linux/net/netfilter/nft_set_pipapo.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2
   3/* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
   4 *
   5 * Copyright (c) 2019-2020 Red Hat GmbH
   6 *
   7 * Author: Stefano Brivio <sbrivio@redhat.com>
   8 */
   9
  10/**
  11 * DOC: Theory of Operation
  12 *
  13 *
  14 * Problem
  15 * -------
  16 *
  17 * Match packet bytes against entries composed of ranged or non-ranged packet
  18 * field specifiers, mapping them to arbitrary references. For example:
  19 *
  20 * ::
  21 *
  22 *               --- fields --->
  23 *      |    [net],[port],[net]... => [reference]
  24 *   entries [net],[port],[net]... => [reference]
  25 *      |    [net],[port],[net]... => [reference]
  26 *      V    ...
  27 *
  28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
  29 * ranges. Arbitrary packet fields can be matched.
  30 *
  31 *
  32 * Algorithm Overview
  33 * ------------------
  34 *
  35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
  36 * relies on the consideration that every contiguous range in a space of b bits
  37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
  38 * as also illustrated in Section 9 of [Kogan 2014].
  39 *
  40 * Classification against a number of entries, that require matching given bits
  41 * of a packet field, is performed by grouping those bits in sets of arbitrary
  42 * size, and classifying packet bits one group at a time.
  43 *
  44 * Example:
  45 *   to match the source port (16 bits) of a packet, we can divide those 16 bits
  46 *   in 4 groups of 4 bits each. Given the entry:
  47 *      0000 0001 0101 1001
  48 *   and a packet with source port:
  49 *      0000 0001 1010 1001
  50 *   first and second groups match, but the third doesn't. We conclude that the
  51 *   packet doesn't match the given entry.
  52 *
  53 * Translate the set to a sequence of lookup tables, one per field. Each table
  54 * has two dimensions: bit groups to be matched for a single packet field, and
  55 * all the possible values of said groups (buckets). Input entries are
  56 * represented as one or more rules, depending on the number of composing
  57 * netmasks for the given field specifier, and a group match is indicated as a
  58 * set bit, with number corresponding to the rule index, in all the buckets
  59 * whose value matches the entry for a given group.
  60 *
  61 * Rules are mapped between fields through an array of x, n pairs, with each
  62 * item mapping a matched rule to one or more rules. The position of the pair in
  63 * the array indicates the matched rule to be mapped to the next field, x
  64 * indicates the first rule index in the next field, and n the amount of
  65 * next-field rules the current rule maps to.
  66 *
  67 * The mapping array for the last field maps to the desired references.
  68 *
  69 * To match, we perform table lookups using the values of grouped packet bits,
  70 * and use a sequence of bitwise operations to progressively evaluate rule
  71 * matching.
  72 *
  73 * A stand-alone, reference implementation, also including notes about possible
  74 * future optimisations, is available at:
  75 *    https://pipapo.lameexcu.se/
  76 *
  77 * Insertion
  78 * ---------
  79 *
  80 * - For each packet field:
  81 *
  82 *   - divide the b packet bits we want to classify into groups of size t,
  83 *     obtaining ceil(b / t) groups
  84 *
  85 *      Example: match on destination IP address, with t = 4: 32 bits, 8 groups
  86 *      of 4 bits each
  87 *
  88 *   - allocate a lookup table with one column ("bucket") for each possible
  89 *     value of a group, and with one row for each group
  90 *
  91 *      Example: 8 groups, 2^4 buckets:
  92 *
  93 * ::
  94 *
  95 *                     bucket
  96 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  97 *        0
  98 *        1
  99 *        2
 100 *        3
 101 *        4
 102 *        5
 103 *        6
 104 *        7
 105 *
 106 *   - map the bits we want to classify for the current field, for a given
 107 *     entry, to a single rule for non-ranged and netmask set items, and to one
 108 *     or multiple rules for ranges. Ranges are expanded to composing netmasks
 109 *     by pipapo_expand().
 110 *
 111 *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
 112 *      - rule #0: 10.0.0.5
 113 *      - rule #1: 192.168.1.0/24
 114 *      - rule #2: 192.168.2.0/31
 115 *
 116 *   - insert references to the rules in the lookup table, selecting buckets
 117 *     according to bit values of a rule in the given group. This is done by
 118 *     pipapo_insert().
 119 *
 120 *      Example: given:
 121 *      - rule #0: 10.0.0.5 mapping to buckets
 122 *        < 0 10  0 0   0 0  0 5 >
 123 *      - rule #1: 192.168.1.0/24 mapping to buckets
 124 *        < 12 0  10 8  0 1  < 0..15 > < 0..15 > >
 125 *      - rule #2: 192.168.2.0/31 mapping to buckets
 126 *        < 12 0  10 8  0 2  0 < 0..1 > >
 127 *
 128 *      these bits are set in the lookup table:
 129 *
 130 * ::
 131 *
 132 *                     bucket
 133 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 134 *        0    0                                              1,2
 135 *        1   1,2                                      0
 136 *        2    0                                      1,2
 137 *        3    0                              1,2
 138 *        4  0,1,2
 139 *        5    0   1   2
 140 *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
 141 *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
 142 *
 143 *   - if this is not the last field in the set, fill a mapping array that maps
 144 *     rules from the lookup table to rules belonging to the same entry in
 145 *     the next lookup table, done by pipapo_map().
 146 *
 147 *     Note that as rules map to contiguous ranges of rules, given how netmask
 148 *     expansion and insertion is performed, &union nft_pipapo_map_bucket stores
 149 *     this information as pairs of first rule index, rule count.
 150 *
 151 *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
 152 *      given lookup table #0 for field 0 (see example above):
 153 *
 154 * ::
 155 *
 156 *                     bucket
 157 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 158 *        0    0                                              1,2
 159 *        1   1,2                                      0
 160 *        2    0                                      1,2
 161 *        3    0                              1,2
 162 *        4  0,1,2
 163 *        5    0   1   2
 164 *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
 165 *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
 166 *
 167 *      and lookup table #1 for field 1 with:
 168 *      - rule #0: 1024 mapping to buckets
 169 *        < 0  0  4  0 >
 170 *      - rule #1: 2048 mapping to buckets
 171 *        < 0  0  5  0 >
 172 *
 173 * ::
 174 *
 175 *                     bucket
 176 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 177 *        0   0,1
 178 *        1   0,1
 179 *        2                    0   1
 180 *        3   0,1
 181 *
 182 *      we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
 183 *      in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
 184 *      (rules #1, #2) to 2048 in lookup table #2 (rule #1):
 185 *
 186 * ::
 187 *
 188 *       rule indices in current field: 0    1    2
 189 *       map to rules in next field:    0    1    1
 190 *
 191 *   - if this is the last field in the set, fill a mapping array that maps
 192 *     rules from the last lookup table to element pointers, also done by
 193 *     pipapo_map().
 194 *
 195 *     Note that, in this implementation, we have two elements (start, end) for
 196 *     each entry. The pointer to the end element is stored in this array, and
 197 *     the pointer to the start element is linked from it.
 198 *
 199 *      Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
 200 *      pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
 201 *      From the rules of lookup table #1 as mapped above:
 202 *
 203 * ::
 204 *
 205 *       rule indices in last field:    0    1
 206 *       map to elements:             0x66  0x42
 207 *
 208 *
 209 * Matching
 210 * --------
 211 *
 212 * We use a result bitmap, with the size of a single lookup table bucket, to
 213 * represent the matching state that applies at every algorithm step. This is
 214 * done by pipapo_lookup().
 215 *
 216 * - For each packet field:
 217 *
 218 *   - start with an all-ones result bitmap (res_map in pipapo_lookup())
 219 *
 220 *   - perform a lookup into the table corresponding to the current field,
 221 *     for each group, and at every group, AND the current result bitmap with
 222 *     the value from the lookup table bucket
 223 *
 224 * ::
 225 *
 226 *      Example: 192.168.1.5 < 12 0  10 8  0 1  0 5 >, with lookup table from
 227 *      insertion examples.
 228 *      Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
 229 *      convenience in this example. Initial result bitmap is 0xff, the steps
 230 *      below show the value of the result bitmap after each group is processed:
 231 *
 232 *                     bucket
 233 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 234 *        0    0                                              1,2
 235 *        result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
 236 *
 237 *        1   1,2                                      0
 238 *        result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
 239 *
 240 *        2    0                                      1,2
 241 *        result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
 242 *
 243 *        3    0                              1,2
 244 *        result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
 245 *
 246 *        4  0,1,2
 247 *        result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
 248 *
 249 *        5    0   1   2
 250 *        result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
 251 *
 252 *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
 253 *        result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
 254 *
 255 *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
 256 *        final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
 257 *
 258 *   - at the next field, start with a new, all-zeroes result bitmap. For each
 259 *     bit set in the previous result bitmap, fill the new result bitmap
 260 *     (fill_map in pipapo_lookup()) with the rule indices from the
 261 *     corresponding buckets of the mapping field for this field, done by
 262 *     pipapo_refill()
 263 *
 264 *      Example: with mapping table from insertion examples, with the current
 265 *      result bitmap from the previous example, 0x02:
 266 *
 267 * ::
 268 *
 269 *       rule indices in current field: 0    1    2
 270 *       map to rules in next field:    0    1    1
 271 *
 272 *      the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
 273 *      set.
 274 *
 275 *      We can now extend this example to cover the second iteration of the step
 276 *      above (lookup and AND bitmap): assuming the port field is
 277 *      2048 < 0  0  5  0 >, with starting result bitmap 0x2, and lookup table
 278 *      for "port" field from pre-computation example:
 279 *
 280 * ::
 281 *
 282 *                     bucket
 283 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 284 *        0   0,1
 285 *        1   0,1
 286 *        2                    0   1
 287 *        3   0,1
 288 *
 289 *       operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
 290 *       & 0x3 [bucket 0], resulting bitmap is 0x2.
 291 *
 292 *   - if this is the last field in the set, look up the value from the mapping
 293 *     array corresponding to the final result bitmap
 294 *
 295 *      Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
 296 *      last field from insertion example:
 297 *
 298 * ::
 299 *
 300 *       rule indices in last field:    0    1
 301 *       map to elements:             0x66  0x42
 302 *
 303 *      the matching element is at 0x42.
 304 *
 305 *
 306 * References
 307 * ----------
 308 *
 309 * [Ligatti 2010]
 310 *      A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
 311 *      Automatic Time-space Tradeoffs
 312 *      Jay Ligatti, Josh Kuhn, and Chris Gage.
 313 *      Proceedings of the IEEE International Conference on Computer
 314 *      Communication Networks (ICCCN), August 2010.
 315 *      https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
 316 *
 317 * [Rottenstreich 2010]
 318 *      Worst-Case TCAM Rule Expansion
 319 *      Ori Rottenstreich and Isaac Keslassy.
 320 *      2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
 321 *      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
 322 *
 323 * [Kogan 2014]
 324 *      SAX-PAC (Scalable And eXpressive PAcket Classification)
 325 *      Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
 326 *      and Patrick Eugster.
 327 *      Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
 328 *      https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
 329 */
 330
 331#include <linux/kernel.h>
 332#include <linux/init.h>
 333#include <linux/module.h>
 334#include <linux/netlink.h>
 335#include <linux/netfilter.h>
 336#include <linux/netfilter/nf_tables.h>
 337#include <net/netfilter/nf_tables_core.h>
 338#include <uapi/linux/netfilter/nf_tables.h>
 339#include <linux/bitmap.h>
 340#include <linux/bitops.h>
 341
 342#include "nft_set_pipapo_avx2.h"
 343#include "nft_set_pipapo.h"
 344
 345/* Current working bitmap index, toggled between field matches */
 346static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index);
 347
 348/**
 349 * pipapo_refill() - For each set bit, set bits from selected mapping table item
 350 * @map:        Bitmap to be scanned for set bits
 351 * @len:        Length of bitmap in longs
 352 * @rules:      Number of rules in field
 353 * @dst:        Destination bitmap
 354 * @mt:         Mapping table containing bit set specifiers
 355 * @match_only: Find a single bit and return, don't fill
 356 *
 357 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
 358 *
 359 * For each bit set in map, select the bucket from mapping table with index
 360 * corresponding to the position of the bit set. Use start bit and amount of
 361 * bits specified in bucket to fill region in dst.
 362 *
 363 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
 364 */
 365int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
 366                  union nft_pipapo_map_bucket *mt, bool match_only)
 367{
 368        unsigned long bitset;
 369        int k, ret = -1;
 370
 371        for (k = 0; k < len; k++) {
 372                bitset = map[k];
 373                while (bitset) {
 374                        unsigned long t = bitset & -bitset;
 375                        int r = __builtin_ctzl(bitset);
 376                        int i = k * BITS_PER_LONG + r;
 377
 378                        if (unlikely(i >= rules)) {
 379                                map[k] = 0;
 380                                return -1;
 381                        }
 382
 383                        if (match_only) {
 384                                bitmap_clear(map, i, 1);
 385                                return i;
 386                        }
 387
 388                        ret = 0;
 389
 390                        bitmap_set(dst, mt[i].to, mt[i].n);
 391
 392                        bitset ^= t;
 393                }
 394                map[k] = 0;
 395        }
 396
 397        return ret;
 398}
 399
 400/**
 401 * nft_pipapo_lookup() - Lookup function
 402 * @net:        Network namespace
 403 * @set:        nftables API set representation
 404 * @key:        nftables API element representation containing key data
 405 * @ext:        nftables API extension pointer, filled with matching reference
 406 *
 407 * For more details, see DOC: Theory of Operation.
 408 *
 409 * Return: true on match, false otherwise.
 410 */
 411bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
 412                       const u32 *key, const struct nft_set_ext **ext)
 413{
 414        struct nft_pipapo *priv = nft_set_priv(set);
 415        unsigned long *res_map, *fill_map;
 416        u8 genmask = nft_genmask_cur(net);
 417        const u8 *rp = (const u8 *)key;
 418        struct nft_pipapo_match *m;
 419        struct nft_pipapo_field *f;
 420        bool map_index;
 421        int i;
 422
 423        local_bh_disable();
 424
 425        map_index = raw_cpu_read(nft_pipapo_scratch_index);
 426
 427        m = rcu_dereference(priv->match);
 428
 429        if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
 430                goto out;
 431
 432        res_map  = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0);
 433        fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max);
 434
 435        memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
 436
 437        nft_pipapo_for_each_field(f, i, m) {
 438                bool last = i == m->field_count - 1;
 439                int b;
 440
 441                /* For each bit group: select lookup table bucket depending on
 442                 * packet bytes value, then AND bucket value
 443                 */
 444                if (likely(f->bb == 8))
 445                        pipapo_and_field_buckets_8bit(f, res_map, rp);
 446                else
 447                        pipapo_and_field_buckets_4bit(f, res_map, rp);
 448                NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
 449
 450                rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
 451
 452                /* Now populate the bitmap for the next field, unless this is
 453                 * the last field, in which case return the matched 'ext'
 454                 * pointer if any.
 455                 *
 456                 * Now res_map contains the matching bitmap, and fill_map is the
 457                 * bitmap for the next field.
 458                 */
 459next_match:
 460                b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
 461                                  last);
 462                if (b < 0) {
 463                        raw_cpu_write(nft_pipapo_scratch_index, map_index);
 464                        local_bh_enable();
 465
 466                        return false;
 467                }
 468
 469                if (last) {
 470                        *ext = &f->mt[b].e->ext;
 471                        if (unlikely(nft_set_elem_expired(*ext) ||
 472                                     !nft_set_elem_active(*ext, genmask)))
 473                                goto next_match;
 474
 475                        /* Last field: we're just returning the key without
 476                         * filling the initial bitmap for the next field, so the
 477                         * current inactive bitmap is clean and can be reused as
 478                         * *next* bitmap (not initial) for the next packet.
 479                         */
 480                        raw_cpu_write(nft_pipapo_scratch_index, map_index);
 481                        local_bh_enable();
 482
 483                        return true;
 484                }
 485
 486                /* Swap bitmap indices: res_map is the initial bitmap for the
 487                 * next field, and fill_map is guaranteed to be all-zeroes at
 488                 * this point.
 489                 */
 490                map_index = !map_index;
 491                swap(res_map, fill_map);
 492
 493                rp += NFT_PIPAPO_GROUPS_PADDING(f);
 494        }
 495
 496out:
 497        local_bh_enable();
 498        return false;
 499}
 500
 501/**
 502 * pipapo_get() - Get matching element reference given key data
 503 * @net:        Network namespace
 504 * @set:        nftables API set representation
 505 * @data:       Key data to be matched against existing elements
 506 * @genmask:    If set, check that element is active in given genmask
 507 *
 508 * This is essentially the same as the lookup function, except that it matches
 509 * key data against the uncommitted copy and doesn't use preallocated maps for
 510 * bitmap results.
 511 *
 512 * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
 513 */
 514static struct nft_pipapo_elem *pipapo_get(const struct net *net,
 515                                          const struct nft_set *set,
 516                                          const u8 *data, u8 genmask)
 517{
 518        struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
 519        struct nft_pipapo *priv = nft_set_priv(set);
 520        struct nft_pipapo_match *m = priv->clone;
 521        unsigned long *res_map, *fill_map = NULL;
 522        struct nft_pipapo_field *f;
 523        int i;
 524
 525        res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
 526        if (!res_map) {
 527                ret = ERR_PTR(-ENOMEM);
 528                goto out;
 529        }
 530
 531        fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
 532        if (!fill_map) {
 533                ret = ERR_PTR(-ENOMEM);
 534                goto out;
 535        }
 536
 537        memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
 538
 539        nft_pipapo_for_each_field(f, i, m) {
 540                bool last = i == m->field_count - 1;
 541                int b;
 542
 543                /* For each bit group: select lookup table bucket depending on
 544                 * packet bytes value, then AND bucket value
 545                 */
 546                if (f->bb == 8)
 547                        pipapo_and_field_buckets_8bit(f, res_map, data);
 548                else if (f->bb == 4)
 549                        pipapo_and_field_buckets_4bit(f, res_map, data);
 550                else
 551                        BUG();
 552
 553                data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
 554
 555                /* Now populate the bitmap for the next field, unless this is
 556                 * the last field, in which case return the matched 'ext'
 557                 * pointer if any.
 558                 *
 559                 * Now res_map contains the matching bitmap, and fill_map is the
 560                 * bitmap for the next field.
 561                 */
 562next_match:
 563                b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
 564                                  last);
 565                if (b < 0)
 566                        goto out;
 567
 568                if (last) {
 569                        if (nft_set_elem_expired(&f->mt[b].e->ext) ||
 570                            (genmask &&
 571                             !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
 572                                goto next_match;
 573
 574                        ret = f->mt[b].e;
 575                        goto out;
 576                }
 577
 578                data += NFT_PIPAPO_GROUPS_PADDING(f);
 579
 580                /* Swap bitmap indices: fill_map will be the initial bitmap for
 581                 * the next field (i.e. the new res_map), and res_map is
 582                 * guaranteed to be all-zeroes at this point, ready to be filled
 583                 * according to the next mapping table.
 584                 */
 585                swap(res_map, fill_map);
 586        }
 587
 588out:
 589        kfree(fill_map);
 590        kfree(res_map);
 591        return ret;
 592}
 593
 594/**
 595 * nft_pipapo_get() - Get matching element reference given key data
 596 * @net:        Network namespace
 597 * @set:        nftables API set representation
 598 * @elem:       nftables API element representation containing key data
 599 * @flags:      Unused
 600 */
 601static void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
 602                            const struct nft_set_elem *elem, unsigned int flags)
 603{
 604        return pipapo_get(net, set, (const u8 *)elem->key.val.data,
 605                          nft_genmask_cur(net));
 606}
 607
 608/**
 609 * pipapo_resize() - Resize lookup or mapping table, or both
 610 * @f:          Field containing lookup and mapping tables
 611 * @old_rules:  Previous amount of rules in field
 612 * @rules:      New amount of rules
 613 *
 614 * Increase, decrease or maintain tables size depending on new amount of rules,
 615 * and copy data over. In case the new size is smaller, throw away data for
 616 * highest-numbered rules.
 617 *
 618 * Return: 0 on success, -ENOMEM on allocation failure.
 619 */
 620static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
 621{
 622        long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
 623        union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
 624        size_t new_bucket_size, copy;
 625        int group, bucket;
 626
 627        new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
 628#ifdef NFT_PIPAPO_ALIGN
 629        new_bucket_size = roundup(new_bucket_size,
 630                                  NFT_PIPAPO_ALIGN / sizeof(*new_lt));
 631#endif
 632
 633        if (new_bucket_size == f->bsize)
 634                goto mt;
 635
 636        if (new_bucket_size > f->bsize)
 637                copy = f->bsize;
 638        else
 639                copy = new_bucket_size;
 640
 641        new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
 642                          new_bucket_size * sizeof(*new_lt) +
 643                          NFT_PIPAPO_ALIGN_HEADROOM,
 644                          GFP_KERNEL);
 645        if (!new_lt)
 646                return -ENOMEM;
 647
 648        new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
 649        old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
 650
 651        for (group = 0; group < f->groups; group++) {
 652                for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
 653                        memcpy(new_p, old_p, copy * sizeof(*new_p));
 654                        new_p += copy;
 655                        old_p += copy;
 656
 657                        if (new_bucket_size > f->bsize)
 658                                new_p += new_bucket_size - f->bsize;
 659                        else
 660                                old_p += f->bsize - new_bucket_size;
 661                }
 662        }
 663
 664mt:
 665        new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
 666        if (!new_mt) {
 667                kvfree(new_lt);
 668                return -ENOMEM;
 669        }
 670
 671        memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
 672        if (rules > old_rules) {
 673                memset(new_mt + old_rules, 0,
 674                       (rules - old_rules) * sizeof(*new_mt));
 675        }
 676
 677        if (new_lt) {
 678                f->bsize = new_bucket_size;
 679                NFT_PIPAPO_LT_ASSIGN(f, new_lt);
 680                kvfree(old_lt);
 681        }
 682
 683        f->mt = new_mt;
 684        kvfree(old_mt);
 685
 686        return 0;
 687}
 688
 689/**
 690 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
 691 * @f:          Field containing lookup table
 692 * @rule:       Rule index
 693 * @group:      Group index
 694 * @v:          Value of bit group
 695 */
 696static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
 697                              int v)
 698{
 699        unsigned long *pos;
 700
 701        pos = NFT_PIPAPO_LT_ALIGN(f->lt);
 702        pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
 703        pos += f->bsize * v;
 704
 705        __set_bit(rule, pos);
 706}
 707
 708/**
 709 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
 710 * @old_groups: Number of current groups
 711 * @bsize:      Size of one bucket, in longs
 712 * @old_lt:     Pointer to the current lookup table
 713 * @new_lt:     Pointer to the new, pre-allocated lookup table
 714 *
 715 * Each bucket with index b in the new lookup table, belonging to group g, is
 716 * filled with the bit intersection between:
 717 * - bucket with index given by the upper 4 bits of b, from group g, and
 718 * - bucket with index given by the lower 4 bits of b, from group g + 1
 719 *
 720 * That is, given buckets from the new lookup table N(x, y) and the old lookup
 721 * table O(x, y), with x bucket index, and y group index:
 722 *
 723 *      N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
 724 *
 725 * This ensures equivalence of the matching results on lookup. Two examples in
 726 * pictures:
 727 *
 728 *              bucket
 729 *  group  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ... 254 255
 730 *    0                ^
 731 *    1                |                                                 ^
 732 *   ...             ( & )                                               |
 733 *                  /     \                                              |
 734 *                 /       \                                         .-( & )-.
 735 *                /  bucket \                                        |       |
 736 *      group  0 / 1   2   3 \ 4   5   6   7   8   9  10  11  12  13 |14  15 |
 737 *        0     /             \                                      |       |
 738 *        1                    \                                     |       |
 739 *        2                                                          |     --'
 740 *        3                                                          '-
 741 *       ...
 742 */
 743static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
 744                               unsigned long *old_lt, unsigned long *new_lt)
 745{
 746        int g, b, i;
 747
 748        for (g = 0; g < old_groups / 2; g++) {
 749                int src_g0 = g * 2, src_g1 = g * 2 + 1;
 750
 751                for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
 752                        int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
 753                        int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
 754                        int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
 755                        int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
 756
 757                        for (i = 0; i < bsize; i++) {
 758                                *new_lt = old_lt[src_i0 * bsize + i] &
 759                                          old_lt[src_i1 * bsize + i];
 760                                new_lt++;
 761                        }
 762                }
 763        }
 764}
 765
 766/**
 767 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
 768 * @old_groups: Number of current groups
 769 * @bsize:      Size of one bucket, in longs
 770 * @old_lt:     Pointer to the current lookup table
 771 * @new_lt:     Pointer to the new, pre-allocated lookup table
 772 *
 773 * Each bucket with index b in the new lookup table, belonging to group g, is
 774 * filled with the bit union of:
 775 * - all the buckets with index such that the upper four bits of the lower byte
 776 *   equal b, from group g, with g odd
 777 * - all the buckets with index such that the lower four bits equal b, from
 778 *   group g, with g even
 779 *
 780 * That is, given buckets from the new lookup table N(x, y) and the old lookup
 781 * table O(x, y), with x bucket index, and y group index:
 782 *
 783 *      - with g odd:  N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
 784 *      - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
 785 *
 786 * where U() denotes the arbitrary union operation (binary OR of n terms). This
 787 * ensures equivalence of the matching results on lookup.
 788 */
 789static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
 790                               unsigned long *old_lt, unsigned long *new_lt)
 791{
 792        int g, b, bsrc, i;
 793
 794        memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
 795                          sizeof(unsigned long));
 796
 797        for (g = 0; g < old_groups * 2; g += 2) {
 798                int src_g = g / 2;
 799
 800                for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
 801                        for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
 802                             bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
 803                             bsrc++) {
 804                                if (((bsrc & 0xf0) >> 4) != b)
 805                                        continue;
 806
 807                                for (i = 0; i < bsize; i++)
 808                                        new_lt[i] |= old_lt[bsrc * bsize + i];
 809                        }
 810
 811                        new_lt += bsize;
 812                }
 813
 814                for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
 815                        for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
 816                             bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
 817                             bsrc++) {
 818                                if ((bsrc & 0x0f) != b)
 819                                        continue;
 820
 821                                for (i = 0; i < bsize; i++)
 822                                        new_lt[i] |= old_lt[bsrc * bsize + i];
 823                        }
 824
 825                        new_lt += bsize;
 826                }
 827        }
 828}
 829
 830/**
 831 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
 832 * @f:          Field containing lookup table
 833 */
 834static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
 835{
 836        unsigned long *new_lt;
 837        int groups, bb;
 838        size_t lt_size;
 839
 840        lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
 841                  sizeof(*f->lt);
 842
 843        if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
 844            lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
 845                groups = f->groups * 2;
 846                bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
 847
 848                lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
 849                          sizeof(*f->lt);
 850        } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
 851                   lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
 852                groups = f->groups / 2;
 853                bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
 854
 855                lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
 856                          sizeof(*f->lt);
 857
 858                /* Don't increase group width if the resulting lookup table size
 859                 * would exceed the upper size threshold for a "small" set.
 860                 */
 861                if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
 862                        return;
 863        } else {
 864                return;
 865        }
 866
 867        new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
 868        if (!new_lt)
 869                return;
 870
 871        NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
 872        if (f->bb == 4 && bb == 8) {
 873                pipapo_lt_4b_to_8b(f->groups, f->bsize,
 874                                   NFT_PIPAPO_LT_ALIGN(f->lt),
 875                                   NFT_PIPAPO_LT_ALIGN(new_lt));
 876        } else if (f->bb == 8 && bb == 4) {
 877                pipapo_lt_8b_to_4b(f->groups, f->bsize,
 878                                   NFT_PIPAPO_LT_ALIGN(f->lt),
 879                                   NFT_PIPAPO_LT_ALIGN(new_lt));
 880        } else {
 881                BUG();
 882        }
 883
 884        f->groups = groups;
 885        f->bb = bb;
 886        kvfree(f->lt);
 887        NFT_PIPAPO_LT_ASSIGN(f, new_lt);
 888}
 889
 890/**
 891 * pipapo_insert() - Insert new rule in field given input key and mask length
 892 * @f:          Field containing lookup table
 893 * @k:          Input key for classification, without nftables padding
 894 * @mask_bits:  Length of mask; matches field length for non-ranged entry
 895 *
 896 * Insert a new rule reference in lookup buckets corresponding to k and
 897 * mask_bits.
 898 *
 899 * Return: 1 on success (one rule inserted), negative error code on failure.
 900 */
 901static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
 902                         int mask_bits)
 903{
 904        int rule = f->rules++, group, ret, bit_offset = 0;
 905
 906        ret = pipapo_resize(f, f->rules - 1, f->rules);
 907        if (ret)
 908                return ret;
 909
 910        for (group = 0; group < f->groups; group++) {
 911                int i, v;
 912                u8 mask;
 913
 914                v = k[group / (BITS_PER_BYTE / f->bb)];
 915                v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
 916                v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
 917
 918                bit_offset += f->bb;
 919                bit_offset %= BITS_PER_BYTE;
 920
 921                if (mask_bits >= (group + 1) * f->bb) {
 922                        /* Not masked */
 923                        pipapo_bucket_set(f, rule, group, v);
 924                } else if (mask_bits <= group * f->bb) {
 925                        /* Completely masked */
 926                        for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
 927                                pipapo_bucket_set(f, rule, group, i);
 928                } else {
 929                        /* The mask limit falls on this group */
 930                        mask = GENMASK(f->bb - 1, 0);
 931                        mask >>= mask_bits - group * f->bb;
 932                        for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
 933                                if ((i & ~mask) == (v & ~mask))
 934                                        pipapo_bucket_set(f, rule, group, i);
 935                        }
 936                }
 937        }
 938
 939        pipapo_lt_bits_adjust(f);
 940
 941        return 1;
 942}
 943
 944/**
 945 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
 946 * @base:       Mask we are expanding
 947 * @step:       Step bit for given expansion step
 948 * @len:        Total length of mask space (set and unset bits), bytes
 949 *
 950 * Convenience function for mask expansion.
 951 *
 952 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
 953 */
 954static bool pipapo_step_diff(u8 *base, int step, int len)
 955{
 956        /* Network order, byte-addressed */
 957#ifdef __BIG_ENDIAN__
 958        return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
 959#else
 960        return !(BIT(step % BITS_PER_BYTE) &
 961                 base[len - 1 - step / BITS_PER_BYTE]);
 962#endif
 963}
 964
 965/**
 966 * pipapo_step_after_end() - Check if mask exceeds range end with given step
 967 * @base:       Mask we are expanding
 968 * @end:        End of range
 969 * @step:       Step bit for given expansion step, highest bit to be set
 970 * @len:        Total length of mask space (set and unset bits), bytes
 971 *
 972 * Convenience function for mask expansion.
 973 *
 974 * Return: true if mask exceeds range setting step bits, false otherwise.
 975 */
 976static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
 977                                  int len)
 978{
 979        u8 tmp[NFT_PIPAPO_MAX_BYTES];
 980        int i;
 981
 982        memcpy(tmp, base, len);
 983
 984        /* Network order, byte-addressed */
 985        for (i = 0; i <= step; i++)
 986#ifdef __BIG_ENDIAN__
 987                tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
 988#else
 989                tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
 990#endif
 991
 992        return memcmp(tmp, end, len) > 0;
 993}
 994
 995/**
 996 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
 997 * @base:       Netmask base
 998 * @step:       Step bit to sum
 999 * @len:        Netmask length, bytes
1000 */
1001static void pipapo_base_sum(u8 *base, int step, int len)
1002{
1003        bool carry = false;
1004        int i;
1005
1006        /* Network order, byte-addressed */
1007#ifdef __BIG_ENDIAN__
1008        for (i = step / BITS_PER_BYTE; i < len; i++) {
1009#else
1010        for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1011#endif
1012                if (carry)
1013                        base[i]++;
1014                else
1015                        base[i] += 1 << (step % BITS_PER_BYTE);
1016
1017                if (base[i])
1018                        break;
1019
1020                carry = true;
1021        }
1022}
1023
1024/**
1025 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1026 * @f:          Field containing lookup table
1027 * @start:      Start of range
1028 * @end:        End of range
1029 * @len:        Length of value in bits
1030 *
1031 * Expand range to composing netmasks and insert corresponding rule references
1032 * in lookup buckets.
1033 *
1034 * Return: number of inserted rules on success, negative error code on failure.
1035 */
1036static int pipapo_expand(struct nft_pipapo_field *f,
1037                         const u8 *start, const u8 *end, int len)
1038{
1039        int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1040        u8 base[NFT_PIPAPO_MAX_BYTES];
1041
1042        memcpy(base, start, bytes);
1043        while (memcmp(base, end, bytes) <= 0) {
1044                int err;
1045
1046                step = 0;
1047                while (pipapo_step_diff(base, step, bytes)) {
1048                        if (pipapo_step_after_end(base, end, step, bytes))
1049                                break;
1050
1051                        step++;
1052                        if (step >= len) {
1053                                if (!masks) {
1054                                        pipapo_insert(f, base, 0);
1055                                        masks = 1;
1056                                }
1057                                goto out;
1058                        }
1059                }
1060
1061                err = pipapo_insert(f, base, len - step);
1062
1063                if (err < 0)
1064                        return err;
1065
1066                masks++;
1067                pipapo_base_sum(base, step, bytes);
1068        }
1069out:
1070        return masks;
1071}
1072
1073/**
1074 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1075 * @m:          Matching data, including mapping table
1076 * @map:        Table of rule maps: array of first rule and amount of rules
1077 *              in next field a given rule maps to, for each field
1078 * @e:          For last field, nft_set_ext pointer matching rules map to
1079 */
1080static void pipapo_map(struct nft_pipapo_match *m,
1081                       union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1082                       struct nft_pipapo_elem *e)
1083{
1084        struct nft_pipapo_field *f;
1085        int i, j;
1086
1087        for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1088                for (j = 0; j < map[i].n; j++) {
1089                        f->mt[map[i].to + j].to = map[i + 1].to;
1090                        f->mt[map[i].to + j].n = map[i + 1].n;
1091                }
1092        }
1093
1094        /* Last field: map to ext instead of mapping to next field */
1095        for (j = 0; j < map[i].n; j++)
1096                f->mt[map[i].to + j].e = e;
1097}
1098
1099/**
1100 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1101 * @clone:      Copy of matching data with pending insertions and deletions
1102 * @bsize_max:  Maximum bucket size, scratch maps cover two buckets
1103 *
1104 * Return: 0 on success, -ENOMEM on failure.
1105 */
1106static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1107                                  unsigned long bsize_max)
1108{
1109        int i;
1110
1111        for_each_possible_cpu(i) {
1112                unsigned long *scratch;
1113#ifdef NFT_PIPAPO_ALIGN
1114                unsigned long *scratch_aligned;
1115#endif
1116
1117                scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2 +
1118                                       NFT_PIPAPO_ALIGN_HEADROOM,
1119                                       GFP_KERNEL, cpu_to_node(i));
1120                if (!scratch) {
1121                        /* On failure, there's no need to undo previous
1122                         * allocations: this means that some scratch maps have
1123                         * a bigger allocated size now (this is only called on
1124                         * insertion), but the extra space won't be used by any
1125                         * CPU as new elements are not inserted and m->bsize_max
1126                         * is not updated.
1127                         */
1128                        return -ENOMEM;
1129                }
1130
1131                kfree(*per_cpu_ptr(clone->scratch, i));
1132
1133                *per_cpu_ptr(clone->scratch, i) = scratch;
1134
1135#ifdef NFT_PIPAPO_ALIGN
1136                scratch_aligned = NFT_PIPAPO_LT_ALIGN(scratch);
1137                *per_cpu_ptr(clone->scratch_aligned, i) = scratch_aligned;
1138#endif
1139        }
1140
1141        return 0;
1142}
1143
1144/**
1145 * nft_pipapo_insert() - Validate and insert ranged elements
1146 * @net:        Network namespace
1147 * @set:        nftables API set representation
1148 * @elem:       nftables API element representation containing key data
1149 * @ext2:       Filled with pointer to &struct nft_set_ext in inserted element
1150 *
1151 * Return: 0 on success, error pointer on failure.
1152 */
1153static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1154                             const struct nft_set_elem *elem,
1155                             struct nft_set_ext **ext2)
1156{
1157        const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1158        union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1159        const u8 *start = (const u8 *)elem->key.val.data, *end;
1160        struct nft_pipapo_elem *e = elem->priv, *dup;
1161        struct nft_pipapo *priv = nft_set_priv(set);
1162        struct nft_pipapo_match *m = priv->clone;
1163        u8 genmask = nft_genmask_next(net);
1164        struct nft_pipapo_field *f;
1165        int i, bsize_max, err = 0;
1166
1167        if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1168                end = (const u8 *)nft_set_ext_key_end(ext)->data;
1169        else
1170                end = start;
1171
1172        dup = pipapo_get(net, set, start, genmask);
1173        if (!IS_ERR(dup)) {
1174                /* Check if we already have the same exact entry */
1175                const struct nft_data *dup_key, *dup_end;
1176
1177                dup_key = nft_set_ext_key(&dup->ext);
1178                if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1179                        dup_end = nft_set_ext_key_end(&dup->ext);
1180                else
1181                        dup_end = dup_key;
1182
1183                if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1184                    !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1185                        *ext2 = &dup->ext;
1186                        return -EEXIST;
1187                }
1188
1189                return -ENOTEMPTY;
1190        }
1191
1192        if (PTR_ERR(dup) == -ENOENT) {
1193                /* Look for partially overlapping entries */
1194                dup = pipapo_get(net, set, end, nft_genmask_next(net));
1195        }
1196
1197        if (PTR_ERR(dup) != -ENOENT) {
1198                if (IS_ERR(dup))
1199                        return PTR_ERR(dup);
1200                *ext2 = &dup->ext;
1201                return -ENOTEMPTY;
1202        }
1203
1204        /* Validate */
1205        nft_pipapo_for_each_field(f, i, m) {
1206                const u8 *start_p = start, *end_p = end;
1207
1208                if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1209                        return -ENOSPC;
1210
1211                if (memcmp(start_p, end_p,
1212                           f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1213                        return -EINVAL;
1214
1215                start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1216                end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1217        }
1218
1219        /* Insert */
1220        priv->dirty = true;
1221
1222        bsize_max = m->bsize_max;
1223
1224        nft_pipapo_for_each_field(f, i, m) {
1225                int ret;
1226
1227                rulemap[i].to = f->rules;
1228
1229                ret = memcmp(start, end,
1230                             f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1231                if (!ret)
1232                        ret = pipapo_insert(f, start, f->groups * f->bb);
1233                else
1234                        ret = pipapo_expand(f, start, end, f->groups * f->bb);
1235
1236                if (f->bsize > bsize_max)
1237                        bsize_max = f->bsize;
1238
1239                rulemap[i].n = ret;
1240
1241                start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1242                end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1243        }
1244
1245        if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1246                put_cpu_ptr(m->scratch);
1247
1248                err = pipapo_realloc_scratch(m, bsize_max);
1249                if (err)
1250                        return err;
1251
1252                m->bsize_max = bsize_max;
1253        } else {
1254                put_cpu_ptr(m->scratch);
1255        }
1256
1257        *ext2 = &e->ext;
1258
1259        pipapo_map(m, rulemap, e);
1260
1261        return 0;
1262}
1263
1264/**
1265 * pipapo_clone() - Clone matching data to create new working copy
1266 * @old:        Existing matching data
1267 *
1268 * Return: copy of matching data passed as 'old', error pointer on failure
1269 */
1270static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1271{
1272        struct nft_pipapo_field *dst, *src;
1273        struct nft_pipapo_match *new;
1274        int i;
1275
1276        new = kmalloc(sizeof(*new) + sizeof(*dst) * old->field_count,
1277                      GFP_KERNEL);
1278        if (!new)
1279                return ERR_PTR(-ENOMEM);
1280
1281        new->field_count = old->field_count;
1282        new->bsize_max = old->bsize_max;
1283
1284        new->scratch = alloc_percpu(*new->scratch);
1285        if (!new->scratch)
1286                goto out_scratch;
1287
1288#ifdef NFT_PIPAPO_ALIGN
1289        new->scratch_aligned = alloc_percpu(*new->scratch_aligned);
1290        if (!new->scratch_aligned)
1291                goto out_scratch;
1292#endif
1293        for_each_possible_cpu(i)
1294                *per_cpu_ptr(new->scratch, i) = NULL;
1295
1296        if (pipapo_realloc_scratch(new, old->bsize_max))
1297                goto out_scratch_realloc;
1298
1299        rcu_head_init(&new->rcu);
1300
1301        src = old->f;
1302        dst = new->f;
1303
1304        for (i = 0; i < old->field_count; i++) {
1305                unsigned long *new_lt;
1306
1307                memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1308
1309                new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1310                                  src->bsize * sizeof(*dst->lt) +
1311                                  NFT_PIPAPO_ALIGN_HEADROOM,
1312                                  GFP_KERNEL);
1313                if (!new_lt)
1314                        goto out_lt;
1315
1316                NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1317
1318                memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1319                       NFT_PIPAPO_LT_ALIGN(src->lt),
1320                       src->bsize * sizeof(*dst->lt) *
1321                       src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1322
1323                dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1324                if (!dst->mt)
1325                        goto out_mt;
1326
1327                memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1328                src++;
1329                dst++;
1330        }
1331
1332        return new;
1333
1334out_mt:
1335        kvfree(dst->lt);
1336out_lt:
1337        for (dst--; i > 0; i--) {
1338                kvfree(dst->mt);
1339                kvfree(dst->lt);
1340                dst--;
1341        }
1342out_scratch_realloc:
1343        for_each_possible_cpu(i)
1344                kfree(*per_cpu_ptr(new->scratch, i));
1345#ifdef NFT_PIPAPO_ALIGN
1346        free_percpu(new->scratch_aligned);
1347#endif
1348out_scratch:
1349        free_percpu(new->scratch);
1350        kfree(new);
1351
1352        return ERR_PTR(-ENOMEM);
1353}
1354
1355/**
1356 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1357 * @f:          Field containing mapping table
1358 * @first:      Index of first rule in set of rules mapping to same entry
1359 *
1360 * Using the fact that all rules in a field that originated from the same entry
1361 * will map to the same set of rules in the next field, or to the same element
1362 * reference, return the cardinality of the set of rules that originated from
1363 * the same entry as the rule with index @first, @first rule included.
1364 *
1365 * In pictures:
1366 *                              rules
1367 *      field #0                0    1    2    3    4
1368 *              map to:         0    1   2-4  2-4  5-9
1369 *                              .    .    .......   . ...
1370 *                              |    |    |    | \   \
1371 *                              |    |    |    |  \   \
1372 *                              |    |    |    |   \   \
1373 *                              '    '    '    '    '   \
1374 *      in field #1             0    1    2    3    4    5 ...
1375 *
1376 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1377 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1378 *
1379 * For the last field in a set, we can rely on associated entries to map to the
1380 * same element references.
1381 *
1382 * Return: Number of rules that originated from the same entry as @first.
1383 */
1384static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1385{
1386        struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1387        int r;
1388
1389        for (r = first; r < f->rules; r++) {
1390                if (r != first && e != f->mt[r].e)
1391                        return r - first;
1392
1393                e = f->mt[r].e;
1394        }
1395
1396        if (r != first)
1397                return r - first;
1398
1399        return 0;
1400}
1401
1402/**
1403 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1404 * @mt:         Mapping array
1405 * @rules:      Original amount of rules in mapping table
1406 * @start:      First rule index to be removed
1407 * @n:          Amount of rules to be removed
1408 * @to_offset:  First rule index, in next field, this group of rules maps to
1409 * @is_last:    If this is the last field, delete reference from mapping array
1410 *
1411 * This is used to unmap rules from the mapping table for a single field,
1412 * maintaining consistency and compactness for the existing ones.
1413 *
1414 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1415 * following mapping array:
1416 *
1417 *                 rules
1418 *               0      1      2      3      4
1419 *      map to:  4-10   4-10   11-15  11-15  16-18
1420 *
1421 * the result will be:
1422 *
1423 *                 rules
1424 *               0      1      2
1425 *      map to:  4-10   4-10   11-13
1426 *
1427 * for fields before the last one. In case this is the mapping table for the
1428 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1429 *
1430 *                      rules
1431 *                        0      1      2      3      4
1432 *  element pointers:  0x42   0x42   0x33   0x33   0x44
1433 *
1434 * the result will be:
1435 *
1436 *                      rules
1437 *                        0      1      2
1438 *  element pointers:  0x42   0x42   0x44
1439 */
1440static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1441                         int start, int n, int to_offset, bool is_last)
1442{
1443        int i;
1444
1445        memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1446        memset(mt + rules - n, 0, n * sizeof(*mt));
1447
1448        if (is_last)
1449                return;
1450
1451        for (i = start; i < rules - n; i++)
1452                mt[i].to -= to_offset;
1453}
1454
1455/**
1456 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1457 * @m:          Matching data
1458 * @rulemap:    Table of rule maps, arrays of first rule and amount of rules
1459 *              in next field a given entry maps to, for each field
1460 *
1461 * For each rule in lookup table buckets mapping to this set of rules, drop
1462 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1463 * rules 0 and 1 from this lookup table:
1464 *
1465 *                     bucket
1466 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1467 *        0    0                                              1,2
1468 *        1   1,2                                      0
1469 *        2    0                                      1,2
1470 *        3    0                              1,2
1471 *        4  0,1,2
1472 *        5    0   1   2
1473 *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1474 *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
1475 *
1476 * rule 2 becomes rule 0, and the result will be:
1477 *
1478 *                     bucket
1479 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1480 *        0                                                    0
1481 *        1    0
1482 *        2                                            0
1483 *        3                                    0
1484 *        4    0
1485 *        5            0
1486 *        6    0
1487 *        7    0   0
1488 *
1489 * once this is done, call unmap() to drop all the corresponding rule references
1490 * from mapping tables.
1491 */
1492static void pipapo_drop(struct nft_pipapo_match *m,
1493                        union nft_pipapo_map_bucket rulemap[])
1494{
1495        struct nft_pipapo_field *f;
1496        int i;
1497
1498        nft_pipapo_for_each_field(f, i, m) {
1499                int g;
1500
1501                for (g = 0; g < f->groups; g++) {
1502                        unsigned long *pos;
1503                        int b;
1504
1505                        pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1506                              NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1507
1508                        for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1509                                bitmap_cut(pos, pos, rulemap[i].to,
1510                                           rulemap[i].n,
1511                                           f->bsize * BITS_PER_LONG);
1512
1513                                pos += f->bsize;
1514                        }
1515                }
1516
1517                pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1518                             rulemap[i + 1].n, i == m->field_count - 1);
1519                if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1520                        /* We can ignore this, a failure to shrink tables down
1521                         * doesn't make tables invalid.
1522                         */
1523                        ;
1524                }
1525                f->rules -= rulemap[i].n;
1526
1527                pipapo_lt_bits_adjust(f);
1528        }
1529}
1530
1531/**
1532 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1533 * @set:        nftables API set representation
1534 * @m:          Matching data
1535 */
1536static void pipapo_gc(const struct nft_set *set, struct nft_pipapo_match *m)
1537{
1538        struct nft_pipapo *priv = nft_set_priv(set);
1539        int rules_f0, first_rule = 0;
1540        struct nft_pipapo_elem *e;
1541
1542        while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1543                union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1544                struct nft_pipapo_field *f;
1545                int i, start, rules_fx;
1546
1547                start = first_rule;
1548                rules_fx = rules_f0;
1549
1550                nft_pipapo_for_each_field(f, i, m) {
1551                        rulemap[i].to = start;
1552                        rulemap[i].n = rules_fx;
1553
1554                        if (i < m->field_count - 1) {
1555                                rules_fx = f->mt[start].n;
1556                                start = f->mt[start].to;
1557                        }
1558                }
1559
1560                /* Pick the last field, and its last index */
1561                f--;
1562                i--;
1563                e = f->mt[rulemap[i].to].e;
1564                if (nft_set_elem_expired(&e->ext) &&
1565                    !nft_set_elem_mark_busy(&e->ext)) {
1566                        priv->dirty = true;
1567                        pipapo_drop(m, rulemap);
1568
1569                        rcu_barrier();
1570                        nft_set_elem_destroy(set, e, true);
1571
1572                        /* And check again current first rule, which is now the
1573                         * first we haven't checked.
1574                         */
1575                } else {
1576                        first_rule += rules_f0;
1577                }
1578        }
1579
1580        e = nft_set_catchall_gc(set);
1581        if (e)
1582                nft_set_elem_destroy(set, e, true);
1583
1584        priv->last_gc = jiffies;
1585}
1586
1587/**
1588 * pipapo_free_fields() - Free per-field tables contained in matching data
1589 * @m:          Matching data
1590 */
1591static void pipapo_free_fields(struct nft_pipapo_match *m)
1592{
1593        struct nft_pipapo_field *f;
1594        int i;
1595
1596        nft_pipapo_for_each_field(f, i, m) {
1597                kvfree(f->lt);
1598                kvfree(f->mt);
1599        }
1600}
1601
1602/**
1603 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1604 * @rcu:        RCU head
1605 */
1606static void pipapo_reclaim_match(struct rcu_head *rcu)
1607{
1608        struct nft_pipapo_match *m;
1609        int i;
1610
1611        m = container_of(rcu, struct nft_pipapo_match, rcu);
1612
1613        for_each_possible_cpu(i)
1614                kfree(*per_cpu_ptr(m->scratch, i));
1615
1616#ifdef NFT_PIPAPO_ALIGN
1617        free_percpu(m->scratch_aligned);
1618#endif
1619        free_percpu(m->scratch);
1620
1621        pipapo_free_fields(m);
1622
1623        kfree(m);
1624}
1625
1626/**
1627 * pipapo_commit() - Replace lookup data with current working copy
1628 * @set:        nftables API set representation
1629 *
1630 * While at it, check if we should perform garbage collection on the working
1631 * copy before committing it for lookup, and don't replace the table if the
1632 * working copy doesn't have pending changes.
1633 *
1634 * We also need to create a new working copy for subsequent insertions and
1635 * deletions.
1636 */
1637static void pipapo_commit(const struct nft_set *set)
1638{
1639        struct nft_pipapo *priv = nft_set_priv(set);
1640        struct nft_pipapo_match *new_clone, *old;
1641
1642        if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1643                pipapo_gc(set, priv->clone);
1644
1645        if (!priv->dirty)
1646                return;
1647
1648        new_clone = pipapo_clone(priv->clone);
1649        if (IS_ERR(new_clone))
1650                return;
1651
1652        priv->dirty = false;
1653
1654        old = rcu_access_pointer(priv->match);
1655        rcu_assign_pointer(priv->match, priv->clone);
1656        if (old)
1657                call_rcu(&old->rcu, pipapo_reclaim_match);
1658
1659        priv->clone = new_clone;
1660}
1661
1662/**
1663 * nft_pipapo_activate() - Mark element reference as active given key, commit
1664 * @net:        Network namespace
1665 * @set:        nftables API set representation
1666 * @elem:       nftables API element representation containing key data
1667 *
1668 * On insertion, elements are added to a copy of the matching data currently
1669 * in use for lookups, and not directly inserted into current lookup data, so
1670 * we'll take care of that by calling pipapo_commit() here. Both
1671 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1672 * element, hence we can't purpose either one as a real commit operation.
1673 */
1674static void nft_pipapo_activate(const struct net *net,
1675                                const struct nft_set *set,
1676                                const struct nft_set_elem *elem)
1677{
1678        struct nft_pipapo_elem *e;
1679
1680        e = pipapo_get(net, set, (const u8 *)elem->key.val.data, 0);
1681        if (IS_ERR(e))
1682                return;
1683
1684        nft_set_elem_change_active(net, set, &e->ext);
1685        nft_set_elem_clear_busy(&e->ext);
1686
1687        pipapo_commit(set);
1688}
1689
1690/**
1691 * pipapo_deactivate() - Check that element is in set, mark as inactive
1692 * @net:        Network namespace
1693 * @set:        nftables API set representation
1694 * @data:       Input key data
1695 * @ext:        nftables API extension pointer, used to check for end element
1696 *
1697 * This is a convenience function that can be called from both
1698 * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1699 * operation.
1700 *
1701 * Return: deactivated element if found, NULL otherwise.
1702 */
1703static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1704                               const u8 *data, const struct nft_set_ext *ext)
1705{
1706        struct nft_pipapo_elem *e;
1707
1708        e = pipapo_get(net, set, data, nft_genmask_next(net));
1709        if (IS_ERR(e))
1710                return NULL;
1711
1712        nft_set_elem_change_active(net, set, &e->ext);
1713
1714        return e;
1715}
1716
1717/**
1718 * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1719 * @net:        Network namespace
1720 * @set:        nftables API set representation
1721 * @elem:       nftables API element representation containing key data
1722 *
1723 * Return: deactivated element if found, NULL otherwise.
1724 */
1725static void *nft_pipapo_deactivate(const struct net *net,
1726                                   const struct nft_set *set,
1727                                   const struct nft_set_elem *elem)
1728{
1729        const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1730
1731        return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1732}
1733
1734/**
1735 * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1736 * @net:        Network namespace
1737 * @set:        nftables API set representation
1738 * @elem:       nftables API element representation containing key data
1739 *
1740 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1741 * different interface, and it's also called once for each element in a set
1742 * being flushed, so we can't implement, strictly speaking, a flush operation,
1743 * which would otherwise be as simple as allocating an empty copy of the
1744 * matching data.
1745 *
1746 * Note that we could in theory do that, mark the set as flushed, and ignore
1747 * subsequent calls, but we would leak all the elements after the first one,
1748 * because they wouldn't then be freed as result of API calls.
1749 *
1750 * Return: true if element was found and deactivated.
1751 */
1752static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1753                             void *elem)
1754{
1755        struct nft_pipapo_elem *e = elem;
1756
1757        return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
1758                                 &e->ext);
1759}
1760
1761/**
1762 * pipapo_get_boundaries() - Get byte interval for associated rules
1763 * @f:          Field including lookup table
1764 * @first_rule: First rule (lowest index)
1765 * @rule_count: Number of associated rules
1766 * @left:       Byte expression for left boundary (start of range)
1767 * @right:      Byte expression for right boundary (end of range)
1768 *
1769 * Given the first rule and amount of rules that originated from the same entry,
1770 * build the original range associated with the entry, and calculate the length
1771 * of the originating netmask.
1772 *
1773 * In pictures:
1774 *
1775 *                     bucket
1776 *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1777 *        0                                                   1,2
1778 *        1   1,2
1779 *        2                                           1,2
1780 *        3                                   1,2
1781 *        4   1,2
1782 *        5        1   2
1783 *        6   1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1784 *        7   1,2 1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1
1785 *
1786 * this is the lookup table corresponding to the IPv4 range
1787 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1788 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1789 *
1790 * This function fills @left and @right with the byte values of the leftmost
1791 * and rightmost bucket indices for the lowest and highest rule indices,
1792 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1793 * nibbles:
1794 *   left:  < 12, 0, 10, 8, 0, 1, 0, 0 >
1795 *   right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1796 * corresponding to bytes:
1797 *   left:  < 192, 168, 1, 0 >
1798 *   right: < 192, 168, 2, 1 >
1799 * with mask length irrelevant here, unused on return, as the range is already
1800 * defined by its start and end points. The mask length is relevant for a single
1801 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1802 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1803 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1804 * between leftmost and rightmost bucket indices for each group, would be 24.
1805 *
1806 * Return: mask length, in bits.
1807 */
1808static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1809                                 int rule_count, u8 *left, u8 *right)
1810{
1811        int g, mask_len = 0, bit_offset = 0;
1812        u8 *l = left, *r = right;
1813
1814        for (g = 0; g < f->groups; g++) {
1815                int b, x0, x1;
1816
1817                x0 = -1;
1818                x1 = -1;
1819                for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1820                        unsigned long *pos;
1821
1822                        pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1823                              (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1824                        if (test_bit(first_rule, pos) && x0 == -1)
1825                                x0 = b;
1826                        if (test_bit(first_rule + rule_count - 1, pos))
1827                                x1 = b;
1828                }
1829
1830                *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1831                *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1832
1833                bit_offset += f->bb;
1834                if (bit_offset >= BITS_PER_BYTE) {
1835                        bit_offset %= BITS_PER_BYTE;
1836                        l++;
1837                        r++;
1838                }
1839
1840                if (x1 - x0 == 0)
1841                        mask_len += 4;
1842                else if (x1 - x0 == 1)
1843                        mask_len += 3;
1844                else if (x1 - x0 == 3)
1845                        mask_len += 2;
1846                else if (x1 - x0 == 7)
1847                        mask_len += 1;
1848        }
1849
1850        return mask_len;
1851}
1852
1853/**
1854 * pipapo_match_field() - Match rules against byte ranges
1855 * @f:          Field including the lookup table
1856 * @first_rule: First of associated rules originating from same entry
1857 * @rule_count: Amount of associated rules
1858 * @start:      Start of range to be matched
1859 * @end:        End of range to be matched
1860 *
1861 * Return: true on match, false otherwise.
1862 */
1863static bool pipapo_match_field(struct nft_pipapo_field *f,
1864                               int first_rule, int rule_count,
1865                               const u8 *start, const u8 *end)
1866{
1867        u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1868        u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1869
1870        pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1871
1872        return !memcmp(start, left,
1873                       f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1874               !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1875}
1876
1877/**
1878 * nft_pipapo_remove() - Remove element given key, commit
1879 * @net:        Network namespace
1880 * @set:        nftables API set representation
1881 * @elem:       nftables API element representation containing key data
1882 *
1883 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1884 * API, but it's called once per element in the pending transaction, so we can't
1885 * implement this as a single commit operation. Closest we can get is to remove
1886 * the matched element here, if any, and commit the updated matching data.
1887 */
1888static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1889                              const struct nft_set_elem *elem)
1890{
1891        struct nft_pipapo *priv = nft_set_priv(set);
1892        struct nft_pipapo_match *m = priv->clone;
1893        struct nft_pipapo_elem *e = elem->priv;
1894        int rules_f0, first_rule = 0;
1895        const u8 *data;
1896
1897        data = (const u8 *)nft_set_ext_key(&e->ext);
1898
1899        e = pipapo_get(net, set, data, 0);
1900        if (IS_ERR(e))
1901                return;
1902
1903        while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1904                union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1905                const u8 *match_start, *match_end;
1906                struct nft_pipapo_field *f;
1907                int i, start, rules_fx;
1908
1909                match_start = data;
1910                match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1911
1912                start = first_rule;
1913                rules_fx = rules_f0;
1914
1915                nft_pipapo_for_each_field(f, i, m) {
1916                        if (!pipapo_match_field(f, start, rules_fx,
1917                                                match_start, match_end))
1918                                break;
1919
1920                        rulemap[i].to = start;
1921                        rulemap[i].n = rules_fx;
1922
1923                        rules_fx = f->mt[start].n;
1924                        start = f->mt[start].to;
1925
1926                        match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1927                        match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1928                }
1929
1930                if (i == m->field_count) {
1931                        priv->dirty = true;
1932                        pipapo_drop(m, rulemap);
1933                        pipapo_commit(set);
1934                        return;
1935                }
1936
1937                first_rule += rules_f0;
1938        }
1939}
1940
1941/**
1942 * nft_pipapo_walk() - Walk over elements
1943 * @ctx:        nftables API context
1944 * @set:        nftables API set representation
1945 * @iter:       Iterator
1946 *
1947 * As elements are referenced in the mapping array for the last field, directly
1948 * scan that array: there's no need to follow rule mappings from the first
1949 * field.
1950 */
1951static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
1952                            struct nft_set_iter *iter)
1953{
1954        struct nft_pipapo *priv = nft_set_priv(set);
1955        struct nft_pipapo_match *m;
1956        struct nft_pipapo_field *f;
1957        int i, r;
1958
1959        rcu_read_lock();
1960        m = rcu_dereference(priv->match);
1961
1962        if (unlikely(!m))
1963                goto out;
1964
1965        for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
1966                ;
1967
1968        for (r = 0; r < f->rules; r++) {
1969                struct nft_pipapo_elem *e;
1970                struct nft_set_elem elem;
1971
1972                if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
1973                        continue;
1974
1975                if (iter->count < iter->skip)
1976                        goto cont;
1977
1978                e = f->mt[r].e;
1979                if (nft_set_elem_expired(&e->ext))
1980                        goto cont;
1981
1982                elem.priv = e;
1983
1984                iter->err = iter->fn(ctx, set, iter, &elem);
1985                if (iter->err < 0)
1986                        goto out;
1987
1988cont:
1989                iter->count++;
1990        }
1991
1992out:
1993        rcu_read_unlock();
1994}
1995
1996/**
1997 * nft_pipapo_privsize() - Return the size of private data for the set
1998 * @nla:        netlink attributes, ignored as size doesn't depend on them
1999 * @desc:       Set description, ignored as size doesn't depend on it
2000 *
2001 * Return: size of private data for this set implementation, in bytes
2002 */
2003static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2004                               const struct nft_set_desc *desc)
2005{
2006        return sizeof(struct nft_pipapo);
2007}
2008
2009/**
2010 * nft_pipapo_estimate() - Set size, space and lookup complexity
2011 * @desc:       Set description, element count and field description used
2012 * @features:   Flags: NFT_SET_INTERVAL needs to be there
2013 * @est:        Storage for estimation data
2014 *
2015 * Return: true if set description is compatible, false otherwise
2016 */
2017static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2018                                struct nft_set_estimate *est)
2019{
2020        if (!(features & NFT_SET_INTERVAL) ||
2021            desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2022                return false;
2023
2024        est->size = pipapo_estimate_size(desc);
2025        if (!est->size)
2026                return false;
2027
2028        est->lookup = NFT_SET_CLASS_O_LOG_N;
2029
2030        est->space = NFT_SET_CLASS_O_N;
2031
2032        return true;
2033}
2034
2035/**
2036 * nft_pipapo_init() - Initialise data for a set instance
2037 * @set:        nftables API set representation
2038 * @desc:       Set description
2039 * @nla:        netlink attributes
2040 *
2041 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2042 * attributes, initialise internal set parameters, current instance of matching
2043 * data and a copy for subsequent insertions.
2044 *
2045 * Return: 0 on success, negative error code on failure.
2046 */
2047static int nft_pipapo_init(const struct nft_set *set,
2048                           const struct nft_set_desc *desc,
2049                           const struct nlattr * const nla[])
2050{
2051        struct nft_pipapo *priv = nft_set_priv(set);
2052        struct nft_pipapo_match *m;
2053        struct nft_pipapo_field *f;
2054        int err, i, field_count;
2055
2056        field_count = desc->field_count ? : 1;
2057
2058        if (field_count > NFT_PIPAPO_MAX_FIELDS)
2059                return -EINVAL;
2060
2061        m = kmalloc(sizeof(*priv->match) + sizeof(*f) * field_count,
2062                    GFP_KERNEL);
2063        if (!m)
2064                return -ENOMEM;
2065
2066        m->field_count = field_count;
2067        m->bsize_max = 0;
2068
2069        m->scratch = alloc_percpu(unsigned long *);
2070        if (!m->scratch) {
2071                err = -ENOMEM;
2072                goto out_scratch;
2073        }
2074        for_each_possible_cpu(i)
2075                *per_cpu_ptr(m->scratch, i) = NULL;
2076
2077#ifdef NFT_PIPAPO_ALIGN
2078        m->scratch_aligned = alloc_percpu(unsigned long *);
2079        if (!m->scratch_aligned) {
2080                err = -ENOMEM;
2081                goto out_free;
2082        }
2083        for_each_possible_cpu(i)
2084                *per_cpu_ptr(m->scratch_aligned, i) = NULL;
2085#endif
2086
2087        rcu_head_init(&m->rcu);
2088
2089        nft_pipapo_for_each_field(f, i, m) {
2090                int len = desc->field_len[i] ? : set->klen;
2091
2092                f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2093                f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2094
2095                priv->width += round_up(len, sizeof(u32));
2096
2097                f->bsize = 0;
2098                f->rules = 0;
2099                NFT_PIPAPO_LT_ASSIGN(f, NULL);
2100                f->mt = NULL;
2101        }
2102
2103        /* Create an initial clone of matching data for next insertion */
2104        priv->clone = pipapo_clone(m);
2105        if (IS_ERR(priv->clone)) {
2106                err = PTR_ERR(priv->clone);
2107                goto out_free;
2108        }
2109
2110        priv->dirty = false;
2111
2112        rcu_assign_pointer(priv->match, m);
2113
2114        return 0;
2115
2116out_free:
2117#ifdef NFT_PIPAPO_ALIGN
2118        free_percpu(m->scratch_aligned);
2119#endif
2120        free_percpu(m->scratch);
2121out_scratch:
2122        kfree(m);
2123
2124        return err;
2125}
2126
2127/**
2128 * nft_pipapo_destroy() - Free private data for set and all committed elements
2129 * @set:        nftables API set representation
2130 */
2131static void nft_pipapo_destroy(const struct nft_set *set)
2132{
2133        struct nft_pipapo *priv = nft_set_priv(set);
2134        struct nft_pipapo_match *m;
2135        struct nft_pipapo_field *f;
2136        int i, r, cpu;
2137
2138        m = rcu_dereference_protected(priv->match, true);
2139        if (m) {
2140                rcu_barrier();
2141
2142                for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2143                        ;
2144
2145                for (r = 0; r < f->rules; r++) {
2146                        struct nft_pipapo_elem *e;
2147
2148                        if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2149                                continue;
2150
2151                        e = f->mt[r].e;
2152
2153                        nft_set_elem_destroy(set, e, true);
2154                }
2155
2156#ifdef NFT_PIPAPO_ALIGN
2157                free_percpu(m->scratch_aligned);
2158#endif
2159                for_each_possible_cpu(cpu)
2160                        kfree(*per_cpu_ptr(m->scratch, cpu));
2161                free_percpu(m->scratch);
2162                pipapo_free_fields(m);
2163                kfree(m);
2164                priv->match = NULL;
2165        }
2166
2167        if (priv->clone) {
2168#ifdef NFT_PIPAPO_ALIGN
2169                free_percpu(priv->clone->scratch_aligned);
2170#endif
2171                for_each_possible_cpu(cpu)
2172                        kfree(*per_cpu_ptr(priv->clone->scratch, cpu));
2173                free_percpu(priv->clone->scratch);
2174
2175                pipapo_free_fields(priv->clone);
2176                kfree(priv->clone);
2177                priv->clone = NULL;
2178        }
2179}
2180
2181/**
2182 * nft_pipapo_gc_init() - Initialise garbage collection
2183 * @set:        nftables API set representation
2184 *
2185 * Instead of actually setting up a periodic work for garbage collection, as
2186 * this operation requires a swap of matching data with the working copy, we'll
2187 * do that opportunistically with other commit operations if the interval is
2188 * elapsed, so we just need to set the current jiffies timestamp here.
2189 */
2190static void nft_pipapo_gc_init(const struct nft_set *set)
2191{
2192        struct nft_pipapo *priv = nft_set_priv(set);
2193
2194        priv->last_gc = jiffies;
2195}
2196
2197const struct nft_set_type nft_set_pipapo_type = {
2198        .features       = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2199                          NFT_SET_TIMEOUT,
2200        .ops            = {
2201                .lookup         = nft_pipapo_lookup,
2202                .insert         = nft_pipapo_insert,
2203                .activate       = nft_pipapo_activate,
2204                .deactivate     = nft_pipapo_deactivate,
2205                .flush          = nft_pipapo_flush,
2206                .remove         = nft_pipapo_remove,
2207                .walk           = nft_pipapo_walk,
2208                .get            = nft_pipapo_get,
2209                .privsize       = nft_pipapo_privsize,
2210                .estimate       = nft_pipapo_estimate,
2211                .init           = nft_pipapo_init,
2212                .destroy        = nft_pipapo_destroy,
2213                .gc_init        = nft_pipapo_gc_init,
2214                .elemsize       = offsetof(struct nft_pipapo_elem, ext),
2215        },
2216};
2217
2218#if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2219const struct nft_set_type nft_set_pipapo_avx2_type = {
2220        .features       = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2221                          NFT_SET_TIMEOUT,
2222        .ops            = {
2223                .lookup         = nft_pipapo_avx2_lookup,
2224                .insert         = nft_pipapo_insert,
2225                .activate       = nft_pipapo_activate,
2226                .deactivate     = nft_pipapo_deactivate,
2227                .flush          = nft_pipapo_flush,
2228                .remove         = nft_pipapo_remove,
2229                .walk           = nft_pipapo_walk,
2230                .get            = nft_pipapo_get,
2231                .privsize       = nft_pipapo_privsize,
2232                .estimate       = nft_pipapo_avx2_estimate,
2233                .init           = nft_pipapo_init,
2234                .destroy        = nft_pipapo_destroy,
2235                .gc_init        = nft_pipapo_gc_init,
2236                .elemsize       = offsetof(struct nft_pipapo_elem, ext),
2237        },
2238};
2239#endif
2240