linux/net/tipc/crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
   4 *
   5 * Copyright (c) 2019, Ericsson AB
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions are met:
  10 *
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the names of the copyright holders nor the names of its
  17 *    contributors may be used to endorse or promote products derived from
  18 *    this software without specific prior written permission.
  19 *
  20 * Alternatively, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") version 2 as published by the Free
  22 * Software Foundation.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  34 * POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#include <crypto/aead.h>
  38#include <crypto/aes.h>
  39#include <crypto/rng.h>
  40#include "crypto.h"
  41#include "msg.h"
  42#include "bcast.h"
  43
  44#define TIPC_TX_GRACE_PERIOD    msecs_to_jiffies(5000) /* 5s */
  45#define TIPC_TX_LASTING_TIME    msecs_to_jiffies(10000) /* 10s */
  46#define TIPC_RX_ACTIVE_LIM      msecs_to_jiffies(3000) /* 3s */
  47#define TIPC_RX_PASSIVE_LIM     msecs_to_jiffies(15000) /* 15s */
  48
  49#define TIPC_MAX_TFMS_DEF       10
  50#define TIPC_MAX_TFMS_LIM       1000
  51
  52#define TIPC_REKEYING_INTV_DEF  (60 * 24) /* default: 1 day */
  53
  54/*
  55 * TIPC Key ids
  56 */
  57enum {
  58        KEY_MASTER = 0,
  59        KEY_MIN = KEY_MASTER,
  60        KEY_1 = 1,
  61        KEY_2,
  62        KEY_3,
  63        KEY_MAX = KEY_3,
  64};
  65
  66/*
  67 * TIPC Crypto statistics
  68 */
  69enum {
  70        STAT_OK,
  71        STAT_NOK,
  72        STAT_ASYNC,
  73        STAT_ASYNC_OK,
  74        STAT_ASYNC_NOK,
  75        STAT_BADKEYS, /* tx only */
  76        STAT_BADMSGS = STAT_BADKEYS, /* rx only */
  77        STAT_NOKEYS,
  78        STAT_SWITCHES,
  79
  80        MAX_STATS,
  81};
  82
  83/* TIPC crypto statistics' header */
  84static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
  85                                        "async_nok", "badmsgs", "nokeys",
  86                                        "switches"};
  87
  88/* Max TFMs number per key */
  89int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
  90/* Key exchange switch, default: on */
  91int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
  92
  93/*
  94 * struct tipc_key - TIPC keys' status indicator
  95 *
  96 *         7     6     5     4     3     2     1     0
  97 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  98 * key: | (reserved)|passive idx| active idx|pending idx|
  99 *      +-----+-----+-----+-----+-----+-----+-----+-----+
 100 */
 101struct tipc_key {
 102#define KEY_BITS (2)
 103#define KEY_MASK ((1 << KEY_BITS) - 1)
 104        union {
 105                struct {
 106#if defined(__LITTLE_ENDIAN_BITFIELD)
 107                        u8 pending:2,
 108                           active:2,
 109                           passive:2, /* rx only */
 110                           reserved:2;
 111#elif defined(__BIG_ENDIAN_BITFIELD)
 112                        u8 reserved:2,
 113                           passive:2, /* rx only */
 114                           active:2,
 115                           pending:2;
 116#else
 117#error  "Please fix <asm/byteorder.h>"
 118#endif
 119                } __packed;
 120                u8 keys;
 121        };
 122};
 123
 124/**
 125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
 126 * @tfm: cipher handle/key
 127 * @list: linked list of TFMs
 128 */
 129struct tipc_tfm {
 130        struct crypto_aead *tfm;
 131        struct list_head list;
 132};
 133
 134/**
 135 * struct tipc_aead - TIPC AEAD key structure
 136 * @tfm_entry: per-cpu pointer to one entry in TFM list
 137 * @crypto: TIPC crypto owns this key
 138 * @cloned: reference to the source key in case cloning
 139 * @users: the number of the key users (TX/RX)
 140 * @salt: the key's SALT value
 141 * @authsize: authentication tag size (max = 16)
 142 * @mode: crypto mode is applied to the key
 143 * @hint: a hint for user key
 144 * @rcu: struct rcu_head
 145 * @key: the aead key
 146 * @gen: the key's generation
 147 * @seqno: the key seqno (cluster scope)
 148 * @refcnt: the key reference counter
 149 */
 150struct tipc_aead {
 151#define TIPC_AEAD_HINT_LEN (5)
 152        struct tipc_tfm * __percpu *tfm_entry;
 153        struct tipc_crypto *crypto;
 154        struct tipc_aead *cloned;
 155        atomic_t users;
 156        u32 salt;
 157        u8 authsize;
 158        u8 mode;
 159        char hint[2 * TIPC_AEAD_HINT_LEN + 1];
 160        struct rcu_head rcu;
 161        struct tipc_aead_key *key;
 162        u16 gen;
 163
 164        atomic64_t seqno ____cacheline_aligned;
 165        refcount_t refcnt ____cacheline_aligned;
 166
 167} ____cacheline_aligned;
 168
 169/**
 170 * struct tipc_crypto_stats - TIPC Crypto statistics
 171 * @stat: array of crypto statistics
 172 */
 173struct tipc_crypto_stats {
 174        unsigned int stat[MAX_STATS];
 175};
 176
 177/**
 178 * struct tipc_crypto - TIPC TX/RX crypto structure
 179 * @net: struct net
 180 * @node: TIPC node (RX)
 181 * @aead: array of pointers to AEAD keys for encryption/decryption
 182 * @peer_rx_active: replicated peer RX active key index
 183 * @key_gen: TX/RX key generation
 184 * @key: the key states
 185 * @skey_mode: session key's mode
 186 * @skey: received session key
 187 * @wq: common workqueue on TX crypto
 188 * @work: delayed work sched for TX/RX
 189 * @key_distr: key distributing state
 190 * @rekeying_intv: rekeying interval (in minutes)
 191 * @stats: the crypto statistics
 192 * @name: the crypto name
 193 * @sndnxt: the per-peer sndnxt (TX)
 194 * @timer1: general timer 1 (jiffies)
 195 * @timer2: general timer 2 (jiffies)
 196 * @working: the crypto is working or not
 197 * @key_master: flag indicates if master key exists
 198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
 199 * @nokey: no key indication
 200 * @flags: combined flags field
 201 * @lock: tipc_key lock
 202 */
 203struct tipc_crypto {
 204        struct net *net;
 205        struct tipc_node *node;
 206        struct tipc_aead __rcu *aead[KEY_MAX + 1];
 207        atomic_t peer_rx_active;
 208        u16 key_gen;
 209        struct tipc_key key;
 210        u8 skey_mode;
 211        struct tipc_aead_key *skey;
 212        struct workqueue_struct *wq;
 213        struct delayed_work work;
 214#define KEY_DISTR_SCHED         1
 215#define KEY_DISTR_COMPL         2
 216        atomic_t key_distr;
 217        u32 rekeying_intv;
 218
 219        struct tipc_crypto_stats __percpu *stats;
 220        char name[48];
 221
 222        atomic64_t sndnxt ____cacheline_aligned;
 223        unsigned long timer1;
 224        unsigned long timer2;
 225        union {
 226                struct {
 227                        u8 working:1;
 228                        u8 key_master:1;
 229                        u8 legacy_user:1;
 230                        u8 nokey: 1;
 231                };
 232                u8 flags;
 233        };
 234        spinlock_t lock; /* crypto lock */
 235
 236} ____cacheline_aligned;
 237
 238/* struct tipc_crypto_tx_ctx - TX context for callbacks */
 239struct tipc_crypto_tx_ctx {
 240        struct tipc_aead *aead;
 241        struct tipc_bearer *bearer;
 242        struct tipc_media_addr dst;
 243};
 244
 245/* struct tipc_crypto_rx_ctx - RX context for callbacks */
 246struct tipc_crypto_rx_ctx {
 247        struct tipc_aead *aead;
 248        struct tipc_bearer *bearer;
 249};
 250
 251static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
 252static inline void tipc_aead_put(struct tipc_aead *aead);
 253static void tipc_aead_free(struct rcu_head *rp);
 254static int tipc_aead_users(struct tipc_aead __rcu *aead);
 255static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
 256static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
 257static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
 258static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
 259static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 260                          u8 mode);
 261static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
 262static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 263                                 unsigned int crypto_ctx_size,
 264                                 u8 **iv, struct aead_request **req,
 265                                 struct scatterlist **sg, int nsg);
 266static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 267                             struct tipc_bearer *b,
 268                             struct tipc_media_addr *dst,
 269                             struct tipc_node *__dnode);
 270static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
 271static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 272                             struct sk_buff *skb, struct tipc_bearer *b);
 273static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
 274static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
 275static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 276                           u8 tx_key, struct sk_buff *skb,
 277                           struct tipc_crypto *__rx);
 278static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
 279                                             u8 new_passive,
 280                                             u8 new_active,
 281                                             u8 new_pending);
 282static int tipc_crypto_key_attach(struct tipc_crypto *c,
 283                                  struct tipc_aead *aead, u8 pos,
 284                                  bool master_key);
 285static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
 286static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
 287                                                 struct tipc_crypto *rx,
 288                                                 struct sk_buff *skb,
 289                                                 u8 tx_key);
 290static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
 291static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
 292static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
 293                                         struct tipc_bearer *b,
 294                                         struct tipc_media_addr *dst,
 295                                         struct tipc_node *__dnode, u8 type);
 296static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
 297                                     struct tipc_bearer *b,
 298                                     struct sk_buff **skb, int err);
 299static void tipc_crypto_do_cmd(struct net *net, int cmd);
 300static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
 301static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
 302                                  char *buf);
 303static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
 304                                u16 gen, u8 mode, u32 dnode);
 305static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
 306static void tipc_crypto_work_tx(struct work_struct *work);
 307static void tipc_crypto_work_rx(struct work_struct *work);
 308static int tipc_aead_key_generate(struct tipc_aead_key *skey);
 309
 310#define is_tx(crypto) (!(crypto)->node)
 311#define is_rx(crypto) (!is_tx(crypto))
 312
 313#define key_next(cur) ((cur) % KEY_MAX + 1)
 314
 315#define tipc_aead_rcu_ptr(rcu_ptr, lock)                                \
 316        rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
 317
 318#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)                       \
 319do {                                                                    \
 320        struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),  \
 321                                                lockdep_is_held(lock)); \
 322        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 323        tipc_aead_put(__tmp);                                           \
 324} while (0)
 325
 326#define tipc_crypto_key_detach(rcu_ptr, lock)                           \
 327        tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
 328
 329/**
 330 * tipc_aead_key_validate - Validate a AEAD user key
 331 * @ukey: pointer to user key data
 332 * @info: netlink info pointer
 333 */
 334int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
 335{
 336        int keylen;
 337
 338        /* Check if algorithm exists */
 339        if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
 340                GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
 341                return -ENODEV;
 342        }
 343
 344        /* Currently, we only support the "gcm(aes)" cipher algorithm */
 345        if (strcmp(ukey->alg_name, "gcm(aes)")) {
 346                GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
 347                return -ENOTSUPP;
 348        }
 349
 350        /* Check if key size is correct */
 351        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 352        if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
 353                     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
 354                     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
 355                GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
 356                return -EKEYREJECTED;
 357        }
 358
 359        return 0;
 360}
 361
 362/**
 363 * tipc_aead_key_generate - Generate new session key
 364 * @skey: input/output key with new content
 365 *
 366 * Return: 0 in case of success, otherwise < 0
 367 */
 368static int tipc_aead_key_generate(struct tipc_aead_key *skey)
 369{
 370        int rc = 0;
 371
 372        /* Fill the key's content with a random value via RNG cipher */
 373        rc = crypto_get_default_rng();
 374        if (likely(!rc)) {
 375                rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
 376                                          skey->keylen);
 377                crypto_put_default_rng();
 378        }
 379
 380        return rc;
 381}
 382
 383static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
 384{
 385        struct tipc_aead *tmp;
 386
 387        rcu_read_lock();
 388        tmp = rcu_dereference(aead);
 389        if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
 390                tmp = NULL;
 391        rcu_read_unlock();
 392
 393        return tmp;
 394}
 395
 396static inline void tipc_aead_put(struct tipc_aead *aead)
 397{
 398        if (aead && refcount_dec_and_test(&aead->refcnt))
 399                call_rcu(&aead->rcu, tipc_aead_free);
 400}
 401
 402/**
 403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
 404 * @rp: rcu head pointer
 405 */
 406static void tipc_aead_free(struct rcu_head *rp)
 407{
 408        struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
 409        struct tipc_tfm *tfm_entry, *head, *tmp;
 410
 411        if (aead->cloned) {
 412                tipc_aead_put(aead->cloned);
 413        } else {
 414                head = *get_cpu_ptr(aead->tfm_entry);
 415                put_cpu_ptr(aead->tfm_entry);
 416                list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
 417                        crypto_free_aead(tfm_entry->tfm);
 418                        list_del(&tfm_entry->list);
 419                        kfree(tfm_entry);
 420                }
 421                /* Free the head */
 422                crypto_free_aead(head->tfm);
 423                list_del(&head->list);
 424                kfree(head);
 425        }
 426        free_percpu(aead->tfm_entry);
 427        kfree_sensitive(aead->key);
 428        kfree(aead);
 429}
 430
 431static int tipc_aead_users(struct tipc_aead __rcu *aead)
 432{
 433        struct tipc_aead *tmp;
 434        int users = 0;
 435
 436        rcu_read_lock();
 437        tmp = rcu_dereference(aead);
 438        if (tmp)
 439                users = atomic_read(&tmp->users);
 440        rcu_read_unlock();
 441
 442        return users;
 443}
 444
 445static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
 446{
 447        struct tipc_aead *tmp;
 448
 449        rcu_read_lock();
 450        tmp = rcu_dereference(aead);
 451        if (tmp)
 452                atomic_add_unless(&tmp->users, 1, lim);
 453        rcu_read_unlock();
 454}
 455
 456static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
 457{
 458        struct tipc_aead *tmp;
 459
 460        rcu_read_lock();
 461        tmp = rcu_dereference(aead);
 462        if (tmp)
 463                atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
 464        rcu_read_unlock();
 465}
 466
 467static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
 468{
 469        struct tipc_aead *tmp;
 470        int cur;
 471
 472        rcu_read_lock();
 473        tmp = rcu_dereference(aead);
 474        if (tmp) {
 475                do {
 476                        cur = atomic_read(&tmp->users);
 477                        if (cur == val)
 478                                break;
 479                } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
 480        }
 481        rcu_read_unlock();
 482}
 483
 484/**
 485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
 486 * @aead: the AEAD key pointer
 487 */
 488static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
 489{
 490        struct tipc_tfm **tfm_entry;
 491        struct crypto_aead *tfm;
 492
 493        tfm_entry = get_cpu_ptr(aead->tfm_entry);
 494        *tfm_entry = list_next_entry(*tfm_entry, list);
 495        tfm = (*tfm_entry)->tfm;
 496        put_cpu_ptr(tfm_entry);
 497
 498        return tfm;
 499}
 500
 501/**
 502 * tipc_aead_init - Initiate TIPC AEAD
 503 * @aead: returned new TIPC AEAD key handle pointer
 504 * @ukey: pointer to user key data
 505 * @mode: the key mode
 506 *
 507 * Allocate a (list of) new cipher transformation (TFM) with the specific user
 508 * key data if valid. The number of the allocated TFMs can be set via the sysfs
 509 * "net/tipc/max_tfms" first.
 510 * Also, all the other AEAD data are also initialized.
 511 *
 512 * Return: 0 if the initiation is successful, otherwise: < 0
 513 */
 514static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 515                          u8 mode)
 516{
 517        struct tipc_tfm *tfm_entry, *head;
 518        struct crypto_aead *tfm;
 519        struct tipc_aead *tmp;
 520        int keylen, err, cpu;
 521        int tfm_cnt = 0;
 522
 523        if (unlikely(*aead))
 524                return -EEXIST;
 525
 526        /* Allocate a new AEAD */
 527        tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
 528        if (unlikely(!tmp))
 529                return -ENOMEM;
 530
 531        /* The key consists of two parts: [AES-KEY][SALT] */
 532        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 533
 534        /* Allocate per-cpu TFM entry pointer */
 535        tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
 536        if (!tmp->tfm_entry) {
 537                kfree_sensitive(tmp);
 538                return -ENOMEM;
 539        }
 540
 541        /* Make a list of TFMs with the user key data */
 542        do {
 543                tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
 544                if (IS_ERR(tfm)) {
 545                        err = PTR_ERR(tfm);
 546                        break;
 547                }
 548
 549                if (unlikely(!tfm_cnt &&
 550                             crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
 551                        crypto_free_aead(tfm);
 552                        err = -ENOTSUPP;
 553                        break;
 554                }
 555
 556                err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
 557                err |= crypto_aead_setkey(tfm, ukey->key, keylen);
 558                if (unlikely(err)) {
 559                        crypto_free_aead(tfm);
 560                        break;
 561                }
 562
 563                tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
 564                if (unlikely(!tfm_entry)) {
 565                        crypto_free_aead(tfm);
 566                        err = -ENOMEM;
 567                        break;
 568                }
 569                INIT_LIST_HEAD(&tfm_entry->list);
 570                tfm_entry->tfm = tfm;
 571
 572                /* First entry? */
 573                if (!tfm_cnt) {
 574                        head = tfm_entry;
 575                        for_each_possible_cpu(cpu) {
 576                                *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
 577                        }
 578                } else {
 579                        list_add_tail(&tfm_entry->list, &head->list);
 580                }
 581
 582        } while (++tfm_cnt < sysctl_tipc_max_tfms);
 583
 584        /* Not any TFM is allocated? */
 585        if (!tfm_cnt) {
 586                free_percpu(tmp->tfm_entry);
 587                kfree_sensitive(tmp);
 588                return err;
 589        }
 590
 591        /* Form a hex string of some last bytes as the key's hint */
 592        bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
 593                TIPC_AEAD_HINT_LEN);
 594
 595        /* Initialize the other data */
 596        tmp->mode = mode;
 597        tmp->cloned = NULL;
 598        tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
 599        tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
 600        if (!tmp->key) {
 601                tipc_aead_free(&tmp->rcu);
 602                return -ENOMEM;
 603        }
 604        memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
 605        atomic_set(&tmp->users, 0);
 606        atomic64_set(&tmp->seqno, 0);
 607        refcount_set(&tmp->refcnt, 1);
 608
 609        *aead = tmp;
 610        return 0;
 611}
 612
 613/**
 614 * tipc_aead_clone - Clone a TIPC AEAD key
 615 * @dst: dest key for the cloning
 616 * @src: source key to clone from
 617 *
 618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
 619 * common for the keys.
 620 * A reference to the source is hold in the "cloned" pointer for the later
 621 * freeing purposes.
 622 *
 623 * Note: this must be done in cluster-key mode only!
 624 * Return: 0 in case of success, otherwise < 0
 625 */
 626static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
 627{
 628        struct tipc_aead *aead;
 629        int cpu;
 630
 631        if (!src)
 632                return -ENOKEY;
 633
 634        if (src->mode != CLUSTER_KEY)
 635                return -EINVAL;
 636
 637        if (unlikely(*dst))
 638                return -EEXIST;
 639
 640        aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
 641        if (unlikely(!aead))
 642                return -ENOMEM;
 643
 644        aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
 645        if (unlikely(!aead->tfm_entry)) {
 646                kfree_sensitive(aead);
 647                return -ENOMEM;
 648        }
 649
 650        for_each_possible_cpu(cpu) {
 651                *per_cpu_ptr(aead->tfm_entry, cpu) =
 652                                *per_cpu_ptr(src->tfm_entry, cpu);
 653        }
 654
 655        memcpy(aead->hint, src->hint, sizeof(src->hint));
 656        aead->mode = src->mode;
 657        aead->salt = src->salt;
 658        aead->authsize = src->authsize;
 659        atomic_set(&aead->users, 0);
 660        atomic64_set(&aead->seqno, 0);
 661        refcount_set(&aead->refcnt, 1);
 662
 663        WARN_ON(!refcount_inc_not_zero(&src->refcnt));
 664        aead->cloned = src;
 665
 666        *dst = aead;
 667        return 0;
 668}
 669
 670/**
 671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
 672 * @tfm: cipher handle to be registered with the request
 673 * @crypto_ctx_size: size of crypto context for callback
 674 * @iv: returned pointer to IV data
 675 * @req: returned pointer to AEAD request data
 676 * @sg: returned pointer to SG lists
 677 * @nsg: number of SG lists to be allocated
 678 *
 679 * Allocate memory to store the crypto context data, AEAD request, IV and SG
 680 * lists, the memory layout is as follows:
 681 * crypto_ctx || iv || aead_req || sg[]
 682 *
 683 * Return: the pointer to the memory areas in case of success, otherwise NULL
 684 */
 685static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 686                                 unsigned int crypto_ctx_size,
 687                                 u8 **iv, struct aead_request **req,
 688                                 struct scatterlist **sg, int nsg)
 689{
 690        unsigned int iv_size, req_size;
 691        unsigned int len;
 692        u8 *mem;
 693
 694        iv_size = crypto_aead_ivsize(tfm);
 695        req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
 696
 697        len = crypto_ctx_size;
 698        len += iv_size;
 699        len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
 700        len = ALIGN(len, crypto_tfm_ctx_alignment());
 701        len += req_size;
 702        len = ALIGN(len, __alignof__(struct scatterlist));
 703        len += nsg * sizeof(**sg);
 704
 705        mem = kmalloc(len, GFP_ATOMIC);
 706        if (!mem)
 707                return NULL;
 708
 709        *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
 710                              crypto_aead_alignmask(tfm) + 1);
 711        *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
 712                                                crypto_tfm_ctx_alignment());
 713        *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
 714                                              __alignof__(struct scatterlist));
 715
 716        return (void *)mem;
 717}
 718
 719/**
 720 * tipc_aead_encrypt - Encrypt a message
 721 * @aead: TIPC AEAD key for the message encryption
 722 * @skb: the input/output skb
 723 * @b: TIPC bearer where the message will be delivered after the encryption
 724 * @dst: the destination media address
 725 * @__dnode: TIPC dest node if "known"
 726 *
 727 * Return:
 728 * * 0                   : if the encryption has completed
 729 * * -EINPROGRESS/-EBUSY : if a callback will be performed
 730 * * < 0                 : the encryption has failed
 731 */
 732static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 733                             struct tipc_bearer *b,
 734                             struct tipc_media_addr *dst,
 735                             struct tipc_node *__dnode)
 736{
 737        struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
 738        struct tipc_crypto_tx_ctx *tx_ctx;
 739        struct aead_request *req;
 740        struct sk_buff *trailer;
 741        struct scatterlist *sg;
 742        struct tipc_ehdr *ehdr;
 743        int ehsz, len, tailen, nsg, rc;
 744        void *ctx;
 745        u32 salt;
 746        u8 *iv;
 747
 748        /* Make sure message len at least 4-byte aligned */
 749        len = ALIGN(skb->len, 4);
 750        tailen = len - skb->len + aead->authsize;
 751
 752        /* Expand skb tail for authentication tag:
 753         * As for simplicity, we'd have made sure skb having enough tailroom
 754         * for authentication tag @skb allocation. Even when skb is nonlinear
 755         * but there is no frag_list, it should be still fine!
 756         * Otherwise, we must cow it to be a writable buffer with the tailroom.
 757         */
 758        SKB_LINEAR_ASSERT(skb);
 759        if (tailen > skb_tailroom(skb)) {
 760                pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
 761                         skb_tailroom(skb), tailen);
 762        }
 763
 764        nsg = skb_cow_data(skb, tailen, &trailer);
 765        if (unlikely(nsg < 0)) {
 766                pr_err("TX: skb_cow_data() returned %d\n", nsg);
 767                return nsg;
 768        }
 769
 770        pskb_put(skb, trailer, tailen);
 771
 772        /* Allocate memory for the AEAD operation */
 773        ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
 774        if (unlikely(!ctx))
 775                return -ENOMEM;
 776        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 777
 778        /* Map skb to the sg lists */
 779        sg_init_table(sg, nsg);
 780        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 781        if (unlikely(rc < 0)) {
 782                pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
 783                goto exit;
 784        }
 785
 786        /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
 787         * In case we're in cluster-key mode, SALT is varied by xor-ing with
 788         * the source address (or w0 of id), otherwise with the dest address
 789         * if dest is known.
 790         */
 791        ehdr = (struct tipc_ehdr *)skb->data;
 792        salt = aead->salt;
 793        if (aead->mode == CLUSTER_KEY)
 794                salt ^= __be32_to_cpu(ehdr->addr);
 795        else if (__dnode)
 796                salt ^= tipc_node_get_addr(__dnode);
 797        memcpy(iv, &salt, 4);
 798        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 799
 800        /* Prepare request */
 801        ehsz = tipc_ehdr_size(ehdr);
 802        aead_request_set_tfm(req, tfm);
 803        aead_request_set_ad(req, ehsz);
 804        aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
 805
 806        /* Set callback function & data */
 807        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 808                                  tipc_aead_encrypt_done, skb);
 809        tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
 810        tx_ctx->aead = aead;
 811        tx_ctx->bearer = b;
 812        memcpy(&tx_ctx->dst, dst, sizeof(*dst));
 813
 814        /* Hold bearer */
 815        if (unlikely(!tipc_bearer_hold(b))) {
 816                rc = -ENODEV;
 817                goto exit;
 818        }
 819
 820        /* Now, do encrypt */
 821        rc = crypto_aead_encrypt(req);
 822        if (rc == -EINPROGRESS || rc == -EBUSY)
 823                return rc;
 824
 825        tipc_bearer_put(b);
 826
 827exit:
 828        kfree(ctx);
 829        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 830        return rc;
 831}
 832
 833static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
 834{
 835        struct sk_buff *skb = base->data;
 836        struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 837        struct tipc_bearer *b = tx_ctx->bearer;
 838        struct tipc_aead *aead = tx_ctx->aead;
 839        struct tipc_crypto *tx = aead->crypto;
 840        struct net *net = tx->net;
 841
 842        switch (err) {
 843        case 0:
 844                this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
 845                rcu_read_lock();
 846                if (likely(test_bit(0, &b->up)))
 847                        b->media->send_msg(net, skb, b, &tx_ctx->dst);
 848                else
 849                        kfree_skb(skb);
 850                rcu_read_unlock();
 851                break;
 852        case -EINPROGRESS:
 853                return;
 854        default:
 855                this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
 856                kfree_skb(skb);
 857                break;
 858        }
 859
 860        kfree(tx_ctx);
 861        tipc_bearer_put(b);
 862        tipc_aead_put(aead);
 863}
 864
 865/**
 866 * tipc_aead_decrypt - Decrypt an encrypted message
 867 * @net: struct net
 868 * @aead: TIPC AEAD for the message decryption
 869 * @skb: the input/output skb
 870 * @b: TIPC bearer where the message has been received
 871 *
 872 * Return:
 873 * * 0                   : if the decryption has completed
 874 * * -EINPROGRESS/-EBUSY : if a callback will be performed
 875 * * < 0                 : the decryption has failed
 876 */
 877static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 878                             struct sk_buff *skb, struct tipc_bearer *b)
 879{
 880        struct tipc_crypto_rx_ctx *rx_ctx;
 881        struct aead_request *req;
 882        struct crypto_aead *tfm;
 883        struct sk_buff *unused;
 884        struct scatterlist *sg;
 885        struct tipc_ehdr *ehdr;
 886        int ehsz, nsg, rc;
 887        void *ctx;
 888        u32 salt;
 889        u8 *iv;
 890
 891        if (unlikely(!aead))
 892                return -ENOKEY;
 893
 894        nsg = skb_cow_data(skb, 0, &unused);
 895        if (unlikely(nsg < 0)) {
 896                pr_err("RX: skb_cow_data() returned %d\n", nsg);
 897                return nsg;
 898        }
 899
 900        /* Allocate memory for the AEAD operation */
 901        tfm = tipc_aead_tfm_next(aead);
 902        ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
 903        if (unlikely(!ctx))
 904                return -ENOMEM;
 905        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 906
 907        /* Map skb to the sg lists */
 908        sg_init_table(sg, nsg);
 909        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 910        if (unlikely(rc < 0)) {
 911                pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
 912                goto exit;
 913        }
 914
 915        /* Reconstruct IV: */
 916        ehdr = (struct tipc_ehdr *)skb->data;
 917        salt = aead->salt;
 918        if (aead->mode == CLUSTER_KEY)
 919                salt ^= __be32_to_cpu(ehdr->addr);
 920        else if (ehdr->destined)
 921                salt ^= tipc_own_addr(net);
 922        memcpy(iv, &salt, 4);
 923        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 924
 925        /* Prepare request */
 926        ehsz = tipc_ehdr_size(ehdr);
 927        aead_request_set_tfm(req, tfm);
 928        aead_request_set_ad(req, ehsz);
 929        aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
 930
 931        /* Set callback function & data */
 932        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 933                                  tipc_aead_decrypt_done, skb);
 934        rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
 935        rx_ctx->aead = aead;
 936        rx_ctx->bearer = b;
 937
 938        /* Hold bearer */
 939        if (unlikely(!tipc_bearer_hold(b))) {
 940                rc = -ENODEV;
 941                goto exit;
 942        }
 943
 944        /* Now, do decrypt */
 945        rc = crypto_aead_decrypt(req);
 946        if (rc == -EINPROGRESS || rc == -EBUSY)
 947                return rc;
 948
 949        tipc_bearer_put(b);
 950
 951exit:
 952        kfree(ctx);
 953        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 954        return rc;
 955}
 956
 957static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
 958{
 959        struct sk_buff *skb = base->data;
 960        struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 961        struct tipc_bearer *b = rx_ctx->bearer;
 962        struct tipc_aead *aead = rx_ctx->aead;
 963        struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
 964        struct net *net = aead->crypto->net;
 965
 966        switch (err) {
 967        case 0:
 968                this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
 969                break;
 970        case -EINPROGRESS:
 971                return;
 972        default:
 973                this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
 974                break;
 975        }
 976
 977        kfree(rx_ctx);
 978        tipc_crypto_rcv_complete(net, aead, b, &skb, err);
 979        if (likely(skb)) {
 980                if (likely(test_bit(0, &b->up)))
 981                        tipc_rcv(net, skb, b);
 982                else
 983                        kfree_skb(skb);
 984        }
 985
 986        tipc_bearer_put(b);
 987}
 988
 989static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
 990{
 991        return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
 992}
 993
 994/**
 995 * tipc_ehdr_validate - Validate an encryption message
 996 * @skb: the message buffer
 997 *
 998 * Return: "true" if this is a valid encryption message, otherwise "false"
 999 */
1000bool tipc_ehdr_validate(struct sk_buff *skb)
1001{
1002        struct tipc_ehdr *ehdr;
1003        int ehsz;
1004
1005        if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1006                return false;
1007
1008        ehdr = (struct tipc_ehdr *)skb->data;
1009        if (unlikely(ehdr->version != TIPC_EVERSION))
1010                return false;
1011        ehsz = tipc_ehdr_size(ehdr);
1012        if (unlikely(!pskb_may_pull(skb, ehsz)))
1013                return false;
1014        if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1015                return false;
1016
1017        return true;
1018}
1019
1020/**
1021 * tipc_ehdr_build - Build TIPC encryption message header
1022 * @net: struct net
1023 * @aead: TX AEAD key to be used for the message encryption
1024 * @tx_key: key id used for the message encryption
1025 * @skb: input/output message skb
1026 * @__rx: RX crypto handle if dest is "known"
1027 *
1028 * Return: the header size if the building is successful, otherwise < 0
1029 */
1030static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1031                           u8 tx_key, struct sk_buff *skb,
1032                           struct tipc_crypto *__rx)
1033{
1034        struct tipc_msg *hdr = buf_msg(skb);
1035        struct tipc_ehdr *ehdr;
1036        u32 user = msg_user(hdr);
1037        u64 seqno;
1038        int ehsz;
1039
1040        /* Make room for encryption header */
1041        ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1042        WARN_ON(skb_headroom(skb) < ehsz);
1043        ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1044
1045        /* Obtain a seqno first:
1046         * Use the key seqno (= cluster wise) if dest is unknown or we're in
1047         * cluster key mode, otherwise it's better for a per-peer seqno!
1048         */
1049        if (!__rx || aead->mode == CLUSTER_KEY)
1050                seqno = atomic64_inc_return(&aead->seqno);
1051        else
1052                seqno = atomic64_inc_return(&__rx->sndnxt);
1053
1054        /* Revoke the key if seqno is wrapped around */
1055        if (unlikely(!seqno))
1056                return tipc_crypto_key_revoke(net, tx_key);
1057
1058        /* Word 1-2 */
1059        ehdr->seqno = cpu_to_be64(seqno);
1060
1061        /* Words 0, 3- */
1062        ehdr->version = TIPC_EVERSION;
1063        ehdr->user = 0;
1064        ehdr->keepalive = 0;
1065        ehdr->tx_key = tx_key;
1066        ehdr->destined = (__rx) ? 1 : 0;
1067        ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1068        ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1069        ehdr->master_key = aead->crypto->key_master;
1070        ehdr->reserved_1 = 0;
1071        ehdr->reserved_2 = 0;
1072
1073        switch (user) {
1074        case LINK_CONFIG:
1075                ehdr->user = LINK_CONFIG;
1076                memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1077                break;
1078        default:
1079                if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1080                        ehdr->user = LINK_PROTOCOL;
1081                        ehdr->keepalive = msg_is_keepalive(hdr);
1082                }
1083                ehdr->addr = hdr->hdr[3];
1084                break;
1085        }
1086
1087        return ehsz;
1088}
1089
1090static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1091                                             u8 new_passive,
1092                                             u8 new_active,
1093                                             u8 new_pending)
1094{
1095        struct tipc_key old = c->key;
1096        char buf[32];
1097
1098        c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1099                      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1100                      ((new_pending & KEY_MASK));
1101
1102        pr_debug("%s: key changing %s ::%pS\n", c->name,
1103                 tipc_key_change_dump(old, c->key, buf),
1104                 __builtin_return_address(0));
1105}
1106
1107/**
1108 * tipc_crypto_key_init - Initiate a new user / AEAD key
1109 * @c: TIPC crypto to which new key is attached
1110 * @ukey: the user key
1111 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1112 * @master_key: specify this is a cluster master key
1113 *
1114 * A new TIPC AEAD key will be allocated and initiated with the specified user
1115 * key, then attached to the TIPC crypto.
1116 *
1117 * Return: new key id in case of success, otherwise: < 0
1118 */
1119int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1120                         u8 mode, bool master_key)
1121{
1122        struct tipc_aead *aead = NULL;
1123        int rc = 0;
1124
1125        /* Initiate with the new user key */
1126        rc = tipc_aead_init(&aead, ukey, mode);
1127
1128        /* Attach it to the crypto */
1129        if (likely(!rc)) {
1130                rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1131                if (rc < 0)
1132                        tipc_aead_free(&aead->rcu);
1133        }
1134
1135        return rc;
1136}
1137
1138/**
1139 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1140 * @c: TIPC crypto to which the new AEAD key is attached
1141 * @aead: the new AEAD key pointer
1142 * @pos: desired slot in the crypto key array, = 0 if any!
1143 * @master_key: specify this is a cluster master key
1144 *
1145 * Return: new key id in case of success, otherwise: -EBUSY
1146 */
1147static int tipc_crypto_key_attach(struct tipc_crypto *c,
1148                                  struct tipc_aead *aead, u8 pos,
1149                                  bool master_key)
1150{
1151        struct tipc_key key;
1152        int rc = -EBUSY;
1153        u8 new_key;
1154
1155        spin_lock_bh(&c->lock);
1156        key = c->key;
1157        if (master_key) {
1158                new_key = KEY_MASTER;
1159                goto attach;
1160        }
1161        if (key.active && key.passive)
1162                goto exit;
1163        if (key.pending) {
1164                if (tipc_aead_users(c->aead[key.pending]) > 0)
1165                        goto exit;
1166                /* if (pos): ok with replacing, will be aligned when needed */
1167                /* Replace it */
1168                new_key = key.pending;
1169        } else {
1170                if (pos) {
1171                        if (key.active && pos != key_next(key.active)) {
1172                                key.passive = pos;
1173                                new_key = pos;
1174                                goto attach;
1175                        } else if (!key.active && !key.passive) {
1176                                key.pending = pos;
1177                                new_key = pos;
1178                                goto attach;
1179                        }
1180                }
1181                key.pending = key_next(key.active ?: key.passive);
1182                new_key = key.pending;
1183        }
1184
1185attach:
1186        aead->crypto = c;
1187        aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1188        tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1189        if (likely(c->key.keys != key.keys))
1190                tipc_crypto_key_set_state(c, key.passive, key.active,
1191                                          key.pending);
1192        c->working = 1;
1193        c->nokey = 0;
1194        c->key_master |= master_key;
1195        rc = new_key;
1196
1197exit:
1198        spin_unlock_bh(&c->lock);
1199        return rc;
1200}
1201
1202void tipc_crypto_key_flush(struct tipc_crypto *c)
1203{
1204        struct tipc_crypto *tx, *rx;
1205        int k;
1206
1207        spin_lock_bh(&c->lock);
1208        if (is_rx(c)) {
1209                /* Try to cancel pending work */
1210                rx = c;
1211                tx = tipc_net(rx->net)->crypto_tx;
1212                if (cancel_delayed_work(&rx->work)) {
1213                        kfree(rx->skey);
1214                        rx->skey = NULL;
1215                        atomic_xchg(&rx->key_distr, 0);
1216                        tipc_node_put(rx->node);
1217                }
1218                /* RX stopping => decrease TX key users if any */
1219                k = atomic_xchg(&rx->peer_rx_active, 0);
1220                if (k) {
1221                        tipc_aead_users_dec(tx->aead[k], 0);
1222                        /* Mark the point TX key users changed */
1223                        tx->timer1 = jiffies;
1224                }
1225        }
1226
1227        c->flags = 0;
1228        tipc_crypto_key_set_state(c, 0, 0, 0);
1229        for (k = KEY_MIN; k <= KEY_MAX; k++)
1230                tipc_crypto_key_detach(c->aead[k], &c->lock);
1231        atomic64_set(&c->sndnxt, 0);
1232        spin_unlock_bh(&c->lock);
1233}
1234
1235/**
1236 * tipc_crypto_key_try_align - Align RX keys if possible
1237 * @rx: RX crypto handle
1238 * @new_pending: new pending slot if aligned (= TX key from peer)
1239 *
1240 * Peer has used an unknown key slot, this only happens when peer has left and
1241 * rejoned, or we are newcomer.
1242 * That means, there must be no active key but a pending key at unaligned slot.
1243 * If so, we try to move the pending key to the new slot.
1244 * Note: A potential passive key can exist, it will be shifted correspondingly!
1245 *
1246 * Return: "true" if key is successfully aligned, otherwise "false"
1247 */
1248static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1249{
1250        struct tipc_aead *tmp1, *tmp2 = NULL;
1251        struct tipc_key key;
1252        bool aligned = false;
1253        u8 new_passive = 0;
1254        int x;
1255
1256        spin_lock(&rx->lock);
1257        key = rx->key;
1258        if (key.pending == new_pending) {
1259                aligned = true;
1260                goto exit;
1261        }
1262        if (key.active)
1263                goto exit;
1264        if (!key.pending)
1265                goto exit;
1266        if (tipc_aead_users(rx->aead[key.pending]) > 0)
1267                goto exit;
1268
1269        /* Try to "isolate" this pending key first */
1270        tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1271        if (!refcount_dec_if_one(&tmp1->refcnt))
1272                goto exit;
1273        rcu_assign_pointer(rx->aead[key.pending], NULL);
1274
1275        /* Move passive key if any */
1276        if (key.passive) {
1277                tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1278                x = (key.passive - key.pending + new_pending) % KEY_MAX;
1279                new_passive = (x <= 0) ? x + KEY_MAX : x;
1280        }
1281
1282        /* Re-allocate the key(s) */
1283        tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1284        rcu_assign_pointer(rx->aead[new_pending], tmp1);
1285        if (new_passive)
1286                rcu_assign_pointer(rx->aead[new_passive], tmp2);
1287        refcount_set(&tmp1->refcnt, 1);
1288        aligned = true;
1289        pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1290                            new_pending);
1291
1292exit:
1293        spin_unlock(&rx->lock);
1294        return aligned;
1295}
1296
1297/**
1298 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1299 * @tx: TX crypto handle
1300 * @rx: RX crypto handle (can be NULL)
1301 * @skb: the message skb which will be decrypted later
1302 * @tx_key: peer TX key id
1303 *
1304 * This function looks up the existing TX keys and pick one which is suitable
1305 * for the message decryption, that must be a cluster key and not used before
1306 * on the same message (i.e. recursive).
1307 *
1308 * Return: the TX AEAD key handle in case of success, otherwise NULL
1309 */
1310static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1311                                                 struct tipc_crypto *rx,
1312                                                 struct sk_buff *skb,
1313                                                 u8 tx_key)
1314{
1315        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1316        struct tipc_aead *aead = NULL;
1317        struct tipc_key key = tx->key;
1318        u8 k, i = 0;
1319
1320        /* Initialize data if not yet */
1321        if (!skb_cb->tx_clone_deferred) {
1322                skb_cb->tx_clone_deferred = 1;
1323                memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1324        }
1325
1326        skb_cb->tx_clone_ctx.rx = rx;
1327        if (++skb_cb->tx_clone_ctx.recurs > 2)
1328                return NULL;
1329
1330        /* Pick one TX key */
1331        spin_lock(&tx->lock);
1332        if (tx_key == KEY_MASTER) {
1333                aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1334                goto done;
1335        }
1336        do {
1337                k = (i == 0) ? key.pending :
1338                        ((i == 1) ? key.active : key.passive);
1339                if (!k)
1340                        continue;
1341                aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1342                if (!aead)
1343                        continue;
1344                if (aead->mode != CLUSTER_KEY ||
1345                    aead == skb_cb->tx_clone_ctx.last) {
1346                        aead = NULL;
1347                        continue;
1348                }
1349                /* Ok, found one cluster key */
1350                skb_cb->tx_clone_ctx.last = aead;
1351                WARN_ON(skb->next);
1352                skb->next = skb_clone(skb, GFP_ATOMIC);
1353                if (unlikely(!skb->next))
1354                        pr_warn("Failed to clone skb for next round if any\n");
1355                break;
1356        } while (++i < 3);
1357
1358done:
1359        if (likely(aead))
1360                WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1361        spin_unlock(&tx->lock);
1362
1363        return aead;
1364}
1365
1366/**
1367 * tipc_crypto_key_synch: Synch own key data according to peer key status
1368 * @rx: RX crypto handle
1369 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1370 *
1371 * This function updates the peer node related data as the peer RX active key
1372 * has changed, so the number of TX keys' users on this node are increased and
1373 * decreased correspondingly.
1374 *
1375 * It also considers if peer has no key, then we need to make own master key
1376 * (if any) taking over i.e. starting grace period and also trigger key
1377 * distributing process.
1378 *
1379 * The "per-peer" sndnxt is also reset when the peer key has switched.
1380 */
1381static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1382{
1383        struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1384        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1385        struct tipc_msg *hdr = buf_msg(skb);
1386        u32 self = tipc_own_addr(rx->net);
1387        u8 cur, new;
1388        unsigned long delay;
1389
1390        /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1391         * a peer has no master key.
1392         */
1393        rx->key_master = ehdr->master_key;
1394        if (!rx->key_master)
1395                tx->legacy_user = 1;
1396
1397        /* For later cases, apply only if message is destined to this node */
1398        if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1399                return;
1400
1401        /* Case 1: Peer has no keys, let's make master key take over */
1402        if (ehdr->rx_nokey) {
1403                /* Set or extend grace period */
1404                tx->timer2 = jiffies;
1405                /* Schedule key distributing for the peer if not yet */
1406                if (tx->key.keys &&
1407                    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1408                        get_random_bytes(&delay, 2);
1409                        delay %= 5;
1410                        delay = msecs_to_jiffies(500 * ++delay);
1411                        if (queue_delayed_work(tx->wq, &rx->work, delay))
1412                                tipc_node_get(rx->node);
1413                }
1414        } else {
1415                /* Cancel a pending key distributing if any */
1416                atomic_xchg(&rx->key_distr, 0);
1417        }
1418
1419        /* Case 2: Peer RX active key has changed, let's update own TX users */
1420        cur = atomic_read(&rx->peer_rx_active);
1421        new = ehdr->rx_key_active;
1422        if (tx->key.keys &&
1423            cur != new &&
1424            atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1425                if (new)
1426                        tipc_aead_users_inc(tx->aead[new], INT_MAX);
1427                if (cur)
1428                        tipc_aead_users_dec(tx->aead[cur], 0);
1429
1430                atomic64_set(&rx->sndnxt, 0);
1431                /* Mark the point TX key users changed */
1432                tx->timer1 = jiffies;
1433
1434                pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1435                         tx->name, cur, new, rx->name);
1436        }
1437}
1438
1439static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1440{
1441        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1442        struct tipc_key key;
1443
1444        spin_lock(&tx->lock);
1445        key = tx->key;
1446        WARN_ON(!key.active || tx_key != key.active);
1447
1448        /* Free the active key */
1449        tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1450        tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1451        spin_unlock(&tx->lock);
1452
1453        pr_warn("%s: key is revoked\n", tx->name);
1454        return -EKEYREVOKED;
1455}
1456
1457int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1458                      struct tipc_node *node)
1459{
1460        struct tipc_crypto *c;
1461
1462        if (*crypto)
1463                return -EEXIST;
1464
1465        /* Allocate crypto */
1466        c = kzalloc(sizeof(*c), GFP_ATOMIC);
1467        if (!c)
1468                return -ENOMEM;
1469
1470        /* Allocate workqueue on TX */
1471        if (!node) {
1472                c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1473                if (!c->wq) {
1474                        kfree(c);
1475                        return -ENOMEM;
1476                }
1477        }
1478
1479        /* Allocate statistic structure */
1480        c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1481        if (!c->stats) {
1482                if (c->wq)
1483                        destroy_workqueue(c->wq);
1484                kfree_sensitive(c);
1485                return -ENOMEM;
1486        }
1487
1488        c->flags = 0;
1489        c->net = net;
1490        c->node = node;
1491        get_random_bytes(&c->key_gen, 2);
1492        tipc_crypto_key_set_state(c, 0, 0, 0);
1493        atomic_set(&c->key_distr, 0);
1494        atomic_set(&c->peer_rx_active, 0);
1495        atomic64_set(&c->sndnxt, 0);
1496        c->timer1 = jiffies;
1497        c->timer2 = jiffies;
1498        c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1499        spin_lock_init(&c->lock);
1500        scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1501                  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1502                               tipc_own_id_string(c->net));
1503
1504        if (is_rx(c))
1505                INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1506        else
1507                INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1508
1509        *crypto = c;
1510        return 0;
1511}
1512
1513void tipc_crypto_stop(struct tipc_crypto **crypto)
1514{
1515        struct tipc_crypto *c = *crypto;
1516        u8 k;
1517
1518        if (!c)
1519                return;
1520
1521        /* Flush any queued works & destroy wq */
1522        if (is_tx(c)) {
1523                c->rekeying_intv = 0;
1524                cancel_delayed_work_sync(&c->work);
1525                destroy_workqueue(c->wq);
1526        }
1527
1528        /* Release AEAD keys */
1529        rcu_read_lock();
1530        for (k = KEY_MIN; k <= KEY_MAX; k++)
1531                tipc_aead_put(rcu_dereference(c->aead[k]));
1532        rcu_read_unlock();
1533        pr_debug("%s: has been stopped\n", c->name);
1534
1535        /* Free this crypto statistics */
1536        free_percpu(c->stats);
1537
1538        *crypto = NULL;
1539        kfree_sensitive(c);
1540}
1541
1542void tipc_crypto_timeout(struct tipc_crypto *rx)
1543{
1544        struct tipc_net *tn = tipc_net(rx->net);
1545        struct tipc_crypto *tx = tn->crypto_tx;
1546        struct tipc_key key;
1547        int cmd;
1548
1549        /* TX pending: taking all users & stable -> active */
1550        spin_lock(&tx->lock);
1551        key = tx->key;
1552        if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1553                goto s1;
1554        if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1555                goto s1;
1556        if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1557                goto s1;
1558
1559        tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1560        if (key.active)
1561                tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1562        this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1563        pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1564
1565s1:
1566        spin_unlock(&tx->lock);
1567
1568        /* RX pending: having user -> active */
1569        spin_lock(&rx->lock);
1570        key = rx->key;
1571        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1572                goto s2;
1573
1574        if (key.active)
1575                key.passive = key.active;
1576        key.active = key.pending;
1577        rx->timer2 = jiffies;
1578        tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1579        this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1580        pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1581        goto s5;
1582
1583s2:
1584        /* RX pending: not working -> remove */
1585        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1586                goto s3;
1587
1588        tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1589        tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1590        pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1591        goto s5;
1592
1593s3:
1594        /* RX active: timed out or no user -> pending */
1595        if (!key.active)
1596                goto s4;
1597        if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1598            tipc_aead_users(rx->aead[key.active]) > 0)
1599                goto s4;
1600
1601        if (key.pending)
1602                key.passive = key.active;
1603        else
1604                key.pending = key.active;
1605        rx->timer2 = jiffies;
1606        tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1607        tipc_aead_users_set(rx->aead[key.pending], 0);
1608        pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1609        goto s5;
1610
1611s4:
1612        /* RX passive: outdated or not working -> free */
1613        if (!key.passive)
1614                goto s5;
1615        if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1616            tipc_aead_users(rx->aead[key.passive]) > -10)
1617                goto s5;
1618
1619        tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1620        tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1621        pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1622
1623s5:
1624        spin_unlock(&rx->lock);
1625
1626        /* Relax it here, the flag will be set again if it really is, but only
1627         * when we are not in grace period for safety!
1628         */
1629        if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1630                tx->legacy_user = 0;
1631
1632        /* Limit max_tfms & do debug commands if needed */
1633        if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1634                return;
1635
1636        cmd = sysctl_tipc_max_tfms;
1637        sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1638        tipc_crypto_do_cmd(rx->net, cmd);
1639}
1640
1641static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1642                                         struct tipc_bearer *b,
1643                                         struct tipc_media_addr *dst,
1644                                         struct tipc_node *__dnode, u8 type)
1645{
1646        struct sk_buff *skb;
1647
1648        skb = skb_clone(_skb, GFP_ATOMIC);
1649        if (skb) {
1650                TIPC_SKB_CB(skb)->xmit_type = type;
1651                tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1652                if (skb)
1653                        b->media->send_msg(net, skb, b, dst);
1654        }
1655}
1656
1657/**
1658 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1659 * @net: struct net
1660 * @skb: input/output message skb pointer
1661 * @b: bearer used for xmit later
1662 * @dst: destination media address
1663 * @__dnode: destination node for reference if any
1664 *
1665 * First, build an encryption message header on the top of the message, then
1666 * encrypt the original TIPC message by using the pending, master or active
1667 * key with this preference order.
1668 * If the encryption is successful, the encrypted skb is returned directly or
1669 * via the callback.
1670 * Otherwise, the skb is freed!
1671 *
1672 * Return:
1673 * * 0                   : the encryption has succeeded (or no encryption)
1674 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1675 * * -ENOKEK             : the encryption has failed due to no key
1676 * * -EKEYREVOKED        : the encryption has failed due to key revoked
1677 * * -ENOMEM             : the encryption has failed due to no memory
1678 * * < 0                 : the encryption has failed due to other reasons
1679 */
1680int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1681                     struct tipc_bearer *b, struct tipc_media_addr *dst,
1682                     struct tipc_node *__dnode)
1683{
1684        struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1685        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1686        struct tipc_crypto_stats __percpu *stats = tx->stats;
1687        struct tipc_msg *hdr = buf_msg(*skb);
1688        struct tipc_key key = tx->key;
1689        struct tipc_aead *aead = NULL;
1690        u32 user = msg_user(hdr);
1691        u32 type = msg_type(hdr);
1692        int rc = -ENOKEY;
1693        u8 tx_key = 0;
1694
1695        /* No encryption? */
1696        if (!tx->working)
1697                return 0;
1698
1699        /* Pending key if peer has active on it or probing time */
1700        if (unlikely(key.pending)) {
1701                tx_key = key.pending;
1702                if (!tx->key_master && !key.active)
1703                        goto encrypt;
1704                if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1705                        goto encrypt;
1706                if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1707                        pr_debug("%s: probing for key[%d]\n", tx->name,
1708                                 key.pending);
1709                        goto encrypt;
1710                }
1711                if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1712                        tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1713                                              SKB_PROBING);
1714        }
1715
1716        /* Master key if this is a *vital* message or in grace period */
1717        if (tx->key_master) {
1718                tx_key = KEY_MASTER;
1719                if (!key.active)
1720                        goto encrypt;
1721                if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1722                        pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1723                                 user, type);
1724                        goto encrypt;
1725                }
1726                if (user == LINK_CONFIG ||
1727                    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1728                    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1729                    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1730                        if (__rx && __rx->key_master &&
1731                            !atomic_read(&__rx->peer_rx_active))
1732                                goto encrypt;
1733                        if (!__rx) {
1734                                if (likely(!tx->legacy_user))
1735                                        goto encrypt;
1736                                tipc_crypto_clone_msg(net, *skb, b, dst,
1737                                                      __dnode, SKB_GRACING);
1738                        }
1739                }
1740        }
1741
1742        /* Else, use the active key if any */
1743        if (likely(key.active)) {
1744                tx_key = key.active;
1745                goto encrypt;
1746        }
1747
1748        goto exit;
1749
1750encrypt:
1751        aead = tipc_aead_get(tx->aead[tx_key]);
1752        if (unlikely(!aead))
1753                goto exit;
1754        rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1755        if (likely(rc > 0))
1756                rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1757
1758exit:
1759        switch (rc) {
1760        case 0:
1761                this_cpu_inc(stats->stat[STAT_OK]);
1762                break;
1763        case -EINPROGRESS:
1764        case -EBUSY:
1765                this_cpu_inc(stats->stat[STAT_ASYNC]);
1766                *skb = NULL;
1767                return rc;
1768        default:
1769                this_cpu_inc(stats->stat[STAT_NOK]);
1770                if (rc == -ENOKEY)
1771                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1772                else if (rc == -EKEYREVOKED)
1773                        this_cpu_inc(stats->stat[STAT_BADKEYS]);
1774                kfree_skb(*skb);
1775                *skb = NULL;
1776                break;
1777        }
1778
1779        tipc_aead_put(aead);
1780        return rc;
1781}
1782
1783/**
1784 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1785 * @net: struct net
1786 * @rx: RX crypto handle
1787 * @skb: input/output message skb pointer
1788 * @b: bearer where the message has been received
1789 *
1790 * If the decryption is successful, the decrypted skb is returned directly or
1791 * as the callback, the encryption header and auth tag will be trimed out
1792 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1793 * Otherwise, the skb will be freed!
1794 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1795 * cluster key(s) can be taken for decryption (- recursive).
1796 *
1797 * Return:
1798 * * 0                   : the decryption has successfully completed
1799 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1800 * * -ENOKEY             : the decryption has failed due to no key
1801 * * -EBADMSG            : the decryption has failed due to bad message
1802 * * -ENOMEM             : the decryption has failed due to no memory
1803 * * < 0                 : the decryption has failed due to other reasons
1804 */
1805int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1806                    struct sk_buff **skb, struct tipc_bearer *b)
1807{
1808        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1809        struct tipc_crypto_stats __percpu *stats;
1810        struct tipc_aead *aead = NULL;
1811        struct tipc_key key;
1812        int rc = -ENOKEY;
1813        u8 tx_key, n;
1814
1815        tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1816
1817        /* New peer?
1818         * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1819         */
1820        if (unlikely(!rx || tx_key == KEY_MASTER))
1821                goto pick_tx;
1822
1823        /* Pick RX key according to TX key if any */
1824        key = rx->key;
1825        if (tx_key == key.active || tx_key == key.pending ||
1826            tx_key == key.passive)
1827                goto decrypt;
1828
1829        /* Unknown key, let's try to align RX key(s) */
1830        if (tipc_crypto_key_try_align(rx, tx_key))
1831                goto decrypt;
1832
1833pick_tx:
1834        /* No key suitable? Try to pick one from TX... */
1835        aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1836        if (aead)
1837                goto decrypt;
1838        goto exit;
1839
1840decrypt:
1841        rcu_read_lock();
1842        if (!aead)
1843                aead = tipc_aead_get(rx->aead[tx_key]);
1844        rc = tipc_aead_decrypt(net, aead, *skb, b);
1845        rcu_read_unlock();
1846
1847exit:
1848        stats = ((rx) ?: tx)->stats;
1849        switch (rc) {
1850        case 0:
1851                this_cpu_inc(stats->stat[STAT_OK]);
1852                break;
1853        case -EINPROGRESS:
1854        case -EBUSY:
1855                this_cpu_inc(stats->stat[STAT_ASYNC]);
1856                *skb = NULL;
1857                return rc;
1858        default:
1859                this_cpu_inc(stats->stat[STAT_NOK]);
1860                if (rc == -ENOKEY) {
1861                        kfree_skb(*skb);
1862                        *skb = NULL;
1863                        if (rx) {
1864                                /* Mark rx->nokey only if we dont have a
1865                                 * pending received session key, nor a newer
1866                                 * one i.e. in the next slot.
1867                                 */
1868                                n = key_next(tx_key);
1869                                rx->nokey = !(rx->skey ||
1870                                              rcu_access_pointer(rx->aead[n]));
1871                                pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1872                                                     rx->name, rx->nokey,
1873                                                     tx_key, rx->key.keys);
1874                                tipc_node_put(rx->node);
1875                        }
1876                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1877                        return rc;
1878                } else if (rc == -EBADMSG) {
1879                        this_cpu_inc(stats->stat[STAT_BADMSGS]);
1880                }
1881                break;
1882        }
1883
1884        tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1885        return rc;
1886}
1887
1888static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1889                                     struct tipc_bearer *b,
1890                                     struct sk_buff **skb, int err)
1891{
1892        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1893        struct tipc_crypto *rx = aead->crypto;
1894        struct tipc_aead *tmp = NULL;
1895        struct tipc_ehdr *ehdr;
1896        struct tipc_node *n;
1897
1898        /* Is this completed by TX? */
1899        if (unlikely(is_tx(aead->crypto))) {
1900                rx = skb_cb->tx_clone_ctx.rx;
1901                pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1902                         (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1903                         (*skb)->next, skb_cb->flags);
1904                pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1905                         skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1906                         aead->crypto->aead[1], aead->crypto->aead[2],
1907                         aead->crypto->aead[3]);
1908                if (unlikely(err)) {
1909                        if (err == -EBADMSG && (*skb)->next)
1910                                tipc_rcv(net, (*skb)->next, b);
1911                        goto free_skb;
1912                }
1913
1914                if (likely((*skb)->next)) {
1915                        kfree_skb((*skb)->next);
1916                        (*skb)->next = NULL;
1917                }
1918                ehdr = (struct tipc_ehdr *)(*skb)->data;
1919                if (!rx) {
1920                        WARN_ON(ehdr->user != LINK_CONFIG);
1921                        n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1922                                             true);
1923                        rx = tipc_node_crypto_rx(n);
1924                        if (unlikely(!rx))
1925                                goto free_skb;
1926                }
1927
1928                /* Ignore cloning if it was TX master key */
1929                if (ehdr->tx_key == KEY_MASTER)
1930                        goto rcv;
1931                if (tipc_aead_clone(&tmp, aead) < 0)
1932                        goto rcv;
1933                WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1934                if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1935                        tipc_aead_free(&tmp->rcu);
1936                        goto rcv;
1937                }
1938                tipc_aead_put(aead);
1939                aead = tmp;
1940        }
1941
1942        if (unlikely(err)) {
1943                tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1944                goto free_skb;
1945        }
1946
1947        /* Set the RX key's user */
1948        tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1949
1950        /* Mark this point, RX works */
1951        rx->timer1 = jiffies;
1952
1953rcv:
1954        /* Remove ehdr & auth. tag prior to tipc_rcv() */
1955        ehdr = (struct tipc_ehdr *)(*skb)->data;
1956
1957        /* Mark this point, RX passive still works */
1958        if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1959                rx->timer2 = jiffies;
1960
1961        skb_reset_network_header(*skb);
1962        skb_pull(*skb, tipc_ehdr_size(ehdr));
1963        pskb_trim(*skb, (*skb)->len - aead->authsize);
1964
1965        /* Validate TIPCv2 message */
1966        if (unlikely(!tipc_msg_validate(skb))) {
1967                pr_err_ratelimited("Packet dropped after decryption!\n");
1968                goto free_skb;
1969        }
1970
1971        /* Ok, everything's fine, try to synch own keys according to peers' */
1972        tipc_crypto_key_synch(rx, *skb);
1973
1974        /* Mark skb decrypted */
1975        skb_cb->decrypted = 1;
1976
1977        /* Clear clone cxt if any */
1978        if (likely(!skb_cb->tx_clone_deferred))
1979                goto exit;
1980        skb_cb->tx_clone_deferred = 0;
1981        memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1982        goto exit;
1983
1984free_skb:
1985        kfree_skb(*skb);
1986        *skb = NULL;
1987
1988exit:
1989        tipc_aead_put(aead);
1990        if (rx)
1991                tipc_node_put(rx->node);
1992}
1993
1994static void tipc_crypto_do_cmd(struct net *net, int cmd)
1995{
1996        struct tipc_net *tn = tipc_net(net);
1997        struct tipc_crypto *tx = tn->crypto_tx, *rx;
1998        struct list_head *p;
1999        unsigned int stat;
2000        int i, j, cpu;
2001        char buf[200];
2002
2003        /* Currently only one command is supported */
2004        switch (cmd) {
2005        case 0xfff1:
2006                goto print_stats;
2007        default:
2008                return;
2009        }
2010
2011print_stats:
2012        /* Print a header */
2013        pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2014
2015        /* Print key status */
2016        pr_info("Key status:\n");
2017        pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2018                tipc_crypto_key_dump(tx, buf));
2019
2020        rcu_read_lock();
2021        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2022                rx = tipc_node_crypto_rx_by_list(p);
2023                pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2024                        tipc_crypto_key_dump(rx, buf));
2025        }
2026        rcu_read_unlock();
2027
2028        /* Print crypto statistics */
2029        for (i = 0, j = 0; i < MAX_STATS; i++)
2030                j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2031        pr_info("Counter     %s", buf);
2032
2033        memset(buf, '-', 115);
2034        buf[115] = '\0';
2035        pr_info("%s\n", buf);
2036
2037        j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2038        for_each_possible_cpu(cpu) {
2039                for (i = 0; i < MAX_STATS; i++) {
2040                        stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2041                        j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2042                }
2043                pr_info("%s", buf);
2044                j = scnprintf(buf, 200, "%12s", " ");
2045        }
2046
2047        rcu_read_lock();
2048        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2049                rx = tipc_node_crypto_rx_by_list(p);
2050                j = scnprintf(buf, 200, "RX(%7.7s) ",
2051                              tipc_node_get_id_str(rx->node));
2052                for_each_possible_cpu(cpu) {
2053                        for (i = 0; i < MAX_STATS; i++) {
2054                                stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2055                                j += scnprintf(buf + j, 200 - j, "|%11d ",
2056                                               stat);
2057                        }
2058                        pr_info("%s", buf);
2059                        j = scnprintf(buf, 200, "%12s", " ");
2060                }
2061        }
2062        rcu_read_unlock();
2063
2064        pr_info("\n======================== Done ========================\n");
2065}
2066
2067static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2068{
2069        struct tipc_key key = c->key;
2070        struct tipc_aead *aead;
2071        int k, i = 0;
2072        char *s;
2073
2074        for (k = KEY_MIN; k <= KEY_MAX; k++) {
2075                if (k == KEY_MASTER) {
2076                        if (is_rx(c))
2077                                continue;
2078                        if (time_before(jiffies,
2079                                        c->timer2 + TIPC_TX_GRACE_PERIOD))
2080                                s = "ACT";
2081                        else
2082                                s = "PAS";
2083                } else {
2084                        if (k == key.passive)
2085                                s = "PAS";
2086                        else if (k == key.active)
2087                                s = "ACT";
2088                        else if (k == key.pending)
2089                                s = "PEN";
2090                        else
2091                                s = "-";
2092                }
2093                i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2094
2095                rcu_read_lock();
2096                aead = rcu_dereference(c->aead[k]);
2097                if (aead)
2098                        i += scnprintf(buf + i, 200 - i,
2099                                       "{\"0x...%s\", \"%s\"}/%d:%d",
2100                                       aead->hint,
2101                                       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2102                                       atomic_read(&aead->users),
2103                                       refcount_read(&aead->refcnt));
2104                rcu_read_unlock();
2105                i += scnprintf(buf + i, 200 - i, "\n");
2106        }
2107
2108        if (is_rx(c))
2109                i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2110                               atomic_read(&c->peer_rx_active));
2111
2112        return buf;
2113}
2114
2115static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2116                                  char *buf)
2117{
2118        struct tipc_key *key = &old;
2119        int k, i = 0;
2120        char *s;
2121
2122        /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2123again:
2124        i += scnprintf(buf + i, 32 - i, "[");
2125        for (k = KEY_1; k <= KEY_3; k++) {
2126                if (k == key->passive)
2127                        s = "pas";
2128                else if (k == key->active)
2129                        s = "act";
2130                else if (k == key->pending)
2131                        s = "pen";
2132                else
2133                        s = "-";
2134                i += scnprintf(buf + i, 32 - i,
2135                               (k != KEY_3) ? "%s " : "%s", s);
2136        }
2137        if (key != &new) {
2138                i += scnprintf(buf + i, 32 - i, "] -> ");
2139                key = &new;
2140                goto again;
2141        }
2142        i += scnprintf(buf + i, 32 - i, "]");
2143        return buf;
2144}
2145
2146/**
2147 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2148 * @net: the struct net
2149 * @skb: the receiving message buffer
2150 */
2151void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2152{
2153        struct tipc_crypto *rx;
2154        struct tipc_msg *hdr;
2155
2156        if (unlikely(skb_linearize(skb)))
2157                goto exit;
2158
2159        hdr = buf_msg(skb);
2160        rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2161        if (unlikely(!rx))
2162                goto exit;
2163
2164        switch (msg_type(hdr)) {
2165        case KEY_DISTR_MSG:
2166                if (tipc_crypto_key_rcv(rx, hdr))
2167                        goto exit;
2168                break;
2169        default:
2170                break;
2171        }
2172
2173        tipc_node_put(rx->node);
2174
2175exit:
2176        kfree_skb(skb);
2177}
2178
2179/**
2180 * tipc_crypto_key_distr - Distribute a TX key
2181 * @tx: the TX crypto
2182 * @key: the key's index
2183 * @dest: the destination tipc node, = NULL if distributing to all nodes
2184 *
2185 * Return: 0 in case of success, otherwise < 0
2186 */
2187int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2188                          struct tipc_node *dest)
2189{
2190        struct tipc_aead *aead;
2191        u32 dnode = tipc_node_get_addr(dest);
2192        int rc = -ENOKEY;
2193
2194        if (!sysctl_tipc_key_exchange_enabled)
2195                return 0;
2196
2197        if (key) {
2198                rcu_read_lock();
2199                aead = tipc_aead_get(tx->aead[key]);
2200                if (likely(aead)) {
2201                        rc = tipc_crypto_key_xmit(tx->net, aead->key,
2202                                                  aead->gen, aead->mode,
2203                                                  dnode);
2204                        tipc_aead_put(aead);
2205                }
2206                rcu_read_unlock();
2207        }
2208
2209        return rc;
2210}
2211
2212/**
2213 * tipc_crypto_key_xmit - Send a session key
2214 * @net: the struct net
2215 * @skey: the session key to be sent
2216 * @gen: the key's generation
2217 * @mode: the key's mode
2218 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2219 *
2220 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2221 * as its data section, then xmit-ed through the uc/bc link.
2222 *
2223 * Return: 0 in case of success, otherwise < 0
2224 */
2225static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2226                                u16 gen, u8 mode, u32 dnode)
2227{
2228        struct sk_buff_head pkts;
2229        struct tipc_msg *hdr;
2230        struct sk_buff *skb;
2231        u16 size, cong_link_cnt;
2232        u8 *data;
2233        int rc;
2234
2235        size = tipc_aead_key_size(skey);
2236        skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2237        if (!skb)
2238                return -ENOMEM;
2239
2240        hdr = buf_msg(skb);
2241        tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2242                      INT_H_SIZE, dnode);
2243        msg_set_size(hdr, INT_H_SIZE + size);
2244        msg_set_key_gen(hdr, gen);
2245        msg_set_key_mode(hdr, mode);
2246
2247        data = msg_data(hdr);
2248        *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2249        memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2250        memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2251               skey->keylen);
2252
2253        __skb_queue_head_init(&pkts);
2254        __skb_queue_tail(&pkts, skb);
2255        if (dnode)
2256                rc = tipc_node_xmit(net, &pkts, dnode, 0);
2257        else
2258                rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2259
2260        return rc;
2261}
2262
2263/**
2264 * tipc_crypto_key_rcv - Receive a session key
2265 * @rx: the RX crypto
2266 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2267 *
2268 * This function retrieves the session key in the message from peer, then
2269 * schedules a RX work to attach the key to the corresponding RX crypto.
2270 *
2271 * Return: "true" if the key has been scheduled for attaching, otherwise
2272 * "false".
2273 */
2274static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2275{
2276        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2277        struct tipc_aead_key *skey = NULL;
2278        u16 key_gen = msg_key_gen(hdr);
2279        u32 size = msg_data_sz(hdr);
2280        u8 *data = msg_data(hdr);
2281        unsigned int keylen;
2282
2283        /* Verify whether the size can exist in the packet */
2284        if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2285                pr_debug("%s: message data size is too small\n", rx->name);
2286                goto exit;
2287        }
2288
2289        keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2290
2291        /* Verify the supplied size values */
2292        if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
2293                     keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
2294                pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2295                goto exit;
2296        }
2297
2298        spin_lock(&rx->lock);
2299        if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2300                pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2301                       rx->skey, key_gen, rx->key_gen);
2302                goto exit_unlock;
2303        }
2304
2305        /* Allocate memory for the key */
2306        skey = kmalloc(size, GFP_ATOMIC);
2307        if (unlikely(!skey)) {
2308                pr_err("%s: unable to allocate memory for skey\n", rx->name);
2309                goto exit_unlock;
2310        }
2311
2312        /* Copy key from msg data */
2313        skey->keylen = keylen;
2314        memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2315        memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2316               skey->keylen);
2317
2318        rx->key_gen = key_gen;
2319        rx->skey_mode = msg_key_mode(hdr);
2320        rx->skey = skey;
2321        rx->nokey = 0;
2322        mb(); /* for nokey flag */
2323
2324exit_unlock:
2325        spin_unlock(&rx->lock);
2326
2327exit:
2328        /* Schedule the key attaching on this crypto */
2329        if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2330                return true;
2331
2332        return false;
2333}
2334
2335/**
2336 * tipc_crypto_work_rx - Scheduled RX works handler
2337 * @work: the struct RX work
2338 *
2339 * The function processes the previous scheduled works i.e. distributing TX key
2340 * or attaching a received session key on RX crypto.
2341 */
2342static void tipc_crypto_work_rx(struct work_struct *work)
2343{
2344        struct delayed_work *dwork = to_delayed_work(work);
2345        struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2346        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2347        unsigned long delay = msecs_to_jiffies(5000);
2348        bool resched = false;
2349        u8 key;
2350        int rc;
2351
2352        /* Case 1: Distribute TX key to peer if scheduled */
2353        if (atomic_cmpxchg(&rx->key_distr,
2354                           KEY_DISTR_SCHED,
2355                           KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2356                /* Always pick the newest one for distributing */
2357                key = tx->key.pending ?: tx->key.active;
2358                rc = tipc_crypto_key_distr(tx, key, rx->node);
2359                if (unlikely(rc))
2360                        pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2361                                tx->name, key, tipc_node_get_id_str(rx->node),
2362                                rc);
2363
2364                /* Sched for key_distr releasing */
2365                resched = true;
2366        } else {
2367                atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2368        }
2369
2370        /* Case 2: Attach a pending received session key from peer if any */
2371        if (rx->skey) {
2372                rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2373                if (unlikely(rc < 0))
2374                        pr_warn("%s: unable to attach received skey, err %d\n",
2375                                rx->name, rc);
2376                switch (rc) {
2377                case -EBUSY:
2378                case -ENOMEM:
2379                        /* Resched the key attaching */
2380                        resched = true;
2381                        break;
2382                default:
2383                        synchronize_rcu();
2384                        kfree(rx->skey);
2385                        rx->skey = NULL;
2386                        break;
2387                }
2388        }
2389
2390        if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2391                return;
2392
2393        tipc_node_put(rx->node);
2394}
2395
2396/**
2397 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2398 * @tx: TX crypto
2399 * @changed: if the rekeying needs to be rescheduled with new interval
2400 * @new_intv: new rekeying interval (when "changed" = true)
2401 */
2402void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2403                                u32 new_intv)
2404{
2405        unsigned long delay;
2406        bool now = false;
2407
2408        if (changed) {
2409                if (new_intv == TIPC_REKEYING_NOW)
2410                        now = true;
2411                else
2412                        tx->rekeying_intv = new_intv;
2413                cancel_delayed_work_sync(&tx->work);
2414        }
2415
2416        if (tx->rekeying_intv || now) {
2417                delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2418                queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2419        }
2420}
2421
2422/**
2423 * tipc_crypto_work_tx - Scheduled TX works handler
2424 * @work: the struct TX work
2425 *
2426 * The function processes the previous scheduled work, i.e. key rekeying, by
2427 * generating a new session key based on current one, then attaching it to the
2428 * TX crypto and finally distributing it to peers. It also re-schedules the
2429 * rekeying if needed.
2430 */
2431static void tipc_crypto_work_tx(struct work_struct *work)
2432{
2433        struct delayed_work *dwork = to_delayed_work(work);
2434        struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2435        struct tipc_aead_key *skey = NULL;
2436        struct tipc_key key = tx->key;
2437        struct tipc_aead *aead;
2438        int rc = -ENOMEM;
2439
2440        if (unlikely(key.pending))
2441                goto resched;
2442
2443        /* Take current key as a template */
2444        rcu_read_lock();
2445        aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2446        if (unlikely(!aead)) {
2447                rcu_read_unlock();
2448                /* At least one key should exist for securing */
2449                return;
2450        }
2451
2452        /* Lets duplicate it first */
2453        skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2454        rcu_read_unlock();
2455
2456        /* Now, generate new key, initiate & distribute it */
2457        if (likely(skey)) {
2458                rc = tipc_aead_key_generate(skey) ?:
2459                     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2460                if (likely(rc > 0))
2461                        rc = tipc_crypto_key_distr(tx, rc, NULL);
2462                kfree_sensitive(skey);
2463        }
2464
2465        if (unlikely(rc))
2466                pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2467
2468resched:
2469        /* Re-schedule rekeying if any */
2470        tipc_crypto_rekeying_sched(tx, false, 0);
2471}
2472