan_hw_offload_capable(features, skb->vlan_proto))
3512                skb = __vlan_hwaccel_push_inside(skb);
3513        return skb;
3514}
3515
3516int skb_csum_hwoffload_help(struct sk_buff *skb,
3517                            const netdev_features_t features)
3518{
3519        if (unlikely(skb_csum_is_sctp(skb)))
3520                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3521                        skb_crc32c_csum_help(skb);
3522
3523        if (features & NETIF_F_HW_CSUM)
3524                return 0;
3525
3526        if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3527                switch (skb->csum_offset) {
3528                case offsetof(struct tcphdr, check):
3529                case offsetof(struct udphdr, check):
3530                        return 0;
3531                }
3532        }
3533
3534        return skb_checksum_help(skb);
3535}
3536EXPORT_SYMBOL(skb_csum_hwoffload_help);
3537
3538static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3539{
3540        netdev_features_t features;
3541
3542        features = netif_skb_features(skb);
3543        skb = validate_xmit_vlan(skb, features);
3544        if (unlikely(!skb))
3545                goto out_null;
3546
3547        skb = sk_validate_xmit_skb(skb, dev);
3548        if (unlikely(!skb))
3549                goto out_null;
3550
3551        if (netif_needs_gso(skb, features)) {
3552                struct sk_buff *segs;
3553
3554                segs = skb_gso_segment(skb, features);
3555                if (IS_ERR(segs)) {
3556                        goto out_kfree_skb;
3557                } else if (segs) {
3558                        consume_skb(skb);
3559                        skb = segs;
3560                }
3561        } else {
3562                if (skb_needs_linearize(skb, features) &&
3563                    __skb_linearize(skb))
3564                        goto out_kfree_skb;
3565
3566                /* If packet is not checksummed and device does not
3567                 * support checksumming for this protocol, complete
3568                 * checksumming here.
3569                 */
3570                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3571                        if (skb->encapsulation)
3572                                skb_set_inner_transport_header(skb,
3573                                                               skb_checksum_start_offset(skb));
3574                        else
3575                                skb_set_transport_header(skb,
3576                                                         skb_checksum_start_offset(skb));
3577                        if (skb_csum_hwoffload_help(skb, features))
3578                                goto out_kfree_skb;
3579                }
3580        }
3581
3582        skb = validate_xmit_xfrm(skb, features, again);
3583
3584        return skb;
3585
3586out_kfree_skb:
3587        kfree_skb(skb);
3588out_null:
3589        atomic_long_inc(&dev->tx_dropped);
3590        return NULL;
3591}
3592
3593struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3594{
3595        struct sk_buff *next, *head = NULL, *tail;
3596
3597        for (; skb != NULL; skb = next) {
3598                next = skb->next;
3599                skb_mark_not_on_list(skb);
3600
3601                /* in case skb wont be segmented, point to itself */
3602                skb->prev = skb;
3603
3604                skb = validate_xmit_skb(skb, dev, again);
3605                if (!skb)
3606                        continue;
3607
3608                if (!head)
3609                        head = skb;
3610                else
3611                        tail->next = skb;
3612                /* If skb was segmented, skb->prev points to
3613                 * the last segment. If not, it still contains skb.
3614                 */
3615                tail = skb->prev;
3616        }
3617        return head;
3618}
3619EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3620
3621static void qdisc_pkt_len_init(struct sk_buff *skb)
3622{
3623        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3624
3625        qdisc_skb_cb(skb)->pkt_len = skb->len;
3626
3627        /* To get more precise estimation of bytes sent on wire,
3628         * we add to pkt_len the headers size of all segments
3629         */
3630        if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3631                unsigned int hdr_len;
3632                u16 gso_segs = shinfo->gso_segs;
3633
3634                /* mac layer + network layer */
3635                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3636
3637                /* + transport layer */
3638                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3639                        const struct tcphdr *th;
3640                        struct tcphdr _tcphdr;
3641
3642                        th = skb_header_pointer(skb, skb_transport_offset(skb),
3643                                                sizeof(_tcphdr), &_tcphdr);
3644                        if (likely(th))
3645                                hdr_len += __tcp_hdrlen(th);
3646                } else {
3647                        struct udphdr _udphdr;
3648
3649                        if (skb_header_pointer(skb, skb_transport_offset(skb),
3650                                               sizeof(_udphdr), &_udphdr))
3651                                hdr_len += sizeof(struct udphdr);
3652                }
3653
3654                if (shinfo->gso_type & SKB_GSO_DODGY)
3655                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3656                                                shinfo->gso_size);
3657
3658                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3659        }
3660}
3661
3662static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3663                             struct sk_buff **to_free,
3664                             struct netdev_queue *txq)
3665{
3666        int rc;
3667
3668        rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3669        if (rc == NET_XMIT_SUCCESS)
3670                trace_qdisc_enqueue(q, txq, skb);
3671        return rc;
3672}
3673
3674static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3675                                 struct net_device *dev,
3676                                 struct netdev_queue *txq)
3677{
3678        spinlock_t *root_lock = qdisc_lock(q);
3679        struct sk_buff *to_free = NULL;
3680        bool contended;
3681        int rc;
3682
3683        qdisc_calculate_pkt_len(skb, q);
3684
3685        if (q->flags & TCQ_F_NOLOCK) {
3686                if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3687                    qdisc_run_begin(q)) {
3688                        /* Retest nolock_qdisc_is_empty() within the protection
3689                         * of q->seqlock to protect from racing with requeuing.
3690                         */
3691                        if (unlikely(!nolock_qdisc_is_empty(q))) {
3692                                rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3693                                __qdisc_run(q);
3694                                qdisc_run_end(q);
3695
3696                                goto no_lock_out;
3697                        }
3698
3699                        qdisc_bstats_cpu_update(q, skb);
3700                        if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3701                            !nolock_qdisc_is_empty(q))
3702                                __qdisc_run(q);
3703
3704                        qdisc_run_end(q);
3705                        return NET_XMIT_SUCCESS;
3706                }
3707
3708                rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3709                qdisc_run(q);
3710
3711no_lock_out:
3712                if (unlikely(to_free))
3713                        kfree_skb_list(to_free);
3714                return rc;
3715        }
3716
3717        /*
3718         * Heuristic to force contended enqueues to serialize on a
3719         * separate lock before trying to get qdisc main lock.
3720         * This permits qdisc->running owner to get the lock more
3721         * often and dequeue packets faster.
3722         * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3723         * and then other tasks will only enqueue packets. The packets will be
3724         * sent after the qdisc owner is scheduled again. To prevent this
3725         * scenario the task always serialize on the lock.
3726         */
3727        contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3728        if (unlikely(contended))
3729                spin_lock(&q->busylock);
3730
3731        spin_lock(root_lock);
3732        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3733                __qdisc_drop(skb, &to_free);
3734                rc = NET_XMIT_DROP;
3735        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3736                   qdisc_run_begin(q)) {
3737                /*
3738                 * This is a work-conserving queue; there are no old skbs
3739                 * waiting to be sent out; and the qdisc is not running -
3740                 * xmit the skb directly.
3741                 */
3742
3743                qdisc_bstats_update(q, skb);
3744
3745                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3746                        if (unlikely(contended)) {
3747                                spin_unlock(&q->busylock);
3748                                contended = false;
3749                        }
3750                        __qdisc_run(q);
3751                }
3752
3753                qdisc_run_end(q);
3754                rc = NET_XMIT_SUCCESS;
3755        } else {
3756                rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3757                if (qdisc_run_begin(q)) {
3758                        if (unlikely(contended)) {
3759                                spin_unlock(&q->busylock);
3760                                contended = false;
3761                        }
3762                        __qdisc_run(q);
3763                        qdisc_run_end(q);
3764                }
3765        }
3766        spin_unlock(root_lock);
3767        if (unlikely(to_free))
3768                kfree_skb_list(to_free);
3769        if (unlikely(contended))
3770                spin_unlock(&q->busylock);
3771        return rc;
3772}
3773
3774#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3775static void skb_update_prio(struct sk_buff *skb)
3776{
3777        const struct netprio_map *map;
3778        const struct sock *sk;
3779        unsigned int prioidx;
3780
3781        if (skb->priority)
3782                return;
3783        map = rcu_dereference_bh(skb->dev->priomap);
3784        if (!map)
3785                return;
3786        sk = skb_to_full_sk(skb);
3787        if (!sk)
3788                return;
3789
3790        prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3791
3792        if (prioidx < map->priomap_len)
3793                skb->priority = map->priomap[prioidx];
3794}
3795#else
3796#define skb_update_prio(skb)
3797#endif
3798
3799/**
3800 *      dev_loopback_xmit - loop back @skb
3801 *      @net: network namespace this loopback is happening in
3802 *      @sk:  sk needed to be a netfilter okfn
3803 *      @skb: buffer to transmit
3804 */
3805int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3806{
3807        skb_reset_mac_header(skb);
3808        __skb_pull(skb, skb_network_offset(skb));
3809        skb->pkt_type = PACKET_LOOPBACK;
3810        if (skb->ip_summed == CHECKSUM_NONE)
3811                skb->ip_summed = CHECKSUM_UNNECESSARY;
3812        WARN_ON(!skb_dst(skb));
3813        skb_dst_force(skb);
3814        netif_rx_ni(skb);
3815        return 0;
3816}
3817EXPORT_SYMBOL(dev_loopback_xmit);
3818
3819#ifdef CONFIG_NET_EGRESS
3820static struct sk_buff *
3821sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3822{
3823#ifdef CONFIG_NET_CLS_ACT
3824        struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3825        struct tcf_result cl_res;
3826
3827        if (!miniq)
3828                return skb;
3829
3830        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3831        tc_skb_cb(skb)->mru = 0;
3832        tc_skb_cb(skb)->post_ct = false;
3833        mini_qdisc_bstats_cpu_update(miniq, skb);
3834
3835        switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3836        case TC_ACT_OK:
3837        case TC_ACT_RECLASSIFY:
3838                skb->tc_index = TC_H_MIN(cl_res.classid);
3839                break;
3840        case TC_ACT_SHOT:
3841                mini_qdisc_qstats_cpu_drop(miniq);
3842                *ret = NET_XMIT_DROP;
3843                kfree_skb(skb);
3844                return NULL;
3845        case TC_ACT_STOLEN:
3846        case TC_ACT_QUEUED:
3847        case TC_ACT_TRAP:
3848                *ret = NET_XMIT_SUCCESS;
3849                consume_skb(skb);
3850                return NULL;
3851        case TC_ACT_REDIRECT:
3852                /* No need to push/pop skb's mac_header here on egress! */
3853                skb_do_redirect(skb);
3854                *ret = NET_XMIT_SUCCESS;
3855                return NULL;
3856        default:
3857                break;
3858        }
3859#endif /* CONFIG_NET_CLS_ACT */
3860
3861        return skb;
3862}
3863#endif /* CONFIG_NET_EGRESS */
3864
3865#ifdef CONFIG_XPS
3866static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3867                               struct xps_dev_maps *dev_maps, unsigned int tci)
3868{
3869        int tc = netdev_get_prio_tc_map(dev, skb->priority);
3870        struct xps_map *map;
3871        int queue_index = -1;
3872
3873        if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3874                return queue_index;
3875
3876        tci *= dev_maps->num_tc;
3877        tci += tc;
3878
3879        map = rcu_dereference(dev_maps->attr_map[tci]);
3880        if (map) {
3881                if (map->len == 1)
3882                        queue_index = map->queues[0];
3883                else
3884                        queue_index = map->queues[reciprocal_scale(
3885                                                skb_get_hash(skb), map->len)];
3886                if (unlikely(queue_index >= dev->real_num_tx_queues))
3887                        queue_index = -1;
3888        }
3889        return queue_index;
3890}
3891#endif
3892
3893static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3894                         struct sk_buff *skb)
3895{
3896#ifdef CONFIG_XPS
3897        struct xps_dev_maps *dev_maps;
3898        struct sock *sk = skb->sk;
3899        int queue_index = -1;
3900
3901        if (!static_key_false(&xps_needed))
3902                return -1;
3903
3904        rcu_read_lock();
3905        if (!static_key_false(&xps_rxqs_needed))
3906                goto get_cpus_map;
3907
3908        dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3909        if (dev_maps) {
3910                int tci = sk_rx_queue_get(sk);
3911
3912                if (tci >= 0)
3913                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3914                                                          tci);
3915        }
3916
3917get_cpus_map:
3918        if (queue_index < 0) {
3919                dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3920                if (dev_maps) {
3921                        unsigned int tci = skb->sender_cpu - 1;
3922
3923                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3924                                                          tci);
3925                }
3926        }
3927        rcu_read_unlock();
3928
3929        return queue_index;
3930#else
3931        return -1;
3932#endif
3933}
3934
3935u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3936                     struct net_device *sb_dev)
3937{
3938        return 0;
3939}
3940EXPORT_SYMBOL(dev_pick_tx_zero);
3941
3942u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3943                       struct net_device *sb_dev)
3944{
3945        return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3946}
3947EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3948
3949u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3950                     struct net_device *sb_dev)
3951{
3952        struct sock *sk = skb->sk;
3953        int queue_index = sk_tx_queue_get(sk);
3954
3955        sb_dev = sb_dev ? : dev;
3956
3957        if (queue_index < 0 || skb->ooo_okay ||
3958            queue_index >= dev->real_num_tx_queues) {
3959                int new_index = get_xps_queue(dev, sb_dev, skb);
3960
3961                if (new_index < 0)
3962                        new_index = skb_tx_hash(dev, sb_dev, skb);
3963
3964                if (queue_index != new_index && sk &&
3965                    sk_fullsock(sk) &&
3966                    rcu_access_pointer(sk->sk_dst_cache))
3967                        sk_tx_queue_set(sk, new_index);
3968
3969                queue_index = new_index;
3970        }
3971
3972        return queue_index;
3973}
3974EXPORT_SYMBOL(netdev_pick_tx);
3975
3976struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3977                                         struct sk_buff *skb,
3978                                         struct net_device *sb_dev)
3979{
3980        int queue_index = 0;
3981
3982#ifdef CONFIG_XPS
3983        u32 sender_cpu = skb->sender_cpu - 1;
3984
3985        if (sender_cpu >= (u32)NR_CPUS)
3986                skb->sender_cpu = raw_smp_processor_id() + 1;
3987#endif
3988
3989        if (dev->real_num_tx_queues != 1) {
3990                const struct net_device_ops *ops = dev->netdev_ops;
3991
3992                if (ops->ndo_select_queue)
3993                        queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3994                else
3995                        queue_index = netdev_pick_tx(dev, skb, sb_dev);
3996
3997                queue_index = netdev_cap_txqueue(dev, queue_index);
3998        }
3999
4000        skb_set_queue_mapping(skb, queue_index);
4001        return netdev_get_tx_queue(dev, queue_index);
4002}
4003
4004/**
4005 *      __dev_queue_xmit - transmit a buffer
4006 *      @skb: buffer to transmit
4007 *      @sb_dev: suboordinate device used for L2 forwarding offload
4008 *
4009 *      Queue a buffer for transmission to a network device. The caller must
4010 *      have set the device and priority and built the buffer before calling
4011 *      this function. The function can be called from an interrupt.
4012 *
4013 *      A negative errno code is returned on a failure. A success does not
4014 *      guarantee the frame will be transmitted as it may be dropped due
4015 *      to congestion or traffic shaping.
4016 *
4017 * -----------------------------------------------------------------------------------
4018 *      I notice this method can also return errors from the queue disciplines,
4019 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4020 *      be positive.
4021 *
4022 *      Regardless of the return value, the skb is consumed, so it is currently
4023 *      difficult to retry a send to this method.  (You can bump the ref count
4024 *      before sending to hold a reference for retry if you are careful.)
4025 *
4026 *      When calling this method, interrupts MUST be enabled.  This is because
4027 *      the BH enable code must have IRQs enabled so that it will not deadlock.
4028 *          --BLG
4029 */
4030static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4031{
4032        struct net_device *dev = skb->dev;
4033        struct netdev_queue *txq;
4034        struct Qdisc *q;
4035        int rc = -ENOMEM;
4036        bool again = false;
4037
4038        skb_reset_mac_header(skb);
4039
4040        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4041                __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4042
4043        /* Disable soft irqs for various locks below. Also
4044         * stops preemption for RCU.
4045         */
4046        rcu_read_lock_bh();
4047
4048        skb_update_prio(skb);
4049
4050        qdisc_pkt_len_init(skb);
4051#ifdef CONFIG_NET_CLS_ACT
4052        skb->tc_at_ingress = 0;
4053#endif
4054#ifdef CONFIG_NET_EGRESS
4055        if (static_branch_unlikely(&egress_needed_key)) {
4056                if (nf_hook_egress_active()) {
4057                        skb = nf_hook_egress(skb, &rc, dev);
4058                        if (!skb)
4059                                goto out;
4060                }
4061                nf_skip_egress(skb, true);
4062                skb = sch_handle_egress(skb, &rc, dev);
4063                if (!skb)
4064                        goto out;
4065                nf_skip_egress(skb, false);
4066        }
4067#endif
4068        /* If device/qdisc don't need skb->dst, release it right now while
4069         * its hot in this cpu cache.
4070         */
4071        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4072                skb_dst_drop(skb);
4073        else
4074                skb_dst_force(skb);
4075
4076        txq = netdev_core_pick_tx(dev, skb, sb_dev);
4077        q = rcu_dereference_bh(txq->qdisc);
4078
4079        trace_net_dev_queue(skb);
4080        if (q->enqueue) {
4081                rc = __dev_xmit_skb(skb, q, dev, txq);
4082                goto out;
4083        }
4084
4085        /* The device has no queue. Common case for software devices:
4086         * loopback, all the sorts of tunnels...
4087
4088         * Really, it is unlikely that netif_tx_lock protection is necessary
4089         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4090         * counters.)
4091         * However, it is possible, that they rely on protection
4092         * made by us here.
4093
4094         * Check this and shot the lock. It is not prone from deadlocks.
4095         *Either shot noqueue qdisc, it is even simpler 8)
4096         */
4097        if (dev->flags & IFF_UP) {
4098                int cpu = smp_processor_id(); /* ok because BHs are off */
4099
4100                /* Other cpus might concurrently change txq->xmit_lock_owner
4101                 * to -1 or to their cpu id, but not to our id.
4102                 */
4103                if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4104                        if (dev_xmit_recursion())
4105                                goto recursion_alert;
4106
4107                        skb = validate_xmit_skb(skb, dev, &again);
4108                        if (!skb)
4109                                goto out;
4110
4111                        PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4112                        HARD_TX_LOCK(dev, txq, cpu);
4113
4114                        if (!netif_xmit_stopped(txq)) {
4115                                dev_xmit_recursion_inc();
4116                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4117                                dev_xmit_recursion_dec();
4118                                if (dev_xmit_complete(rc)) {
4119                                        HARD_TX_UNLOCK(dev, txq);
4120                                        goto out;
4121                                }
4122                        }
4123                        HARD_TX_UNLOCK(dev, txq);
4124                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4125                                             dev->name);
4126                } else {
4127                        /* Recursion is detected! It is possible,
4128                         * unfortunately
4129                         */
4130recursion_alert:
4131                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4132                                             dev->name);
4133                }
4134        }
4135
4136        rc = -ENETDOWN;
4137        rcu_read_unlock_bh();
4138
4139        atomic_long_inc(&dev->tx_dropped);
4140        kfree_skb_list(skb);
4141        return rc;
4142out:
4143        rcu_read_unlock_bh();
4144        return rc;
4145}
4146
4147int dev_queue_xmit(struct sk_buff *skb)
4148{
4149        return __dev_queue_xmit(skb, NULL);
4150}
4151EXPORT_SYMBOL(dev_queue_xmit);
4152
4153int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4154{
4155        return __dev_queue_xmit(skb, sb_dev);
4156}
4157EXPORT_SYMBOL(dev_queue_xmit_accel);
4158
4159int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4160{
4161        struct net_device *dev = skb->dev;
4162        struct sk_buff *orig_skb = skb;
4163        struct netdev_queue *txq;
4164        int ret = NETDEV_TX_BUSY;
4165        bool again = false;
4166
4167        if (unlikely(!netif_running(dev) ||
4168                     !netif_carrier_ok(dev)))
4169                goto drop;
4170
4171        skb = validate_xmit_skb_list(skb, dev, &again);
4172        if (skb != orig_skb)
4173                goto drop;
4174
4175        skb_set_queue_mapping(skb, queue_id);
4176        txq = skb_get_tx_queue(dev, skb);
4177        PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4178
4179        local_bh_disable();
4180
4181        dev_xmit_recursion_inc();
4182        HARD_TX_LOCK(dev, txq, smp_processor_id());
4183        if (!netif_xmit_frozen_or_drv_stopped(txq))
4184                ret = netdev_start_xmit(skb, dev, txq, false);
4185        HARD_TX_UNLOCK(dev, txq);
4186        dev_xmit_recursion_dec();
4187
4188        local_bh_enable();
4189        return ret;
4190drop:
4191        atomic_long_inc(&dev->tx_dropped);
4192        kfree_skb_list(skb);
4193        return NET_XMIT_DROP;
4194}
4195EXPORT_SYMBOL(__dev_direct_xmit);
4196
4197/*************************************************************************
4198 *                      Receiver routines
4199 *************************************************************************/
4200
4201int netdev_max_backlog __read_mostly = 1000;
4202EXPORT_SYMBOL(netdev_max_backlog);
4203
4204int netdev_tstamp_prequeue __read_mostly = 1;
4205int netdev_budget __read_mostly = 300;
4206/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4207unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4208int weight_p __read_mostly = 64;           /* old backlog weight */
4209int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4210int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4211int dev_rx_weight __read_mostly = 64;
4212int dev_tx_weight __read_mostly = 64;
4213
4214/* Called with irq disabled */
4215static inline void ____napi_schedule(struct softnet_data *sd,
4216                                     struct napi_struct *napi)
4217{
4218        struct task_struct *thread;
4219
4220        if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4221                /* Paired with smp_mb__before_atomic() in
4222                 * napi_enable()/dev_set_threaded().
4223                 * Use READ_ONCE() to guarantee a complete
4224                 * read on napi->thread. Only call
4225                 * wake_up_process() when it's not NULL.
4226                 */
4227                thread = READ_ONCE(napi->thread);
4228                if (thread) {
4229                        /* Avoid doing set_bit() if the thread is in
4230                         * INTERRUPTIBLE state, cause napi_thread_wait()
4231                         * makes sure to proceed with napi polling
4232                         * if the thread is explicitly woken from here.
4233                         */
4234                        if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4235                                set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4236                        wake_up_process(thread);
4237                        return;
4238                }
4239        }
4240
4241        list_add_tail(&napi->poll_list, &sd->poll_list);
4242        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4243}
4244
4245#ifdef CONFIG_RPS
4246
4247/* One global table that all flow-based protocols share. */
4248struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4249EXPORT_SYMBOL(rps_sock_flow_table);
4250u32 rps_cpu_mask __read_mostly;
4251EXPORT_SYMBOL(rps_cpu_mask);
4252
4253struct static_key_false rps_needed __read_mostly;
4254EXPORT_SYMBOL(rps_needed);
4255struct static_key_false rfs_needed __read_mostly;
4256EXPORT_SYMBOL(rfs_needed);
4257
4258static struct rps_dev_flow *
4259set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4260            struct rps_dev_flow *rflow, u16 next_cpu)
4261{
4262        if (next_cpu < nr_cpu_ids) {
4263#ifdef CONFIG_RFS_ACCEL
4264                struct netdev_rx_queue *rxqueue;
4265                struct rps_dev_flow_table *flow_table;
4266                struct rps_dev_flow *old_rflow;
4267                u32 flow_id;
4268                u16 rxq_index;
4269                int rc;
4270
4271                /* Should we steer this flow to a different hardware queue? */
4272                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4273                    !(dev->features & NETIF_F_NTUPLE))
4274                        goto out;
4275                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4276                if (rxq_index == skb_get_rx_queue(skb))
4277                        goto out;
4278
4279                rxqueue = dev->_rx + rxq_index;
4280                flow_table = rcu_dereference(rxqueue->rps_flow_table);
4281                if (!flow_table)
4282                        goto out;
4283                flow_id = skb_get_hash(skb) & flow_table->mask;
4284                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4285                                                        rxq_index, flow_id);
4286                if (rc < 0)
4287                        goto out;
4288                old_rflow = rflow;
4289                rflow = &flow_table->flows[flow_id];
4290                rflow->filter = rc;
4291                if (old_rflow->filter == rflow->filter)
4292                        old_rflow->filter = RPS_NO_FILTER;
4293        out:
4294#endif
4295                rflow->last_qtail =
4296                        per_cpu(softnet_data, next_cpu).input_queue_head;
4297        }
4298
4299        rflow->cpu = next_cpu;
4300        return rflow;
4301}
4302
4303/*
4304 * get_rps_cpu is called from netif_receive_skb and returns the target
4305 * CPU from the RPS map of the receiving queue for a given skb.
4306 * rcu_read_lock must be held on entry.
4307 */
4308static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4309                       struct rps_dev_flow **rflowp)
4310{
4311        const struct rps_sock_flow_table *sock_flow_table;
4312        struct netdev_rx_queue *rxqueue = dev->_rx;
4313        struct rps_dev_flow_table *flow_table;
4314        struct rps_map *map;
4315        int cpu = -1;
4316        u32 tcpu;
4317        u32 hash;
4318
4319        if (skb_rx_queue_recorded(skb)) {
4320                u16 index = skb_get_rx_queue(skb);
4321
4322                if (unlikely(index >= dev->real_num_rx_queues)) {
4323                        WARN_ONCE(dev->real_num_rx_queues > 1,
4324                                  "%s received packet on queue %u, but number "
4325                                  "of RX queues is %u\n",
4326                                  dev->name, index, dev->real_num_rx_queues);
4327                        goto done;
4328                }
4329                rxqueue += index;
4330        }
4331
4332        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4333
4334        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4335        map = rcu_dereference(rxqueue->rps_map);
4336        if (!flow_table && !map)
4337                goto done;
4338
4339        skb_reset_network_header(skb);
4340        hash = skb_get_hash(skb);
4341        if (!hash)
4342                goto done;
4343
4344        sock_flow_table = rcu_dereference(rps_sock_flow_table);
4345        if (flow_table && sock_flow_table) {
4346                struct rps_dev_flow *rflow;
4347                u32 next_cpu;
4348                u32 ident;
4349
4350                /* First check into global flow table if there is a match */
4351                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4352                if ((ident ^ hash) & ~rps_cpu_mask)
4353                        goto try_rps;
4354
4355                next_cpu = ident & rps_cpu_mask;
4356
4357                /* OK, now we know there is a match,
4358                 * we can look at the local (per receive queue) flow table
4359                 */
4360                rflow = &flow_table->flows[hash & flow_table->mask];
4361                tcpu = rflow->cpu;
4362
4363                /*
4364                 * If the desired CPU (where last recvmsg was done) is
4365                 * different from current CPU (one in the rx-queue flow
4366                 * table entry), switch if one of the following holds:
4367                 *   - Current CPU is unset (>= nr_cpu_ids).
4368                 *   - Current CPU is offline.
4369                 *   - The current CPU's queue tail has advanced beyond the
4370                 *     last packet that was enqueued using this table entry.
4371                 *     This guarantees that all previous packets for the flow
4372                 *     have been dequeued, thus preserving in order delivery.
4373                 */
4374                if (unlikely(tcpu != next_cpu) &&
4375                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4376                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4377                      rflow->last_qtail)) >= 0)) {
4378                        tcpu = next_cpu;
4379                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4380                }
4381
4382                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4383                        *rflowp = rflow;
4384                        cpu = tcpu;
4385                        goto done;
4386                }
4387        }
4388
4389try_rps:
4390
4391        if (map) {
4392                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4393                if (cpu_online(tcpu)) {
4394                        cpu = tcpu;
4395                        goto done;
4396                }
4397        }
4398
4399done:
4400        return cpu;
4401}
4402
4403#ifdef CONFIG_RFS_ACCEL
4404
4405/**
4406 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4407 * @dev: Device on which the filter was set
4408 * @rxq_index: RX queue index
4409 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4410 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4411 *
4412 * Drivers that implement ndo_rx_flow_steer() should periodically call
4413 * this function for each installed filter and remove the filters for
4414 * which it returns %true.
4415 */
4416bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4417                         u32 flow_id, u16 filter_id)
4418{
4419        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4420        struct rps_dev_flow_table *flow_table;
4421        struct rps_dev_flow *rflow;
4422        bool expire = true;
4423        unsigned int cpu;
4424
4425        rcu_read_lock();
4426        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4427        if (flow_table && flow_id <= flow_table->mask) {
4428                rflow = &flow_table->flows[flow_id];
4429                cpu = READ_ONCE(rflow->cpu);
4430                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4431                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4432                           rflow->last_qtail) <
4433                     (int)(10 * flow_table->mask)))
4434                        expire = false;
4435        }
4436        rcu_read_unlock();
4437        return expire;
4438}
4439EXPORT_SYMBOL(rps_may_expire_flow);
4440
4441#endif /* CONFIG_RFS_ACCEL */
4442
4443/* Called from hardirq (IPI) context */
4444static void rps_trigger_softirq(void *data)
4445{
4446        struct softnet_data *sd = data;
4447
4448        ____napi_schedule(sd, &sd->backlog);
4449        sd->received_rps++;
4450}
4451
4452#endif /* CONFIG_RPS */
4453
4454/*
4455 * Check if this softnet_data structure is another cpu one
4456 * If yes, queue it to our IPI list and return 1
4457 * If no, return 0
4458 */
4459static int rps_ipi_queued(struct softnet_data *sd)
4460{
4461#ifdef CONFIG_RPS
4462        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4463
4464        if (sd != mysd) {
4465                sd->rps_ipi_next = mysd->rps_ipi_list;
4466                mysd->rps_ipi_list = sd;
4467
4468                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4469                return 1;
4470        }
4471#endif /* CONFIG_RPS */
4472        return 0;
4473}
4474
4475#ifdef CONFIG_NET_FLOW_LIMIT
4476int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4477#endif
4478
4479static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4480{
4481#ifdef CONFIG_NET_FLOW_LIMIT
4482        struct sd_flow_limit *fl;
4483        struct softnet_data *sd;
4484        unsigned int old_flow, new_flow;
4485
4486        if (qlen < (netdev_max_backlog >> 1))
4487                return false;
4488
4489        sd = this_cpu_ptr(&softnet_data);
4490
4491        rcu_read_lock();
4492        fl = rcu_dereference(sd->flow_limit);
4493        if (fl) {
4494                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4495                old_flow = fl->history[fl->history_head];
4496                fl->history[fl->history_head] = new_flow;
4497
4498                fl->history_head++;
4499                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4500
4501                if (likely(fl->buckets[old_flow]))
4502                        fl->buckets[old_flow]--;
4503
4504                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4505                        fl->count++;
4506                        rcu_read_unlock();
4507                        return true;
4508                }
4509        }
4510        rcu_read_unlock();
4511#endif
4512        return false;
4513}
4514
4515/*
4516 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4517 * queue (may be a remote CPU queue).
4518 */
4519static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4520                              unsigned int *qtail)
4521{
4522        struct softnet_data *sd;
4523        unsigned long flags;
4524        unsigned int qlen;
4525
4526        sd = &per_cpu(softnet_data, cpu);
4527
4528        local_irq_save(flags);
4529
4530        rps_lock(sd);
4531        if (!netif_running(skb->dev))
4532                goto drop;
4533        qlen = skb_queue_len(&sd->input_pkt_queue);
4534        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4535                if (qlen) {
4536enqueue:
4537                        __skb_queue_tail(&sd->input_pkt_queue, skb);
4538                        input_queue_tail_incr_save(sd, qtail);
4539                        rps_unlock(sd);
4540                        local_irq_restore(flags);
4541                        return NET_RX_SUCCESS;
4542                }
4543
4544                /* Schedule NAPI for backlog device
4545                 * We can use non atomic operation since we own the queue lock
4546                 */
4547                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4548                        if (!rps_ipi_queued(sd))
4549                                ____napi_schedule(sd, &sd->backlog);
4550                }
4551                goto enqueue;
4552        }
4553
4554drop:
4555        sd->dropped++;
4556        rps_unlock(sd);
4557
4558        local_irq_restore(flags);
4559
4560        atomic_long_inc(&skb->dev->rx_dropped);
4561        kfree_skb(skb);
4562        return NET_RX_DROP;
4563}
4564
4565static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4566{
4567        struct net_device *dev = skb->dev;
4568        struct netdev_rx_queue *rxqueue;
4569
4570        rxqueue = dev->_rx;
4571
4572        if (skb_rx_queue_recorded(skb)) {
4573                u16 index = skb_get_rx_queue(skb);
4574
4575                if (unlikely(index >= dev->real_num_rx_queues)) {
4576                        WARN_ONCE(dev->real_num_rx_queues > 1,
4577                                  "%s received packet on queue %u, but number "
4578                                  "of RX queues is %u\n",
4579                                  dev->name, index, dev->real_num_rx_queues);
4580
4581                        return rxqueue; /* Return first rxqueue */
4582                }
4583                rxqueue += index;
4584        }
4585        return rxqueue;
4586}
4587
4588u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4589                             struct bpf_prog *xdp_prog)
4590{
4591        void *orig_data, *orig_data_end, *hard_start;
4592        struct netdev_rx_queue *rxqueue;
4593        bool orig_bcast, orig_host;
4594        u32 mac_len, frame_sz;
4595        __be16 orig_eth_type;
4596        struct ethhdr *eth;
4597        u32 metalen, act;
4598        int off;
4599
4600        /* The XDP program wants to see the packet starting at the MAC
4601         * header.
4602         */
4603        mac_len = skb->data - skb_mac_header(skb);
4604        hard_start = skb->data - skb_headroom(skb);
4605
4606        /* SKB "head" area always have tailroom for skb_shared_info */
4607        frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4608        frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4609
4610        rxqueue = netif_get_rxqueue(skb);
4611        xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4612        xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4613                         skb_headlen(skb) + mac_len, true);
4614
4615        orig_data_end = xdp->data_end;
4616        orig_data = xdp->data;
4617        eth = (struct ethhdr *)xdp->data;
4618        orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4619        orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4620        orig_eth_type = eth->h_proto;
4621
4622        act = bpf_prog_run_xdp(xdp_prog, xdp);
4623
4624        /* check if bpf_xdp_adjust_head was used */
4625        off = xdp->data - orig_data;
4626        if (off) {
4627                if (off > 0)
4628                        __skb_pull(skb, off);
4629                else if (off < 0)
4630                        __skb_push(skb, -off);
4631
4632                skb->mac_header += off;
4633                skb_reset_network_header(skb);
4634        }
4635
4636        /* check if bpf_xdp_adjust_tail was used */
4637        off = xdp->data_end - orig_data_end;
4638        if (off != 0) {
4639                skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4640                skb->len += off; /* positive on grow, negative on shrink */
4641        }
4642
4643        /* check if XDP changed eth hdr such SKB needs update */
4644        eth = (struct ethhdr *)xdp->data;
4645        if ((orig_eth_type != eth->h_proto) ||
4646            (orig_host != ether_addr_equal_64bits(eth->h_dest,
4647                                                  skb->dev->dev_addr)) ||
4648            (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4649                __skb_push(skb, ETH_HLEN);
4650                skb->pkt_type = PACKET_HOST;
4651                skb->protocol = eth_type_trans(skb, skb->dev);
4652        }
4653
4654        /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4655         * before calling us again on redirect path. We do not call do_redirect
4656         * as we leave that up to the caller.
4657         *
4658         * Caller is responsible for managing lifetime of skb (i.e. calling
4659         * kfree_skb in response to actions it cannot handle/XDP_DROP).
4660         */
4661        switch (act) {
4662        case XDP_REDIRECT:
4663        case XDP_TX:
4664                __skb_push(skb, mac_len);
4665                break;
4666        case XDP_PASS:
4667                metalen = xdp->data - xdp->data_meta;
4668                if (metalen)
4669                        skb_metadata_set(skb, metalen);
4670                break;
4671        }
4672
4673        return act;
4674}
4675
4676static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4677                                     struct xdp_buff *xdp,
4678                                     struct bpf_prog *xdp_prog)
4679{
4680        u32 act = XDP_DROP;
4681
4682        /* Reinjected packets coming from act_mirred or similar should
4683         * not get XDP generic processing.
4684         */
4685        if (skb_is_redirected(skb))
4686                return XDP_PASS;
4687
4688        /* XDP packets must be linear and must have sufficient headroom
4689         * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4690         * native XDP provides, thus we need to do it here as well.
4691         */
4692        if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4693            skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4694                int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4695                int troom = skb->tail + skb->data_len - skb->end;
4696
4697                /* In case we have to go down the path and also linearize,
4698                 * then lets do the pskb_expand_head() work just once here.
4699                 */
4700                if (pskb_expand_head(skb,
4701                                     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4702                                     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4703                        goto do_drop;
4704                if (skb_linearize(skb))
4705                        goto do_drop;
4706        }
4707
4708        act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4709        switch (act) {
4710        case XDP_REDIRECT:
4711        case XDP_TX:
4712        case XDP_PASS:
4713                break;
4714        default:
4715                bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4716                fallthrough;
4717        case XDP_ABORTED:
4718                trace_xdp_exception(skb->dev, xdp_prog, act);
4719                fallthrough;
4720        case XDP_DROP:
4721        do_drop:
4722                kfree_skb(skb);
4723                break;
4724        }
4725
4726        return act;
4727}
4728
4729/* When doing generic XDP we have to bypass the qdisc layer and the
4730 * network taps in order to match in-driver-XDP behavior.
4731 */
4732void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4733{
4734        struct net_device *dev = skb->dev;
4735        struct netdev_queue *txq;
4736        bool free_skb = true;
4737        int cpu, rc;
4738
4739        txq = netdev_core_pick_tx(dev, skb, NULL);
4740        cpu = smp_processor_id();
4741        HARD_TX_LOCK(dev, txq, cpu);
4742        if (!netif_xmit_stopped(txq)) {
4743                rc = netdev_start_xmit(skb, dev, txq, 0);
4744                if (dev_xmit_complete(rc))
4745                        free_skb = false;
4746        }
4747        HARD_TX_UNLOCK(dev, txq);
4748        if (free_skb) {
4749                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4750                kfree_skb(skb);
4751        }
4752}
4753
4754static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4755
4756int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4757{
4758        if (xdp_prog) {
4759                struct xdp_buff xdp;
4760                u32 act;
4761                int err;
4762
4763                act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4764                if (act != XDP_PASS) {
4765                        switch (act) {
4766                        case XDP_REDIRECT:
4767                                err = xdp_do_generic_redirect(skb->dev, skb,
4768                                                              &xdp, xdp_prog);
4769                                if (err)
4770                                        goto out_redir;
4771                                break;
4772                        case XDP_TX:
4773                                generic_xdp_tx(skb, xdp_prog);
4774                                break;
4775                        }
4776                        return XDP_DROP;
4777                }
4778        }
4779        return XDP_PASS;
4780out_redir:
4781        kfree_skb(skb);
4782        return XDP_DROP;
4783}
4784EXPORT_SYMBOL_GPL(do_xdp_generic);
4785
4786static int netif_rx_internal(struct sk_buff *skb)
4787{
4788        int ret;
4789
4790        net_timestamp_check(netdev_tstamp_prequeue, skb);
4791
4792        trace_netif_rx(skb);
4793
4794#ifdef CONFIG_RPS
4795        if (static_branch_unlikely(&rps_needed)) {
4796                struct rps_dev_flow voidflow, *rflow = &voidflow;
4797                int cpu;
4798
4799                preempt_disable();
4800                rcu_read_lock();
4801
4802                cpu = get_rps_cpu(skb->dev, skb, &rflow);
4803                if (cpu < 0)
4804                        cpu = smp_processor_id();
4805
4806                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4807
4808                rcu_read_unlock();
4809                preempt_enable();
4810        } else
4811#endif
4812        {
4813                unsigned int qtail;
4814
4815                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4816                put_cpu();
4817        }
4818        return ret;
4819}
4820
4821/**
4822 *      netif_rx        -       post buffer to the network code
4823 *      @skb: buffer to post
4824 *
4825 *      This function receives a packet from a device driver and queues it for
4826 *      the upper (protocol) levels to process.  It always succeeds. The buffer
4827 *      may be dropped during processing for congestion control or by the
4828 *      protocol layers.
4829 *
4830 *      return values:
4831 *      NET_RX_SUCCESS  (no congestion)
4832 *      NET_RX_DROP     (packet was dropped)
4833 *
4834 */
4835
4836int netif_rx(struct sk_buff *skb)
4837{
4838        int ret;
4839
4840        trace_netif_rx_entry(skb);
4841
4842        ret = netif_rx_internal(skb);
4843        trace_netif_rx_exit(ret);
4844
4845        return ret;
4846}
4847EXPORT_SYMBOL(netif_rx);
4848
4849int netif_rx_ni(struct sk_buff *skb)
4850{
4851        int err;
4852
4853        trace_netif_rx_ni_entry(skb);
4854
4855        preempt_disable();
4856        err = netif_rx_internal(skb);
4857        if (local_softirq_pending())
4858                do_softirq();
4859        preempt_enable();
4860        trace_netif_rx_ni_exit(err);
4861
4862        return err;
4863}
4864EXPORT_SYMBOL(netif_rx_ni);
4865
4866int netif_rx_any_context(struct sk_buff *skb)
4867{
4868        /*
4869         * If invoked from contexts which do not invoke bottom half
4870         * processing either at return from interrupt or when softrqs are
4871         * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4872         * directly.
4873         */
4874        if (in_interrupt())
4875                return netif_rx(skb);
4876        else
4877                return netif_rx_ni(skb);
4878}
4879EXPORT_SYMBOL(netif_rx_any_context);
4880
4881static __latent_entropy void net_tx_action(struct softirq_action *h)
4882{
4883        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4884
4885        if (sd->completion_queue) {
4886                struct sk_buff *clist;
4887
4888                local_irq_disable();
4889                clist = sd->completion_queue;
4890                sd->completion_queue = NULL;
4891                local_irq_enable();
4892
4893                while (clist) {
4894                        struct sk_buff *skb = clist;
4895
4896                        clist = clist->next;
4897
4898                        WARN_ON(refcount_read(&skb->users));
4899                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4900                                trace_consume_skb(skb);
4901                        else
4902                                trace_kfree_skb(skb, net_tx_action,
4903                                                SKB_DROP_REASON_NOT_SPECIFIED);
4904
4905                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4906                                __kfree_skb(skb);
4907                        else
4908                                __kfree_skb_defer(skb);
4909                }
4910        }
4911
4912        if (sd->output_queue) {
4913                struct Qdisc *head;
4914
4915                local_irq_disable();
4916                head = sd->output_queue;
4917                sd->output_queue = NULL;
4918                sd->output_queue_tailp = &sd->output_queue;
4919                local_irq_enable();
4920
4921                rcu_read_lock();
4922
4923                while (head) {
4924                        struct Qdisc *q = head;
4925                        spinlock_t *root_lock = NULL;
4926
4927                        head = head->next_sched;
4928
4929                        /* We need to make sure head->next_sched is read
4930                         * before clearing __QDISC_STATE_SCHED
4931                         */
4932                        smp_mb__before_atomic();
4933
4934                        if (!(q->flags & TCQ_F_NOLOCK)) {
4935                                root_lock = qdisc_lock(q);
4936                                spin_lock(root_lock);
4937                        } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4938                                                     &q->state))) {
4939                                /* There is a synchronize_net() between
4940                                 * STATE_DEACTIVATED flag being set and
4941                                 * qdisc_reset()/some_qdisc_is_busy() in
4942                                 * dev_deactivate(), so we can safely bail out
4943                                 * early here to avoid data race between
4944                                 * qdisc_deactivate() and some_qdisc_is_busy()
4945                                 * for lockless qdisc.
4946                                 */
4947                                clear_bit(__QDISC_STATE_SCHED, &q->state);
4948                                continue;
4949                        }
4950
4951                        clear_bit(__QDISC_STATE_SCHED, &q->state);
4952                        qdisc_run(q);
4953                        if (root_lock)
4954                                spin_unlock(root_lock);
4955                }
4956
4957                rcu_read_unlock();
4958        }
4959
4960        xfrm_dev_backlog(sd);
4961}
4962
4963#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4964/* This hook is defined here for ATM LANE */
4965int (*br_fdb_test_addr_hook)(struct net_device *dev,
4966                             unsigned char *addr) __read_mostly;
4967EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4968#endif
4969
4970static inline struct sk_buff *
4971sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4972                   struct net_device *orig_dev, bool *another)
4973{
4974#ifdef CONFIG_NET_CLS_ACT
4975        struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4976        struct tcf_result cl_res;
4977
4978        /* If there's at least one ingress present somewhere (so
4979         * we get here via enabled static key), remaining devices
4980         * that are not configured with an ingress qdisc will bail
4981         * out here.
4982         */
4983        if (!miniq)
4984                return skb;
4985
4986        if (*pt_prev) {
4987                *ret = deliver_skb(skb, *pt_prev, orig_dev);
4988                *pt_prev = NULL;
4989        }
4990
4991        qdisc_skb_cb(skb)->pkt_len = skb->len;
4992        tc_skb_cb(skb)->mru = 0;
4993        tc_skb_cb(skb)->post_ct = false;
4994        skb->tc_at_ingress = 1;
4995        mini_qdisc_bstats_cpu_update(miniq, skb);
4996
4997        switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
4998        case TC_ACT_OK:
4999        case TC_ACT_RECLASSIFY:
5000                skb->tc_index = TC_H_MIN(cl_res.classid);
5001                break;
5002        case TC_ACT_SHOT:
5003                mini_qdisc_qstats_cpu_drop(miniq);
5004                kfree_skb(skb);
5005                return NULL;
5006        case TC_ACT_STOLEN:
5007        case TC_ACT_QUEUED:
5008        case TC_ACT_TRAP:
5009                consume_skb(skb);
5010                return NULL;
5011        case TC_ACT_REDIRECT:
5012                /* skb_mac_header check was done by cls/act_bpf, so
5013                 * we can safely push the L2 header back before
5014                 * redirecting to another netdev
5015                 */
5016                __skb_push(skb, skb->mac_len);
5017                if (skb_do_redirect(skb) == -EAGAIN) {
5018                        __skb_pull(skb, skb->mac_len);
5019                        *another = true;
5020                        break;
5021                }
5022                return NULL;
5023        case TC_ACT_CONSUMED:
5024                return NULL;
5025        default:
5026                break;
5027        }
5028#endif /* CONFIG_NET_CLS_ACT */
5029        return skb;
5030}
5031
5032/**
5033 *      netdev_is_rx_handler_busy - check if receive handler is registered
5034 *      @dev: device to check
5035 *
5036 *      Check if a receive handler is already registered for a given device.
5037 *      Return true if there one.
5038 *
5039 *      The caller must hold the rtnl_mutex.
5040 */
5041bool netdev_is_rx_handler_busy(struct net_device *dev)
5042{
5043        ASSERT_RTNL();
5044        return dev && rtnl_dereference(dev->rx_handler);
5045}
5046EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5047
5048/**
5049 *      netdev_rx_handler_register - register receive handler
5050 *      @dev: device to register a handler for
5051 *      @rx_handler: receive handler to register
5052 *      @rx_handler_data: data pointer that is used by rx handler
5053 *
5054 *      Register a receive handler for a device. This handler will then be
5055 *      called from __netif_receive_skb. A negative errno code is returned
5056 *      on a failure.
5057 *
5058 *      The caller must hold the rtnl_mutex.
5059 *
5060 *      For a general description of rx_handler, see enum rx_handler_result.
5061 */
5062int netdev_rx_handler_register(struct net_device *dev,
5063                               rx_handler_func_t *rx_handler,
5064                               void *rx_handler_data)
5065{
5066        if (netdev_is_rx_handler_busy(dev))
5067                return -EBUSY;
5068
5069        if (dev->priv_flags & IFF_NO_RX_HANDLER)
5070                return -EINVAL;
5071
5072        /* Note: rx_handler_data must be set before rx_handler */
5073        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5074        rcu_assign_pointer(dev->rx_handler, rx_handler);
5075
5076        return 0;
5077}
5078EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5079
5080/**
5081 *      netdev_rx_handler_unregister - unregister receive handler
5082 *      @dev: device to unregister a handler from
5083 *
5084 *      Unregister a receive handler from a device.
5085 *
5086 *      The caller must hold the rtnl_mutex.
5087 */
5088void netdev_rx_handler_unregister(struct net_device *dev)
5089{
5090
5091        ASSERT_RTNL();
5092        RCU_INIT_POINTER(dev->rx_handler, NULL);
5093        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5094         * section has a guarantee to see a non NULL rx_handler_data
5095         * as well.
5096         */
5097        synchronize_net();
5098        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5099}
5100EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5101
5102/*
5103 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5104 * the special handling of PFMEMALLOC skbs.
5105 */
5106static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5107{
5108        switch (skb->protocol) {
5109        case htons(ETH_P_ARP):
5110        case htons(ETH_P_IP):
5111        case htons(ETH_P_IPV6):
5112        case htons(ETH_P_8021Q):
5113        case htons(ETH_P_8021AD):
5114                return true;
5115        default:
5116                return false;
5117        }
5118}
5119
5120static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5121                             int *ret, struct net_device *orig_dev)
5122{
5123        if (nf_hook_ingress_active(skb)) {
5124                int ingress_retval;
5125
5126                if (*pt_prev) {
5127                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
5128                        *pt_prev = NULL;
5129                }
5130
5131                rcu_read_lock();
5132                ingress_retval = nf_hook_ingress(skb);
5133                rcu_read_unlock();
5134                return ingress_retval;
5135        }
5136        return 0;
5137}
5138
5139static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5140                                    struct packet_type **ppt_prev)
5141{
5142        struct packet_type *ptype, *pt_prev;
5143        rx_handler_func_t *rx_handler;
5144        struct sk_buff *skb = *pskb;
5145        struct net_device *orig_dev;
5146        bool deliver_exact = false;
5147        int ret = NET_RX_DROP;
5148        __be16 type;
5149
5150        net_timestamp_check(!netdev_tstamp_prequeue, skb);
5151
5152        trace_netif_receive_skb(skb);
5153
5154        orig_dev = skb->dev;
5155
5156        skb_reset_network_header(skb);
5157        if (!skb_transport_header_was_set(skb))
5158                skb_reset_transport_header(skb);
5159        skb_reset_mac_len(skb);
5160
5161        pt_prev = NULL;
5162
5163another_round:
5164        skb->skb_iif = skb->dev->ifindex;
5165
5166        __this_cpu_inc(softnet_data.processed);
5167
5168        if (static_branch_unlikely(&generic_xdp_needed_key)) {
5169                int ret2;
5170
5171                migrate_disable();
5172                ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5173                migrate_enable();
5174
5175                if (ret2 != XDP_PASS) {
5176                        ret = NET_RX_DROP;
5177                        goto out;
5178                }
5179        }
5180
5181        if (eth_type_vlan(skb->protocol)) {
5182                skb = skb_vlan_untag(skb);
5183                if (unlikely(!skb))
5184                        goto out;
5185        }
5186
5187        if (skb_skip_tc_classify(skb))
5188                goto skip_classify;
5189
5190        if (pfmemalloc)
5191                goto skip_taps;
5192
5193        list_for_each_entry_rcu(ptype, &ptype_all, list) {
5194                if (pt_prev)
5195                        ret = deliver_skb(skb, pt_prev, orig_dev);
5196                pt_prev = ptype;
5197        }
5198
5199        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5200                if (pt_prev)
5201                        ret = deliver_skb(skb, pt_prev, orig_dev);
5202                pt_prev = ptype;
5203        }
5204
5205skip_taps:
5206#ifdef CONFIG_NET_INGRESS
5207        if (static_branch_unlikely(&ingress_needed_key)) {
5208                bool another = false;
5209
5210                nf_skip_egress(skb, true);
5211                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5212                                         &another);
5213                if (another)
5214                        goto another_round;
5215                if (!skb)
5216                        goto out;
5217
5218                nf_skip_egress(skb, false);
5219                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5220                        goto out;
5221        }
5222#endif
5223        skb_reset_redirect(skb);
5224skip_classify:
5225        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5226                goto drop;
5227
5228        if (skb_vlan_tag_present(skb)) {
5229                if (pt_prev) {
5230                        ret = deliver_skb(skb, pt_prev, orig_dev);
5231                        pt_prev = NULL;
5232                }
5233                if (vlan_do_receive(&skb))
5234                        goto another_round;
5235                else if (unlikely(!skb))
5236                        goto out;
5237        }
5238
5239        rx_handler = rcu_dereference(skb->dev->rx_handler);
5240        if (rx_handler) {
5241                if (pt_prev) {
5242                        ret = deliver_skb(skb, pt_prev, orig_dev);
5243                        pt_prev = NULL;
5244                }
5245                switch (rx_handler(&skb)) {
5246                case RX_HANDLER_CONSUMED:
5247                        ret = NET_RX_SUCCESS;
5248                        goto out;
5249                case RX_HANDLER_ANOTHER:
5250                        goto another_round;
5251                case RX_HANDLER_EXACT:
5252                        deliver_exact = true;
5253                        break;
5254                case RX_HANDLER_PASS:
5255                        break;
5256                default:
5257                        BUG();
5258                }
5259        }
5260
5261        if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5262check_vlan_id:
5263                if (skb_vlan_tag_get_id(skb)) {
5264                        /* Vlan id is non 0 and vlan_do_receive() above couldn't
5265                         * find vlan device.
5266                         */
5267                        skb->pkt_type = PACKET_OTHERHOST;
5268                } else if (eth_type_vlan(skb->protocol)) {
5269                        /* Outer header is 802.1P with vlan 0, inner header is
5270                         * 802.1Q or 802.1AD and vlan_do_receive() above could
5271                         * not find vlan dev for vlan id 0.
5272                         */
5273                        __vlan_hwaccel_clear_tag(skb);
5274                        skb = skb_vlan_untag(skb);
5275                        if (unlikely(!skb))
5276                                goto out;
5277                        if (vlan_do_receive(&skb))
5278                                /* After stripping off 802.1P header with vlan 0
5279                                 * vlan dev is found for inner header.
5280                                 */
5281                                goto another_round;
5282                        else if (unlikely(!skb))
5283                                goto out;
5284                        else
5285                                /* We have stripped outer 802.1P vlan 0 header.
5286                                 * But could not find vlan dev.
5287                                 * check again for vlan id to set OTHERHOST.
5288                                 */
5289                                goto check_vlan_id;
5290                }
5291                /* Note: we might in the future use prio bits
5292                 * and set skb->priority like in vlan_do_receive()
5293                 * For the time being, just ignore Priority Code Point
5294                 */
5295                __vlan_hwaccel_clear_tag(skb);
5296        }
5297
5298        type = skb->protocol;
5299
5300        /* deliver only exact match when indicated */
5301        if (likely(!deliver_exact)) {
5302                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5303                                       &ptype_base[ntohs(type) &
5304                                                   PTYPE_HASH_MASK]);
5305        }
5306
5307        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5308                               &orig_dev->ptype_specific);
5309
5310        if (unlikely(skb->dev != orig_dev)) {
5311                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5312                                       &skb->dev->ptype_specific);
5313        }
5314
5315        if (pt_prev) {
5316                if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5317                        goto drop;
5318                *ppt_prev = pt_prev;
5319        } else {
5320drop:
5321                if (!deliver_exact)
5322                        atomic_long_inc(&skb->dev->rx_dropped);
5323                else
5324                        atomic_long_inc(&skb->dev->rx_nohandler);
5325                kfree_skb(skb);
5326                /* Jamal, now you will not able to escape explaining
5327                 * me how you were going to use this. :-)
5328                 */
5329                ret = NET_RX_DROP;
5330        }
5331
5332out:
5333        /* The invariant here is that if *ppt_prev is not NULL
5334         * then skb should also be non-NULL.
5335         *
5336         * Apparently *ppt_prev assignment above holds this invariant due to
5337         * skb dereferencing near it.
5338         */
5339        *pskb = skb;
5340        return ret;
5341}
5342
5343static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5344{
5345        struct net_device *orig_dev = skb->dev;
5346        struct packet_type *pt_prev = NULL;
5347        int ret;
5348
5349        ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5350        if (pt_prev)
5351                ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5352                                         skb->dev, pt_prev, orig_dev);
5353        return ret;
5354}
5355
5356/**
5357 *      netif_receive_skb_core - special purpose version of netif_receive_skb
5358 *      @skb: buffer to process
5359 *
5360 *      More direct receive version of netif_receive_skb().  It should
5361 *      only be used by callers that have a need to skip RPS and Generic XDP.
5362 *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5363 *
5364 *      This function may only be called from softirq context and interrupts
5365 *      should be enabled.
5366 *
5367 *      Return values (usually ignored):
5368 *      NET_RX_SUCCESS: no congestion
5369 *      NET_RX_DROP: packet was dropped
5370 */
5371int netif_receive_skb_core(struct sk_buff *skb)
5372{
5373        int ret;
5374
5375        rcu_read_lock();
5376        ret = __netif_receive_skb_one_core(skb, false);
5377        rcu_read_unlock();
5378
5379        return ret;
5380}
5381EXPORT_SYMBOL(netif_receive_skb_core);
5382
5383static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5384                                                  struct packet_type *pt_prev,
5385                                                  struct net_device *orig_dev)
5386{
5387        struct sk_buff *skb, *next;
5388
5389        if (!pt_prev)
5390                return;
5391        if (list_empty(head))
5392                return;
5393        if (pt_prev->list_func != NULL)
5394                INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5395                                   ip_list_rcv, head, pt_prev, orig_dev);
5396        else
5397                list_for_each_entry_safe(skb, next, head, list) {
5398                        skb_list_del_init(skb);
5399                        pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5400                }
5401}
5402
5403static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5404{
5405        /* Fast-path assumptions:
5406         * - There is no RX handler.
5407         * - Only one packet_type matches.
5408         * If either of these fails, we will end up doing some per-packet
5409         * processing in-line, then handling the 'last ptype' for the whole
5410         * sublist.  This can't cause out-of-order delivery to any single ptype,
5411         * because the 'last ptype' must be constant across the sublist, and all
5412         * other ptypes are handled per-packet.
5413         */
5414        /* Current (common) ptype of sublist */
5415        struct packet_type *pt_curr = NULL;
5416        /* Current (common) orig_dev of sublist */
5417        struct net_device *od_curr = NULL;
5418        struct list_head sublist;
5419        struct sk_buff *skb, *next;
5420
5421        INIT_LIST_HEAD(&sublist);
5422        list_for_each_entry_safe(skb, next, head, list) {
5423                struct net_device *orig_dev = skb->dev;
5424                struct packet_type *pt_prev = NULL;
5425
5426                skb_list_del_init(skb);
5427                __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5428                if (!pt_prev)
5429                        continue;
5430                if (pt_curr != pt_prev || od_curr != orig_dev) {
5431                        /* dispatch old sublist */
5432                        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5433                        /* start new sublist */
5434                        INIT_LIST_HEAD(&sublist);
5435                        pt_curr = pt_prev;
5436                        od_curr = orig_dev;
5437                }
5438                list_add_tail(&skb->list, &sublist);
5439        }
5440
5441        /* dispatch final sublist */
5442        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5443}
5444
5445static int __netif_receive_skb(struct sk_buff *skb)
5446{
5447        int ret;
5448
5449        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5450                unsigned int noreclaim_flag;
5451
5452                /*
5453                 * PFMEMALLOC skbs are special, they should
5454                 * - be delivered to SOCK_MEMALLOC sockets only
5455                 * - stay away from userspace
5456                 * - have bounded memory usage
5457                 *
5458                 * Use PF_MEMALLOC as this saves us from propagating the allocation
5459                 * context down to all allocation sites.
5460                 */
5461                noreclaim_flag = memalloc_noreclaim_save();
5462                ret = __netif_receive_skb_one_core(skb, true);
5463                memalloc_noreclaim_restore(noreclaim_flag);
5464        } else
5465                ret = __netif_receive_skb_one_core(skb, false);
5466
5467        return ret;
5468}
5469
5470static void __netif_receive_skb_list(struct list_head *head)
5471{
5472        unsigned long noreclaim_flag = 0;
5473        struct sk_buff *skb, *next;
5474        bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5475
5476        list_for_each_entry_safe(skb, next, head, list) {
5477                if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5478                        struct list_head sublist;
5479
5480                        /* Handle the previous sublist */
5481                        list_cut_before(&sublist, head, &skb->list);
5482                        if (!list_empty(&sublist))
5483                                __netif_receive_skb_list_core(&sublist, pfmemalloc);
5484                        pfmemalloc = !pfmemalloc;
5485                        /* See comments in __netif_receive_skb */
5486                        if (pfmemalloc)
5487                                noreclaim_flag = memalloc_noreclaim_save();
5488                        else
5489                                memalloc_noreclaim_restore(noreclaim_flag);
5490                }
5491        }
5492        /* Handle the remaining sublist */
5493        if (!list_empty(head))
5494                __netif_receive_skb_list_core(head, pfmemalloc);
5495        /* Restore pflags */
5496        if (pfmemalloc)
5497                memalloc_noreclaim_restore(noreclaim_flag);
5498}
5499
5500static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5501{
5502        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5503        struct bpf_prog *new = xdp->prog;
5504        int ret = 0;
5505
5506        switch (xdp->command) {
5507        case XDP_SETUP_PROG:
5508                rcu_assign_pointer(dev->xdp_prog, new);
5509                if (old)
5510                        bpf_prog_put(old);
5511
5512                if (old && !new) {
5513                        static_branch_dec(&generic_xdp_needed_key);
5514                } else if (new && !old) {
5515                        static_branch_inc(&generic_xdp_needed_key);
5516                        dev_disable_lro(dev);
5517                        dev_disable_gro_hw(dev);
5518                }
5519                break;
5520
5521        default:
5522                ret = -EINVAL;
5523                break;
5524        }
5525
5526        return ret;
5527}
5528
5529static int netif_receive_skb_internal(struct sk_buff *skb)
5530{
5531        int ret;
5532
5533        net_timestamp_check(netdev_tstamp_prequeue, skb);
5534
5535        if (skb_defer_rx_timestamp(skb))
5536                return NET_RX_SUCCESS;
5537
5538        rcu_read_lock();
5539#ifdef CONFIG_RPS
5540        if (static_branch_unlikely(&rps_needed)) {
5541                struct rps_dev_flow voidflow, *rflow = &voidflow;
5542                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5543
5544                if (cpu >= 0) {
5545                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5546                        rcu_read_unlock();
5547                        return ret;
5548                }
5549        }
5550#endif
5551        ret = __netif_receive_skb(skb);
5552        rcu_read_unlock();
5553        return ret;
5554}
5555
5556void netif_receive_skb_list_internal(struct list_head *head)
5557{
5558        struct sk_buff *skb, *next;
5559        struct list_head sublist;
5560
5561        INIT_LIST_HEAD(&sublist);
5562        list_for_each_entry_safe(skb, next, head, list) {
5563                net_timestamp_check(netdev_tstamp_prequeue, skb);
5564                skb_list_del_init(skb);
5565                if (!skb_defer_rx_timestamp(skb))
5566                        list_add_tail(&skb->list, &sublist);
5567        }
5568        list_splice_init(&sublist, head);
5569
5570        rcu_read_lock();
5571#ifdef CONFIG_RPS
5572        if (static_branch_unlikely(&rps_needed)) {
5573                list_for_each_entry_safe(skb, next, head, list) {
5574                        struct rps_dev_flow voidflow, *rflow = &voidflow;
5575                        int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5576
5577                        if (cpu >= 0) {
5578                                /* Will be handled, remove from list */
5579                                skb_list_del_init(skb);
5580                                enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5581                        }
5582                }
5583        }
5584#endif
5585        __netif_receive_skb_list(head);
5586        rcu_read_unlock();
5587}
5588
5589/**
5590 *      netif_receive_skb - process receive buffer from network
5591 *      @skb: buffer to process
5592 *
5593 *      netif_receive_skb() is the main receive data processing function.
5594 *      It always succeeds. The buffer may be dropped during processing
5595 *      for congestion control or by the protocol layers.
5596 *
5597 *      This function may only be called from softirq context and interrupts
5598 *      should be enabled.
5599 *
5600 *      Return values (usually ignored):
5601 *      NET_RX_SUCCESS: no congestion
5602 *      NET_RX_DROP: packet was dropped
5603 */
5604int netif_receive_skb(struct sk_buff *skb)
5605{
5606        int ret;
5607
5608        trace_netif_receive_skb_entry(skb);
5609
5610        ret = netif_receive_skb_internal(skb);
5611        trace_netif_receive_skb_exit(ret);
5612
5613        return ret;
5614}
5615EXPORT_SYMBOL(netif_receive_skb);
5616
5617/**
5618 *      netif_receive_skb_list - process many receive buffers from network
5619 *      @head: list of skbs to process.
5620 *
5621 *      Since return value of netif_receive_skb() is normally ignored, and
5622 *      wouldn't be meaningful for a list, this function returns void.
5623 *
5624 *      This function may only be called from softirq context and interrupts
5625 *      should be enabled.
5626 */
5627void netif_receive_skb_list(struct list_head *head)
5628{
5629        struct sk_buff *skb;
5630
5631        if (list_empty(head))
5632                return;
5633        if (trace_netif_receive_skb_list_entry_enabled()) {
5634                list_for_each_entry(skb, head, list)
5635                        trace_netif_receive_skb_list_entry(skb);
5636        }
5637        netif_receive_skb_list_internal(head);
5638        trace_netif_receive_skb_list_exit(0);
5639}
5640EXPORT_SYMBOL(netif_receive_skb_list);
5641
5642static DEFINE_PER_CPU(struct work_struct, flush_works);
5643
5644/* Network device is going away, flush any packets still pending */
5645static void flush_backlog(struct work_struct *work)
5646{
5647        struct sk_buff *skb, *tmp;
5648        struct softnet_data *sd;
5649
5650        local_bh_disable();
5651        sd = this_cpu_ptr(&softnet_data);
5652
5653        local_irq_disable();
5654        rps_lock(sd);
5655        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5656                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5657                        __skb_unlink(skb, &sd->input_pkt_queue);
5658                        dev_kfree_skb_irq(skb);
5659                        input_queue_head_incr(sd);
5660                }
5661        }
5662        rps_unlock(sd);
5663        local_irq_enable();
5664
5665        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5666                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5667                        __skb_unlink(skb, &sd->process_queue);
5668                        kfree_skb(skb);
5669                        input_queue_head_incr(sd);
5670                }
5671        }
5672        local_bh_enable();
5673}
5674
5675static bool flush_required(int cpu)
5676{
5677#if IS_ENABLED(CONFIG_RPS)
5678        struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5679        bool do_flush;
5680
5681        local_irq_disable();
5682        rps_lock(sd);
5683
5684        /* as insertion into process_queue happens with the rps lock held,
5685         * process_queue access may race only with dequeue
5686         */
5687        do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5688                   !skb_queue_empty_lockless(&sd->process_queue);
5689        rps_unlock(sd);
5690        local_irq_enable();
5691
5692        return do_flush;
5693#endif
5694        /* without RPS we can't safely check input_pkt_queue: during a
5695         * concurrent remote skb_queue_splice() we can detect as empty both
5696         * input_pkt_queue and process_queue even if the latter could end-up
5697         * containing a lot of packets.
5698         */
5699        return true;
5700}
5701
5702static void flush_all_backlogs(void)
5703{
5704        static cpumask_t flush_cpus;
5705        unsigned int cpu;
5706
5707        /* since we are under rtnl lock protection we can use static data
5708         * for the cpumask and avoid allocating on stack the possibly
5709         * large mask
5710         */
5711        ASSERT_RTNL();
5712
5713        cpus_read_lock();
5714
5715        cpumask_clear(&flush_cpus);
5716        for_each_online_cpu(cpu) {
5717                if (flush_required(cpu)) {
5718                        queue_work_on(cpu, system_highpri_wq,
5719                                      per_cpu_ptr(&flush_works, cpu));
5720                        cpumask_set_cpu(cpu, &flush_cpus);
5721                }
5722        }
5723
5724        /* we can have in flight packet[s] on the cpus we are not flushing,
5725         * synchronize_net() in unregister_netdevice_many() will take care of
5726         * them
5727         */
5728        for_each_cpu(cpu, &flush_cpus)
5729                flush_work(per_cpu_ptr(&flush_works, cpu));
5730
5731        cpus_read_unlock();
5732}
5733
5734static void net_rps_send_ipi(struct softnet_data *remsd)
5735{
5736#ifdef CONFIG_RPS
5737        while (remsd) {
5738                struct softnet_data *next = remsd->rps_ipi_next;
5739
5740                if (cpu_online(remsd->cpu))
5741                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
5742                remsd = next;
5743        }
5744#endif
5745}
5746
5747/*
5748 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5749 * Note: called with local irq disabled, but exits with local irq enabled.
5750 */
5751static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5752{
5753#ifdef CONFIG_RPS
5754        struct softnet_data *remsd = sd->rps_ipi_list;
5755
5756        if (remsd) {
5757                sd->rps_ipi_list = NULL;
5758
5759                local_irq_enable();
5760
5761                /* Send pending IPI's to kick RPS processing on remote cpus. */
5762                net_rps_send_ipi(remsd);
5763        } else
5764#endif
5765                local_irq_enable();
5766}
5767
5768static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5769{
5770#ifdef CONFIG_RPS
5771        return sd->rps_ipi_list != NULL;
5772#else
5773        return false;
5774#endif
5775}
5776
5777static int process_backlog(struct napi_struct *napi, int quota)
5778{
5779        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5780        bool again = true;
5781        int work = 0;
5782
5783        /* Check if we have pending ipi, its better to send them now,
5784         * not waiting net_rx_action() end.
5785         */
5786        if (sd_has_rps_ipi_waiting(sd)) {
5787                local_irq_disable();
5788                net_rps_action_and_irq_enable(sd);
5789        }
5790
5791        napi->weight = dev_rx_weight;
5792        while (again) {
5793                struct sk_buff *skb;
5794
5795                while ((skb = __skb_dequeue(&sd->process_queue))) {
5796                        rcu_read_lock();
5797                        __netif_receive_skb(skb);
5798                        rcu_read_unlock();
5799                        input_queue_head_incr(sd);
5800                        if (++work >= quota)
5801                                return work;
5802
5803                }
5804
5805                local_irq_disable();
5806                rps_lock(sd);
5807                if (skb_queue_empty(&sd->input_pkt_queue)) {
5808                        /*
5809                         * Inline a custom version of __napi_complete().
5810                         * only current cpu owns and manipulates this napi,
5811                         * and NAPI_STATE_SCHED is the only possible flag set
5812                         * on backlog.
5813                         * We can use a plain write instead of clear_bit(),
5814                         * and we dont need an smp_mb() memory barrier.
5815                         */
5816                        napi->state = 0;
5817                        again = false;
5818                } else {
5819                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
5820                                                   &sd->process_queue);
5821                }
5822                rps_unlock(sd);
5823                local_irq_enable();
5824        }
5825
5826        return work;
5827}
5828
5829/**
5830 * __napi_schedule - schedule for receive
5831 * @n: entry to schedule
5832 *
5833 * The entry's receive function will be scheduled to run.
5834 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5835 */
5836void __napi_schedule(struct napi_struct *n)
5837{
5838        unsigned long flags;
5839
5840        local_irq_save(flags);
5841        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5842        local_irq_restore(flags);
5843}
5844EXPORT_SYMBOL(__napi_schedule);
5845
5846/**
5847 *      napi_schedule_prep - check if napi can be scheduled
5848 *      @n: napi context
5849 *
5850 * Test if NAPI routine is already running, and if not mark
5851 * it as running.  This is used as a condition variable to
5852 * insure only one NAPI poll instance runs.  We also make
5853 * sure there is no pending NAPI disable.
5854 */
5855bool napi_schedule_prep(struct napi_struct *n)
5856{
5857        unsigned long val, new;
5858
5859        do {
5860                val = READ_ONCE(n->state);
5861                if (unlikely(val & NAPIF_STATE_DISABLE))
5862                        return false;
5863                new = val | NAPIF_STATE_SCHED;
5864
5865                /* Sets STATE_MISSED bit if STATE_SCHED was already set
5866                 * This was suggested by Alexander Duyck, as compiler
5867                 * emits better code than :
5868                 * if (val & NAPIF_STATE_SCHED)
5869                 *     new |= NAPIF_STATE_MISSED;
5870                 */
5871                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5872                                                   NAPIF_STATE_MISSED;
5873        } while (cmpxchg(&n->state, val, new) != val);
5874
5875        return !(val & NAPIF_STATE_SCHED);
5876}
5877EXPORT_SYMBOL(napi_schedule_prep);
5878
5879/**
5880 * __napi_schedule_irqoff - schedule for receive
5881 * @n: entry to schedule
5882 *
5883 * Variant of __napi_schedule() assuming hard irqs are masked.
5884 *
5885 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5886 * because the interrupt disabled assumption might not be true
5887 * due to force-threaded interrupts and spinlock substitution.
5888 */
5889void __napi_schedule_irqoff(struct napi_struct *n)
5890{
5891        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5892                ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5893        else
5894                __napi_schedule(n);
5895}
5896EXPORT_SYMBOL(__napi_schedule_irqoff);
5897
5898bool napi_complete_done(struct napi_struct *n, int work_done)
5899{
5900        unsigned long flags, val, new, timeout = 0;
5901        bool ret = true;
5902
5903        /*
5904         * 1) Don't let napi dequeue from the cpu poll list
5905         *    just in case its running on a different cpu.
5906         * 2) If we are busy polling, do nothing here, we have
5907         *    the guarantee we will be called later.
5908         */
5909        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5910                                 NAPIF_STATE_IN_BUSY_POLL)))
5911                return false;
5912
5913        if (work_done) {
5914                if (n->gro_bitmask)
5915                        timeout = READ_ONCE(n->dev->gro_flush_timeout);
5916                n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5917        }
5918        if (n->defer_hard_irqs_count > 0) {
5919                n->defer_hard_irqs_count--;
5920                timeout = READ_ONCE(n->dev->gro_flush_timeout);
5921                if (timeout)
5922                        ret = false;
5923        }
5924        if (n->gro_bitmask) {
5925                /* When the NAPI instance uses a timeout and keeps postponing
5926                 * it, we need to bound somehow the time packets are kept in
5927                 * the GRO layer
5928                 */
5929                napi_gro_flush(n, !!timeout);
5930        }
5931
5932        gro_normal_list(n);
5933
5934        if (unlikely(!list_empty(&n->poll_list))) {
5935                /* If n->poll_list is not empty, we need to mask irqs */
5936                local_irq_save(flags);
5937                list_del_init(&n->poll_list);
5938                local_irq_restore(flags);
5939        }
5940
5941        do {
5942                val = READ_ONCE(n->state);
5943
5944                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5945
5946                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5947                              NAPIF_STATE_SCHED_THREADED |
5948                              NAPIF_STATE_PREFER_BUSY_POLL);
5949
5950                /* If STATE_MISSED was set, leave STATE_SCHED set,
5951                 * because we will call napi->poll() one more time.
5952                 * This C code was suggested by Alexander Duyck to help gcc.
5953                 */
5954                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5955                                                    NAPIF_STATE_SCHED;
5956        } while (cmpxchg(&n->state, val, new) != val);
5957
5958        if (unlikely(val & NAPIF_STATE_MISSED)) {
5959                __napi_schedule(n);
5960                return false;
5961        }
5962
5963        if (timeout)
5964                hrtimer_start(&n->timer, ns_to_ktime(timeout),
5965                              HRTIMER_MODE_REL_PINNED);
5966        return ret;
5967}
5968EXPORT_SYMBOL(napi_complete_done);
5969
5970/* must be called under rcu_read_lock(), as we dont take a reference */
5971static struct napi_struct *napi_by_id(unsigned int napi_id)
5972{
5973        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5974        struct napi_struct *napi;
5975
5976        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5977                if (napi->napi_id == napi_id)
5978                        return napi;
5979
5980        return NULL;
5981}
5982
5983#if defined(CONFIG_NET_RX_BUSY_POLL)
5984
5985static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
5986{
5987        if (!skip_schedule) {
5988                gro_normal_list(napi);
5989                __napi_schedule(napi);
5990                return;
5991        }
5992
5993        if (napi->gro_bitmask) {
5994                /* flush too old packets
5995                 * If HZ < 1000, flush all packets.
5996                 */
5997                napi_gro_flush(napi, HZ >= 1000);
5998        }
5999
6000        gro_normal_list(napi);
6001        clear_bit(NAPI_STATE_SCHED, &napi->state);
6002}
6003
6004static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6005                           u16 budget)
6006{
6007        bool skip_schedule = false;
6008        unsigned long timeout;
6009        int rc;
6010
6011        /* Busy polling means there is a high chance device driver hard irq
6012         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6013         * set in napi_schedule_prep().
6014         * Since we are about to call napi->poll() once more, we can safely
6015         * clear NAPI_STATE_MISSED.
6016         *
6017         * Note: x86 could use a single "lock and ..." instruction
6018         * to perform these two clear_bit()
6019         */
6020        clear_bit(NAPI_STATE_MISSED, &napi->state);
6021        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6022
6023        local_bh_disable();
6024
6025        if (prefer_busy_poll) {
6026                napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6027                timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6028                if (napi->defer_hard_irqs_count && timeout) {
6029                        hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6030                        skip_schedule = true;
6031                }
6032        }
6033
6034        /* All we really want here is to re-enable device interrupts.
6035         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6036         */
6037        rc = napi->poll(napi, budget);
6038        /* We can't gro_normal_list() here, because napi->poll() might have
6039         * rearmed the napi (napi_complete_done()) in which case it could
6040         * already be running on another CPU.
6041         */
6042        trace_napi_poll(napi, rc, budget);
6043        netpoll_poll_unlock(have_poll_lock);
6044        if (rc == budget)
6045                __busy_poll_stop(napi, skip_schedule);
6046        local_bh_enable();
6047}
6048
6049void napi_busy_loop(unsigned int napi_id,
6050                    bool (*loop_end)(void *, unsigned long),
6051                    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6052{
6053        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6054        int (*napi_poll)(struct napi_struct *napi, int budget);
6055        void *have_poll_lock = NULL;
6056        struct napi_struct *napi;
6057
6058restart:
6059        napi_poll = NULL;
6060
6061        rcu_read_lock();
6062
6063        napi = napi_by_id(napi_id);
6064        if (!napi)
6065                goto out;
6066
6067        preempt_disable();
6068        for (;;) {
6069                int work = 0;
6070
6071                local_bh_disable();
6072                if (!napi_poll) {
6073                        unsigned long val = READ_ONCE(napi->state);
6074
6075                        /* If multiple threads are competing for this napi,
6076                         * we avoid dirtying napi->state as much as we can.
6077                         */
6078                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6079                                   NAPIF_STATE_IN_BUSY_POLL)) {
6080                                if (prefer_busy_poll)
6081                                        set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6082                                goto count;
6083                        }
6084                        if (cmpxchg(&napi->state, val,
6085                                    val | NAPIF_STATE_IN_BUSY_POLL |
6086                                          NAPIF_STATE_SCHED) != val) {
6087                                if (prefer_busy_poll)
6088                                        set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6089                                goto count;
6090                        }
6091                        have_poll_lock = netpoll_poll_lock(napi);
6092                        napi_poll = napi->poll;
6093                }
6094                work = napi_poll(napi, budget);
6095                trace_napi_poll(napi, work, budget);
6096                gro_normal_list(napi);
6097count:
6098                if (work > 0)
6099                        __NET_ADD_STATS(dev_net(napi->dev),
6100                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
6101                local_bh_enable();
6102
6103                if (!loop_end || loop_end(loop_end_arg, start_time))
6104                        break;
6105
6106                if (unlikely(need_resched())) {
6107                        if (napi_poll)
6108                                busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6109                        preempt_enable();
6110                        rcu_read_unlock();
6111                        cond_resched();
6112                        if (loop_end(loop_end_arg, start_time))
6113                                return;
6114                        goto restart;
6115                }
6116                cpu_relax();
6117        }
6118        if (napi_poll)
6119                busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6120        preempt_enable();
6121out:
6122        rcu_read_unlock();
6123}
6124EXPORT_SYMBOL(napi_busy_loop);
6125
6126#endif /* CONFIG_NET_RX_BUSY_POLL */
6127
6128static void napi_hash_add(struct napi_struct *napi)
6129{
6130        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6131                return;
6132
6133        spin_lock(&napi_hash_lock);
6134
6135        /* 0..NR_CPUS range is reserved for sender_cpu use */
6136        do {
6137                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6138                        napi_gen_id = MIN_NAPI_ID;
6139        } while (napi_by_id(napi_gen_id));
6140        napi->napi_id = napi_gen_id;
6141
6142        hlist_add_head_rcu(&napi->napi_hash_node,
6143                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6144
6145        spin_unlock(&napi_hash_lock);
6146}
6147
6148/* Warning : caller is responsible to make sure rcu grace period
6149 * is respected before freeing memory containing @napi
6150 */
6151static void napi_hash_del(struct napi_struct *napi)
6152{
6153        spin_lock(&napi_hash_lock);
6154
6155        hlist_del_init_rcu(&napi->napi_hash_node);
6156
6157        spin_unlock(&napi_hash_lock);
6158}
6159
6160static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6161{
6162        struct napi_struct *napi;
6163
6164        napi = container_of(timer, struct napi_struct, timer);
6165
6166        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6167         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6168         */
6169        if (!napi_disable_pending(napi) &&
6170            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6171                clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6172                __napi_schedule_irqoff(napi);
6173        }
6174
6175        return HRTIMER_NORESTART;
6176}
6177
6178static void init_gro_hash(struct napi_struct *napi)
6179{
6180        int i;
6181
6182        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6183                INIT_LIST_HEAD(&napi->gro_hash[i].list);
6184                napi->gro_hash[i].count = 0;
6185        }
6186        napi->gro_bitmask = 0;
6187}
6188
6189int dev_set_threaded(struct net_device *dev, bool threaded)
6190{
6191        struct napi_struct *napi;
6192        int err = 0;
6193
6194        if (dev->threaded == threaded)
6195                return 0;
6196
6197        if (threaded) {
6198                list_for_each_entry(napi, &dev->napi_list, dev_list) {
6199                        if (!napi->thread) {
6200                                err = napi_kthread_create(napi);
6201                                if (err) {
6202                                        threaded = false;
6203                                        break;
6204                                }
6205                        }
6206                }
6207        }
6208
6209        dev->threaded = threaded;
6210
6211        /* Make sure kthread is created before THREADED bit
6212         * is set.
6213         */
6214        smp_mb__before_atomic();
6215
6216        /* Setting/unsetting threaded mode on a napi might not immediately
6217         * take effect, if the current napi instance is actively being
6218         * polled. In this case, the switch between threaded mode and
6219         * softirq mode will happen in the next round of napi_schedule().
6220         * This should not cause hiccups/stalls to the live traffic.
6221         */
6222        list_for_each_entry(napi, &dev->napi_list, dev_list) {
6223                if (threaded)
6224                        set_bit(NAPI_STATE_THREADED, &napi->state);
6225                else
6226                        clear_bit(NAPI_STATE_THREADED, &napi->state);
6227        }
6228
6229        return err;
6230}
6231EXPORT_SYMBOL(dev_set_threaded);
6232
6233void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6234                    int (*poll)(struct napi_struct *, int), int weight)
6235{
6236        if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6237                return;
6238
6239        INIT_LIST_HEAD(&napi->poll_list);
6240        INIT_HLIST_NODE(&napi->napi_hash_node);
6241        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6242        napi->timer.function = napi_watchdog;
6243        init_gro_hash(napi);
6244        napi->skb = NULL;
6245        INIT_LIST_HEAD(&napi->rx_list);
6246        napi->rx_count = 0;
6247        napi->poll = poll;
6248        if (weight > NAPI_POLL_WEIGHT)
6249                netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6250                                weight);
6251        napi->weight = weight;
6252        napi->dev = dev;
6253#ifdef CONFIG_NETPOLL
6254        napi->poll_owner = -1;
6255#endif
6256        set_bit(NAPI_STATE_SCHED, &napi->state);
6257        set_bit(NAPI_STATE_NPSVC, &napi->state);
6258        list_add_rcu(&napi->dev_list, &dev->napi_list);
6259        napi_hash_add(napi);
6260        /* Create kthread for this napi if dev->threaded is set.
6261         * Clear dev->threaded if kthread creation failed so that
6262         * threaded mode will not be enabled in napi_enable().
6263         */
6264        if (dev->threaded && napi_kthread_create(napi))
6265                dev->threaded = 0;
6266}
6267EXPORT_SYMBOL(netif_napi_add);
6268
6269void napi_disable(struct napi_struct *n)
6270{
6271        unsigned long val, new;
6272
6273        might_sleep();
6274        set_bit(NAPI_STATE_DISABLE, &n->state);
6275
6276        for ( ; ; ) {
6277                val = READ_ONCE(n->state);
6278                if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6279                        usleep_range(20, 200);
6280                        continue;
6281                }
6282
6283                new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6284                new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6285
6286                if (cmpxchg(&n->state, val, new) == val)
6287                        break;
6288        }
6289
6290        hrtimer_cancel(&n->timer);
6291
6292        clear_bit(NAPI_STATE_DISABLE, &n->state);
6293}
6294EXPORT_SYMBOL(napi_disable);
6295
6296/**
6297 *      napi_enable - enable NAPI scheduling
6298 *      @n: NAPI context
6299 *
6300 * Resume NAPI from being scheduled on this context.
6301 * Must be paired with napi_disable.
6302 */
6303void napi_enable(struct napi_struct *n)
6304{
6305        unsigned long val, new;
6306
6307        do {
6308                val = READ_ONCE(n->state);
6309                BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6310
6311                new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6312                if (n->dev->threaded && n->thread)
6313                        new |= NAPIF_STATE_THREADED;
6314        } while (cmpxchg(&n->state, val, new) != val);
6315}
6316EXPORT_SYMBOL(napi_enable);
6317
6318static void flush_gro_hash(struct napi_struct *napi)
6319{
6320        int i;
6321
6322        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6323                struct sk_buff *skb, *n;
6324
6325                list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6326                        kfree_skb(skb);
6327                napi->gro_hash[i].count = 0;
6328        }
6329}
6330
6331/* Must be called in process context */
6332void __netif_napi_del(struct napi_struct *napi)
6333{
6334        if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6335                return;
6336
6337        napi_hash_del(napi);
6338        list_del_rcu(&napi->dev_list);
6339        napi_free_frags(napi);
6340
6341        flush_gro_hash(napi);
6342        napi->gro_bitmask = 0;
6343
6344        if (napi->thread) {
6345                kthread_stop(napi->thread);
6346                napi->thread = NULL;
6347        }
6348}
6349EXPORT_SYMBOL(__netif_napi_del);
6350
6351static int __napi_poll(struct napi_struct *n, bool *repoll)
6352{
6353        int work, weight;
6354
6355        weight = n->weight;
6356
6357        /* This NAPI_STATE_SCHED test is for avoiding a race
6358         * with netpoll's poll_napi().  Only the entity which
6359         * obtains the lock and sees NAPI_STATE_SCHED set will
6360         * actually make the ->poll() call.  Therefore we avoid
6361         * accidentally calling ->poll() when NAPI is not scheduled.
6362         */
6363        work = 0;
6364        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6365                work = n->poll(n, weight);
6366                trace_napi_poll(n, work, weight);
6367        }
6368
6369        if (unlikely(work > weight))
6370                netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6371                                n->poll, work, weight);
6372
6373        if (likely(work < weight))
6374                return work;
6375
6376        /* Drivers must not modify the NAPI state if they
6377         * consume the entire weight.  In such cases this code
6378         * still "owns" the NAPI instance and therefore can
6379         * move the instance around on the list at-will.
6380         */
6381        if (unlikely(napi_disable_pending(n))) {
6382                napi_complete(n);
6383                return work;
6384        }
6385
6386        /* The NAPI context has more processing work, but busy-polling
6387         * is preferred. Exit early.
6388         */
6389        if (napi_prefer_busy_poll(n)) {
6390                if (napi_complete_done(n, work)) {
6391                        /* If timeout is not set, we need to make sure
6392                         * that the NAPI is re-scheduled.
6393                         */
6394                        napi_schedule(n);
6395                }
6396                return work;
6397        }
6398
6399        if (n->gro_bitmask) {
6400                /* flush too old packets
6401                 * If HZ < 1000, flush all packets.
6402                 */
6403                napi_gro_flush(n, HZ >= 1000);
6404        }
6405
6406        gro_normal_list(n);
6407
6408        /* Some drivers may have called napi_schedule
6409         * prior to exhausting their budget.
6410         */
6411        if (unlikely(!list_empty(&n->poll_list))) {
6412                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6413                             n->dev ? n->dev->name : "backlog");
6414                return work;
6415        }
6416
6417        *repoll = true;
6418
6419        return work;
6420}
6421
6422static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6423{
6424        bool do_repoll = false;
6425        void *have;
6426        int work;
6427
6428        list_del_init(&n->poll_list);
6429
6430        have = netpoll_poll_lock(n);
6431
6432        work = __napi_poll(n, &do_repoll);
6433
6434        if (do_repoll)
6435                list_add_tail(&n->poll_list, repoll);
6436
6437        netpoll_poll_unlock(have);
6438
6439        return work;
6440}
6441
6442static int napi_thread_wait(struct napi_struct *napi)
6443{
6444        bool woken = false;
6445
6446        set_current_state(TASK_INTERRUPTIBLE);
6447
6448        while (!kthread_should_stop()) {
6449                /* Testing SCHED_THREADED bit here to make sure the current
6450                 * kthread owns this napi and could poll on this napi.
6451                 * Testing SCHED bit is not enough because SCHED bit might be
6452                 * set by some other busy poll thread or by napi_disable().
6453                 */
6454                if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6455                        WARN_ON(!list_empty(&napi->poll_list));
6456                        __set_current_state(TASK_RUNNING);
6457                        return 0;
6458                }
6459
6460                schedule();
6461                /* woken being true indicates this thread owns this napi. */
6462                woken = true;
6463                set_current_state(TASK_INTERRUPTIBLE);
6464        }
6465        __set_current_state(TASK_RUNNING);
6466
6467        return -1;
6468}
6469
6470static int napi_threaded_poll(void *data)
6471{
6472        struct napi_struct *napi = data;
6473        void *have;
6474
6475        while (!napi_thread_wait(napi)) {
6476                for (;;) {
6477                        bool repoll = false;
6478
6479                        local_bh_disable();
6480
6481                        have = netpoll_poll_lock(napi);
6482                        __napi_poll(napi, &repoll);
6483                        netpoll_poll_unlock(have);
6484
6485                        local_bh_enable();
6486
6487                        if (!repoll)
6488                                break;
6489
6490                        cond_resched();
6491                }
6492        }
6493        return 0;
6494}
6495
6496static __latent_entropy void net_rx_action(struct softirq_action *h)
6497{
6498        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6499        unsigned long time_limit = jiffies +
6500                usecs_to_jiffies(netdev_budget_usecs);
6501        int budget = netdev_budget;
6502        LIST_HEAD(list);
6503        LIST_HEAD(repoll);
6504
6505        local_irq_disable();
6506        list_splice_init(&sd->poll_list, &list);
6507        local_irq_enable();
6508
6509        for (;;) {
6510                struct napi_struct *n;
6511
6512                if (list_empty(&list)) {
6513                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6514                                return;
6515                        break;
6516                }
6517
6518                n = list_first_entry(&list, struct napi_struct, poll_list);
6519                budget -= napi_poll(n, &repoll);
6520
6521                /* If softirq window is exhausted then punt.
6522                 * Allow this to run for 2 jiffies since which will allow
6523                 * an average latency of 1.5/HZ.
6524                 */
6525                if (unlikely(budget <= 0 ||
6526                             time_after_eq(jiffies, time_limit))) {
6527                        sd->time_squeeze++;
6528                        break;
6529                }
6530        }
6531
6532        local_irq_disable();
6533
6534        list_splice_tail_init(&sd->poll_list, &list);
6535        list_splice_tail(&repoll, &list);
6536        list_splice(&list, &sd->poll_list);
6537        if (!list_empty(&sd->poll_list))
6538                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6539
6540        net_rps_action_and_irq_enable(sd);
6541}
6542
6543struct netdev_adjacent {
6544        struct net_device *dev;
6545        netdevice_tracker dev_tracker;
6546
6547        /* upper master flag, there can only be one master device per list */
6548        bool master;
6549
6550        /* lookup ignore flag */
6551        bool ignore;
6552
6553        /* counter for the number of times this device was added to us */
6554        u16 ref_nr;
6555
6556        /* private field for the users */
6557        void *private;
6558
6559        struct list_head list;
6560        struct rcu_head rcu;
6561};
6562
6563static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6564                                                 struct list_head *adj_list)
6565{
6566        struct netdev_adjacent *adj;
6567
6568        list_for_each_entry(adj, adj_list, list) {
6569                if (adj->dev == adj_dev)
6570                        return adj;
6571        }
6572        return NULL;
6573}
6574
6575static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6576                                    struct netdev_nested_priv *priv)
6577{
6578        struct net_device *dev = (struct net_device *)priv->data;
6579
6580        return upper_dev == dev;
6581}
6582
6583/**
6584 * netdev_has_upper_dev - Check if device is linked to an upper device
6585 * @dev: device
6586 * @upper_dev: upper device to check
6587 *
6588 * Find out if a device is linked to specified upper device and return true
6589 * in case it is. Note that this checks only immediate upper device,
6590 * not through a complete stack of devices. The caller must hold the RTNL lock.
6591 */
6592bool netdev_has_upper_dev(struct net_device *dev,
6593                          struct net_device *upper_dev)
6594{
6595        struct netdev_nested_priv priv = {
6596                .data = (void *)upper_dev,
6597        };
6598
6599        ASSERT_RTNL();
6600
6601        return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6602                                             &priv);
6603}
6604EXPORT_SYMBOL(netdev_has_upper_dev);
6605
6606/**
6607 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6608 * @dev: device
6609 * @upper_dev: upper device to check
6610 *
6611 * Find out if a device is linked to specified upper device and return true
6612 * in case it is. Note that this checks the entire upper device chain.
6613 * The caller must hold rcu lock.
6614 */
6615
6616bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6617                                  struct net_device *upper_dev)
6618{
6619        struct netdev_nested_priv priv = {
6620                .data = (void *)upper_dev,
6621        };
6622
6623        return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6624                                               &priv);
6625}
6626EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6627
6628/**
6629 * netdev_has_any_upper_dev - Check if device is linked to some device
6630 * @dev: device
6631 *
6632 * Find out if a device is linked to an upper device and return true in case
6633 * it is. The caller must hold the RTNL lock.
6634 */
6635bool netdev_has_any_upper_dev(struct net_device *dev)
6636{
6637        ASSERT_RTNL();
6638
6639        return !list_empty(&dev->adj_list.upper);
6640}
6641EXPORT_SYMBOL(netdev_has_any_upper_dev);
6642
6643/**
6644 * netdev_master_upper_dev_get - Get master upper device
6645 * @dev: device
6646 *
6647 * Find a master upper device and return pointer to it or NULL in case
6648 * it's not there. The caller must hold the RTNL lock.
6649 */
6650struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6651{
6652        struct netdev_adjacent *upper;
6653
6654        ASSERT_RTNL();
6655
6656        if (list_empty(&dev->adj_list.upper))
6657                return NULL;
6658
6659        upper = list_first_entry(&dev->adj_list.upper,
6660                                 struct netdev_adjacent, list);
6661        if (likely(upper->master))
6662                return upper->dev;
6663        return NULL;
6664}
6665EXPORT_SYMBOL(netdev_master_upper_dev_get);
6666
6667static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6668{
6669        struct netdev_adjacent *upper;
6670
6671        ASSERT_RTNL();
6672
6673        if (list_empty(&dev->adj_list.upper))
6674                return NULL;
6675
6676        upper = list_first_entry(&dev->adj_list.upper,
6677                                 struct netdev_adjacent, list);
6678        if (likely(upper->master) && !upper->ignore)
6679                return upper->dev;
6680        return NULL;
6681}
6682
6683/**
6684 * netdev_has_any_lower_dev - Check if device is linked to some device
6685 * @dev: device
6686 *
6687 * Find out if a device is linked to a lower device and return true in case
6688 * it is. The caller must hold the RTNL lock.
6689 */
6690static bool netdev_has_any_lower_dev(struct net_device *dev)
6691{
6692        ASSERT_RTNL();
6693
6694        return !list_empty(&dev->adj_list.lower);
6695}
6696
6697void *netdev_adjacent_get_private(struct list_head *adj_list)
6698{
6699        struct netdev_adjacent *adj;
6700
6701        adj = list_entry(adj_list, struct netdev_adjacent, list);
6702
6703        return adj->private;
6704}
6705EXPORT_SYMBOL(netdev_adjacent_get_private);
6706
6707/**
6708 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6709 * @dev: device
6710 * @iter: list_head ** of the current position
6711 *
6712 * Gets the next device from the dev's upper list, starting from iter
6713 * position. The caller must hold RCU read lock.
6714 */
6715struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6716                                                 struct list_head **iter)
6717{
6718        struct netdev_adjacent *upper;
6719
6720        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6721
6722        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6723
6724        if (&upper->list == &dev->adj_list.upper)
6725                return NULL;
6726
6727        *iter = &upper->list;
6728
6729        return upper->dev;
6730}
6731EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6732
6733static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6734                                                  struct list_head **iter,
6735                                                  bool *ignore)
6736{
6737        struct netdev_adjacent *upper;
6738
6739        upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6740
6741        if (&upper->list == &dev->adj_list.upper)
6742                return NULL;
6743
6744        *iter = &upper->list;
6745        *ignore = upper->ignore;
6746
6747        return upper->dev;
6748}
6749
6750static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6751                                                    struct list_head **iter)
6752{
6753        struct netdev_adjacent *upper;
6754
6755        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6756
6757        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6758
6759        if (&upper->list == &dev->adj_list.upper)
6760                return NULL;
6761
6762        *iter = &upper->list;
6763
6764        return upper->dev;
6765}
6766
6767static int __netdev_walk_all_upper_dev(struct net_device *dev,
6768                                       int (*fn)(struct net_device *dev,
6769                                         struct netdev_nested_priv *priv),
6770                                       struct netdev_nested_priv *priv)
6771{
6772        struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6773        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6774        int ret, cur = 0;
6775        bool ignore;
6776
6777        now = dev;
6778        iter = &dev->adj_list.upper;
6779
6780        while (1) {
6781                if (now != dev) {
6782                        ret = fn(now, priv);
6783                        if (ret)
6784                                return ret;
6785                }
6786
6787                next = NULL;
6788                while (1) {
6789                        udev = __netdev_next_upper_dev(now, &iter, &ignore);
6790                        if (!udev)
6791                                break;
6792                        if (ignore)
6793                                continue;
6794
6795                        next = udev;
6796                        niter = &udev->adj_list.upper;
6797                        dev_stack[cur] = now;
6798                        iter_stack[cur++] = iter;
6799                        break;
6800                }
6801
6802                if (!next) {
6803                        if (!cur)
6804                                return 0;
6805                        next = dev_stack[--cur];
6806                        niter = iter_stack[cur];
6807                }
6808
6809                now = next;
6810                iter = niter;
6811        }
6812
6813        return 0;
6814}
6815
6816int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6817                                  int (*fn)(struct net_device *dev,
6818                                            struct netdev_nested_priv *priv),
6819                                  struct netdev_nested_priv *priv)
6820{
6821        struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6822        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6823        int ret, cur = 0;
6824
6825        now = dev;
6826        iter = &dev->adj_list.upper;
6827
6828        while (1) {
6829                if (now != dev) {
6830                        ret = fn(now, priv);
6831                        if (ret)
6832                                return ret;
6833                }
6834
6835                next = NULL;
6836                while (1) {
6837                        udev = netdev_next_upper_dev_rcu(now, &iter);
6838                        if (!udev)
6839                                break;
6840
6841                        next = udev;
6842                        niter = &udev->adj_list.upper;
6843                        dev_stack[cur] = now;
6844                        iter_stack[cur++] = iter;
6845                        break;
6846                }
6847
6848                if (!next) {
6849                        if (!cur)
6850                                return 0;
6851                        next = dev_stack[--cur];
6852                        niter = iter_stack[cur];
6853                }
6854
6855                now = next;
6856                iter = niter;
6857        }
6858
6859        return 0;
6860}
6861EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6862
6863static bool __netdev_has_upper_dev(struct net_device *dev,
6864                                   struct net_device *upper_dev)
6865{
6866        struct netdev_nested_priv priv = {
6867                .flags = 0,
6868                .data = (void *)upper_dev,
6869        };
6870
6871        ASSERT_RTNL();
6872
6873        return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6874                                           &priv);
6875}
6876
6877/**
6878 * netdev_lower_get_next_private - Get the next ->private from the
6879 *                                 lower neighbour list
6880 * @dev: device
6881 * @iter: list_head ** of the current position
6882 *
6883 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6884 * list, starting from iter position. The caller must hold either hold the
6885 * RTNL lock or its own locking that guarantees that the neighbour lower
6886 * list will remain unchanged.
6887 */
6888void *netdev_lower_get_next_private(struct net_device *dev,
6889                                    struct list_head **iter)
6890{
6891        struct netdev_adjacent *lower;
6892
6893        lower = list_entry(*iter, struct netdev_adjacent, list);
6894
6895        if (&lower->list == &dev->adj_list.lower)
6896                return NULL;
6897
6898        *iter = lower->list.next;
6899
6900        return lower->private;
6901}
6902EXPORT_SYMBOL(netdev_lower_get_next_private);
6903
6904/**
6905 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6906 *                                     lower neighbour list, RCU
6907 *                                     variant
6908 * @dev: device
6909 * @iter: list_head ** of the current position
6910 *
6911 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6912 * list, starting from iter position. The caller must hold RCU read lock.
6913 */
6914void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6915                                        struct list_head **iter)
6916{
6917        struct netdev_adjacent *lower;
6918
6919        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6920
6921        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6922
6923        if (&lower->list == &dev->adj_list.lower)
6924                return NULL;
6925
6926        *iter = &lower->list;
6927
6928        return lower->private;
6929}
6930EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6931
6932/**
6933 * netdev_lower_get_next - Get the next device from the lower neighbour
6934 *                         list
6935 * @dev: device
6936 * @iter: list_head ** of the current position
6937 *
6938 * Gets the next netdev_adjacent from the dev's lower neighbour
6939 * list, starting from iter position. The caller must hold RTNL lock or
6940 * its own locking that guarantees that the neighbour lower
6941 * list will remain unchanged.
6942 */
6943void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6944{
6945        struct netdev_adjacent *lower;
6946
6947        lower = list_entry(*iter, struct netdev_adjacent, list);
6948
6949        if (&lower->list == &dev->adj_list.lower)
6950                return NULL;
6951
6952        *iter = lower->list.next;
6953
6954        return lower->dev;
6955}
6956EXPORT_SYMBOL(netdev_lower_get_next);
6957
6958static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6959                                                struct list_head **iter)
6960{
6961        struct netdev_adjacent *lower;
6962
6963        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6964
6965        if (&lower->list == &dev->adj_list.lower)
6966                return NULL;
6967
6968        *iter = &lower->list;
6969
6970        return lower->dev;
6971}
6972
6973static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6974                                                  struct list_head **iter,
6975                                                  bool *ignore)
6976{
6977        struct netdev_adjacent *lower;
6978
6979        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6980
6981        if (&lower->list == &dev->adj_list.lower)
6982                return NULL;
6983
6984        *iter = &lower->list;
6985        *ignore = lower->ignore;
6986
6987        return lower->dev;
6988}
6989
6990int netdev_walk_all_lower_dev(struct net_device *dev,
6991                              int (*fn)(struct net_device *dev,
6992                                        struct netdev_nested_priv *priv),
6993                              struct netdev_nested_priv *priv)
6994{
6995        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6996        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6997        int ret, cur = 0;
6998
6999        now = dev;
7000        iter = &dev->adj_list.lower;
7001
7002        while (1) {
7003                if (now != dev) {
7004                        ret = fn(now, priv);
7005                        if (ret)
7006                                return ret;
7007                }
7008
7009                next = NULL;
7010                while (1) {
7011                        ldev = netdev_next_lower_dev(now, &iter);
7012                        if (!ldev)
7013                                break;
7014
7015                        next = ldev;
7016                        niter = &ldev->adj_list.lower;
7017                        dev_stack[cur] = now;
7018                        iter_stack[cur++] = iter;
7019                        break;
7020                }
7021
7022                if (!next) {
7023                        if (!cur)
7024                                return 0;
7025                        next = dev_stack[--cur];
7026                        niter = iter_stack[cur];
7027                }
7028
7029                now = next;
7030                iter = niter;
7031        }
7032
7033        return 0;
7034}
7035EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7036
7037static int __netdev_walk_all_lower_dev(struct net_device *dev,
7038                                       int (*fn)(struct net_device *dev,
7039                                         struct netdev_nested_priv *priv),
7040                                       struct netdev_nested_priv *priv)
7041{
7042        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7043        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7044        int ret, cur = 0;
7045        bool ignore;
7046
7047        now = dev;
7048        iter = &dev->adj_list.lower;
7049
7050        while (1) {
7051                if (now != dev) {
7052                        ret = fn(now, priv);
7053                        if (ret)
7054                                return ret;
7055                }
7056
7057                next = NULL;
7058                while (1) {
7059                        ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7060                        if (!ldev)
7061                                break;
7062                        if (ignore)
7063                                continue;
7064
7065                        next = ldev;
7066                        niter = &ldev->adj_list.lower;
7067                        dev_stack[cur] = now;
7068                        iter_stack[cur++] = iter;
7069                        break;
7070                }
7071
7072                if (!next) {
7073                        if (!cur)
7074                                return 0;
7075                        next = dev_stack[--cur];
7076                        niter = iter_stack[cur];
7077                }
7078
7079                now = next;
7080                iter = niter;
7081        }
7082
7083        return 0;
7084}
7085
7086struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7087                                             struct list_head **iter)
7088{
7089        struct netdev_adjacent *lower;
7090
7091        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7092        if (&lower->list == &dev->adj_list.lower)
7093                return NULL;
7094
7095        *iter = &lower->list;
7096
7097        return lower->dev;
7098}
7099EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7100
7101static u8 __netdev_upper_depth(struct net_device *dev)
7102{
7103        struct net_device *udev;
7104        struct list_head *iter;
7105        u8 max_depth = 0;
7106        bool ignore;
7107
7108        for (iter = &dev->adj_list.upper,
7109             udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7110             udev;
7111             udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7112                if (ignore)
7113                        continue;
7114                if (max_depth < udev->upper_level)
7115                        max_depth = udev->upper_level;
7116        }
7117
7118        return max_depth;
7119}
7120
7121static u8 __netdev_lower_depth(struct net_device *dev)
7122{
7123        struct net_device *ldev;
7124        struct list_head *iter;
7125        u8 max_depth = 0;
7126        bool ignore;
7127
7128        for (iter = &dev->adj_list.lower,
7129             ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7130             ldev;
7131             ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7132                if (ignore)
7133                        continue;
7134                if (max_depth < ldev->lower_level)
7135                        max_depth = ldev->lower_level;
7136        }
7137
7138        return max_depth;
7139}
7140
7141static int __netdev_update_upper_level(struct net_device *dev,
7142                                       struct netdev_nested_priv *__unused)
7143{
7144        dev->upper_level = __netdev_upper_depth(dev) + 1;
7145        return 0;
7146}
7147
7148static int __netdev_update_lower_level(struct net_device *dev,
7149                                       struct netdev_nested_priv *priv)
7150{
7151        dev->lower_level = __netdev_lower_depth(dev) + 1;
7152
7153#ifdef CONFIG_LOCKDEP
7154        if (!priv)
7155                return 0;
7156
7157        if (priv->flags & NESTED_SYNC_IMM)
7158                dev->nested_level = dev->lower_level - 1;
7159        if (priv->flags & NESTED_SYNC_TODO)
7160                net_unlink_todo(dev);
7161#endif
7162        return 0;
7163}
7164
7165int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7166                                  int (*fn)(struct net_device *dev,
7167                                            struct netdev_nested_priv *priv),
7168                                  struct netdev_nested_priv *priv)
7169{
7170        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7171        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7172        int ret, cur = 0;
7173
7174        now = dev;
7175        iter = &dev->adj_list.lower;
7176
7177        while (1) {
7178                if (now != dev) {
7179                        ret = fn(now, priv);
7180                        if (ret)
7181                                return ret;
7182                }
7183
7184                next = NULL;
7185                while (1) {
7186                        ldev = netdev_next_lower_dev_rcu(now, &iter);
7187                        if (!ldev)
7188                                break;
7189
7190                        next = ldev;
7191                        niter = &ldev->adj_list.lower;
7192                        dev_stack[cur] = now;
7193                        iter_stack[cur++] = iter;
7194                        break;
7195                }
7196
7197                if (!next) {
7198                        if (!cur)
7199                                return 0;
7200                        next = dev_stack[--cur];
7201                        niter = iter_stack[cur];
7202                }
7203
7204                now = next;
7205                iter = niter;
7206        }
7207
7208        return 0;
7209}
7210EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7211
7212/**
7213 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7214 *                                     lower neighbour list, RCU
7215 *                                     variant
7216 * @dev: device
7217 *
7218 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7219 * list. The caller must hold RCU read lock.
7220 */
7221void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7222{
7223        struct netdev_adjacent *lower;
7224
7225        lower = list_first_or_null_rcu(&dev->adj_list.lower,
7226                        struct netdev_adjacent, list);
7227        if (lower)
7228                return lower->private;
7229        return NULL;
7230}
7231EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7232
7233/**
7234 * netdev_master_upper_dev_get_rcu - Get master upper device
7235 * @dev: device
7236 *
7237 * Find a master upper device and return pointer to it or NULL in case
7238 * it's not there. The caller must hold the RCU read lock.
7239 */
7240struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7241{
7242        struct netdev_adjacent *upper;
7243
7244        upper = list_first_or_null_rcu(&dev->adj_list.upper,
7245                                       struct netdev_adjacent, list);
7246        if (upper && likely(upper->master))
7247                return upper->dev;
7248        return NULL;
7249}
7250EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7251
7252static int netdev_adjacent_sysfs_add(struct net_device *dev,
7253                              struct net_device *adj_dev,
7254                              struct list_head *dev_list)
7255{
7256        char linkname[IFNAMSIZ+7];
7257
7258        sprintf(linkname, dev_list == &dev->adj_list.upper ?
7259                "upper_%s" : "lower_%s", adj_dev->name);
7260        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7261                                 linkname);
7262}
7263static void netdev_adjacent_sysfs_del(struct net_device *dev,
7264                               char *name,
7265                               struct list_head *dev_list)
7266{
7267        char linkname[IFNAMSIZ+7];
7268
7269        sprintf(linkname, dev_list == &dev->adj_list.upper ?
7270                "upper_%s" : "lower_%s", name);
7271        sysfs_remove_link(&(dev->dev.kobj), linkname);
7272}
7273
7274static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7275                                                 struct net_device *adj_dev,
7276                                                 struct list_head *dev_list)
7277{
7278        return (dev_list == &dev->adj_list.upper ||
7279                dev_list == &dev->adj_list.lower) &&
7280                net_eq(dev_net(dev), dev_net(adj_dev));
7281}
7282
7283static int __netdev_adjacent_dev_insert(struct net_device *dev,
7284                                        struct net_device *adj_dev,
7285                                        struct list_head *dev_list,
7286                                        void *private, bool master)
7287{
7288        struct netdev_adjacent *adj;
7289        int ret;
7290
7291        adj = __netdev_find_adj(adj_dev, dev_list);
7292
7293        if (adj) {
7294                adj->ref_nr += 1;
7295                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7296                         dev->name, adj_dev->name, adj->ref_nr);
7297
7298                return 0;
7299        }
7300
7301        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7302        if (!adj)
7303                return -ENOMEM;
7304
7305        adj->dev = adj_dev;
7306        adj->master = master;
7307        adj->ref_nr = 1;
7308        adj->private = private;
7309        adj->ignore = false;
7310        dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7311
7312        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7313                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7314
7315        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7316                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7317                if (ret)
7318                        goto free_adj;
7319        }
7320
7321        /* Ensure that master link is always the first item in list. */
7322        if (master) {
7323                ret = sysfs_create_link(&(dev->dev.kobj),
7324                                        &(adj_dev->dev.kobj), "master");
7325                if (ret)
7326                        goto remove_symlinks;
7327
7328                list_add_rcu(&adj->list, dev_list);
7329        } else {
7330                list_add_tail_rcu(&adj->list, dev_list);
7331        }
7332
7333        return 0;
7334
7335remove_symlinks:
7336        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7337                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7338free_adj:
7339        dev_put_track(adj_dev, &adj->dev_tracker);
7340        kfree(adj);
7341
7342        return ret;
7343}
7344
7345static void __netdev_adjacent_dev_remove(struct net_device *dev,
7346                                         struct net_device *adj_dev,
7347                                         u16 ref_nr,
7348                                         struct list_head *dev_list)
7349{
7350        struct netdev_adjacent *adj;
7351
7352        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7353                 dev->name, adj_dev->name, ref_nr);
7354
7355        adj = __netdev_find_adj(adj_dev, dev_list);
7356
7357        if (!adj) {
7358                pr_err("Adjacency does not exist for device %s from %s\n",
7359                       dev->name, adj_dev->name);
7360                WARN_ON(1);
7361                return;
7362        }
7363
7364        if (adj->ref_nr > ref_nr) {
7365                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7366                         dev->name, adj_dev->name, ref_nr,
7367                         adj->ref_nr - ref_nr);
7368                adj->ref_nr -= ref_nr;
7369                return;
7370        }
7371
7372        if (adj->master)
7373                sysfs_remove_link(&(dev->dev.kobj), "master");
7374
7375        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7376                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7377
7378        list_del_rcu(&adj->list);
7379        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7380                 adj_dev->name, dev->name, adj_dev->name);
7381        dev_put_track(adj_dev, &adj->dev_tracker);
7382        kfree_rcu(adj, rcu);
7383}
7384
7385static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7386                                            struct net_device *upper_dev,
7387                                            struct list_head *up_list,
7388                                            struct list_head *down_list,
7389                                            void *private, bool master)
7390{
7391        int ret;
7392
7393        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7394                                           private, master);
7395        if (ret)
7396                return ret;
7397
7398        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7399                                           private, false);
7400        if (ret) {
7401                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7402                return ret;
7403        }
7404
7405        return 0;
7406}
7407
7408static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7409                                               struct net_device *upper_dev,
7410                                               u16 ref_nr,
7411                                               struct list_head *up_list,
7412                                               struct list_head *down_list)
7413{
7414        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7415        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7416}
7417
7418static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7419                                                struct net_device *upper_dev,
7420                                                void *private, bool master)
7421{
7422        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7423                                                &dev->adj_list.upper,
7424                                                &upper_dev->adj_list.lower,
7425                                                private, master);
7426}
7427
7428static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7429                                                   struct net_device *upper_dev)
7430{
7431        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7432                                           &dev->adj_list.upper,
7433                                           &upper_dev->adj_list.lower);
7434}
7435
7436static int __netdev_upper_dev_link(struct net_device *dev,
7437                                   struct net_device *upper_dev, bool master,
7438                                   void *upper_priv, void *upper_info,
7439                                   struct netdev_nested_priv *priv,
7440                                   struct netlink_ext_ack *extack)
7441{
7442        struct netdev_notifier_changeupper_info changeupper_info = {
7443                .info = {
7444                        .dev = dev,
7445                        .extack = extack,
7446                },
7447                .upper_dev = upper_dev,
7448                .master = master,
7449                .linking = true,
7450                .upper_info = upper_info,
7451        };
7452        struct net_device *master_dev;
7453        int ret = 0;
7454
7455        ASSERT_RTNL();
7456
7457        if (dev == upper_dev)
7458                return -EBUSY;
7459
7460        /* To prevent loops, check if dev is not upper device to upper_dev. */
7461        if (__netdev_has_upper_dev(upper_dev, dev))
7462                return -EBUSY;
7463
7464        if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7465                return -EMLINK;
7466
7467        if (!master) {
7468                if (__netdev_has_upper_dev(dev, upper_dev))
7469                        return -EEXIST;
7470        } else {
7471                master_dev = __netdev_master_upper_dev_get(dev);
7472                if (master_dev)
7473                        return master_dev == upper_dev ? -EEXIST : -EBUSY;
7474        }
7475
7476        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7477                                            &changeupper_info.info);
7478        ret = notifier_to_errno(ret);
7479        if (ret)
7480                return ret;
7481
7482        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7483                                                   master);
7484        if (ret)
7485                return ret;
7486
7487        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7488                                            &changeupper_info.info);
7489        ret = notifier_to_errno(ret);
7490        if (ret)
7491                goto rollback;
7492
7493        __netdev_update_upper_level(dev, NULL);
7494        __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7495
7496        __netdev_update_lower_level(upper_dev, priv);
7497        __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7498                                    priv);
7499
7500        return 0;
7501
7502rollback:
7503        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7504
7505        return ret;
7506}
7507
7508/**
7509 * netdev_upper_dev_link - Add a link to the upper device
7510 * @dev: device
7511 * @upper_dev: new upper device
7512 * @extack: netlink extended ack
7513 *
7514 * Adds a link to device which is upper to this one. The caller must hold
7515 * the RTNL lock. On a failure a negative errno code is returned.
7516 * On success the reference counts are adjusted and the function
7517 * returns zero.
7518 */
7519int netdev_upper_dev_link(struct net_device *dev,
7520                          struct net_device *upper_dev,
7521                          struct netlink_ext_ack *extack)
7522{
7523        struct netdev_nested_priv priv = {
7524                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7525                .data = NULL,
7526        };
7527
7528        return __netdev_upper_dev_link(dev, upper_dev, false,
7529                                       NULL, NULL, &priv, extack);
7530}
7531EXPORT_SYMBOL(netdev_upper_dev_link);
7532
7533/**
7534 * netdev_master_upper_dev_link - Add a master link to the upper device
7535 * @dev: device
7536 * @upper_dev: new upper device
7537 * @upper_priv: upper device private
7538 * @upper_info: upper info to be passed down via notifier
7539 * @extack: netlink extended ack
7540 *
7541 * Adds a link to device which is upper to this one. In this case, only
7542 * one master upper device can be linked, although other non-master devices
7543 * might be linked as well. The caller must hold the RTNL lock.
7544 * On a failure a negative errno code is returned. On success the reference
7545 * counts are adjusted and the function returns zero.
7546 */
7547int netdev_master_upper_dev_link(struct net_device *dev,
7548                                 struct net_device *upper_dev,
7549                                 void *upper_priv, void *upper_info,
7550                                 struct netlink_ext_ack *extack)
7551{
7552        struct netdev_nested_priv priv = {
7553                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7554                .data = NULL,
7555        };
7556
7557        return __netdev_upper_dev_link(dev, upper_dev, true,
7558                                       upper_priv, upper_info, &priv, extack);
7559}
7560EXPORT_SYMBOL(netdev_master_upper_dev_link);
7561
7562static void __netdev_upper_dev_unlink(struct net_device *dev,
7563                                      struct net_device *upper_dev,
7564                                      struct netdev_nested_priv *priv)
7565{
7566        struct netdev_notifier_changeupper_info changeupper_info = {
7567                .info = {
7568                        .dev = dev,
7569                },
7570                .upper_dev = upper_dev,
7571                .linking = false,
7572        };
7573
7574        ASSERT_RTNL();
7575
7576        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7577
7578        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7579                                      &changeupper_info.info);
7580
7581        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7582
7583        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7584                                      &changeupper_info.info);
7585
7586        __netdev_update_upper_level(dev, NULL);
7587        __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7588
7589        __netdev_update_lower_level(upper_dev, priv);
7590        __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7591                                    priv);
7592}
7593
7594/**
7595 * netdev_upper_dev_unlink - Removes a link to upper device
7596 * @dev: device
7597 * @upper_dev: new upper device
7598 *
7599 * Removes a link to device which is upper to this one. The caller must hold
7600 * the RTNL lock.
7601 */
7602void netdev_upper_dev_unlink(struct net_device *dev,
7603                             struct net_device *upper_dev)
7604{
7605        struct netdev_nested_priv priv = {
7606                .flags = NESTED_SYNC_TODO,
7607                .data = NULL,
7608        };
7609
7610        __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7611}
7612EXPORT_SYMBOL(netdev_upper_dev_unlink);
7613
7614static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7615                                      struct net_device *lower_dev,
7616                                      bool val)
7617{
7618        struct netdev_adjacent *adj;
7619
7620        adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7621        if (adj)
7622                adj->ignore = val;
7623
7624        adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7625        if (adj)
7626                adj->ignore = val;
7627}
7628
7629static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7630                                        struct net_device *lower_dev)
7631{
7632        __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7633}
7634
7635static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7636                                       struct net_device *lower_dev)
7637{
7638        __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7639}
7640
7641int netdev_adjacent_change_prepare(struct net_device *old_dev,
7642                                   struct net_device *new_dev,
7643                                   struct net_device *dev,
7644                                   struct netlink_ext_ack *extack)
7645{
7646        struct netdev_nested_priv priv = {
7647                .flags = 0,
7648                .data = NULL,
7649        };
7650        int err;
7651
7652        if (!new_dev)
7653                return 0;
7654
7655        if (old_dev && new_dev != old_dev)
7656                netdev_adjacent_dev_disable(dev, old_dev);
7657        err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7658                                      extack);
7659        if (err) {
7660                if (old_dev && new_dev != old_dev)
7661                        netdev_adjacent_dev_enable(dev, old_dev);
7662                return err;
7663        }
7664
7665        return 0;
7666}
7667EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7668
7669void netdev_adjacent_change_commit(struct net_device *old_dev,
7670                                   struct net_device *new_dev,
7671                                   struct net_device *dev)
7672{
7673        struct netdev_nested_priv priv = {
7674                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7675                .data = NULL,
7676        };
7677
7678        if (!new_dev || !old_dev)
7679                return;
7680
7681        if (new_dev == old_dev)
7682                return;
7683
7684        netdev_adjacent_dev_enable(dev, old_dev);
7685        __netdev_upper_dev_unlink(old_dev, dev, &priv);
7686}
7687EXPORT_SYMBOL(netdev_adjacent_change_commit);
7688
7689void netdev_adjacent_change_abort(struct net_device *old_dev,
7690                                  struct net_device *new_dev,
7691                                  struct net_device *dev)
7692{
7693        struct netdev_nested_priv priv = {
7694                .flags = 0,
7695                .data = NULL,
7696        };
7697
7698        if (!new_dev)
7699                return;
7700
7701        if (old_dev && new_dev != old_dev)
7702                netdev_adjacent_dev_enable(dev, old_dev);
7703
7704        __netdev_upper_dev_unlink(new_dev, dev, &priv);
7705}
7706EXPORT_SYMBOL(netdev_adjacent_change_abort);
7707
7708/**
7709 * netdev_bonding_info_change - Dispatch event about slave change
7710 * @dev: device
7711 * @bonding_info: info to dispatch
7712 *
7713 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7714 * The caller must hold the RTNL lock.
7715 */
7716void netdev_bonding_info_change(struct net_device *dev,
7717                                struct netdev_bonding_info *bonding_info)
7718{
7719        struct netdev_notifier_bonding_info info = {
7720                .info.dev = dev,
7721        };
7722
7723        memcpy(&info.bonding_info, bonding_info,
7724               sizeof(struct netdev_bonding_info));
7725        call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7726                                      &info.info);
7727}
7728EXPORT_SYMBOL(netdev_bonding_info_change);
7729
7730/**
7731 * netdev_get_xmit_slave - Get the xmit slave of master device
7732 * @dev: device
7733 * @skb: The packet
7734 * @all_slaves: assume all the slaves are active
7735 *
7736 * The reference counters are not incremented so the caller must be
7737 * careful with locks. The caller must hold RCU lock.
7738 * %NULL is returned if no slave is found.
7739 */
7740
7741struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7742                                         struct sk_buff *skb,
7743                                         bool all_slaves)
7744{
7745        const struct net_device_ops *ops = dev->netdev_ops;
7746
7747        if (!ops->ndo_get_xmit_slave)
7748                return NULL;
7749        return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7750}
7751EXPORT_SYMBOL(netdev_get_xmit_slave);
7752
7753static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
7754                                                  struct sock *sk)
7755{
7756        const struct net_device_ops *ops = dev->netdev_ops;
7757
7758        if (!ops->ndo_sk_get_lower_dev)
7759                return NULL;
7760        return ops->ndo_sk_get_lower_dev(dev, sk);
7761}
7762
7763/**
7764 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
7765 * @dev: device
7766 * @sk: the socket
7767 *
7768 * %NULL is returned if no lower device is found.
7769 */
7770
7771struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
7772                                            struct sock *sk)
7773{
7774        struct net_device *lower;
7775
7776        lower = netdev_sk_get_lower_dev(dev, sk);
7777        while (lower) {
7778                dev = lower;
7779                lower = netdev_sk_get_lower_dev(dev, sk);
7780        }
7781
7782        return dev;
7783}
7784EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
7785
7786static void netdev_adjacent_add_links(struct net_device *dev)
7787{
7788        struct netdev_adjacent *iter;
7789
7790        struct net *net = dev_net(dev);
7791
7792        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7793                if (!net_eq(net, dev_net(iter->dev)))
7794                        continue;
7795                netdev_adjacent_sysfs_add(iter->dev, dev,
7796                                          &iter->dev->adj_list.lower);
7797                netdev_adjacent_sysfs_add(dev, iter->dev,
7798                                          &dev->adj_list.upper);
7799        }
7800
7801        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7802                if (!net_eq(net, dev_net(iter->dev)))
7803                        continue;
7804                netdev_adjacent_sysfs_add(iter->dev, dev,
7805                                          &iter->dev->adj_list.upper);
7806                netdev_adjacent_sysfs_add(dev, iter->dev,
7807                                          &dev->adj_list.lower);
7808        }
7809}
7810
7811static void netdev_adjacent_del_links(struct net_device *dev)
7812{
7813        struct netdev_adjacent *iter;
7814
7815        struct net *net = dev_net(dev);
7816
7817        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7818                if (!net_eq(net, dev_net(iter->dev)))
7819                        continue;
7820                netdev_adjacent_sysfs_del(iter->dev, dev->name,
7821                                          &iter->dev->adj_list.lower);
7822                netdev_adjacent_sysfs_del(dev, iter->dev->name,
7823                                          &dev->adj_list.upper);
7824        }
7825
7826        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7827                if (!net_eq(net, dev_net(iter->dev)))
7828                        continue;
7829                netdev_adjacent_sysfs_del(iter->dev, dev->name,
7830                                          &iter->dev->adj_list.upper);
7831                netdev_adjacent_sysfs_del(dev, iter->dev->name,
7832                                          &dev->adj_list.lower);
7833        }
7834}
7835
7836void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7837{
7838        struct netdev_adjacent *iter;
7839
7840        struct net *net = dev_net(dev);
7841
7842        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7843                if (!net_eq(net, dev_net(iter->dev)))
7844                        continue;
7845                netdev_adjacent_sysfs_del(iter->dev, oldname,
7846                                          &iter->dev->adj_list.lower);
7847                netdev_adjacent_sysfs_add(iter->dev, dev,
7848                                          &iter->dev->adj_list.lower);
7849        }
7850
7851        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7852                if (!net_eq(net, dev_net(iter->dev)))
7853                        continue;
7854                netdev_adjacent_sysfs_del(iter->dev, oldname,
7855                                          &iter->dev->adj_list.upper);
7856                netdev_adjacent_sysfs_add(iter->dev, dev,
7857                                          &iter->dev->adj_list.upper);
7858        }
7859}
7860
7861void *netdev_lower_dev_get_private(struct net_device *dev,
7862                                   struct net_device *lower_dev)
7863{
7864        struct netdev_adjacent *lower;
7865
7866        if (!lower_dev)
7867                return NULL;
7868        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7869        if (!lower)
7870                return NULL;
7871
7872        return lower->private;
7873}
7874EXPORT_SYMBOL(netdev_lower_dev_get_private);
7875
7876
7877/**
7878 * netdev_lower_state_changed - Dispatch event about lower device state change
7879 * @lower_dev: device
7880 * @lower_state_info: state to dispatch
7881 *
7882 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7883 * The caller must hold the RTNL lock.
7884 */
7885void netdev_lower_state_changed(struct net_device *lower_dev,
7886                                void *lower_state_info)
7887{
7888        struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7889                .info.dev = lower_dev,
7890        };
7891
7892        ASSERT_RTNL();
7893        changelowerstate_info.lower_state_info = lower_state_info;
7894        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7895                                      &changelowerstate_info.info);
7896}
7897EXPORT_SYMBOL(netdev_lower_state_changed);
7898
7899static void dev_change_rx_flags(struct net_device *dev, int flags)
7900{
7901        const struct net_device_ops *ops = dev->netdev_ops;
7902
7903        if (ops->ndo_change_rx_flags)
7904                ops->ndo_change_rx_flags(dev, flags);
7905}
7906
7907static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7908{
7909        unsigned int old_flags = dev->flags;
7910        kuid_t uid;
7911        kgid_t gid;
7912
7913        ASSERT_RTNL();
7914
7915        dev->flags |= IFF_PROMISC;
7916        dev->promiscuity += inc;
7917        if (dev->promiscuity == 0) {
7918                /*
7919                 * Avoid overflow.
7920                 * If inc causes overflow, untouch promisc and return error.
7921                 */
7922                if (inc < 0)
7923                        dev->flags &= ~IFF_PROMISC;
7924                else {
7925                        dev->promiscuity -= inc;
7926                        netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
7927                        return -EOVERFLOW;
7928                }
7929        }
7930        if (dev->flags != old_flags) {
7931                pr_info("device %s %s promiscuous mode\n",
7932                        dev->name,
7933                        dev->flags & IFF_PROMISC ? "entered" : "left");
7934                if (audit_enabled) {
7935                        current_uid_gid(&uid, &gid);
7936                        audit_log(audit_context(), GFP_ATOMIC,
7937                                  AUDIT_ANOM_PROMISCUOUS,
7938                                  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7939                                  dev->name, (dev->flags & IFF_PROMISC),
7940                                  (old_flags & IFF_PROMISC),
7941                                  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7942                                  from_kuid(&init_user_ns, uid),
7943                                  from_kgid(&init_user_ns, gid),
7944                                  audit_get_sessionid(current));
7945                }
7946
7947                dev_change_rx_flags(dev, IFF_PROMISC);
7948        }
7949        if (notify)
7950                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7951        return 0;
7952}
7953
7954/**
7955 *      dev_set_promiscuity     - update promiscuity count on a device
7956 *      @dev: device
7957 *      @inc: modifier
7958 *
7959 *      Add or remove promiscuity from a device. While the count in the device
7960 *      remains above zero the interface remains promiscuous. Once it hits zero
7961 *      the device reverts back to normal filtering operation. A negative inc
7962 *      value is used to drop promiscuity on the device.
7963 *      Return 0 if successful or a negative errno code on error.
7964 */
7965int dev_set_promiscuity(struct net_device *dev, int inc)
7966{
7967        unsigned int old_flags = dev->flags;
7968        int err;
7969
7970        err = __dev_set_promiscuity(dev, inc, true);
7971        if (err < 0)
7972                return err;
7973        if (dev->flags != old_flags)
7974                dev_set_rx_mode(dev);
7975        return err;
7976}
7977EXPORT_SYMBOL(dev_set_promiscuity);
7978
7979static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7980{
7981        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7982
7983        ASSERT_RTNL();
7984
7985        dev->flags |= IFF_ALLMULTI;
7986        dev->allmulti += inc;
7987        if (dev->allmulti == 0) {
7988                /*
7989                 * Avoid overflow.
7990                 * If inc causes overflow, untouch allmulti and return error.
7991                 */
7992                if (inc < 0)
7993                        dev->flags &= ~IFF_ALLMULTI;
7994                else {
7995                        dev->allmulti -= inc;
7996                        netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
7997                        return -EOVERFLOW;
7998                }
7999        }
8000        if (dev->flags ^ old_flags) {
8001                dev_change_rx_flags(dev, IFF_ALLMULTI);
8002                dev_set_rx_mode(dev);
8003                if (notify)
8004                        __dev_notify_flags(dev, old_flags,
8005                                           dev->gflags ^ old_gflags);
8006        }
8007        return 0;
8008}
8009
8010/**
8011 *      dev_set_allmulti        - update allmulti count on a device
8012 *      @dev: device
8013 *      @inc: modifier
8014 *
8015 *      Add or remove reception of all multicast frames to a device. While the
8016 *      count in the device remains above zero the interface remains listening
8017 *      to all interfaces. Once it hits zero the device reverts back to normal
8018 *      filtering operation. A negative @inc value is used to drop the counter
8019 *      when releasing a resource needing all multicasts.
8020 *      Return 0 if successful or a negative errno code on error.
8021 */
8022
8023int dev_set_allmulti(struct net_device *dev, int inc)
8024{
8025        return __dev_set_allmulti(dev, inc, true);
8026}
8027EXPORT_SYMBOL(dev_set_allmulti);
8028
8029/*
8030 *      Upload unicast and multicast address lists to device and
8031 *      configure RX filtering. When the device doesn't support unicast
8032 *      filtering it is put in promiscuous mode while unicast addresses
8033 *      are present.
8034 */
8035void __dev_set_rx_mode(struct net_device *dev)
8036{
8037        const struct net_device_ops *ops = dev->netdev_ops;
8038
8039        /* dev_open will call this function so the list will stay sane. */
8040        if (!(dev->flags&IFF_UP))
8041                return;
8042
8043        if (!netif_device_present(dev))
8044                return;
8045
8046        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8047                /* Unicast addresses changes may only happen under the rtnl,
8048                 * therefore calling __dev_set_promiscuity here is safe.
8049                 */
8050                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8051                        __dev_set_promiscuity(dev, 1, false);
8052                        dev->uc_promisc = true;
8053                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8054                        __dev_set_promiscuity(dev, -1, false);
8055                        dev->uc_promisc = false;
8056                }
8057        }
8058
8059        if (ops->ndo_set_rx_mode)
8060                ops->ndo_set_rx_mode(dev);
8061}
8062
8063void dev_set_rx_mode(struct net_device *dev)
8064{
8065        netif_addr_lock_bh(dev);
8066        __dev_set_rx_mode(dev);
8067        netif_addr_unlock_bh(dev);
8068}
8069
8070/**
8071 *      dev_get_flags - get flags reported to userspace
8072 *      @dev: device
8073 *
8074 *      Get the combination of flag bits exported through APIs to userspace.
8075 */
8076unsigned int dev_get_flags(const struct net_device *dev)
8077{
8078        unsigned int flags;
8079
8080        flags = (dev->flags & ~(IFF_PROMISC |
8081                                IFF_ALLMULTI |
8082                                IFF_RUNNING |
8083                                IFF_LOWER_UP |
8084                                IFF_DORMANT)) |
8085                (dev->gflags & (IFF_PROMISC |
8086                                IFF_ALLMULTI));
8087
8088        if (netif_running(dev)) {
8089                if (netif_oper_up(dev))
8090                        flags |= IFF_RUNNING;
8091                if (netif_carrier_ok(dev))
8092                        flags |= IFF_LOWER_UP;
8093                if (netif_dormant(dev))
8094                        flags |= IFF_DORMANT;
8095        }
8096
8097        return flags;
8098}
8099EXPORT_SYMBOL(dev_get_flags);
8100
8101int __dev_change_flags(struct net_device *dev, unsigned int flags,
8102                       struct netlink_ext_ack *extack)
8103{
8104        unsigned int old_flags = dev->flags;
8105        int ret;
8106
8107        ASSERT_RTNL();
8108
8109        /*
8110         *      Set the flags on our device.
8111         */
8112
8113        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8114                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8115                               IFF_AUTOMEDIA)) |
8116                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8117                                    IFF_ALLMULTI));
8118
8119        /*
8120         *      Load in the correct multicast list now the flags have changed.
8121         */
8122
8123        if ((old_flags ^ flags) & IFF_MULTICAST)
8124                dev_change_rx_flags(dev, IFF_MULTICAST);
8125
8126        dev_set_rx_mode(dev);
8127
8128        /*
8129         *      Have we downed the interface. We handle IFF_UP ourselves
8130         *      according to user attempts to set it, rather than blindly
8131         *      setting it.
8132         */
8133
8134        ret = 0;
8135        if ((old_flags ^ flags) & IFF_UP) {
8136                if (old_flags & IFF_UP)
8137                        __dev_close(dev);
8138                else
8139                        ret = __dev_open(dev, extack);
8140        }
8141
8142        if ((flags ^ dev->gflags) & IFF_PROMISC) {
8143                int inc = (flags & IFF_PROMISC) ? 1 : -1;
8144                unsigned int old_flags = dev->flags;
8145
8146                dev->gflags ^= IFF_PROMISC;
8147
8148                if (__dev_set_promiscuity(dev, inc, false) >= 0)
8149                        if (dev->flags != old_flags)
8150                                dev_set_rx_mode(dev);
8151        }
8152
8153        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8154         * is important. Some (broken) drivers set IFF_PROMISC, when
8155         * IFF_ALLMULTI is requested not asking us and not reporting.
8156         */
8157        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8158                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8159
8160                dev->gflags ^= IFF_ALLMULTI;
8161                __dev_set_allmulti(dev, inc, false);
8162        }
8163
8164        return ret;
8165}
8166
8167void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8168                        unsigned int gchanges)
8169{
8170        unsigned int changes = dev->flags ^ old_flags;
8171
8172        if (gchanges)
8173                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8174
8175        if (changes & IFF_UP) {
8176                if (dev->flags & IFF_UP)
8177                        call_netdevice_notifiers(NETDEV_UP, dev);
8178                else
8179                        call_netdevice_notifiers(NETDEV_DOWN, dev);
8180        }
8181
8182        if (dev->flags & IFF_UP &&
8183            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8184                struct netdev_notifier_change_info change_info = {
8185                        .info = {
8186                                .dev = dev,
8187                        },
8188                        .flags_changed = changes,
8189                };
8190
8191                call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8192        }
8193}
8194
8195/**
8196 *      dev_change_flags - change device settings
8197 *      @dev: device
8198 *      @flags: device state flags
8199 *      @extack: netlink extended ack
8200 *
8201 *      Change settings on device based state flags. The flags are
8202 *      in the userspace exported format.
8203 */
8204int dev_change_flags(struct net_device *dev, unsigned int flags,
8205                     struct netlink_ext_ack *extack)
8206{
8207        int ret;
8208        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8209
8210        ret = __dev_change_flags(dev, flags, extack);
8211        if (ret < 0)
8212                return ret;
8213
8214        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8215        __dev_notify_flags(dev, old_flags, changes);
8216        return ret;
8217}
8218EXPORT_SYMBOL(dev_change_flags);
8219
8220int __dev_set_mtu(struct net_device *dev, int new_mtu)
8221{
8222        const struct net_device_ops *ops = dev->netdev_ops;
8223
8224        if (ops->ndo_change_mtu)
8225                return ops->ndo_change_mtu(dev, new_mtu);
8226
8227        /* Pairs with all the lockless reads of dev->mtu in the stack */
8228        WRITE_ONCE(dev->mtu, new_mtu);
8229        return 0;
8230}
8231EXPORT_SYMBOL(__dev_set_mtu);
8232
8233int dev_validate_mtu(struct net_device *dev, int new_mtu,
8234                     struct netlink_ext_ack *extack)
8235{
8236        /* MTU must be positive, and in range */
8237        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8238                NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8239                return -EINVAL;
8240        }
8241
8242        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8243                NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8244                return -EINVAL;
8245        }
8246        return 0;
8247}
8248
8249/**
8250 *      dev_set_mtu_ext - Change maximum transfer unit
8251 *      @dev: device
8252 *      @new_mtu: new transfer unit
8253 *      @extack: netlink extended ack
8254 *
8255 *      Change the maximum transfer size of the network device.
8256 */
8257int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8258                    struct netlink_ext_ack *extack)
8259{
8260        int err, orig_mtu;
8261
8262        if (new_mtu == dev->mtu)
8263                return 0;
8264
8265        err = dev_validate_mtu(dev, new_mtu, extack);
8266        if (err)
8267                return err;
8268
8269        if (!netif_device_present(dev))
8270                return -ENODEV;
8271
8272        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8273        err = notifier_to_errno(err);
8274        if (err)
8275                return err;
8276
8277        orig_mtu = dev->mtu;
8278        err = __dev_set_mtu(dev, new_mtu);
8279
8280        if (!err) {
8281                err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8282                                                   orig_mtu);
8283                err = notifier_to_errno(err);
8284                if (err) {
8285                        /* setting mtu back and notifying everyone again,
8286                         * so that they have a chance to revert changes.
8287                         */
8288                        __dev_set_mtu(dev, orig_mtu);
8289                        call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8290                                                     new_mtu);
8291                }
8292        }
8293        return err;
8294}
8295
8296int dev_set_mtu(struct net_device *dev, int new_mtu)
8297{
8298        struct netlink_ext_ack extack;
8299        int err;
8300
8301        memset(&extack, 0, sizeof(extack));
8302        err = dev_set_mtu_ext(dev, new_mtu, &extack);
8303        if (err && extack._msg)
8304                net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8305        return err;
8306}
8307EXPORT_SYMBOL(dev_set_mtu);
8308
8309/**
8310 *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8311 *      @dev: device
8312 *      @new_len: new tx queue length
8313 */
8314int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8315{
8316        unsigned int orig_len = dev->tx_queue_len;
8317        int res;
8318
8319        if (new_len != (unsigned int)new_len)
8320                return -ERANGE;
8321
8322        if (new_len != orig_len) {
8323                dev->tx_queue_len = new_len;
8324                res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8325                res = notifier_to_errno(res);
8326                if (res)
8327                        goto err_rollback;
8328                res = dev_qdisc_change_tx_queue_len(dev);
8329                if (res)
8330                        goto err_rollback;
8331        }
8332
8333        return 0;
8334
8335err_rollback:
8336        netdev_err(dev, "refused to change device tx_queue_len\n");
8337        dev->tx_queue_len = orig_len;
8338        return res;
8339}
8340
8341/**
8342 *      dev_set_group - Change group this device belongs to
8343 *      @dev: device
8344 *      @new_group: group this device should belong to
8345 */
8346void dev_set_group(struct net_device *dev, int new_group)
8347{
8348        dev->group = new_group;
8349}
8350EXPORT_SYMBOL(dev_set_group);
8351
8352/**
8353 *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8354 *      @dev: device
8355 *      @addr: new address
8356 *      @extack: netlink extended ack
8357 */
8358int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8359                              struct netlink_ext_ack *extack)
8360{
8361        struct netdev_notifier_pre_changeaddr_info info = {
8362                .info.dev = dev,
8363                .info.extack = extack,
8364                .dev_addr = addr,
8365        };
8366        int rc;
8367
8368        rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8369        return notifier_to_errno(rc);
8370}
8371EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8372
8373/**
8374 *      dev_set_mac_address - Change Media Access Control Address
8375 *      @dev: device
8376 *      @sa: new address
8377 *      @extack: netlink extended ack
8378 *
8379 *      Change the hardware (MAC) address of the device
8380 */
8381int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8382                        struct netlink_ext_ack *extack)
8383{
8384        const struct net_device_ops *ops = dev->netdev_ops;
8385        int err;
8386
8387        if (!ops->ndo_set_mac_address)
8388                return -EOPNOTSUPP;
8389        if (sa->sa_family != dev->type)
8390                return -EINVAL;
8391        if (!netif_device_present(dev))
8392                return -ENODEV;
8393        err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8394        if (err)
8395                return err;
8396        err = ops->ndo_set_mac_address(dev, sa);
8397        if (err)
8398                return err;
8399        dev->addr_assign_type = NET_ADDR_SET;
8400        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8401        add_device_randomness(dev->dev_addr, dev->addr_len);
8402        return 0;
8403}
8404EXPORT_SYMBOL(dev_set_mac_address);
8405
8406static DECLARE_RWSEM(dev_addr_sem);
8407
8408int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8409                             struct netlink_ext_ack *extack)
8410{
8411        int ret;
8412
8413        down_write(&dev_addr_sem);
8414        ret = dev_set_mac_address(dev, sa, extack);
8415        up_write(&dev_addr_sem);
8416        return ret;
8417}
8418EXPORT_SYMBOL(dev_set_mac_address_user);
8419
8420int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8421{
8422        size_t size = sizeof(sa->sa_data);
8423        struct net_device *dev;
8424        int ret = 0;
8425
8426        down_read(&dev_addr_sem);
8427        rcu_read_lock();
8428
8429        dev = dev_get_by_name_rcu(net, dev_name);
8430        if (!dev) {
8431                ret = -ENODEV;
8432                goto unlock;
8433        }
8434        if (!dev->addr_len)
8435                memset(sa->sa_data, 0, size);
8436        else
8437                memcpy(sa->sa_data, dev->dev_addr,
8438                       min_t(size_t, size, dev->addr_len));
8439        sa->sa_family = dev->type;
8440
8441unlock:
8442        rcu_read_unlock();
8443        up_read(&dev_addr_sem);
8444        return ret;
8445}
8446EXPORT_SYMBOL(dev_get_mac_address);
8447
8448/**
8449 *      dev_change_carrier - Change device carrier
8450 *      @dev: device
8451 *      @new_carrier: new value
8452 *
8453 *      Change device carrier
8454 */
8455int dev_change_carrier(struct net_device *dev, bool new_carrier)
8456{
8457        const struct net_device_ops *ops = dev->netdev_ops;
8458
8459        if (!ops->ndo_change_carrier)
8460                return -EOPNOTSUPP;
8461        if (!netif_device_present(dev))
8462                return -ENODEV;
8463        return ops->ndo_change_carrier(dev, new_carrier);
8464}
8465EXPORT_SYMBOL(dev_change_carrier);
8466
8467/**
8468 *      dev_get_phys_port_id - Get device physical port ID
8469 *      @dev: device
8470 *      @ppid: port ID
8471 *
8472 *      Get device physical port ID
8473 */
8474int dev_get_phys_port_id(struct net_device *dev,
8475                         struct netdev_phys_item_id *ppid)
8476{
8477        const struct net_device_ops *ops = dev->netdev_ops;
8478
8479        if (!ops->ndo_get_phys_port_id)
8480                return -EOPNOTSUPP;
8481        return ops->ndo_get_phys_port_id(dev, ppid);
8482}
8483EXPORT_SYMBOL(dev_get_phys_port_id);
8484
8485/**
8486 *      dev_get_phys_port_name - Get device physical port name
8487 *      @dev: device
8488 *      @name: port name
8489 *      @len: limit of bytes to copy to name
8490 *
8491 *      Get device physical port name
8492 */
8493int dev_get_phys_port_name(struct net_device *dev,
8494                           char *name, size_t len)
8495{
8496        const struct net_device_ops *ops = dev->netdev_ops;
8497        int err;
8498
8499        if (ops->ndo_get_phys_port_name) {
8500                err = ops->ndo_get_phys_port_name(dev, name, len);
8501                if (err != -EOPNOTSUPP)
8502                        return err;
8503        }
8504        return devlink_compat_phys_port_name_get(dev, name, len);
8505}
8506EXPORT_SYMBOL(dev_get_phys_port_name);
8507
8508/**
8509 *      dev_get_port_parent_id - Get the device's port parent identifier
8510 *      @dev: network device
8511 *      @ppid: pointer to a storage for the port's parent identifier
8512 *      @recurse: allow/disallow recursion to lower devices
8513 *
8514 *      Get the devices's port parent identifier
8515 */
8516int dev_get_port_parent_id(struct net_device *dev,
8517                           struct netdev_phys_item_id *ppid,
8518                           bool recurse)
8519{
8520        const struct net_device_ops *ops = dev->netdev_ops;
8521        struct netdev_phys_item_id first = { };
8522        struct net_device *lower_dev;
8523        struct list_head *iter;
8524        int err;
8525
8526        if (ops->ndo_get_port_parent_id) {
8527                err = ops->ndo_get_port_parent_id(dev, ppid);
8528                if (err != -EOPNOTSUPP)
8529                        return err;
8530        }
8531
8532        err = devlink_compat_switch_id_get(dev, ppid);
8533        if (!recurse || err != -EOPNOTSUPP)
8534                return err;
8535
8536        netdev_for_each_lower_dev(dev, lower_dev, iter) {
8537                err = dev_get_port_parent_id(lower_dev, ppid, true);
8538                if (err)
8539                        break;
8540                if (!first.id_len)
8541                        first = *ppid;
8542                else if (memcmp(&first, ppid, sizeof(*ppid)))
8543                        return -EOPNOTSUPP;
8544        }
8545
8546        return err;
8547}
8548EXPORT_SYMBOL(dev_get_port_parent_id);
8549
8550/**
8551 *      netdev_port_same_parent_id - Indicate if two network devices have
8552 *      the same port parent identifier
8553 *      @a: first network device
8554 *      @b: second network device
8555 */
8556bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8557{
8558        struct netdev_phys_item_id a_id = { };
8559        struct netdev_phys_item_id b_id = { };
8560
8561        if (dev_get_port_parent_id(a, &a_id, true) ||
8562            dev_get_port_parent_id(b, &b_id, true))
8563                return false;
8564
8565        return netdev_phys_item_id_same(&a_id, &b_id);
8566}
8567EXPORT_SYMBOL(netdev_port_same_parent_id);
8568
8569/**
8570 *      dev_change_proto_down - set carrier according to proto_down.
8571 *
8572 *      @dev: device
8573 *      @proto_down: new value
8574 */
8575int dev_change_proto_down(struct net_device *dev, bool proto_down)
8576{
8577        if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8578                return -EOPNOTSUPP;
8579        if (!netif_device_present(dev))
8580                return -ENODEV;
8581        if (proto_down)
8582                netif_carrier_off(dev);
8583        else
8584                netif_carrier_on(dev);
8585        dev->proto_down = proto_down;
8586        return 0;
8587}
8588EXPORT_SYMBOL(dev_change_proto_down);
8589
8590/**
8591 *      dev_change_proto_down_reason - proto down reason
8592 *
8593 *      @dev: device
8594 *      @mask: proto down mask
8595 *      @value: proto down value
8596 */
8597void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8598                                  u32 value)
8599{
8600        int b;
8601
8602        if (!mask) {
8603                dev->proto_down_reason = value;
8604        } else {
8605                for_each_set_bit(b, &mask, 32) {
8606                        if (value & (1 << b))
8607                                dev->proto_down_reason |= BIT(b);
8608                        else
8609                                dev->proto_down_reason &= ~BIT(b);
8610                }
8611        }
8612}
8613EXPORT_SYMBOL(dev_change_proto_down_reason);
8614
8615struct bpf_xdp_link {
8616        struct bpf_link link;
8617        struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8618        int flags;
8619};
8620
8621static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8622{
8623        if (flags & XDP_FLAGS_HW_MODE)
8624                return XDP_MODE_HW;
8625        if (flags & XDP_FLAGS_DRV_MODE)
8626                return XDP_MODE_DRV;
8627        if (flags & XDP_FLAGS_SKB_MODE)
8628                return XDP_MODE_SKB;
8629        return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8630}
8631
8632static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8633{
8634        switch (mode) {
8635        case XDP_MODE_SKB:
8636                return generic_xdp_install;
8637        case XDP_MODE_DRV:
8638        case XDP_MODE_HW:
8639                return dev->netdev_ops->ndo_bpf;
8640        default:
8641                return NULL;
8642        }
8643}
8644
8645static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8646                                         enum bpf_xdp_mode mode)
8647{
8648        return dev->xdp_state[mode].link;
8649}
8650
8651static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8652                                     enum bpf_xdp_mode mode)
8653{
8654        struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8655
8656        if (link)
8657                return link->link.prog;
8658        return dev->xdp_state[mode].prog;
8659}
8660
8661u8 dev_xdp_prog_count(struct net_device *dev)
8662{
8663        u8 count = 0;
8664        int i;
8665
8666        for (i = 0; i < __MAX_XDP_MODE; i++)
8667                if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8668                        count++;
8669        return count;
8670}
8671EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8672
8673u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8674{
8675        struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8676
8677        return prog ? prog->aux->id : 0;
8678}
8679
8680static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8681                             struct bpf_xdp_link *link)
8682{
8683        dev->xdp_state[mode].link = link;
8684        dev->xdp_state[mode].prog = NULL;
8685}
8686
8687static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8688                             struct bpf_prog *prog)
8689{
8690        dev->xdp_state[mode].link = NULL;
8691        dev->xdp_state[mode].prog = prog;
8692}
8693
8694static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8695                           bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8696                           u32 flags, struct bpf_prog *prog)
8697{
8698        struct netdev_bpf xdp;
8699        int err;
8700
8701        memset(&xdp, 0, sizeof(xdp));
8702        xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8703        xdp.extack = extack;
8704        xdp.flags = flags;
8705        xdp.prog = prog;
8706
8707        /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8708         * "moved" into driver), so they don't increment it on their own, but
8709         * they do decrement refcnt when program is detached or replaced.
8710         * Given net_device also owns link/prog, we need to bump refcnt here
8711         * to prevent drivers from underflowing it.
8712         */
8713        if (prog)
8714                bpf_prog_inc(prog);
8715        err = bpf_op(dev, &xdp);
8716        if (err) {
8717                if (prog)
8718                        bpf_prog_put(prog);
8719                return err;
8720        }
8721
8722        if (mode != XDP_MODE_HW)
8723                bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8724
8725        return 0;
8726}
8727
8728static void dev_xdp_uninstall(struct net_device *dev)
8729{
8730        struct bpf_xdp_link *link;
8731        struct bpf_prog *prog;
8732        enum bpf_xdp_mode mode;
8733        bpf_op_t bpf_op;
8734
8735        ASSERT_RTNL();
8736
8737        for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8738                prog = dev_xdp_prog(dev, mode);
8739                if (!prog)
8740                        continue;
8741
8742                bpf_op = dev_xdp_bpf_op(dev, mode);
8743                if (!bpf_op)
8744                        continue;
8745
8746                WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8747
8748                /* auto-detach link from net device */
8749                link = dev_xdp_link(dev, mode);
8750                if (link)
8751                        link->dev = NULL;
8752                else
8753                        bpf_prog_put(prog);
8754
8755                dev_xdp_set_link(dev, mode, NULL);
8756        }
8757}
8758
8759static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8760                          struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8761                          struct bpf_prog *old_prog, u32 flags)
8762{
8763        unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
8764        struct bpf_prog *cur_prog;
8765        struct net_device *upper;
8766        struct list_head *iter;
8767        enum bpf_xdp_mode mode;
8768        bpf_op_t bpf_op;
8769        int err;
8770
8771        ASSERT_RTNL();
8772
8773        /* either link or prog attachment, never both */
8774        if (link && (new_prog || old_prog))
8775                return -EINVAL;
8776        /* link supports only XDP mode flags */
8777        if (link && (flags & ~XDP_FLAGS_MODES)) {
8778                NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8779                return -EINVAL;
8780        }
8781        /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
8782        if (num_modes > 1) {
8783                NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8784                return -EINVAL;
8785        }
8786        /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
8787        if (!num_modes && dev_xdp_prog_count(dev) > 1) {
8788                NL_SET_ERR_MSG(extack,
8789                               "More than one program loaded, unset mode is ambiguous");
8790                return -EINVAL;
8791        }
8792        /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8793        if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8794                NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8795                return -EINVAL;
8796        }
8797
8798        mode = dev_xdp_mode(dev, flags);
8799        /* can't replace attached link */
8800        if (dev_xdp_link(dev, mode)) {
8801                NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8802                return -EBUSY;
8803        }
8804
8805        /* don't allow if an upper device already has a program */
8806        netdev_for_each_upper_dev_rcu(dev, upper, iter) {
8807                if (dev_xdp_prog_count(upper) > 0) {
8808                        NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
8809                        return -EEXIST;
8810                }
8811        }
8812
8813        cur_prog = dev_xdp_prog(dev, mode);
8814        /* can't replace attached prog with link */
8815        if (link && cur_prog) {
8816                NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8817                return -EBUSY;
8818        }
8819        if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8820                NL_SET_ERR_MSG(extack, "Active program does not match expected");
8821                return -EEXIST;
8822        }
8823
8824        /* put effective new program into new_prog */
8825        if (link)
8826                new_prog = link->link.prog;
8827
8828        if (new_prog) {
8829                bool offload = mode == XDP_MODE_HW;
8830                enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8831                                               ? XDP_MODE_DRV : XDP_MODE_SKB;
8832
8833                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8834                        NL_SET_ERR_MSG(extack, "XDP program already attached");
8835                        return -EBUSY;
8836                }
8837                if (!offload && dev_xdp_prog(dev, other_mode)) {
8838                        NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8839                        return -EEXIST;
8840                }
8841                if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8842                        NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8843                        return -EINVAL;
8844                }
8845                if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8846                        NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8847                        return -EINVAL;
8848                }
8849                if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8850                        NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8851                        return -EINVAL;
8852                }
8853        }
8854
8855        /* don't call drivers if the effective program didn't change */
8856        if (new_prog != cur_prog) {
8857                bpf_op = dev_xdp_bpf_op(dev, mode);
8858                if (!bpf_op) {
8859                        NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8860                        return -EOPNOTSUPP;
8861                }
8862
8863                err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8864                if (err)
8865                        return err;
8866        }
8867
8868        if (link)
8869                dev_xdp_set_link(dev, mode, link);
8870        else
8871                dev_xdp_set_prog(dev, mode, new_prog);
8872        if (cur_prog)
8873                bpf_prog_put(cur_prog);
8874
8875        return 0;
8876}
8877
8878static int dev_xdp_attach_link(struct net_device *dev,
8879                               struct netlink_ext_ack *extack,
8880                               struct bpf_xdp_link *link)
8881{
8882        return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8883}
8884
8885static int dev_xdp_detach_link(struct net_device *dev,
8886                               struct netlink_ext_ack *extack,
8887                               struct bpf_xdp_link *link)
8888{
8889        enum bpf_xdp_mode mode;
8890        bpf_op_t bpf_op;
8891
8892        ASSERT_RTNL();
8893
8894        mode = dev_xdp_mode(dev, link->flags);
8895        if (dev_xdp_link(dev, mode) != link)
8896                return -EINVAL;
8897
8898        bpf_op = dev_xdp_bpf_op(dev, mode);
8899        WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8900        dev_xdp_set_link(dev, mode, NULL);
8901        return 0;
8902}
8903
8904static void bpf_xdp_link_release(struct bpf_link *link)
8905{
8906        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8907
8908        rtnl_lock();
8909
8910        /* if racing with net_device's tear down, xdp_link->dev might be
8911         * already NULL, in which case link was already auto-detached
8912         */
8913        if (xdp_link->dev) {
8914                WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
8915                xdp_link->dev = NULL;
8916        }
8917
8918        rtnl_unlock();
8919}
8920
8921static int bpf_xdp_link_detach(struct bpf_link *link)
8922{
8923        bpf_xdp_link_release(link);
8924        return 0;
8925}
8926
8927static void bpf_xdp_link_dealloc(struct bpf_link *link)
8928{
8929        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8930
8931        kfree(xdp_link);
8932}
8933
8934static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
8935                                     struct seq_file *seq)
8936{
8937        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8938        u32 ifindex = 0;
8939
8940        rtnl_lock();
8941        if (xdp_link->dev)
8942                ifindex = xdp_link->dev->ifindex;
8943        rtnl_unlock();
8944
8945        seq_printf(seq, "ifindex:\t%u\n", ifindex);
8946}
8947
8948static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
8949                                       struct bpf_link_info *info)
8950{
8951        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8952        u32 ifindex = 0;
8953
8954        rtnl_lock();
8955        if (xdp_link->dev)
8956                ifindex = xdp_link->dev->ifindex;
8957        rtnl_unlock();
8958
8959        info->xdp.ifindex = ifindex;
8960        return 0;
8961}
8962
8963static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
8964                               struct bpf_prog *old_prog)
8965{
8966        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8967        enum bpf_xdp_mode mode;
8968        bpf_op_t bpf_op;
8969        int err = 0;
8970
8971        rtnl_lock();
8972
8973        /* link might have been auto-released already, so fail */
8974        if (!xdp_link->dev) {
8975                err = -ENOLINK;
8976                goto out_unlock;
8977        }
8978
8979        if (old_prog && link->prog != old_prog) {
8980                err = -EPERM;
8981                goto out_unlock;
8982        }
8983        old_prog = link->prog;
8984        if (old_prog->type != new_prog->type ||
8985            old_prog->expected_attach_type != new_prog->expected_attach_type) {
8986                err = -EINVAL;
8987                goto out_unlock;
8988        }
8989
8990        if (old_prog == new_prog) {
8991                /* no-op, don't disturb drivers */
8992                bpf_prog_put(new_prog);
8993                goto out_unlock;
8994        }
8995
8996        mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
8997        bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
8998        err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
8999                              xdp_link->flags, new_prog);
9000        if (err)
9001                goto out_unlock;
9002
9003        old_prog = xchg(&link->prog, new_prog);
9004        bpf_prog_put(old_prog);
9005
9006out_unlock:
9007        rtnl_unlock();
9008        return err;
9009}
9010
9011static const struct bpf_link_ops bpf_xdp_link_lops = {
9012        .release = bpf_xdp_link_release,
9013        .dealloc = bpf_xdp_link_dealloc,
9014        .detach = bpf_xdp_link_detach,
9015        .show_fdinfo = bpf_xdp_link_show_fdinfo,
9016        .fill_link_info = bpf_xdp_link_fill_link_info,
9017        .update_prog = bpf_xdp_link_update,
9018};
9019
9020int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9021{
9022        struct net *net = current->nsproxy->net_ns;
9023        struct bpf_link_primer link_primer;
9024        struct bpf_xdp_link *link;
9025        struct net_device *dev;
9026        int err, fd;
9027
9028        rtnl_lock();
9029        dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9030        if (!dev) {
9031                rtnl_unlock();
9032                return -EINVAL;
9033        }
9034
9035        link = kzalloc(sizeof(*link), GFP_USER);
9036        if (!link) {
9037                err = -ENOMEM;
9038                goto unlock;
9039        }
9040
9041        bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9042        link->dev = dev;
9043        link->flags = attr->link_create.flags;
9044
9045        err = bpf_link_prime(&link->link, &link_primer);
9046        if (err) {
9047                kfree(link);
9048                goto unlock;
9049        }
9050
9051        err = dev_xdp_attach_link(dev, NULL, link);
9052        rtnl_unlock();
9053
9054        if (err) {
9055                link->dev = NULL;
9056                bpf_link_cleanup(&link_primer);
9057                goto out_put_dev;
9058        }
9059
9060        fd = bpf_link_settle(&link_primer);
9061        /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9062        dev_put(dev);
9063        return fd;
9064
9065unlock:
9066        rtnl_unlock();
9067
9068out_put_dev:
9069        dev_put(dev);
9070        return err;
9071}
9072
9073/**
9074 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9075 *      @dev: device
9076 *      @extack: netlink extended ack
9077 *      @fd: new program fd or negative value to clear
9078 *      @expected_fd: old program fd that userspace expects to replace or clear
9079 *      @flags: xdp-related flags
9080 *
9081 *      Set or clear a bpf program for a device
9082 */
9083int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9084                      int fd, int expected_fd, u32 flags)
9085{
9086        enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9087        struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9088        int err;
9089
9090        ASSERT_RTNL();
9091
9092        if (fd >= 0) {
9093                new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9094                                                 mode != XDP_MODE_SKB);
9095                if (IS_ERR(new_prog))
9096                        return PTR_ERR(new_prog);
9097        }
9098
9099        if (expected_fd >= 0) {
9100                old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9101                                                 mode != XDP_MODE_SKB);
9102                if (IS_ERR(old_prog)) {
9103                        err = PTR_ERR(old_prog);
9104                        old_prog = NULL;
9105                        goto err_out;
9106                }
9107        }
9108
9109        err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9110
9111err_out:
9112        if (err && new_prog)
9113                bpf_prog_put(new_prog);
9114        if (old_prog)
9115                bpf_prog_put(old_prog);
9116        return err;
9117}
9118
9119/**
9120 *      dev_new_index   -       allocate an ifindex
9121 *      @net: the applicable net namespace
9122 *
9123 *      Returns a suitable unique value for a new device interface
9124 *      number.  The caller must hold the rtnl semaphore or the
9125 *      dev_base_lock to be sure it remains unique.
9126 */
9127static int dev_new_index(struct net *net)
9128{
9129        int ifindex = net->ifindex;
9130
9131        for (;;) {
9132                if (++ifindex <= 0)
9133                        ifindex = 1;
9134                if (!__dev_get_by_index(net, ifindex))
9135                        return net->ifindex = ifindex;
9136        }
9137}
9138
9139/* Delayed registration/unregisteration */
9140static LIST_HEAD(net_todo_list);
9141DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9142
9143static void net_set_todo(struct net_device *dev)
9144{
9145        list_add_tail(&dev->todo_list, &net_todo_list);
9146        dev_net(dev)->dev_unreg_count++;
9147}
9148
9149static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9150        struct net_device *upper, netdev_features_t features)
9151{
9152        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9153        netdev_features_t feature;
9154        int feature_bit;
9155
9156        for_each_netdev_feature(upper_disables, feature_bit) {
9157                feature = __NETIF_F_BIT(feature_bit);
9158                if (!(upper->wanted_features & feature)
9159                    && (features & feature)) {
9160                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9161                                   &feature, upper->name);
9162                        features &= ~feature;
9163                }
9164        }
9165
9166        return features;
9167}
9168
9169static void netdev_sync_lower_features(struct net_device *upper,
9170        struct net_device *lower, netdev_features_t features)
9171{
9172        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9173        netdev_features_t feature;
9174        int feature_bit;
9175
9176        for_each_netdev_feature(upper_disables, feature_bit) {
9177                feature = __NETIF_F_BIT(feature_bit);
9178                if (!(features & feature) && (lower->features & feature)) {
9179                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9180                                   &feature, lower->name);
9181                        lower->wanted_features &= ~feature;
9182                        __netdev_update_features(lower);
9183
9184                        if (unlikely(lower->features & feature))
9185                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9186                                            &feature, lower->name);
9187                        else
9188                                netdev_features_change(lower);
9189                }
9190        }
9191}
9192
9193static netdev_features_t netdev_fix_features(struct net_device *dev,
9194        netdev_features_t features)
9195{
9196        /* Fix illegal checksum combinations */
9197        if ((features & NETIF_F_HW_CSUM) &&
9198            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9199                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9200                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9201        }
9202
9203        /* TSO requires that SG is present as well. */
9204        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9205                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9206                features &= ~NETIF_F_ALL_TSO;
9207        }
9208
9209        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9210                                        !(features & NETIF_F_IP_CSUM)) {
9211                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9212                features &= ~NETIF_F_TSO;
9213                features &= ~NETIF_F_TSO_ECN;
9214        }
9215
9216        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9217                                         !(features & NETIF_F_IPV6_CSUM)) {
9218                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9219                features &= ~NETIF_F_TSO6;
9220        }
9221
9222        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9223        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9224                features &= ~NETIF_F_TSO_MANGLEID;
9225
9226        /* TSO ECN requires that TSO is present as well. */
9227        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9228                features &= ~NETIF_F_TSO_ECN;
9229
9230        /* Software GSO depends on SG. */
9231        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9232                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9233                features &= ~NETIF_F_GSO;
9234        }
9235
9236        /* GSO partial features require GSO partial be set */
9237        if ((features & dev->gso_partial_features) &&
9238            !(features & NETIF_F_GSO_PARTIAL)) {
9239                netdev_dbg(dev,
9240                           "Dropping partially supported GSO features since no GSO partial.\n");
9241                features &= ~dev->gso_partial_features;
9242        }
9243
9244        if (!(features & NETIF_F_RXCSUM)) {
9245                /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9246                 * successfully merged by hardware must also have the
9247                 * checksum verified by hardware.  If the user does not
9248                 * want to enable RXCSUM, logically, we should disable GRO_HW.
9249                 */
9250                if (features & NETIF_F_GRO_HW) {
9251                        netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9252                        features &= ~NETIF_F_GRO_HW;
9253                }
9254        }
9255
9256        /* LRO/HW-GRO features cannot be combined with RX-FCS */
9257        if (features & NETIF_F_RXFCS) {
9258                if (features & NETIF_F_LRO) {
9259                        netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9260                        features &= ~NETIF_F_LRO;
9261                }
9262
9263                if (features & NETIF_F_GRO_HW) {
9264                        netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9265                        features &= ~NETIF_F_GRO_HW;
9266                }
9267        }
9268
9269        if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9270                netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9271                features &= ~NETIF_F_LRO;
9272        }
9273
9274        if (features & NETIF_F_HW_TLS_TX) {
9275                bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9276                        (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9277                bool hw_csum = features & NETIF_F_HW_CSUM;
9278
9279                if (!ip_csum && !hw_csum) {
9280                        netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9281                        features &= ~NETIF_F_HW_TLS_TX;
9282                }
9283        }
9284
9285        if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9286                netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9287                features &= ~NETIF_F_HW_TLS_RX;
9288        }
9289
9290        return features;
9291}
9292
9293int __netdev_update_features(struct net_device *dev)
9294{
9295        struct net_device *upper, *lower;
9296        netdev_features_t features;
9297        struct list_head *iter;
9298        int err = -1;
9299
9300        ASSERT_RTNL();
9301
9302        features = netdev_get_wanted_features(dev);
9303
9304        if (dev->netdev_ops->ndo_fix_features)
9305                features = dev->netdev_ops->ndo_fix_features(dev, features);
9306
9307        /* driver might be less strict about feature dependencies */
9308        features = netdev_fix_features(dev, features);
9309
9310        /* some features can't be enabled if they're off on an upper device */
9311        netdev_for_each_upper_dev_rcu(dev, upper, iter)
9312                features = netdev_sync_upper_features(dev, upper, features);
9313
9314        if (dev->features == features)
9315                goto sync_lower;
9316
9317        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9318                &dev->features, &features);
9319
9320        if (dev->netdev_ops->ndo_set_features)
9321                err = dev->netdev_ops->ndo_set_features(dev, features);
9322        else
9323                err = 0;
9324
9325        if (unlikely(err < 0)) {
9326                netdev_err(dev,
9327                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
9328                        err, &features, &dev->features);
9329                /* return non-0 since some features might have changed and
9330                 * it's better to fire a spurious notification than miss it
9331                 */
9332                return -1;
9333        }
9334
9335sync_lower:
9336        /* some features must be disabled on lower devices when disabled
9337         * on an upper device (think: bonding master or bridge)
9338         */
9339        netdev_for_each_lower_dev(dev, lower, iter)
9340                netdev_sync_lower_features(dev, lower, features);
9341
9342        if (!err) {
9343                netdev_features_t diff = features ^ dev->features;
9344
9345                if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9346                        /* udp_tunnel_{get,drop}_rx_info both need
9347                         * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9348                         * device, or they won't do anything.
9349                         * Thus we need to update dev->features
9350                         * *before* calling udp_tunnel_get_rx_info,
9351                         * but *after* calling udp_tunnel_drop_rx_info.
9352                         */
9353                        if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9354                                dev->features = features;
9355                                udp_tunnel_get_rx_info(dev);
9356                        } else {
9357                                udp_tunnel_drop_rx_info(dev);
9358                        }
9359                }
9360
9361                if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9362                        if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9363                                dev->features = features;
9364                                err |= vlan_get_rx_ctag_filter_info(dev);
9365                        } else {
9366                                vlan_drop_rx_ctag_filter_info(dev);
9367                        }
9368                }
9369
9370                if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9371                        if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9372                                dev->features = features;
9373                                err |= vlan_get_rx_stag_filter_info(dev);
9374                        } else {
9375                                vlan_drop_rx_stag_filter_info(dev);
9376                        }
9377                }
9378
9379                dev->features = features;
9380        }
9381
9382        return err < 0 ? 0 : 1;
9383}
9384
9385/**
9386 *      netdev_update_features - recalculate device features
9387 *      @dev: the device to check
9388 *
9389 *      Recalculate dev->features set and send notifications if it
9390 *      has changed. Should be called after driver or hardware dependent
9391 *      conditions might have changed that influence the features.
9392 */
9393void netdev_update_features(struct net_device *dev)
9394{
9395        if (__netdev_update_features(dev))
9396                netdev_features_change(dev);
9397}
9398EXPORT_SYMBOL(netdev_update_features);
9399
9400/**
9401 *      netdev_change_features - recalculate device features
9402 *      @dev: the device to check
9403 *
9404 *      Recalculate dev->features set and send notifications even
9405 *      if they have not changed. Should be called instead of
9406 *      netdev_update_features() if also dev->vlan_features might
9407 *      have changed to allow the changes to be propagated to stacked
9408 *      VLAN devices.
9409 */
9410void netdev_change_features(struct net_device *dev)
9411{
9412        __netdev_update_features(dev);
9413        netdev_features_change(dev);
9414}
9415EXPORT_SYMBOL(netdev_change_features);
9416
9417/**
9418 *      netif_stacked_transfer_operstate -      transfer operstate
9419 *      @rootdev: the root or lower level device to transfer state from
9420 *      @dev: the device to transfer operstate to
9421 *
9422 *      Transfer operational state from root to device. This is normally
9423 *      called when a stacking relationship exists between the root
9424 *      device and the device(a leaf device).
9425 */
9426void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9427                                        struct net_device *dev)
9428{
9429        if (rootdev->operstate == IF_OPER_DORMANT)
9430                netif_dormant_on(dev);
9431        else
9432                netif_dormant_off(dev);
9433
9434        if (rootdev->operstate == IF_OPER_TESTING)
9435                netif_testing_on(dev);
9436        else
9437                netif_testing_off(dev);
9438
9439        if (netif_carrier_ok(rootdev))
9440                netif_carrier_on(dev);
9441        else
9442                netif_carrier_off(dev);
9443}
9444EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9445
9446static int netif_alloc_rx_queues(struct net_device *dev)
9447{
9448        unsigned int i, count = dev->num_rx_queues;
9449        struct netdev_rx_queue *rx;
9450        size_t sz = count * sizeof(*rx);
9451        int err = 0;
9452
9453        BUG_ON(count < 1);
9454
9455        rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9456        if (!rx)
9457                return -ENOMEM;
9458
9459        dev->_rx = rx;
9460
9461        for (i = 0; i < count; i++) {
9462                rx[i].dev = dev;
9463
9464                /* XDP RX-queue setup */
9465                err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9466                if (err < 0)
9467                        goto err_rxq_info;
9468        }
9469        return 0;
9470
9471err_rxq_info:
9472        /* Rollback successful reg's and free other resources */
9473        while (i--)
9474                xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9475        kvfree(dev->_rx);
9476        dev->_rx = NULL;
9477        return err;
9478}
9479
9480static void netif_free_rx_queues(struct net_device *dev)
9481{
9482        unsigned int i, count = dev->num_rx_queues;
9483
9484        /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9485        if (!dev->_rx)
9486                return;
9487
9488        for (i = 0; i < count; i++)
9489                xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9490
9491        kvfree(dev->_rx);
9492}
9493
9494static void netdev_init_one_queue(struct net_device *dev,
9495                                  struct netdev_queue *queue, void *_unused)
9496{
9497        /* Initialize queue lock */
9498        spin_lock_init(&queue->_xmit_lock);
9499        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9500        queue->xmit_lock_owner = -1;
9501        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9502        queue->dev = dev;
9503#ifdef CONFIG_BQL
9504        dql_init(&queue->dql, HZ);
9505#endif
9506}
9507
9508static void netif_free_tx_queues(struct net_device *dev)
9509{
9510        kvfree(dev->_tx);
9511}
9512
9513static int netif_alloc_netdev_queues(struct net_device *dev)
9514{
9515        unsigned int count = dev->num_tx_queues;
9516        struct netdev_queue *tx;
9517        size_t sz = count * sizeof(*tx);
9518
9519        if (count < 1 || count > 0xffff)
9520                return -EINVAL;
9521
9522        tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9523        if (!tx)
9524                return -ENOMEM;
9525
9526        dev->_tx = tx;
9527
9528        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9529        spin_lock_init(&dev->tx_global_lock);
9530
9531        return 0;
9532}
9533
9534void netif_tx_stop_all_queues(struct net_device *dev)
9535{
9536        unsigned int i;
9537
9538        for (i = 0; i < dev->num_tx_queues; i++) {
9539                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9540
9541                netif_tx_stop_queue(txq);
9542        }
9543}
9544EXPORT_SYMBOL(netif_tx_stop_all_queues);
9545
9546/**
9547 *      register_netdevice      - register a network device
9548 *      @dev: device to register
9549 *
9550 *      Take a completed network device structure and add it to the kernel
9551 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9552 *      chain. 0 is returned on success. A negative errno code is returned
9553 *      on a failure to set up the device, or if the name is a duplicate.
9554 *
9555 *      Callers must hold the rtnl semaphore. You may want
9556 *      register_netdev() instead of this.
9557 *
9558 *      BUGS:
9559 *      The locking appears insufficient to guarantee two parallel registers
9560 *      will not get the same name.
9561 */
9562
9563int register_netdevice(struct net_device *dev)
9564{
9565        int ret;
9566        struct net *net = dev_net(dev);
9567
9568        BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9569                     NETDEV_FEATURE_COUNT);
9570        BUG_ON(dev_boot_phase);
9571        ASSERT_RTNL();
9572
9573        might_sleep();
9574
9575        /* When net_device's are persistent, this will be fatal. */
9576        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9577        BUG_ON(!net);
9578
9579        ret = ethtool_check_ops(dev->ethtool_ops);
9580        if (ret)
9581                return ret;
9582
9583        spin_lock_init(&dev->addr_list_lock);
9584        netdev_set_addr_lockdep_class(dev);
9585
9586        ret = dev_get_valid_name(net, dev, dev->name);
9587        if (ret < 0)
9588                goto out;
9589
9590        ret = -ENOMEM;
9591        dev->name_node = netdev_name_node_head_alloc(dev);
9592        if (!dev->name_node)
9593                goto out;
9594
9595        /* Init, if this function is available */
9596        if (dev->netdev_ops->ndo_init) {
9597                ret = dev->netdev_ops->ndo_init(dev);
9598                if (ret) {
9599                        if (ret > 0)
9600                                ret = -EIO;
9601                        goto err_free_name;
9602                }
9603        }
9604
9605        if (((dev->hw_features | dev->features) &
9606             NETIF_F_HW_VLAN_CTAG_FILTER) &&
9607            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9608             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9609                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9610                ret = -EINVAL;
9611                goto err_uninit;
9612        }
9613
9614        ret = -EBUSY;
9615        if (!dev->ifindex)
9616                dev->ifindex = dev_new_index(net);
9617        else if (__dev_get_by_index(net, dev->ifindex))
9618                goto err_uninit;
9619
9620        /* Transfer changeable features to wanted_features and enable
9621         * software offloads (GSO and GRO).
9622         */
9623        dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9624        dev->features |= NETIF_F_SOFT_FEATURES;
9625
9626        if (dev->udp_tunnel_nic_info) {
9627                dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9628                dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9629        }
9630
9631        dev->wanted_features = dev->features & dev->hw_features;
9632
9633        if (!(dev->flags & IFF_LOOPBACK))
9634                dev->hw_features |= NETIF_F_NOCACHE_COPY;
9635
9636        /* If IPv4 TCP segmentation offload is supported we should also
9637         * allow the device to enable segmenting the frame with the option
9638         * of ignoring a static IP ID value.  This doesn't enable the
9639         * feature itself but allows the user to enable it later.
9640         */
9641        if (dev->hw_features & NETIF_F_TSO)
9642                dev->hw_features |= NETIF_F_TSO_MANGLEID;
9643        if (dev->vlan_features & NETIF_F_TSO)
9644                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9645        if (dev->mpls_features & NETIF_F_TSO)
9646                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9647        if (dev->hw_enc_features & NETIF_F_TSO)
9648                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9649
9650        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9651         */
9652        dev->vlan_features |= NETIF_F_HIGHDMA;
9653
9654        /* Make NETIF_F_SG inheritable to tunnel devices.
9655         */
9656        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9657
9658        /* Make NETIF_F_SG inheritable to MPLS.
9659         */
9660        dev->mpls_features |= NETIF_F_SG;
9661
9662        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9663        ret = notifier_to_errno(ret);
9664        if (ret)
9665                goto err_uninit;
9666
9667        ret = netdev_register_kobject(dev);
9668        if (ret) {
9669                dev->reg_state = NETREG_UNREGISTERED;
9670                goto err_uninit;
9671        }
9672        dev->reg_state = NETREG_REGISTERED;
9673
9674        __netdev_update_features(dev);
9675
9676        /*
9677         *      Default initial state at registry is that the
9678         *      device is present.
9679         */
9680
9681        set_bit(__LINK_STATE_PRESENT, &dev->state);
9682
9683        linkwatch_init_dev(dev);
9684
9685        dev_init_scheduler(dev);
9686        dev_hold(dev);
9687        list_netdevice(dev);
9688        add_device_randomness(dev->dev_addr, dev->addr_len);
9689
9690        /* If the device has permanent device address, driver should
9691         * set dev_addr and also addr_assign_type should be set to
9692         * NET_ADDR_PERM (default value).
9693         */
9694        if (dev->addr_assign_type == NET_ADDR_PERM)
9695                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9696
9697        /* Notify protocols, that a new device appeared. */
9698        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9699        ret = notifier_to_errno(ret);
9700        if (ret) {
9701                /* Expect explicit free_netdev() on failure */
9702                dev->needs_free_netdev = false;
9703                unregister_netdevice_queue(dev, NULL);
9704                goto out;
9705        }
9706        /*
9707         *      Prevent userspace races by waiting until the network
9708         *      device is fully setup before sending notifications.
9709         */
9710        if (!dev->rtnl_link_ops ||
9711            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9712                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9713
9714out:
9715        return ret;
9716
9717err_uninit:
9718        if (dev->netdev_ops->ndo_uninit)
9719                dev->netdev_ops->ndo_uninit(dev);
9720        if (dev->priv_destructor)
9721                dev->priv_destructor(dev);
9722err_free_name:
9723        netdev_name_node_free(dev->name_node);
9724        goto out;
9725}
9726EXPORT_SYMBOL(register_netdevice);
9727
9728/**
9729 *      init_dummy_netdev       - init a dummy network device for NAPI
9730 *      @dev: device to init
9731 *
9732 *      This takes a network device structure and initialize the minimum
9733 *      amount of fields so it can be used to schedule NAPI polls without
9734 *      registering a full blown interface. This is to be used by drivers
9735 *      that need to tie several hardware interfaces to a single NAPI
9736 *      poll scheduler due to HW limitations.
9737 */
9738int init_dummy_netdev(struct net_device *dev)
9739{
9740        /* Clear everything. Note we don't initialize spinlocks
9741         * are they aren't supposed to be taken by any of the
9742         * NAPI code and this dummy netdev is supposed to be
9743         * only ever used for NAPI polls
9744         */
9745        memset(dev, 0, sizeof(struct net_device));
9746
9747        /* make sure we BUG if trying to hit standard
9748         * register/unregister code path
9749         */
9750        dev->reg_state = NETREG_DUMMY;
9751
9752        /* NAPI wants this */
9753        INIT_LIST_HEAD(&dev->napi_list);
9754
9755        /* a dummy interface is started by default */
9756        set_bit(__LINK_STATE_PRESENT, &dev->state);
9757        set_bit(__LINK_STATE_START, &dev->state);
9758
9759        /* napi_busy_loop stats accounting wants this */
9760        dev_net_set(dev, &init_net);
9761
9762        /* Note : We dont allocate pcpu_refcnt for dummy devices,
9763         * because users of this 'device' dont need to change
9764         * its refcount.
9765         */
9766
9767        return 0;
9768}
9769EXPORT_SYMBOL_GPL(init_dummy_netdev);
9770
9771
9772/**
9773 *      register_netdev - register a network device
9774 *      @dev: device to register
9775 *
9776 *      Take a completed network device structure and add it to the kernel
9777 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9778 *      chain. 0 is returned on success. A negative errno code is returned
9779 *      on a failure to set up the device, or if the name is a duplicate.
9780 *
9781 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9782 *      and expands the device name if you passed a format string to
9783 *      alloc_netdev.
9784 */
9785int register_netdev(struct net_device *dev)
9786{
9787        int err;
9788
9789        if (rtnl_lock_killable())
9790                return -EINTR;
9791        err = register_netdevice(dev);
9792        rtnl_unlock();
9793        return err;
9794}
9795EXPORT_SYMBOL(register_netdev);
9796
9797int netdev_refcnt_read(const struct net_device *dev)
9798{
9799#ifdef CONFIG_PCPU_DEV_REFCNT
9800        int i, refcnt = 0;
9801
9802        for_each_possible_cpu(i)
9803                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9804        return refcnt;
9805#else
9806        return refcount_read(&dev->dev_refcnt);
9807#endif
9808}
9809EXPORT_SYMBOL(netdev_refcnt_read);
9810
9811int netdev_unregister_timeout_secs __read_mostly = 10;
9812
9813#define WAIT_REFS_MIN_MSECS 1
9814#define WAIT_REFS_MAX_MSECS 250
9815/**
9816 * netdev_wait_allrefs - wait until all references are gone.
9817 * @dev: target net_device
9818 *
9819 * This is called when unregistering network devices.
9820 *
9821 * Any protocol or device that holds a reference should register
9822 * for netdevice notification, and cleanup and put back the
9823 * reference if they receive an UNREGISTER event.
9824 * We can get stuck here if buggy protocols don't correctly
9825 * call dev_put.
9826 */
9827static void netdev_wait_allrefs(struct net_device *dev)
9828{
9829        unsigned long rebroadcast_time, warning_time;
9830        int wait = 0, refcnt;
9831
9832        linkwatch_forget_dev(dev);
9833
9834        rebroadcast_time = warning_time = jiffies;
9835        refcnt = netdev_refcnt_read(dev);
9836
9837        while (refcnt != 1) {
9838                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9839                        rtnl_lock();
9840
9841                        /* Rebroadcast unregister notification */
9842                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9843
9844                        __rtnl_unlock();
9845                        rcu_barrier();
9846                        rtnl_lock();
9847
9848                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9849                                     &dev->state)) {
9850                                /* We must not have linkwatch events
9851                                 * pending on unregister. If this
9852                                 * happens, we simply run the queue
9853                                 * unscheduled, resulting in a noop
9854                                 * for this device.
9855                                 */
9856                                linkwatch_run_queue();
9857                        }
9858
9859                        __rtnl_unlock();
9860
9861                        rebroadcast_time = jiffies;
9862                }
9863
9864                if (!wait) {
9865                        rcu_barrier();
9866                        wait = WAIT_REFS_MIN_MSECS;
9867                } else {
9868                        msleep(wait);
9869                        wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
9870                }
9871
9872                refcnt = netdev_refcnt_read(dev);
9873
9874                if (refcnt != 1 &&
9875                    time_after(jiffies, warning_time +
9876                               netdev_unregister_timeout_secs * HZ)) {
9877                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9878                                 dev->name, refcnt);
9879                        ref_tracker_dir_print(&dev->refcnt_tracker, 10);
9880                        warning_time = jiffies;
9881                }
9882        }
9883}
9884
9885/* The sequence is:
9886 *
9887 *      rtnl_lock();
9888 *      ...
9889 *      register_netdevice(x1);
9890 *      register_netdevice(x2);
9891 *      ...
9892 *      unregister_netdevice(y1);
9893 *      unregister_netdevice(y2);
9894 *      ...
9895 *      rtnl_unlock();
9896 *      free_netdev(y1);
9897 *      free_netdev(y2);
9898 *
9899 * We are invoked by rtnl_unlock().
9900 * This allows us to deal with problems:
9901 * 1) We can delete sysfs objects which invoke hotplug
9902 *    without deadlocking with linkwatch via keventd.
9903 * 2) Since we run with the RTNL semaphore not held, we can sleep
9904 *    safely in order to wait for the netdev refcnt to drop to zero.
9905 *
9906 * We must not return until all unregister events added during
9907 * the interval the lock was held have been completed.
9908 */
9909void netdev_run_todo(void)
9910{
9911        struct list_head list;
9912#ifdef CONFIG_LOCKDEP
9913        struct list_head unlink_list;
9914
9915        list_replace_init(&net_unlink_list, &unlink_list);
9916
9917        while (!list_empty(&unlink_list)) {
9918                struct net_device *dev = list_first_entry(&unlink_list,
9919                                                          struct net_device,
9920                                                          unlink_list);
9921                list_del_init(&dev->unlink_list);
9922                dev->nested_level = dev->lower_level - 1;
9923        }
9924#endif
9925
9926        /* Snapshot list, allow later requests */
9927        list_replace_init(&net_todo_list, &list);
9928
9929        __rtnl_unlock();
9930
9931
9932        /* Wait for rcu callbacks to finish before next phase */
9933        if (!list_empty(&list))
9934                rcu_barrier();
9935
9936        while (!list_empty(&list)) {
9937                struct net_device *dev
9938                        = list_first_entry(&list, struct net_device, todo_list);
9939                list_del(&dev->todo_list);
9940
9941                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9942                        pr_err("network todo '%s' but state %d\n",
9943                               dev->name, dev->reg_state);
9944                        dump_stack();
9945                        continue;
9946                }
9947
9948                dev->reg_state = NETREG_UNREGISTERED;
9949
9950                netdev_wait_allrefs(dev);
9951
9952                /* paranoia */
9953                BUG_ON(netdev_refcnt_read(dev) != 1);
9954                BUG_ON(!list_empty(&dev->ptype_all));
9955                BUG_ON(!list_empty(&dev->ptype_specific));
9956                WARN_ON(rcu_access_pointer(dev->ip_ptr));
9957                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9958#if IS_ENABLED(CONFIG_DECNET)
9959                WARN_ON(dev->dn_ptr);
9960#endif
9961                if (dev->priv_destructor)
9962                        dev->priv_destructor(dev);
9963                if (dev->needs_free_netdev)
9964                        free_netdev(dev);
9965
9966                /* Report a network device has been unregistered */
9967                rtnl_lock();
9968                dev_net(dev)->dev_unreg_count--;
9969                __rtnl_unlock();
9970                wake_up(&netdev_unregistering_wq);
9971
9972                /* Free network device */
9973                kobject_put(&dev->dev.kobj);
9974        }
9975}
9976
9977/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9978 * all the same fields in the same order as net_device_stats, with only
9979 * the type differing, but rtnl_link_stats64 may have additional fields
9980 * at the end for newer counters.
9981 */
9982void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9983                             const struct net_device_stats *netdev_stats)
9984{
9985#if BITS_PER_LONG == 64
9986        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9987        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9988        /* zero out counters that only exist in rtnl_link_stats64 */
9989        memset((char *)stats64 + sizeof(*netdev_stats), 0,
9990               sizeof(*stats64) - sizeof(*netdev_stats));
9991#else
9992        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9993        const unsigned long *src = (const unsigned long *)netdev_stats;
9994        u64 *dst = (u64 *)stats64;
9995
9996        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9997        for (i = 0; i < n; i++)
9998                dst[i] = src[i];
9999        /* zero out counters that only exist in rtnl_link_stats64 */
10000        memset((char *)stats64 + n * sizeof(u64), 0,
10001               sizeof(*stats64) - n * sizeof(u64));
10002#endif
10003}
10004EXPORT_SYMBOL(netdev_stats_to_stats64);
10005
10006/**
10007 *      dev_get_stats   - get network device statistics
10008 *      @dev: device to get statistics from
10009 *      @storage: place to store stats
10010 *
10011 *      Get network statistics from device. Return @storage.
10012 *      The device driver may provide its own method by setting
10013 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10014 *      otherwise the internal statistics structure is used.
10015 */
10016struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10017                                        struct rtnl_link_stats64 *storage)
10018{
10019        const struct net_device_ops *ops = dev->netdev_ops;
10020
10021        if (ops->ndo_get_stats64) {
10022                memset(storage, 0, sizeof(*storage));
10023                ops->ndo_get_stats64(dev, storage);
10024        } else if (ops->ndo_get_stats) {
10025                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10026        } else {
10027                netdev_stats_to_stats64(storage, &dev->stats);
10028        }
10029        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10030        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10031        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10032        return storage;
10033}
10034EXPORT_SYMBOL(dev_get_stats);
10035
10036/**
10037 *      dev_fetch_sw_netstats - get per-cpu network device statistics
10038 *      @s: place to store stats
10039 *      @netstats: per-cpu network stats to read from
10040 *
10041 *      Read per-cpu network statistics and populate the related fields in @s.
10042 */
10043void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10044                           const struct pcpu_sw_netstats __percpu *netstats)
10045{
10046        int cpu;
10047
10048        for_each_possible_cpu(cpu) {
10049                const struct pcpu_sw_netstats *stats;
10050                struct pcpu_sw_netstats tmp;
10051                unsigned int start;
10052
10053                stats = per_cpu_ptr(netstats, cpu);
10054                do {
10055                        start = u64_stats_fetch_begin_irq(&stats->syncp);
10056                        tmp.rx_packets = stats->rx_packets;
10057                        tmp.rx_bytes   = stats->rx_bytes;
10058                        tmp.tx_packets = stats->tx_packets;
10059                        tmp.tx_bytes   = stats->tx_bytes;
10060                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10061
10062                s->rx_packets += tmp.rx_packets;
10063                s->rx_bytes   += tmp.rx_bytes;
10064                s->tx_packets += tmp.tx_packets;
10065                s->tx_bytes   += tmp.tx_bytes;
10066        }
10067}
10068EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10069
10070/**
10071 *      dev_get_tstats64 - ndo_get_stats64 implementation
10072 *      @dev: device to get statistics from
10073 *      @s: place to store stats
10074 *
10075 *      Populate @s from dev->stats and dev->tstats. Can be used as
10076 *      ndo_get_stats64() callback.
10077 */
10078void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10079{
10080        netdev_stats_to_stats64(s, &dev->stats);
10081        dev_fetch_sw_netstats(s, dev->tstats);
10082}
10083EXPORT_SYMBOL_GPL(dev_get_tstats64);
10084
10085struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10086{
10087        struct netdev_queue *queue = dev_ingress_queue(dev);
10088
10089#ifdef CONFIG_NET_CLS_ACT
10090        if (queue)
10091                return queue;
10092        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10093        if (!queue)
10094                return NULL;
10095        netdev_init_one_queue(dev, queue, NULL);
10096        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10097        queue->qdisc_sleeping = &noop_qdisc;
10098        rcu_assign_pointer(dev->ingress_queue, queue);
10099#endif
10100        return queue;
10101}
10102
10103static const struct ethtool_ops default_ethtool_ops;
10104
10105void netdev_set_default_ethtool_ops(struct net_device *dev,
10106                                    const struct ethtool_ops *ops)
10107{
10108        if (dev->ethtool_ops == &default_ethtool_ops)
10109                dev->ethtool_ops = ops;
10110}
10111EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10112
10113void netdev_freemem(struct net_device *dev)
10114{
10115        char *addr = (char *)dev - dev->padded;
10116
10117        kvfree(addr);
10118}
10119
10120/**
10121 * alloc_netdev_mqs - allocate network device
10122 * @sizeof_priv: size of private data to allocate space for
10123 * @name: device name format string
10124 * @name_assign_type: origin of device name
10125 * @setup: callback to initialize device
10126 * @txqs: the number of TX subqueues to allocate
10127 * @rxqs: the number of RX subqueues to allocate
10128 *
10129 * Allocates a struct net_device with private data area for driver use
10130 * and performs basic initialization.  Also allocates subqueue structs
10131 * for each queue on the device.
10132 */
10133struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10134                unsigned char name_assign_type,
10135                void (*setup)(struct net_device *),
10136                unsigned int txqs, unsigned int rxqs)
10137{
10138        struct net_device *dev;
10139        unsigned int alloc_size;
10140        struct net_device *p;
10141
10142        BUG_ON(strlen(name) >= sizeof(dev->name));
10143
10144        if (txqs < 1) {
10145                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10146                return NULL;
10147        }
10148
10149        if (rxqs < 1) {
10150                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10151                return NULL;
10152        }
10153
10154        alloc_size = sizeof(struct net_device);
10155        if (sizeof_priv) {
10156                /* ensure 32-byte alignment of private area */
10157                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10158                alloc_size += sizeof_priv;
10159        }
10160        /* ensure 32-byte alignment of whole construct */
10161        alloc_size += NETDEV_ALIGN - 1;
10162
10163        p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10164        if (!p)
10165                return NULL;
10166
10167        dev = PTR_ALIGN(p, NETDEV_ALIGN);
10168        dev->padded = (char *)dev - (char *)p;
10169
10170        ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10171#ifdef CONFIG_PCPU_DEV_REFCNT
10172        dev->pcpu_refcnt = alloc_percpu(int);
10173        if (!dev->pcpu_refcnt)
10174                goto free_dev;
10175        dev_hold(dev);
10176#else
10177        refcount_set(&dev->dev_refcnt, 1);
10178#endif
10179
10180        if (dev_addr_init(dev))
10181                goto free_pcpu;
10182
10183        dev_mc_init(dev);
10184        dev_uc_init(dev);
10185
10186        dev_net_set(dev, &init_net);
10187
10188        dev->gso_max_size = GSO_MAX_SIZE;
10189        dev->gso_max_segs = GSO_MAX_SEGS;
10190        dev->gro_max_size = GRO_MAX_SIZE;
10191        dev->upper_level = 1;
10192        dev->lower_level = 1;
10193#ifdef CONFIG_LOCKDEP
10194        dev->nested_level = 0;
10195        INIT_LIST_HEAD(&dev->unlink_list);
10196#endif
10197
10198        INIT_LIST_HEAD(&dev->napi_list);
10199        INIT_LIST_HEAD(&dev->unreg_list);
10200        INIT_LIST_HEAD(&dev->close_list);
10201        INIT_LIST_HEAD(&dev->link_watch_list);
10202        INIT_LIST_HEAD(&dev->adj_list.upper);
10203        INIT_LIST_HEAD(&dev->adj_list.lower);
10204        INIT_LIST_HEAD(&dev->ptype_all);
10205        INIT_LIST_HEAD(&dev->ptype_specific);
10206        INIT_LIST_HEAD(&dev->net_notifier_list);
10207#ifdef CONFIG_NET_SCHED
10208        hash_init(dev->qdisc_hash);
10209#endif
10210        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10211        setup(dev);
10212
10213        if (!dev->tx_queue_len) {
10214                dev->priv_flags |= IFF_NO_QUEUE;
10215                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10216        }
10217
10218        dev->num_tx_queues = txqs;
10219        dev->real_num_tx_queues = txqs;
10220        if (netif_alloc_netdev_queues(dev))
10221                goto free_all;
10222
10223        dev->num_rx_queues = rxqs;
10224        dev->real_num_rx_queues = rxqs;
10225        if (netif_alloc_rx_queues(dev))
10226                goto free_all;
10227
10228        strcpy(dev->name, name);
10229        dev->name_assign_type = name_assign_type;
10230        dev->group = INIT_NETDEV_GROUP;
10231        if (!dev->ethtool_ops)
10232                dev->ethtool_ops = &default_ethtool_ops;
10233
10234        nf_hook_netdev_init(dev);
10235
10236        return dev;
10237
10238free_all:
10239        free_netdev(dev);
10240        return NULL;
10241
10242free_pcpu:
10243#ifdef CONFIG_PCPU_DEV_REFCNT
10244        free_percpu(dev->pcpu_refcnt);
10245free_dev:
10246#endif
10247        netdev_freemem(dev);
10248        return NULL;
10249}
10250EXPORT_SYMBOL(alloc_netdev_mqs);
10251
10252/**
10253 * free_netdev - free network device
10254 * @dev: device
10255 *
10256 * This function does the last stage of destroying an allocated device
10257 * interface. The reference to the device object is released. If this
10258 * is the last reference then it will be freed.Must be called in process
10259 * context.
10260 */
10261void free_netdev(struct net_device *dev)
10262{
10263        struct napi_struct *p, *n;
10264
10265        might_sleep();
10266
10267        /* When called immediately after register_netdevice() failed the unwind
10268         * handling may still be dismantling the device. Handle that case by
10269         * deferring the free.
10270         */
10271        if (dev->reg_state == NETREG_UNREGISTERING) {
10272                ASSERT_RTNL();
10273                dev->needs_free_netdev = true;
10274                return;
10275        }
10276
10277        netif_free_tx_queues(dev);
10278        netif_free_rx_queues(dev);
10279
10280        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10281
10282        /* Flush device addresses */
10283        dev_addr_flush(dev);
10284
10285        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10286                netif_napi_del(p);
10287
10288        ref_tracker_dir_exit(&dev->refcnt_tracker);
10289#ifdef CONFIG_PCPU_DEV_REFCNT
10290        free_percpu(dev->pcpu_refcnt);
10291        dev->pcpu_refcnt = NULL;
10292#endif
10293        free_percpu(dev->xdp_bulkq);
10294        dev->xdp_bulkq = NULL;
10295
10296        /*  Compatibility with error handling in drivers */
10297        if (dev->reg_state == NETREG_UNINITIALIZED) {
10298                netdev_freemem(dev);
10299                return;
10300        }
10301
10302        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10303        dev->reg_state = NETREG_RELEASED;
10304
10305        /* will free via device release */
10306        put_device(&dev->dev);
10307}
10308EXPORT_SYMBOL(free_netdev);
10309
10310/**
10311 *      synchronize_net -  Synchronize with packet receive processing
10312 *
10313 *      Wait for packets currently being received to be done.
10314 *      Does not block later packets from starting.
10315 */
10316void synchronize_net(void)
10317{
10318        might_sleep();
10319        if (rtnl_is_locked())
10320                synchronize_rcu_expedited();
10321        else
10322                synchronize_rcu();
10323}
10324EXPORT_SYMBOL(synchronize_net);
10325
10326/**
10327 *      unregister_netdevice_queue - remove device from the kernel
10328 *      @dev: device
10329 *      @head: list
10330 *
10331 *      This function shuts down a device interface and removes it
10332 *      from the kernel tables.
10333 *      If head not NULL, device is queued to be unregistered later.
10334 *
10335 *      Callers must hold the rtnl semaphore.  You may want
10336 *      unregister_netdev() instead of this.
10337 */
10338
10339void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10340{
10341        ASSERT_RTNL();
10342
10343        if (head) {
10344                list_move_tail(&dev->unreg_list, head);
10345        } else {
10346                LIST_HEAD(single);
10347
10348                list_add(&dev->unreg_list, &single);
10349                unregister_netdevice_many(&single);
10350        }
10351}
10352EXPORT_SYMBOL(unregister_netdevice_queue);
10353
10354/**
10355 *      unregister_netdevice_many - unregister many devices
10356 *      @head: list of devices
10357 *
10358 *  Note: As most callers use a stack allocated list_head,
10359 *  we force a list_del() to make sure stack wont be corrupted later.
10360 */
10361void unregister_netdevice_many(struct list_head *head)
10362{
10363        struct net_device *dev, *tmp;
10364        LIST_HEAD(close_head);
10365
10366        BUG_ON(dev_boot_phase);
10367        ASSERT_RTNL();
10368
10369        if (list_empty(head))
10370                return;
10371
10372        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10373                /* Some devices call without registering
10374                 * for initialization unwind. Remove those
10375                 * devices and proceed with the remaining.
10376                 */
10377                if (dev->reg_state == NETREG_UNINITIALIZED) {
10378                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10379                                 dev->name, dev);
10380
10381                        WARN_ON(1);
10382                        list_del(&dev->unreg_list);
10383                        continue;
10384                }
10385                dev->dismantle = true;
10386                BUG_ON(dev->reg_state != NETREG_REGISTERED);
10387        }
10388
10389        /* If device is running, close it first. */
10390        list_for_each_entry(dev, head, unreg_list)
10391                list_add_tail(&dev->close_list, &close_head);
10392        dev_close_many(&close_head, true);
10393
10394        list_for_each_entry(dev, head, unreg_list) {
10395                /* And unlink it from device chain. */
10396                unlist_netdevice(dev);
10397
10398                dev->reg_state = NETREG_UNREGISTERING;
10399        }
10400        flush_all_backlogs();
10401
10402        synchronize_net();
10403
10404        list_for_each_entry(dev, head, unreg_list) {
10405                struct sk_buff *skb = NULL;
10406
10407                /* Shutdown queueing discipline. */
10408                dev_shutdown(dev);
10409
10410                dev_xdp_uninstall(dev);
10411
10412                /* Notify protocols, that we are about to destroy
10413                 * this device. They should clean all the things.
10414                 */
10415                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10416
10417                if (!dev->rtnl_link_ops ||
10418                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10419                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10420                                                     GFP_KERNEL, NULL, 0);
10421
10422                /*
10423                 *      Flush the unicast and multicast chains
10424                 */
10425                dev_uc_flush(dev);
10426                dev_mc_flush(dev);
10427
10428                netdev_name_node_alt_flush(dev);
10429                netdev_name_node_free(dev->name_node);
10430
10431                if (dev->netdev_ops->ndo_uninit)
10432                        dev->netdev_ops->ndo_uninit(dev);
10433
10434                if (skb)
10435                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10436
10437                /* Notifier chain MUST detach us all upper devices. */
10438                WARN_ON(netdev_has_any_upper_dev(dev));
10439                WARN_ON(netdev_has_any_lower_dev(dev));
10440
10441                /* Remove entries from kobject tree */
10442                netdev_unregister_kobject(dev);
10443#ifdef CONFIG_XPS
10444                /* Remove XPS queueing entries */
10445                netif_reset_xps_queues_gt(dev, 0);
10446#endif
10447        }
10448
10449        synchronize_net();
10450
10451        list_for_each_entry(dev, head, unreg_list) {
10452                dev_put(dev);
10453                net_set_todo(dev);
10454        }
10455
10456        list_del(head);
10457}
10458EXPORT_SYMBOL(unregister_netdevice_many);
10459
10460/**
10461 *      unregister_netdev - remove device from the kernel
10462 *      @dev: device
10463 *
10464 *      This function shuts down a device interface and removes it
10465 *      from the kernel tables.
10466 *
10467 *      This is just a wrapper for unregister_netdevice that takes
10468 *      the rtnl semaphore.  In general you want to use this and not
10469 *      unregister_netdevice.
10470 */
10471void unregister_netdev(struct net_device *dev)
10472{
10473        rtnl_lock();
10474        unregister_netdevice(dev);
10475        rtnl_unlock();
10476}
10477EXPORT_SYMBOL(unregister_netdev);
10478
10479/**
10480 *      __dev_change_net_namespace - move device to different nethost namespace
10481 *      @dev: device
10482 *      @net: network namespace
10483 *      @pat: If not NULL name pattern to try if the current device name
10484 *            is already taken in the destination network namespace.
10485 *      @new_ifindex: If not zero, specifies device index in the target
10486 *                    namespace.
10487 *
10488 *      This function shuts down a device interface and moves it
10489 *      to a new network namespace. On success 0 is returned, on
10490 *      a failure a netagive errno code is returned.
10491 *
10492 *      Callers must hold the rtnl semaphore.
10493 */
10494
10495int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10496                               const char *pat, int new_ifindex)
10497{
10498        struct net *net_old = dev_net(dev);
10499        int err, new_nsid;
10500
10501        ASSERT_RTNL();
10502
10503        /* Don't allow namespace local devices to be moved. */
10504        err = -EINVAL;
10505        if (dev->features & NETIF_F_NETNS_LOCAL)
10506                goto out;
10507
10508        /* Ensure the device has been registrered */
10509        if (dev->reg_state != NETREG_REGISTERED)
10510                goto out;
10511
10512        /* Get out if there is nothing todo */
10513        err = 0;
10514        if (net_eq(net_old, net))
10515                goto out;
10516
10517        /* Pick the destination device name, and ensure
10518         * we can use it in the destination network namespace.
10519         */
10520        err = -EEXIST;
10521        if (netdev_name_in_use(net, dev->name)) {
10522                /* We get here if we can't use the current device name */
10523                if (!pat)
10524                        goto out;
10525                err = dev_get_valid_name(net, dev, pat);
10526                if (err < 0)
10527                        goto out;
10528        }
10529
10530        /* Check that new_ifindex isn't used yet. */
10531        err = -EBUSY;
10532        if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10533                goto out;
10534
10535        /*
10536         * And now a mini version of register_netdevice unregister_netdevice.
10537         */
10538
10539        /* If device is running close it first. */
10540        dev_close(dev);
10541
10542        /* And unlink it from device chain */
10543        unlist_netdevice(dev);
10544
10545        synchronize_net();
10546
10547        /* Shutdown queueing discipline. */
10548        dev_shutdown(dev);
10549
10550        /* Notify protocols, that we are about to destroy
10551         * this device. They should clean all the things.
10552         *
10553         * Note that dev->reg_state stays at NETREG_REGISTERED.
10554         * This is wanted because this way 8021q and macvlan know
10555         * the device is just moving and can keep their slaves up.
10556         */
10557        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10558        rcu_barrier();
10559
10560        new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10561        /* If there is an ifindex conflict assign a new one */
10562        if (!new_ifindex) {
10563                if (__dev_get_by_index(net, dev->ifindex))
10564                        new_ifindex = dev_new_index(net);
10565                else
10566                        new_ifindex = dev->ifindex;
10567        }
10568
10569        rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10570                            new_ifindex);
10571
10572        /*
10573         *      Flush the unicast and multicast chains
10574         */
10575        dev_uc_flush(dev);
10576        dev_mc_flush(dev);
10577
10578        /* Send a netdev-removed uevent to the old namespace */
10579        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10580        netdev_adjacent_del_links(dev);
10581
10582        /* Move per-net netdevice notifiers that are following the netdevice */
10583        move_netdevice_notifiers_dev_net(dev, net);
10584
10585        /* Actually switch the network namespace */
10586        dev_net_set(dev, net);
10587        dev->ifindex = new_ifindex;
10588
10589        /* Send a netdev-add uevent to the new namespace */
10590        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10591        netdev_adjacent_add_links(dev);
10592
10593        /* Fixup kobjects */
10594        err = device_rename(&dev->dev, dev->name);
10595        WARN_ON(err);
10596
10597        /* Adapt owner in case owning user namespace of target network
10598         * namespace is different from the original one.
10599         */
10600        err = netdev_change_owner(dev, net_old, net);
10601        WARN_ON(err);
10602
10603        /* Add the device back in the hashes */
10604        list_netdevice(dev);
10605
10606        /* Notify protocols, that a new device appeared. */
10607        call_netdevice_notifiers(NETDEV_REGISTER, dev);
10608
10609        /*
10610         *      Prevent userspace races by waiting until the network
10611         *      device is fully setup before sending notifications.
10612         */
10613        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10614
10615        synchronize_net();
10616        err = 0;
10617out:
10618        return err;
10619}
10620EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10621
10622static int dev_cpu_dead(unsigned int oldcpu)
10623{
10624        struct sk_buff **list_skb;
10625        struct sk_buff *skb;
10626        unsigned int cpu;
10627        struct softnet_data *sd, *oldsd, *remsd = NULL;
10628
10629        local_irq_disable();
10630        cpu = smp_processor_id();
10631        sd = &per_cpu(softnet_data, cpu);
10632        oldsd = &per_cpu(softnet_data, oldcpu);
10633
10634        /* Find end of our completion_queue. */
10635        list_skb = &sd->completion_queue;
10636        while (*list_skb)
10637                list_skb = &(*list_skb)->next;
10638        /* Append completion queue from offline CPU. */
10639        *list_skb = oldsd->completion_queue;
10640        oldsd->completion_queue = NULL;
10641
10642        /* Append output queue from offline CPU. */
10643        if (oldsd->output_queue) {
10644                *sd->output_queue_tailp = oldsd->output_queue;
10645                sd->output_queue_tailp = oldsd->output_queue_tailp;
10646                oldsd->output_queue = NULL;
10647                oldsd->output_queue_tailp = &oldsd->output_queue;
10648        }
10649        /* Append NAPI poll list from offline CPU, with one exception :
10650         * process_backlog() must be called by cpu owning percpu backlog.
10651         * We properly handle process_queue & input_pkt_queue later.
10652         */
10653        while (!list_empty(&oldsd->poll_list)) {
10654                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10655                                                            struct napi_struct,
10656                                                            poll_list);
10657
10658                list_del_init(&napi->poll_list);
10659                if (napi->poll == process_backlog)
10660                        napi->state = 0;
10661                else
10662                        ____napi_schedule(sd, napi);
10663        }
10664
10665        raise_softirq_irqoff(NET_TX_SOFTIRQ);
10666        local_irq_enable();
10667
10668#ifdef CONFIG_RPS
10669        remsd = oldsd->rps_ipi_list;
10670        oldsd->rps_ipi_list = NULL;
10671#endif
10672        /* send out pending IPI's on offline CPU */
10673        net_rps_send_ipi(remsd);
10674
10675        /* Process offline CPU's input_pkt_queue */
10676        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10677                netif_rx_ni(skb);
10678                input_queue_head_incr(oldsd);
10679        }
10680        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10681                netif_rx_ni(skb);
10682                input_queue_head_incr(oldsd);
10683        }
10684
10685        return 0;
10686}
10687
10688/**
10689 *      netdev_increment_features - increment feature set by one
10690 *      @all: current feature set
10691 *      @one: new feature set
10692 *      @mask: mask feature set
10693 *
10694 *      Computes a new feature set after adding a device with feature set
10695 *      @one to the master device with current feature set @all.  Will not
10696 *      enable anything that is off in @mask. Returns the new feature set.
10697 */
10698netdev_features_t netdev_increment_features(netdev_features_t all,
10699        netdev_features_t one, netdev_features_t mask)
10700{
10701        if (mask & NETIF_F_HW_CSUM)
10702                mask |= NETIF_F_CSUM_MASK;
10703        mask |= NETIF_F_VLAN_CHALLENGED;
10704
10705        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10706        all &= one | ~NETIF_F_ALL_FOR_ALL;
10707
10708        /* If one device supports hw checksumming, set for all. */
10709        if (all & NETIF_F_HW_CSUM)
10710                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10711
10712        return all;
10713}
10714EXPORT_SYMBOL(netdev_increment_features);
10715
10716static struct hlist_head * __net_init netdev_create_hash(void)
10717{
10718        int i;
10719        struct hlist_head *hash;
10720
10721        hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10722        if (hash != NULL)
10723                for (i = 0; i < NETDEV_HASHENTRIES; i++)
10724                        INIT_HLIST_HEAD(&hash[i]);
10725
10726        return hash;
10727}
10728
10729/* Initialize per network namespace state */
10730static int __net_init netdev_init(struct net *net)
10731{
10732        BUILD_BUG_ON(GRO_HASH_BUCKETS >
10733                     8 * sizeof_field(struct napi_struct, gro_bitmask));
10734
10735        if (net != &init_net)
10736                INIT_LIST_HEAD(&net->dev_base_head);
10737
10738        net->dev_name_head = netdev_create_hash();
10739        if (net->dev_name_head == NULL)
10740                goto err_name;
10741
10742        net->dev_index_head = netdev_create_hash();
10743        if (net->dev_index_head == NULL)
10744                goto err_idx;
10745
10746        RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10747
10748        return 0;
10749
10750err_idx:
10751        kfree(net->dev_name_head);
10752err_name:
10753        return -ENOMEM;
10754}
10755
10756/**
10757 *      netdev_drivername - network driver for the device
10758 *      @dev: network device
10759 *
10760 *      Determine network driver for device.
10761 */
10762const char *netdev_drivername(const struct net_device *dev)
10763{
10764        const struct device_driver *driver;
10765        const struct device *parent;
10766        const char *empty = "";
10767
10768        parent = dev->dev.parent;
10769        if (!parent)
10770                return empty;
10771
10772        driver = parent->driver;
10773        if (driver && driver->name)
10774                return driver->name;
10775        return empty;
10776}
10777
10778static void __netdev_printk(const char *level, const struct net_device *dev,
10779                            struct va_format *vaf)
10780{
10781        if (dev && dev->dev.parent) {
10782                dev_printk_emit(level[1] - '0',
10783                                dev->dev.parent,
10784                                "%s %s %s%s: %pV",
10785                                dev_driver_string(dev->dev.parent),
10786                                dev_name(dev->dev.parent),
10787                                netdev_name(dev), netdev_reg_state(dev),
10788                                vaf);
10789        } else if (dev) {
10790                printk("%s%s%s: %pV",
10791                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10792        } else {
10793                printk("%s(NULL net_device): %pV", level, vaf);
10794        }
10795}
10796
10797void netdev_printk(const char *level, const struct net_device *dev,
10798                   const char *format, ...)
10799{
10800        struct va_format vaf;
10801        va_list args;
10802
10803        va_start(args, format);
10804
10805        vaf.fmt = format;
10806        vaf.va = &args;
10807
10808        __netdev_printk(level, dev, &vaf);
10809
10810        va_end(args);
10811}
10812EXPORT_SYMBOL(netdev_printk);
10813
10814#define define_netdev_printk_level(func, level)                 \
10815void func(const struct net_device *dev, const char *fmt, ...)   \
10816{                                                               \
10817        struct va_format vaf;                                   \
10818        va_list args;                                           \
10819                                                                \
10820        va_start(args, fmt);                                    \
10821                                                                \
10822        vaf.fmt = fmt;                                          \
10823        vaf.va = &args;                                         \
10824                                                                \
10825        __netdev_printk(level, dev, &vaf);                      \
10826                                                                \
10827        va_end(args);                                           \
10828}                                                               \
10829EXPORT_SYMBOL(func);
10830
10831define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10832define_netdev_printk_level(netdev_alert, KERN_ALERT);
10833define_netdev_printk_level(netdev_crit, KERN_CRIT);
10834define_netdev_printk_level(netdev_err, KERN_ERR);
10835define_netdev_printk_level(netdev_warn, KERN_WARNING);
10836define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10837define_netdev_printk_level(netdev_info, KERN_INFO);
10838
10839static void __net_exit netdev_exit(struct net *net)
10840{
10841        kfree(net->dev_name_head);
10842        kfree(net->dev_index_head);
10843        if (net != &init_net)
10844                WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10845}
10846
10847static struct pernet_operations __net_initdata netdev_net_ops = {
10848        .init = netdev_init,
10849        .exit = netdev_exit,
10850};
10851
10852static void __net_exit default_device_exit(struct net *net)
10853{
10854        struct net_device *dev, *aux;
10855        /*
10856         * Push all migratable network devices back to the
10857         * initial network namespace
10858         */
10859        rtnl_lock();
10860        for_each_netdev_safe(net, dev, aux) {
10861                int err;
10862                char fb_name[IFNAMSIZ];
10863
10864                /* Ignore unmoveable devices (i.e. loopback) */
10865                if (dev->features & NETIF_F_NETNS_LOCAL)
10866                        continue;
10867
10868                /* Leave virtual devices for the generic cleanup */
10869                if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10870                        continue;
10871
10872                /* Push remaining network devices to init_net */
10873                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10874                if (netdev_name_in_use(&init_net, fb_name))
10875                        snprintf(fb_name, IFNAMSIZ, "dev%%d");
10876                err = dev_change_net_namespace(dev, &init_net, fb_name);
10877                if (err) {
10878                        pr_emerg("%s: failed to move %s to init_net: %d\n",
10879                                 __func__, dev->name, err);
10880                        BUG();
10881                }
10882        }
10883        rtnl_unlock();
10884}
10885
10886static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10887{
10888        /* Return with the rtnl_lock held when there are no network
10889         * devices unregistering in any network namespace in net_list.
10890         */
10891        struct net *net;
10892        bool unregistering;
10893        DEFINE_WAIT_FUNC(wait, woken_wake_function);
10894
10895        add_wait_queue(&netdev_unregistering_wq, &wait);
10896        for (;;) {
10897                unregistering = false;
10898                rtnl_lock();
10899                list_for_each_entry(net, net_list, exit_list) {
10900                        if (net->dev_unreg_count > 0) {
10901                                unregistering = true;
10902                                break;
10903                        }
10904                }
10905                if (!unregistering)
10906                        break;
10907                __rtnl_unlock();
10908
10909                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10910        }
10911        remove_wait_queue(&netdev_unregistering_wq, &wait);
10912}
10913
10914static void __net_exit default_device_exit_batch(struct list_head *net_list)
10915{
10916        /* At exit all network devices most be removed from a network
10917         * namespace.  Do this in the reverse order of registration.
10918         * Do this across as many network namespaces as possible to
10919         * improve batching efficiency.
10920         */
10921        struct net_device *dev;
10922        struct net *net;
10923        LIST_HEAD(dev_kill_list);
10924
10925        /* To prevent network device cleanup code from dereferencing
10926         * loopback devices or network devices that have been freed
10927         * wait here for all pending unregistrations to complete,
10928         * before unregistring the loopback device and allowing the
10929         * network namespace be freed.
10930         *
10931         * The netdev todo list containing all network devices
10932         * unregistrations that happen in default_device_exit_batch
10933         * will run in the rtnl_unlock() at the end of
10934         * default_device_exit_batch.
10935         */
10936        rtnl_lock_unregistering(net_list);
10937        list_for_each_entry(net, net_list, exit_list) {
10938                for_each_netdev_reverse(net, dev) {
10939                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10940                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10941                        else
10942                                unregister_netdevice_queue(dev, &dev_kill_list);
10943                }
10944        }
10945        unregister_netdevice_many(&dev_kill_list);
10946        rtnl_unlock();
10947}
10948
10949static struct pernet_operations __net_initdata default_device_ops = {
10950        .exit = default_device_exit,
10951        .exit_batch = default_device_exit_batch,
10952};
10953
10954/*
10955 *      Initialize the DEV module. At boot time this walks the device list and
10956 *      unhooks any devices that fail to initialise (normally hardware not
10957 *      present) and leaves us with a valid list of present and active devices.
10958 *
10959 */
10960
10961/*
10962 *       This is called single threaded during boot, so no need
10963 *       to take the rtnl semaphore.
10964 */
10965static int __init net_dev_init(void)
10966{
10967        int i, rc = -ENOMEM;
10968
10969        BUG_ON(!dev_boot_phase);
10970
10971        if (dev_proc_init())
10972                goto out;
10973
10974        if (netdev_kobject_init())
10975                goto out;
10976
10977        INIT_LIST_HEAD(&ptype_all);
10978        for (i = 0; i < PTYPE_HASH_SIZE; i++)
10979                INIT_LIST_HEAD(&ptype_base[i]);
10980
10981        if (register_pernet_subsys(&netdev_net_ops))
10982                goto out;
10983
10984        /*
10985         *      Initialise the packet receive queues.
10986         */
10987
10988        for_each_possible_cpu(i) {
10989                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10990                struct softnet_data *sd = &per_cpu(softnet_data, i);
10991
10992                INIT_WORK(flush, flush_backlog);
10993
10994                skb_queue_head_init(&sd->input_pkt_queue);
10995                skb_queue_head_init(&sd->process_queue);
10996#ifdef CONFIG_XFRM_OFFLOAD
10997                skb_queue_head_init(&sd->xfrm_backlog);
10998#endif
10999                INIT_LIST_HEAD(&sd->poll_list);
11000                sd->output_queue_tailp = &sd->output_queue;
11001#ifdef CONFIG_RPS
11002                INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11003                sd->cpu = i;
11004#endif
11005
11006                init_gro_hash(&sd->backlog);
11007                sd->backlog.poll = process_backlog;
11008                sd->backlog.weight = weight_p;
11009        }
11010
11011        dev_boot_phase = 0;
11012
11013        /* The loopback device is special if any other network devices
11014         * is present in a network namespace the loopback device must
11015         * be present. Since we now dynamically allocate and free the
11016         * loopback device ensure this invariant is maintained by
11017         * keeping the loopback device as the first device on the
11018         * list of network devices.  Ensuring the loopback devices
11019         * is the first device that appears and the last network device
11020         * that disappears.
11021         */
11022        if (register_pernet_device(&loopback_net_ops))
11023                goto out;
11024
11025        if (register_pernet_device(&default_device_ops))
11026                goto out;
11027
11028        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11029        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11030
11031        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11032                                       NULL, dev_cpu_dead);
11033        WARN_ON(rc < 0);
11034        rc = 0;
11035out:
11036        return rc;
11037}
11038
11039subsys_initcall(net_dev_init);
11040