linux/tools/lib/bpf/btf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32        /* raw BTF data in native endianness */
  33        void *raw_data;
  34        /* raw BTF data in non-native endianness */
  35        void *raw_data_swapped;
  36        __u32 raw_size;
  37        /* whether target endianness differs from the native one */
  38        bool swapped_endian;
  39
  40        /*
  41         * When BTF is loaded from an ELF or raw memory it is stored
  42         * in a contiguous memory block. The hdr, type_data, and, strs_data
  43         * point inside that memory region to their respective parts of BTF
  44         * representation:
  45         *
  46         * +--------------------------------+
  47         * |  Header  |  Types  |  Strings  |
  48         * +--------------------------------+
  49         * ^          ^         ^
  50         * |          |         |
  51         * hdr        |         |
  52         * types_data-+         |
  53         * strs_data------------+
  54         *
  55         * If BTF data is later modified, e.g., due to types added or
  56         * removed, BTF deduplication performed, etc, this contiguous
  57         * representation is broken up into three independently allocated
  58         * memory regions to be able to modify them independently.
  59         * raw_data is nulled out at that point, but can be later allocated
  60         * and cached again if user calls btf__raw_data(), at which point
  61         * raw_data will contain a contiguous copy of header, types, and
  62         * strings:
  63         *
  64         * +----------+  +---------+  +-----------+
  65         * |  Header  |  |  Types  |  |  Strings  |
  66         * +----------+  +---------+  +-----------+
  67         * ^             ^            ^
  68         * |             |            |
  69         * hdr           |            |
  70         * types_data----+            |
  71         * strset__data(strs_set)-----+
  72         *
  73         *               +----------+---------+-----------+
  74         *               |  Header  |  Types  |  Strings  |
  75         * raw_data----->+----------+---------+-----------+
  76         */
  77        struct btf_header *hdr;
  78
  79        void *types_data;
  80        size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82        /* type ID to `struct btf_type *` lookup index
  83         * type_offs[0] corresponds to the first non-VOID type:
  84         *   - for base BTF it's type [1];
  85         *   - for split BTF it's the first non-base BTF type.
  86         */
  87        __u32 *type_offs;
  88        size_t type_offs_cap;
  89        /* number of types in this BTF instance:
  90         *   - doesn't include special [0] void type;
  91         *   - for split BTF counts number of types added on top of base BTF.
  92         */
  93        __u32 nr_types;
  94        /* if not NULL, points to the base BTF on top of which the current
  95         * split BTF is based
  96         */
  97        struct btf *base_btf;
  98        /* BTF type ID of the first type in this BTF instance:
  99         *   - for base BTF it's equal to 1;
 100         *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101         */
 102        int start_id;
 103        /* logical string offset of this BTF instance:
 104         *   - for base BTF it's equal to 0;
 105         *   - for split BTF it's equal to total size of base BTF's string section size.
 106         */
 107        int start_str_off;
 108
 109        /* only one of strs_data or strs_set can be non-NULL, depending on
 110         * whether BTF is in a modifiable state (strs_set is used) or not
 111         * (strs_data points inside raw_data)
 112         */
 113        void *strs_data;
 114        /* a set of unique strings */
 115        struct strset *strs_set;
 116        /* whether strings are already deduplicated */
 117        bool strs_deduped;
 118
 119        /* BTF object FD, if loaded into kernel */
 120        int fd;
 121
 122        /* Pointer size (in bytes) for a target architecture of this BTF */
 123        int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128        return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142                     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144        size_t new_cnt;
 145        void *new_data;
 146
 147        if (cur_cnt + add_cnt <= *cap_cnt)
 148                return *data + cur_cnt * elem_sz;
 149
 150        /* requested more than the set limit */
 151        if (cur_cnt + add_cnt > max_cnt)
 152                return NULL;
 153
 154        new_cnt = *cap_cnt;
 155        new_cnt += new_cnt / 4;           /* expand by 25% */
 156        if (new_cnt < 16)                 /* but at least 16 elements */
 157                new_cnt = 16;
 158        if (new_cnt > max_cnt)            /* but not exceeding a set limit */
 159                new_cnt = max_cnt;
 160        if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161                new_cnt = cur_cnt + add_cnt;
 162
 163        new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164        if (!new_data)
 165                return NULL;
 166
 167        /* zero out newly allocated portion of memory */
 168        memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170        *data = new_data;
 171        *cap_cnt = new_cnt;
 172        return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180        void *p;
 181
 182        if (need_cnt <= *cap_cnt)
 183                return 0;
 184
 185        p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186        if (!p)
 187                return -ENOMEM;
 188
 189        return 0;
 190}
 191
 192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 193{
 194        return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 195                              btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 196}
 197
 198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 199{
 200        __u32 *p;
 201
 202        p = btf_add_type_offs_mem(btf, 1);
 203        if (!p)
 204                return -ENOMEM;
 205
 206        *p = type_off;
 207        return 0;
 208}
 209
 210static void btf_bswap_hdr(struct btf_header *h)
 211{
 212        h->magic = bswap_16(h->magic);
 213        h->hdr_len = bswap_32(h->hdr_len);
 214        h->type_off = bswap_32(h->type_off);
 215        h->type_len = bswap_32(h->type_len);
 216        h->str_off = bswap_32(h->str_off);
 217        h->str_len = bswap_32(h->str_len);
 218}
 219
 220static int btf_parse_hdr(struct btf *btf)
 221{
 222        struct btf_header *hdr = btf->hdr;
 223        __u32 meta_left;
 224
 225        if (btf->raw_size < sizeof(struct btf_header)) {
 226                pr_debug("BTF header not found\n");
 227                return -EINVAL;
 228        }
 229
 230        if (hdr->magic == bswap_16(BTF_MAGIC)) {
 231                btf->swapped_endian = true;
 232                if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 233                        pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 234                                bswap_32(hdr->hdr_len));
 235                        return -ENOTSUP;
 236                }
 237                btf_bswap_hdr(hdr);
 238        } else if (hdr->magic != BTF_MAGIC) {
 239                pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 240                return -EINVAL;
 241        }
 242
 243        if (btf->raw_size < hdr->hdr_len) {
 244                pr_debug("BTF header len %u larger than data size %u\n",
 245                         hdr->hdr_len, btf->raw_size);
 246                return -EINVAL;
 247        }
 248
 249        meta_left = btf->raw_size - hdr->hdr_len;
 250        if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 251                pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 252                return -EINVAL;
 253        }
 254
 255        if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 256                pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 257                         hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 258                return -EINVAL;
 259        }
 260
 261        if (hdr->type_off % 4) {
 262                pr_debug("BTF type section is not aligned to 4 bytes\n");
 263                return -EINVAL;
 264        }
 265
 266        return 0;
 267}
 268
 269static int btf_parse_str_sec(struct btf *btf)
 270{
 271        const struct btf_header *hdr = btf->hdr;
 272        const char *start = btf->strs_data;
 273        const char *end = start + btf->hdr->str_len;
 274
 275        if (btf->base_btf && hdr->str_len == 0)
 276                return 0;
 277        if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 278                pr_debug("Invalid BTF string section\n");
 279                return -EINVAL;
 280        }
 281        if (!btf->base_btf && start[0]) {
 282                pr_debug("Invalid BTF string section\n");
 283                return -EINVAL;
 284        }
 285        return 0;
 286}
 287
 288static int btf_type_size(const struct btf_type *t)
 289{
 290        const int base_size = sizeof(struct btf_type);
 291        __u16 vlen = btf_vlen(t);
 292
 293        switch (btf_kind(t)) {
 294        case BTF_KIND_FWD:
 295        case BTF_KIND_CONST:
 296        case BTF_KIND_VOLATILE:
 297        case BTF_KIND_RESTRICT:
 298        case BTF_KIND_PTR:
 299        case BTF_KIND_TYPEDEF:
 300        case BTF_KIND_FUNC:
 301        case BTF_KIND_FLOAT:
 302        case BTF_KIND_TYPE_TAG:
 303                return base_size;
 304        case BTF_KIND_INT:
 305                return base_size + sizeof(__u32);
 306        case BTF_KIND_ENUM:
 307                return base_size + vlen * sizeof(struct btf_enum);
 308        case BTF_KIND_ARRAY:
 309                return base_size + sizeof(struct btf_array);
 310        case BTF_KIND_STRUCT:
 311        case BTF_KIND_UNION:
 312                return base_size + vlen * sizeof(struct btf_member);
 313        case BTF_KIND_FUNC_PROTO:
 314                return base_size + vlen * sizeof(struct btf_param);
 315        case BTF_KIND_VAR:
 316                return base_size + sizeof(struct btf_var);
 317        case BTF_KIND_DATASEC:
 318                return base_size + vlen * sizeof(struct btf_var_secinfo);
 319        case BTF_KIND_DECL_TAG:
 320                return base_size + sizeof(struct btf_decl_tag);
 321        default:
 322                pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 323                return -EINVAL;
 324        }
 325}
 326
 327static void btf_bswap_type_base(struct btf_type *t)
 328{
 329        t->name_off = bswap_32(t->name_off);
 330        t->info = bswap_32(t->info);
 331        t->type = bswap_32(t->type);
 332}
 333
 334static int btf_bswap_type_rest(struct btf_type *t)
 335{
 336        struct btf_var_secinfo *v;
 337        struct btf_member *m;
 338        struct btf_array *a;
 339        struct btf_param *p;
 340        struct btf_enum *e;
 341        __u16 vlen = btf_vlen(t);
 342        int i;
 343
 344        switch (btf_kind(t)) {
 345        case BTF_KIND_FWD:
 346        case BTF_KIND_CONST:
 347        case BTF_KIND_VOLATILE:
 348        case BTF_KIND_RESTRICT:
 349        case BTF_KIND_PTR:
 350        case BTF_KIND_TYPEDEF:
 351        case BTF_KIND_FUNC:
 352        case BTF_KIND_FLOAT:
 353        case BTF_KIND_TYPE_TAG:
 354                return 0;
 355        case BTF_KIND_INT:
 356                *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 357                return 0;
 358        case BTF_KIND_ENUM:
 359                for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 360                        e->name_off = bswap_32(e->name_off);
 361                        e->val = bswap_32(e->val);
 362                }
 363                return 0;
 364        case BTF_KIND_ARRAY:
 365                a = btf_array(t);
 366                a->type = bswap_32(a->type);
 367                a->index_type = bswap_32(a->index_type);
 368                a->nelems = bswap_32(a->nelems);
 369                return 0;
 370        case BTF_KIND_STRUCT:
 371        case BTF_KIND_UNION:
 372                for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 373                        m->name_off = bswap_32(m->name_off);
 374                        m->type = bswap_32(m->type);
 375                        m->offset = bswap_32(m->offset);
 376                }
 377                return 0;
 378        case BTF_KIND_FUNC_PROTO:
 379                for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 380                        p->name_off = bswap_32(p->name_off);
 381                        p->type = bswap_32(p->type);
 382                }
 383                return 0;
 384        case BTF_KIND_VAR:
 385                btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 386                return 0;
 387        case BTF_KIND_DATASEC:
 388                for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 389                        v->type = bswap_32(v->type);
 390                        v->offset = bswap_32(v->offset);
 391                        v->size = bswap_32(v->size);
 392                }
 393                return 0;
 394        case BTF_KIND_DECL_TAG:
 395                btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 396                return 0;
 397        default:
 398                pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 399                return -EINVAL;
 400        }
 401}
 402
 403static int btf_parse_type_sec(struct btf *btf)
 404{
 405        struct btf_header *hdr = btf->hdr;
 406        void *next_type = btf->types_data;
 407        void *end_type = next_type + hdr->type_len;
 408        int err, type_size;
 409
 410        while (next_type + sizeof(struct btf_type) <= end_type) {
 411                if (btf->swapped_endian)
 412                        btf_bswap_type_base(next_type);
 413
 414                type_size = btf_type_size(next_type);
 415                if (type_size < 0)
 416                        return type_size;
 417                if (next_type + type_size > end_type) {
 418                        pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 419                        return -EINVAL;
 420                }
 421
 422                if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 423                        return -EINVAL;
 424
 425                err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 426                if (err)
 427                        return err;
 428
 429                next_type += type_size;
 430                btf->nr_types++;
 431        }
 432
 433        if (next_type != end_type) {
 434                pr_warn("BTF types data is malformed\n");
 435                return -EINVAL;
 436        }
 437
 438        return 0;
 439}
 440
 441__u32 btf__get_nr_types(const struct btf *btf)
 442{
 443        return btf->start_id + btf->nr_types - 1;
 444}
 445
 446__u32 btf__type_cnt(const struct btf *btf)
 447{
 448        return btf->start_id + btf->nr_types;
 449}
 450
 451const struct btf *btf__base_btf(const struct btf *btf)
 452{
 453        return btf->base_btf;
 454}
 455
 456/* internal helper returning non-const pointer to a type */
 457struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 458{
 459        if (type_id == 0)
 460                return &btf_void;
 461        if (type_id < btf->start_id)
 462                return btf_type_by_id(btf->base_btf, type_id);
 463        return btf->types_data + btf->type_offs[type_id - btf->start_id];
 464}
 465
 466const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 467{
 468        if (type_id >= btf->start_id + btf->nr_types)
 469                return errno = EINVAL, NULL;
 470        return btf_type_by_id((struct btf *)btf, type_id);
 471}
 472
 473static int determine_ptr_size(const struct btf *btf)
 474{
 475        const struct btf_type *t;
 476        const char *name;
 477        int i, n;
 478
 479        if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 480                return btf->base_btf->ptr_sz;
 481
 482        n = btf__type_cnt(btf);
 483        for (i = 1; i < n; i++) {
 484                t = btf__type_by_id(btf, i);
 485                if (!btf_is_int(t))
 486                        continue;
 487
 488                name = btf__name_by_offset(btf, t->name_off);
 489                if (!name)
 490                        continue;
 491
 492                if (strcmp(name, "long int") == 0 ||
 493                    strcmp(name, "long unsigned int") == 0) {
 494                        if (t->size != 4 && t->size != 8)
 495                                continue;
 496                        return t->size;
 497                }
 498        }
 499
 500        return -1;
 501}
 502
 503static size_t btf_ptr_sz(const struct btf *btf)
 504{
 505        if (!btf->ptr_sz)
 506                ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 507        return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 508}
 509
 510/* Return pointer size this BTF instance assumes. The size is heuristically
 511 * determined by looking for 'long' or 'unsigned long' integer type and
 512 * recording its size in bytes. If BTF type information doesn't have any such
 513 * type, this function returns 0. In the latter case, native architecture's
 514 * pointer size is assumed, so will be either 4 or 8, depending on
 515 * architecture that libbpf was compiled for. It's possible to override
 516 * guessed value by using btf__set_pointer_size() API.
 517 */
 518size_t btf__pointer_size(const struct btf *btf)
 519{
 520        if (!btf->ptr_sz)
 521                ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 522
 523        if (btf->ptr_sz < 0)
 524                /* not enough BTF type info to guess */
 525                return 0;
 526
 527        return btf->ptr_sz;
 528}
 529
 530/* Override or set pointer size in bytes. Only values of 4 and 8 are
 531 * supported.
 532 */
 533int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 534{
 535        if (ptr_sz != 4 && ptr_sz != 8)
 536                return libbpf_err(-EINVAL);
 537        btf->ptr_sz = ptr_sz;
 538        return 0;
 539}
 540
 541static bool is_host_big_endian(void)
 542{
 543#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 544        return false;
 545#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 546        return true;
 547#else
 548# error "Unrecognized __BYTE_ORDER__"
 549#endif
 550}
 551
 552enum btf_endianness btf__endianness(const struct btf *btf)
 553{
 554        if (is_host_big_endian())
 555                return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 556        else
 557                return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 558}
 559
 560int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 561{
 562        if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 563                return libbpf_err(-EINVAL);
 564
 565        btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 566        if (!btf->swapped_endian) {
 567                free(btf->raw_data_swapped);
 568                btf->raw_data_swapped = NULL;
 569        }
 570        return 0;
 571}
 572
 573static bool btf_type_is_void(const struct btf_type *t)
 574{
 575        return t == &btf_void || btf_is_fwd(t);
 576}
 577
 578static bool btf_type_is_void_or_null(const struct btf_type *t)
 579{
 580        return !t || btf_type_is_void(t);
 581}
 582
 583#define MAX_RESOLVE_DEPTH 32
 584
 585__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 586{
 587        const struct btf_array *array;
 588        const struct btf_type *t;
 589        __u32 nelems = 1;
 590        __s64 size = -1;
 591        int i;
 592
 593        t = btf__type_by_id(btf, type_id);
 594        for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 595                switch (btf_kind(t)) {
 596                case BTF_KIND_INT:
 597                case BTF_KIND_STRUCT:
 598                case BTF_KIND_UNION:
 599                case BTF_KIND_ENUM:
 600                case BTF_KIND_DATASEC:
 601                case BTF_KIND_FLOAT:
 602                        size = t->size;
 603                        goto done;
 604                case BTF_KIND_PTR:
 605                        size = btf_ptr_sz(btf);
 606                        goto done;
 607                case BTF_KIND_TYPEDEF:
 608                case BTF_KIND_VOLATILE:
 609                case BTF_KIND_CONST:
 610                case BTF_KIND_RESTRICT:
 611                case BTF_KIND_VAR:
 612                case BTF_KIND_DECL_TAG:
 613                case BTF_KIND_TYPE_TAG:
 614                        type_id = t->type;
 615                        break;
 616                case BTF_KIND_ARRAY:
 617                        array = btf_array(t);
 618                        if (nelems && array->nelems > UINT32_MAX / nelems)
 619                                return libbpf_err(-E2BIG);
 620                        nelems *= array->nelems;
 621                        type_id = array->type;
 622                        break;
 623                default:
 624                        return libbpf_err(-EINVAL);
 625                }
 626
 627                t = btf__type_by_id(btf, type_id);
 628        }
 629
 630done:
 631        if (size < 0)
 632                return libbpf_err(-EINVAL);
 633        if (nelems && size > UINT32_MAX / nelems)
 634                return libbpf_err(-E2BIG);
 635
 636        return nelems * size;
 637}
 638
 639int btf__align_of(const struct btf *btf, __u32 id)
 640{
 641        const struct btf_type *t = btf__type_by_id(btf, id);
 642        __u16 kind = btf_kind(t);
 643
 644        switch (kind) {
 645        case BTF_KIND_INT:
 646        case BTF_KIND_ENUM:
 647        case BTF_KIND_FLOAT:
 648                return min(btf_ptr_sz(btf), (size_t)t->size);
 649        case BTF_KIND_PTR:
 650                return btf_ptr_sz(btf);
 651        case BTF_KIND_TYPEDEF:
 652        case BTF_KIND_VOLATILE:
 653        case BTF_KIND_CONST:
 654        case BTF_KIND_RESTRICT:
 655        case BTF_KIND_TYPE_TAG:
 656                return btf__align_of(btf, t->type);
 657        case BTF_KIND_ARRAY:
 658                return btf__align_of(btf, btf_array(t)->type);
 659        case BTF_KIND_STRUCT:
 660        case BTF_KIND_UNION: {
 661                const struct btf_member *m = btf_members(t);
 662                __u16 vlen = btf_vlen(t);
 663                int i, max_align = 1, align;
 664
 665                for (i = 0; i < vlen; i++, m++) {
 666                        align = btf__align_of(btf, m->type);
 667                        if (align <= 0)
 668                                return libbpf_err(align);
 669                        max_align = max(max_align, align);
 670                }
 671
 672                return max_align;
 673        }
 674        default:
 675                pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 676                return errno = EINVAL, 0;
 677        }
 678}
 679
 680int btf__resolve_type(const struct btf *btf, __u32 type_id)
 681{
 682        const struct btf_type *t;
 683        int depth = 0;
 684
 685        t = btf__type_by_id(btf, type_id);
 686        while (depth < MAX_RESOLVE_DEPTH &&
 687               !btf_type_is_void_or_null(t) &&
 688               (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 689                type_id = t->type;
 690                t = btf__type_by_id(btf, type_id);
 691                depth++;
 692        }
 693
 694        if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 695                return libbpf_err(-EINVAL);
 696
 697        return type_id;
 698}
 699
 700__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 701{
 702        __u32 i, nr_types = btf__type_cnt(btf);
 703
 704        if (!strcmp(type_name, "void"))
 705                return 0;
 706
 707        for (i = 1; i < nr_types; i++) {
 708                const struct btf_type *t = btf__type_by_id(btf, i);
 709                const char *name = btf__name_by_offset(btf, t->name_off);
 710
 711                if (name && !strcmp(type_name, name))
 712                        return i;
 713        }
 714
 715        return libbpf_err(-ENOENT);
 716}
 717
 718static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 719                                   const char *type_name, __u32 kind)
 720{
 721        __u32 i, nr_types = btf__type_cnt(btf);
 722
 723        if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 724                return 0;
 725
 726        for (i = start_id; i < nr_types; i++) {
 727                const struct btf_type *t = btf__type_by_id(btf, i);
 728                const char *name;
 729
 730                if (btf_kind(t) != kind)
 731                        continue;
 732                name = btf__name_by_offset(btf, t->name_off);
 733                if (name && !strcmp(type_name, name))
 734                        return i;
 735        }
 736
 737        return libbpf_err(-ENOENT);
 738}
 739
 740__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 741                                 __u32 kind)
 742{
 743        return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 744}
 745
 746__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 747                             __u32 kind)
 748{
 749        return btf_find_by_name_kind(btf, 1, type_name, kind);
 750}
 751
 752static bool btf_is_modifiable(const struct btf *btf)
 753{
 754        return (void *)btf->hdr != btf->raw_data;
 755}
 756
 757void btf__free(struct btf *btf)
 758{
 759        if (IS_ERR_OR_NULL(btf))
 760                return;
 761
 762        if (btf->fd >= 0)
 763                close(btf->fd);
 764
 765        if (btf_is_modifiable(btf)) {
 766                /* if BTF was modified after loading, it will have a split
 767                 * in-memory representation for header, types, and strings
 768                 * sections, so we need to free all of them individually. It
 769                 * might still have a cached contiguous raw data present,
 770                 * which will be unconditionally freed below.
 771                 */
 772                free(btf->hdr);
 773                free(btf->types_data);
 774                strset__free(btf->strs_set);
 775        }
 776        free(btf->raw_data);
 777        free(btf->raw_data_swapped);
 778        free(btf->type_offs);
 779        free(btf);
 780}
 781
 782static struct btf *btf_new_empty(struct btf *base_btf)
 783{
 784        struct btf *btf;
 785
 786        btf = calloc(1, sizeof(*btf));
 787        if (!btf)
 788                return ERR_PTR(-ENOMEM);
 789
 790        btf->nr_types = 0;
 791        btf->start_id = 1;
 792        btf->start_str_off = 0;
 793        btf->fd = -1;
 794        btf->ptr_sz = sizeof(void *);
 795        btf->swapped_endian = false;
 796
 797        if (base_btf) {
 798                btf->base_btf = base_btf;
 799                btf->start_id = btf__type_cnt(base_btf);
 800                btf->start_str_off = base_btf->hdr->str_len;
 801        }
 802
 803        /* +1 for empty string at offset 0 */
 804        btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 805        btf->raw_data = calloc(1, btf->raw_size);
 806        if (!btf->raw_data) {
 807                free(btf);
 808                return ERR_PTR(-ENOMEM);
 809        }
 810
 811        btf->hdr = btf->raw_data;
 812        btf->hdr->hdr_len = sizeof(struct btf_header);
 813        btf->hdr->magic = BTF_MAGIC;
 814        btf->hdr->version = BTF_VERSION;
 815
 816        btf->types_data = btf->raw_data + btf->hdr->hdr_len;
 817        btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
 818        btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
 819
 820        return btf;
 821}
 822
 823struct btf *btf__new_empty(void)
 824{
 825        return libbpf_ptr(btf_new_empty(NULL));
 826}
 827
 828struct btf *btf__new_empty_split(struct btf *base_btf)
 829{
 830        return libbpf_ptr(btf_new_empty(base_btf));
 831}
 832
 833static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
 834{
 835        struct btf *btf;
 836        int err;
 837
 838        btf = calloc(1, sizeof(struct btf));
 839        if (!btf)
 840                return ERR_PTR(-ENOMEM);
 841
 842        btf->nr_types = 0;
 843        btf->start_id = 1;
 844        btf->start_str_off = 0;
 845        btf->fd = -1;
 846
 847        if (base_btf) {
 848                btf->base_btf = base_btf;
 849                btf->start_id = btf__type_cnt(base_btf);
 850                btf->start_str_off = base_btf->hdr->str_len;
 851        }
 852
 853        btf->raw_data = malloc(size);
 854        if (!btf->raw_data) {
 855                err = -ENOMEM;
 856                goto done;
 857        }
 858        memcpy(btf->raw_data, data, size);
 859        btf->raw_size = size;
 860
 861        btf->hdr = btf->raw_data;
 862        err = btf_parse_hdr(btf);
 863        if (err)
 864                goto done;
 865
 866        btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
 867        btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
 868
 869        err = btf_parse_str_sec(btf);
 870        err = err ?: btf_parse_type_sec(btf);
 871        if (err)
 872                goto done;
 873
 874done:
 875        if (err) {
 876                btf__free(btf);
 877                return ERR_PTR(err);
 878        }
 879
 880        return btf;
 881}
 882
 883struct btf *btf__new(const void *data, __u32 size)
 884{
 885        return libbpf_ptr(btf_new(data, size, NULL));
 886}
 887
 888static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
 889                                 struct btf_ext **btf_ext)
 890{
 891        Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 892        int err = 0, fd = -1, idx = 0;
 893        struct btf *btf = NULL;
 894        Elf_Scn *scn = NULL;
 895        Elf *elf = NULL;
 896        GElf_Ehdr ehdr;
 897        size_t shstrndx;
 898
 899        if (elf_version(EV_CURRENT) == EV_NONE) {
 900                pr_warn("failed to init libelf for %s\n", path);
 901                return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 902        }
 903
 904        fd = open(path, O_RDONLY | O_CLOEXEC);
 905        if (fd < 0) {
 906                err = -errno;
 907                pr_warn("failed to open %s: %s\n", path, strerror(errno));
 908                return ERR_PTR(err);
 909        }
 910
 911        err = -LIBBPF_ERRNO__FORMAT;
 912
 913        elf = elf_begin(fd, ELF_C_READ, NULL);
 914        if (!elf) {
 915                pr_warn("failed to open %s as ELF file\n", path);
 916                goto done;
 917        }
 918        if (!gelf_getehdr(elf, &ehdr)) {
 919                pr_warn("failed to get EHDR from %s\n", path);
 920                goto done;
 921        }
 922
 923        if (elf_getshdrstrndx(elf, &shstrndx)) {
 924                pr_warn("failed to get section names section index for %s\n",
 925                        path);
 926                goto done;
 927        }
 928
 929        if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
 930                pr_warn("failed to get e_shstrndx from %s\n", path);
 931                goto done;
 932        }
 933
 934        while ((scn = elf_nextscn(elf, scn)) != NULL) {
 935                GElf_Shdr sh;
 936                char *name;
 937
 938                idx++;
 939                if (gelf_getshdr(scn, &sh) != &sh) {
 940                        pr_warn("failed to get section(%d) header from %s\n",
 941                                idx, path);
 942                        goto done;
 943                }
 944                name = elf_strptr(elf, shstrndx, sh.sh_name);
 945                if (!name) {
 946                        pr_warn("failed to get section(%d) name from %s\n",
 947                                idx, path);
 948                        goto done;
 949                }
 950                if (strcmp(name, BTF_ELF_SEC) == 0) {
 951                        btf_data = elf_getdata(scn, 0);
 952                        if (!btf_data) {
 953                                pr_warn("failed to get section(%d, %s) data from %s\n",
 954                                        idx, name, path);
 955                                goto done;
 956                        }
 957                        continue;
 958                } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 959                        btf_ext_data = elf_getdata(scn, 0);
 960                        if (!btf_ext_data) {
 961                                pr_warn("failed to get section(%d, %s) data from %s\n",
 962                                        idx, name, path);
 963                                goto done;
 964                        }
 965                        continue;
 966                }
 967        }
 968
 969        err = 0;
 970
 971        if (!btf_data) {
 972                err = -ENOENT;
 973                goto done;
 974        }
 975        btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
 976        err = libbpf_get_error(btf);
 977        if (err)
 978                goto done;
 979
 980        switch (gelf_getclass(elf)) {
 981        case ELFCLASS32:
 982                btf__set_pointer_size(btf, 4);
 983                break;
 984        case ELFCLASS64:
 985                btf__set_pointer_size(btf, 8);
 986                break;
 987        default:
 988                pr_warn("failed to get ELF class (bitness) for %s\n", path);
 989                break;
 990        }
 991
 992        if (btf_ext && btf_ext_data) {
 993                *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
 994                err = libbpf_get_error(*btf_ext);
 995                if (err)
 996                        goto done;
 997        } else if (btf_ext) {
 998                *btf_ext = NULL;
 999        }
1000done:
1001        if (elf)
1002                elf_end(elf);
1003        close(fd);
1004
1005        if (!err)
1006                return btf;
1007
1008        if (btf_ext)
1009                btf_ext__free(*btf_ext);
1010        btf__free(btf);
1011
1012        return ERR_PTR(err);
1013}
1014
1015struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1016{
1017        return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1018}
1019
1020struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1021{
1022        return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1023}
1024
1025static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1026{
1027        struct btf *btf = NULL;
1028        void *data = NULL;
1029        FILE *f = NULL;
1030        __u16 magic;
1031        int err = 0;
1032        long sz;
1033
1034        f = fopen(path, "rb");
1035        if (!f) {
1036                err = -errno;
1037                goto err_out;
1038        }
1039
1040        /* check BTF magic */
1041        if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1042                err = -EIO;
1043                goto err_out;
1044        }
1045        if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1046                /* definitely not a raw BTF */
1047                err = -EPROTO;
1048                goto err_out;
1049        }
1050
1051        /* get file size */
1052        if (fseek(f, 0, SEEK_END)) {
1053                err = -errno;
1054                goto err_out;
1055        }
1056        sz = ftell(f);
1057        if (sz < 0) {
1058                err = -errno;
1059                goto err_out;
1060        }
1061        /* rewind to the start */
1062        if (fseek(f, 0, SEEK_SET)) {
1063                err = -errno;
1064                goto err_out;
1065        }
1066
1067        /* pre-alloc memory and read all of BTF data */
1068        data = malloc(sz);
1069        if (!data) {
1070                err = -ENOMEM;
1071                goto err_out;
1072        }
1073        if (fread(data, 1, sz, f) < sz) {
1074                err = -EIO;
1075                goto err_out;
1076        }
1077
1078        /* finally parse BTF data */
1079        btf = btf_new(data, sz, base_btf);
1080
1081err_out:
1082        free(data);
1083        if (f)
1084                fclose(f);
1085        return err ? ERR_PTR(err) : btf;
1086}
1087
1088struct btf *btf__parse_raw(const char *path)
1089{
1090        return libbpf_ptr(btf_parse_raw(path, NULL));
1091}
1092
1093struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1094{
1095        return libbpf_ptr(btf_parse_raw(path, base_btf));
1096}
1097
1098static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1099{
1100        struct btf *btf;
1101        int err;
1102
1103        if (btf_ext)
1104                *btf_ext = NULL;
1105
1106        btf = btf_parse_raw(path, base_btf);
1107        err = libbpf_get_error(btf);
1108        if (!err)
1109                return btf;
1110        if (err != -EPROTO)
1111                return ERR_PTR(err);
1112        return btf_parse_elf(path, base_btf, btf_ext);
1113}
1114
1115struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1116{
1117        return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1118}
1119
1120struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1121{
1122        return libbpf_ptr(btf_parse(path, base_btf, NULL));
1123}
1124
1125static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1126
1127int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1128{
1129        LIBBPF_OPTS(bpf_btf_load_opts, opts);
1130        __u32 buf_sz = 0, raw_size;
1131        char *buf = NULL, *tmp;
1132        void *raw_data;
1133        int err = 0;
1134
1135        if (btf->fd >= 0)
1136                return libbpf_err(-EEXIST);
1137        if (log_sz && !log_buf)
1138                return libbpf_err(-EINVAL);
1139
1140        /* cache native raw data representation */
1141        raw_data = btf_get_raw_data(btf, &raw_size, false);
1142        if (!raw_data) {
1143                err = -ENOMEM;
1144                goto done;
1145        }
1146        btf->raw_size = raw_size;
1147        btf->raw_data = raw_data;
1148
1149retry_load:
1150        /* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1151         * initially. Only if BTF loading fails, we bump log_level to 1 and
1152         * retry, using either auto-allocated or custom log_buf. This way
1153         * non-NULL custom log_buf provides a buffer just in case, but hopes
1154         * for successful load and no need for log_buf.
1155         */
1156        if (log_level) {
1157                /* if caller didn't provide custom log_buf, we'll keep
1158                 * allocating our own progressively bigger buffers for BTF
1159                 * verification log
1160                 */
1161                if (!log_buf) {
1162                        buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1163                        tmp = realloc(buf, buf_sz);
1164                        if (!tmp) {
1165                                err = -ENOMEM;
1166                                goto done;
1167                        }
1168                        buf = tmp;
1169                        buf[0] = '\0';
1170                }
1171
1172                opts.log_buf = log_buf ? log_buf : buf;
1173                opts.log_size = log_buf ? log_sz : buf_sz;
1174                opts.log_level = log_level;
1175        }
1176
1177        btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1178        if (btf->fd < 0) {
1179                /* time to turn on verbose mode and try again */
1180                if (log_level == 0) {
1181                        log_level = 1;
1182                        goto retry_load;
1183                }
1184                /* only retry if caller didn't provide custom log_buf, but
1185                 * make sure we can never overflow buf_sz
1186                 */
1187                if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1188                        goto retry_load;
1189
1190                err = -errno;
1191                pr_warn("BTF loading error: %d\n", err);
1192                /* don't print out contents of custom log_buf */
1193                if (!log_buf && buf[0])
1194                        pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1195        }
1196
1197done:
1198        free(buf);
1199        return libbpf_err(err);
1200}
1201
1202int btf__load_into_kernel(struct btf *btf)
1203{
1204        return btf_load_into_kernel(btf, NULL, 0, 0);
1205}
1206
1207int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1208
1209int btf__fd(const struct btf *btf)
1210{
1211        return btf->fd;
1212}
1213
1214void btf__set_fd(struct btf *btf, int fd)
1215{
1216        btf->fd = fd;
1217}
1218
1219static const void *btf_strs_data(const struct btf *btf)
1220{
1221        return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1222}
1223
1224static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1225{
1226        struct btf_header *hdr = btf->hdr;
1227        struct btf_type *t;
1228        void *data, *p;
1229        __u32 data_sz;
1230        int i;
1231
1232        data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1233        if (data) {
1234                *size = btf->raw_size;
1235                return data;
1236        }
1237
1238        data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1239        data = calloc(1, data_sz);
1240        if (!data)
1241                return NULL;
1242        p = data;
1243
1244        memcpy(p, hdr, hdr->hdr_len);
1245        if (swap_endian)
1246                btf_bswap_hdr(p);
1247        p += hdr->hdr_len;
1248
1249        memcpy(p, btf->types_data, hdr->type_len);
1250        if (swap_endian) {
1251                for (i = 0; i < btf->nr_types; i++) {
1252                        t = p + btf->type_offs[i];
1253                        /* btf_bswap_type_rest() relies on native t->info, so
1254                         * we swap base type info after we swapped all the
1255                         * additional information
1256                         */
1257                        if (btf_bswap_type_rest(t))
1258                                goto err_out;
1259                        btf_bswap_type_base(t);
1260                }
1261        }
1262        p += hdr->type_len;
1263
1264        memcpy(p, btf_strs_data(btf), hdr->str_len);
1265        p += hdr->str_len;
1266
1267        *size = data_sz;
1268        return data;
1269err_out:
1270        free(data);
1271        return NULL;
1272}
1273
1274const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1275{
1276        struct btf *btf = (struct btf *)btf_ro;
1277        __u32 data_sz;
1278        void *data;
1279
1280        data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1281        if (!data)
1282                return errno = ENOMEM, NULL;
1283
1284        btf->raw_size = data_sz;
1285        if (btf->swapped_endian)
1286                btf->raw_data_swapped = data;
1287        else
1288                btf->raw_data = data;
1289        *size = data_sz;
1290        return data;
1291}
1292
1293__attribute__((alias("btf__raw_data")))
1294const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1295
1296const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1297{
1298        if (offset < btf->start_str_off)
1299                return btf__str_by_offset(btf->base_btf, offset);
1300        else if (offset - btf->start_str_off < btf->hdr->str_len)
1301                return btf_strs_data(btf) + (offset - btf->start_str_off);
1302        else
1303                return errno = EINVAL, NULL;
1304}
1305
1306const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1307{
1308        return btf__str_by_offset(btf, offset);
1309}
1310
1311struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1312{
1313        struct bpf_btf_info btf_info;
1314        __u32 len = sizeof(btf_info);
1315        __u32 last_size;
1316        struct btf *btf;
1317        void *ptr;
1318        int err;
1319
1320        /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1321         * let's start with a sane default - 4KiB here - and resize it only if
1322         * bpf_obj_get_info_by_fd() needs a bigger buffer.
1323         */
1324        last_size = 4096;
1325        ptr = malloc(last_size);
1326        if (!ptr)
1327                return ERR_PTR(-ENOMEM);
1328
1329        memset(&btf_info, 0, sizeof(btf_info));
1330        btf_info.btf = ptr_to_u64(ptr);
1331        btf_info.btf_size = last_size;
1332        err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1333
1334        if (!err && btf_info.btf_size > last_size) {
1335                void *temp_ptr;
1336
1337                last_size = btf_info.btf_size;
1338                temp_ptr = realloc(ptr, last_size);
1339                if (!temp_ptr) {
1340                        btf = ERR_PTR(-ENOMEM);
1341                        goto exit_free;
1342                }
1343                ptr = temp_ptr;
1344
1345                len = sizeof(btf_info);
1346                memset(&btf_info, 0, sizeof(btf_info));
1347                btf_info.btf = ptr_to_u64(ptr);
1348                btf_info.btf_size = last_size;
1349
1350                err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1351        }
1352
1353        if (err || btf_info.btf_size > last_size) {
1354                btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1355                goto exit_free;
1356        }
1357
1358        btf = btf_new(ptr, btf_info.btf_size, base_btf);
1359
1360exit_free:
1361        free(ptr);
1362        return btf;
1363}
1364
1365struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1366{
1367        struct btf *btf;
1368        int btf_fd;
1369
1370        btf_fd = bpf_btf_get_fd_by_id(id);
1371        if (btf_fd < 0)
1372                return libbpf_err_ptr(-errno);
1373
1374        btf = btf_get_from_fd(btf_fd, base_btf);
1375        close(btf_fd);
1376
1377        return libbpf_ptr(btf);
1378}
1379
1380struct btf *btf__load_from_kernel_by_id(__u32 id)
1381{
1382        return btf__load_from_kernel_by_id_split(id, NULL);
1383}
1384
1385int btf__get_from_id(__u32 id, struct btf **btf)
1386{
1387        struct btf *res;
1388        int err;
1389
1390        *btf = NULL;
1391        res = btf__load_from_kernel_by_id(id);
1392        err = libbpf_get_error(res);
1393
1394        if (err)
1395                return libbpf_err(err);
1396
1397        *btf = res;
1398        return 0;
1399}
1400
1401int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1402                         __u32 expected_key_size, __u32 expected_value_size,
1403                         __u32 *key_type_id, __u32 *value_type_id)
1404{
1405        const struct btf_type *container_type;
1406        const struct btf_member *key, *value;
1407        const size_t max_name = 256;
1408        char container_name[max_name];
1409        __s64 key_size, value_size;
1410        __s32 container_id;
1411
1412        if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1413                pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1414                        map_name, map_name);
1415                return libbpf_err(-EINVAL);
1416        }
1417
1418        container_id = btf__find_by_name(btf, container_name);
1419        if (container_id < 0) {
1420                pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1421                         map_name, container_name);
1422                return libbpf_err(container_id);
1423        }
1424
1425        container_type = btf__type_by_id(btf, container_id);
1426        if (!container_type) {
1427                pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1428                        map_name, container_id);
1429                return libbpf_err(-EINVAL);
1430        }
1431
1432        if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1433                pr_warn("map:%s container_name:%s is an invalid container struct\n",
1434                        map_name, container_name);
1435                return libbpf_err(-EINVAL);
1436        }
1437
1438        key = btf_members(container_type);
1439        value = key + 1;
1440
1441        key_size = btf__resolve_size(btf, key->type);
1442        if (key_size < 0) {
1443                pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1444                return libbpf_err(key_size);
1445        }
1446
1447        if (expected_key_size != key_size) {
1448                pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1449                        map_name, (__u32)key_size, expected_key_size);
1450                return libbpf_err(-EINVAL);
1451        }
1452
1453        value_size = btf__resolve_size(btf, value->type);
1454        if (value_size < 0) {
1455                pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1456                return libbpf_err(value_size);
1457        }
1458
1459        if (expected_value_size != value_size) {
1460                pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1461                        map_name, (__u32)value_size, expected_value_size);
1462                return libbpf_err(-EINVAL);
1463        }
1464
1465        *key_type_id = key->type;
1466        *value_type_id = value->type;
1467
1468        return 0;
1469}
1470
1471static void btf_invalidate_raw_data(struct btf *btf)
1472{
1473        if (btf->raw_data) {
1474                free(btf->raw_data);
1475                btf->raw_data = NULL;
1476        }
1477        if (btf->raw_data_swapped) {
1478                free(btf->raw_data_swapped);
1479                btf->raw_data_swapped = NULL;
1480        }
1481}
1482
1483/* Ensure BTF is ready to be modified (by splitting into a three memory
1484 * regions for header, types, and strings). Also invalidate cached
1485 * raw_data, if any.
1486 */
1487static int btf_ensure_modifiable(struct btf *btf)
1488{
1489        void *hdr, *types;
1490        struct strset *set = NULL;
1491        int err = -ENOMEM;
1492
1493        if (btf_is_modifiable(btf)) {
1494                /* any BTF modification invalidates raw_data */
1495                btf_invalidate_raw_data(btf);
1496                return 0;
1497        }
1498
1499        /* split raw data into three memory regions */
1500        hdr = malloc(btf->hdr->hdr_len);
1501        types = malloc(btf->hdr->type_len);
1502        if (!hdr || !types)
1503                goto err_out;
1504
1505        memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1506        memcpy(types, btf->types_data, btf->hdr->type_len);
1507
1508        /* build lookup index for all strings */
1509        set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1510        if (IS_ERR(set)) {
1511                err = PTR_ERR(set);
1512                goto err_out;
1513        }
1514
1515        /* only when everything was successful, update internal state */
1516        btf->hdr = hdr;
1517        btf->types_data = types;
1518        btf->types_data_cap = btf->hdr->type_len;
1519        btf->strs_data = NULL;
1520        btf->strs_set = set;
1521        /* if BTF was created from scratch, all strings are guaranteed to be
1522         * unique and deduplicated
1523         */
1524        if (btf->hdr->str_len == 0)
1525                btf->strs_deduped = true;
1526        if (!btf->base_btf && btf->hdr->str_len == 1)
1527                btf->strs_deduped = true;
1528
1529        /* invalidate raw_data representation */
1530        btf_invalidate_raw_data(btf);
1531
1532        return 0;
1533
1534err_out:
1535        strset__free(set);
1536        free(hdr);
1537        free(types);
1538        return err;
1539}
1540
1541/* Find an offset in BTF string section that corresponds to a given string *s*.
1542 * Returns:
1543 *   - >0 offset into string section, if string is found;
1544 *   - -ENOENT, if string is not in the string section;
1545 *   - <0, on any other error.
1546 */
1547int btf__find_str(struct btf *btf, const char *s)
1548{
1549        int off;
1550
1551        if (btf->base_btf) {
1552                off = btf__find_str(btf->base_btf, s);
1553                if (off != -ENOENT)
1554                        return off;
1555        }
1556
1557        /* BTF needs to be in a modifiable state to build string lookup index */
1558        if (btf_ensure_modifiable(btf))
1559                return libbpf_err(-ENOMEM);
1560
1561        off = strset__find_str(btf->strs_set, s);
1562        if (off < 0)
1563                return libbpf_err(off);
1564
1565        return btf->start_str_off + off;
1566}
1567
1568/* Add a string s to the BTF string section.
1569 * Returns:
1570 *   - > 0 offset into string section, on success;
1571 *   - < 0, on error.
1572 */
1573int btf__add_str(struct btf *btf, const char *s)
1574{
1575        int off;
1576
1577        if (btf->base_btf) {
1578                off = btf__find_str(btf->base_btf, s);
1579                if (off != -ENOENT)
1580                        return off;
1581        }
1582
1583        if (btf_ensure_modifiable(btf))
1584                return libbpf_err(-ENOMEM);
1585
1586        off = strset__add_str(btf->strs_set, s);
1587        if (off < 0)
1588                return libbpf_err(off);
1589
1590        btf->hdr->str_len = strset__data_size(btf->strs_set);
1591
1592        return btf->start_str_off + off;
1593}
1594
1595static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1596{
1597        return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1598                              btf->hdr->type_len, UINT_MAX, add_sz);
1599}
1600
1601static void btf_type_inc_vlen(struct btf_type *t)
1602{
1603        t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1604}
1605
1606static int btf_commit_type(struct btf *btf, int data_sz)
1607{
1608        int err;
1609
1610        err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1611        if (err)
1612                return libbpf_err(err);
1613
1614        btf->hdr->type_len += data_sz;
1615        btf->hdr->str_off += data_sz;
1616        btf->nr_types++;
1617        return btf->start_id + btf->nr_types - 1;
1618}
1619
1620struct btf_pipe {
1621        const struct btf *src;
1622        struct btf *dst;
1623};
1624
1625static int btf_rewrite_str(__u32 *str_off, void *ctx)
1626{
1627        struct btf_pipe *p = ctx;
1628        int off;
1629
1630        if (!*str_off) /* nothing to do for empty strings */
1631                return 0;
1632
1633        off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1634        if (off < 0)
1635                return off;
1636
1637        *str_off = off;
1638        return 0;
1639}
1640
1641int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1642{
1643        struct btf_pipe p = { .src = src_btf, .dst = btf };
1644        struct btf_type *t;
1645        int sz, err;
1646
1647        sz = btf_type_size(src_type);
1648        if (sz < 0)
1649                return libbpf_err(sz);
1650
1651        /* deconstruct BTF, if necessary, and invalidate raw_data */
1652        if (btf_ensure_modifiable(btf))
1653                return libbpf_err(-ENOMEM);
1654
1655        t = btf_add_type_mem(btf, sz);
1656        if (!t)
1657                return libbpf_err(-ENOMEM);
1658
1659        memcpy(t, src_type, sz);
1660
1661        err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1662        if (err)
1663                return libbpf_err(err);
1664
1665        return btf_commit_type(btf, sz);
1666}
1667
1668static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1669{
1670        struct btf *btf = ctx;
1671
1672        if (!*type_id) /* nothing to do for VOID references */
1673                return 0;
1674
1675        /* we haven't updated btf's type count yet, so
1676         * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1677         * add to all newly added BTF types
1678         */
1679        *type_id += btf->start_id + btf->nr_types - 1;
1680        return 0;
1681}
1682
1683int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1684{
1685        struct btf_pipe p = { .src = src_btf, .dst = btf };
1686        int data_sz, sz, cnt, i, err, old_strs_len;
1687        __u32 *off;
1688        void *t;
1689
1690        /* appending split BTF isn't supported yet */
1691        if (src_btf->base_btf)
1692                return libbpf_err(-ENOTSUP);
1693
1694        /* deconstruct BTF, if necessary, and invalidate raw_data */
1695        if (btf_ensure_modifiable(btf))
1696                return libbpf_err(-ENOMEM);
1697
1698        /* remember original strings section size if we have to roll back
1699         * partial strings section changes
1700         */
1701        old_strs_len = btf->hdr->str_len;
1702
1703        data_sz = src_btf->hdr->type_len;
1704        cnt = btf__type_cnt(src_btf) - 1;
1705
1706        /* pre-allocate enough memory for new types */
1707        t = btf_add_type_mem(btf, data_sz);
1708        if (!t)
1709                return libbpf_err(-ENOMEM);
1710
1711        /* pre-allocate enough memory for type offset index for new types */
1712        off = btf_add_type_offs_mem(btf, cnt);
1713        if (!off)
1714                return libbpf_err(-ENOMEM);
1715
1716        /* bulk copy types data for all types from src_btf */
1717        memcpy(t, src_btf->types_data, data_sz);
1718
1719        for (i = 0; i < cnt; i++) {
1720                sz = btf_type_size(t);
1721                if (sz < 0) {
1722                        /* unlikely, has to be corrupted src_btf */
1723                        err = sz;
1724                        goto err_out;
1725                }
1726
1727                /* fill out type ID to type offset mapping for lookups by type ID */
1728                *off = t - btf->types_data;
1729
1730                /* add, dedup, and remap strings referenced by this BTF type */
1731                err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1732                if (err)
1733                        goto err_out;
1734
1735                /* remap all type IDs referenced from this BTF type */
1736                err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1737                if (err)
1738                        goto err_out;
1739
1740                /* go to next type data and type offset index entry */
1741                t += sz;
1742                off++;
1743        }
1744
1745        /* Up until now any of the copied type data was effectively invisible,
1746         * so if we exited early before this point due to error, BTF would be
1747         * effectively unmodified. There would be extra internal memory
1748         * pre-allocated, but it would not be available for querying.  But now
1749         * that we've copied and rewritten all the data successfully, we can
1750         * update type count and various internal offsets and sizes to
1751         * "commit" the changes and made them visible to the outside world.
1752         */
1753        btf->hdr->type_len += data_sz;
1754        btf->hdr->str_off += data_sz;
1755        btf->nr_types += cnt;
1756
1757        /* return type ID of the first added BTF type */
1758        return btf->start_id + btf->nr_types - cnt;
1759err_out:
1760        /* zero out preallocated memory as if it was just allocated with
1761         * libbpf_add_mem()
1762         */
1763        memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1764        memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1765
1766        /* and now restore original strings section size; types data size
1767         * wasn't modified, so doesn't need restoring, see big comment above */
1768        btf->hdr->str_len = old_strs_len;
1769
1770        return libbpf_err(err);
1771}
1772
1773/*
1774 * Append new BTF_KIND_INT type with:
1775 *   - *name* - non-empty, non-NULL type name;
1776 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1777 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1778 * Returns:
1779 *   - >0, type ID of newly added BTF type;
1780 *   - <0, on error.
1781 */
1782int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1783{
1784        struct btf_type *t;
1785        int sz, name_off;
1786
1787        /* non-empty name */
1788        if (!name || !name[0])
1789                return libbpf_err(-EINVAL);
1790        /* byte_sz must be power of 2 */
1791        if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1792                return libbpf_err(-EINVAL);
1793        if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1794                return libbpf_err(-EINVAL);
1795
1796        /* deconstruct BTF, if necessary, and invalidate raw_data */
1797        if (btf_ensure_modifiable(btf))
1798                return libbpf_err(-ENOMEM);
1799
1800        sz = sizeof(struct btf_type) + sizeof(int);
1801        t = btf_add_type_mem(btf, sz);
1802        if (!t)
1803                return libbpf_err(-ENOMEM);
1804
1805        /* if something goes wrong later, we might end up with an extra string,
1806         * but that shouldn't be a problem, because BTF can't be constructed
1807         * completely anyway and will most probably be just discarded
1808         */
1809        name_off = btf__add_str(btf, name);
1810        if (name_off < 0)
1811                return name_off;
1812
1813        t->name_off = name_off;
1814        t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1815        t->size = byte_sz;
1816        /* set INT info, we don't allow setting legacy bit offset/size */
1817        *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1818
1819        return btf_commit_type(btf, sz);
1820}
1821
1822/*
1823 * Append new BTF_KIND_FLOAT type with:
1824 *   - *name* - non-empty, non-NULL type name;
1825 *   - *sz* - size of the type, in bytes;
1826 * Returns:
1827 *   - >0, type ID of newly added BTF type;
1828 *   - <0, on error.
1829 */
1830int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1831{
1832        struct btf_type *t;
1833        int sz, name_off;
1834
1835        /* non-empty name */
1836        if (!name || !name[0])
1837                return libbpf_err(-EINVAL);
1838
1839        /* byte_sz must be one of the explicitly allowed values */
1840        if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1841            byte_sz != 16)
1842                return libbpf_err(-EINVAL);
1843
1844        if (btf_ensure_modifiable(btf))
1845                return libbpf_err(-ENOMEM);
1846
1847        sz = sizeof(struct btf_type);
1848        t = btf_add_type_mem(btf, sz);
1849        if (!t)
1850                return libbpf_err(-ENOMEM);
1851
1852        name_off = btf__add_str(btf, name);
1853        if (name_off < 0)
1854                return name_off;
1855
1856        t->name_off = name_off;
1857        t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1858        t->size = byte_sz;
1859
1860        return btf_commit_type(btf, sz);
1861}
1862
1863/* it's completely legal to append BTF types with type IDs pointing forward to
1864 * types that haven't been appended yet, so we only make sure that id looks
1865 * sane, we can't guarantee that ID will always be valid
1866 */
1867static int validate_type_id(int id)
1868{
1869        if (id < 0 || id > BTF_MAX_NR_TYPES)
1870                return -EINVAL;
1871        return 0;
1872}
1873
1874/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1875static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1876{
1877        struct btf_type *t;
1878        int sz, name_off = 0;
1879
1880        if (validate_type_id(ref_type_id))
1881                return libbpf_err(-EINVAL);
1882
1883        if (btf_ensure_modifiable(btf))
1884                return libbpf_err(-ENOMEM);
1885
1886        sz = sizeof(struct btf_type);
1887        t = btf_add_type_mem(btf, sz);
1888        if (!t)
1889                return libbpf_err(-ENOMEM);
1890
1891        if (name && name[0]) {
1892                name_off = btf__add_str(btf, name);
1893                if (name_off < 0)
1894                        return name_off;
1895        }
1896
1897        t->name_off = name_off;
1898        t->info = btf_type_info(kind, 0, 0);
1899        t->type = ref_type_id;
1900
1901        return btf_commit_type(btf, sz);
1902}
1903
1904/*
1905 * Append new BTF_KIND_PTR type with:
1906 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1907 * Returns:
1908 *   - >0, type ID of newly added BTF type;
1909 *   - <0, on error.
1910 */
1911int btf__add_ptr(struct btf *btf, int ref_type_id)
1912{
1913        return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1914}
1915
1916/*
1917 * Append new BTF_KIND_ARRAY type with:
1918 *   - *index_type_id* - type ID of the type describing array index;
1919 *   - *elem_type_id* - type ID of the type describing array element;
1920 *   - *nr_elems* - the size of the array;
1921 * Returns:
1922 *   - >0, type ID of newly added BTF type;
1923 *   - <0, on error.
1924 */
1925int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1926{
1927        struct btf_type *t;
1928        struct btf_array *a;
1929        int sz;
1930
1931        if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1932                return libbpf_err(-EINVAL);
1933
1934        if (btf_ensure_modifiable(btf))
1935                return libbpf_err(-ENOMEM);
1936
1937        sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1938        t = btf_add_type_mem(btf, sz);
1939        if (!t)
1940                return libbpf_err(-ENOMEM);
1941
1942        t->name_off = 0;
1943        t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1944        t->size = 0;
1945
1946        a = btf_array(t);
1947        a->type = elem_type_id;
1948        a->index_type = index_type_id;
1949        a->nelems = nr_elems;
1950
1951        return btf_commit_type(btf, sz);
1952}
1953
1954/* generic STRUCT/UNION append function */
1955static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1956{
1957        struct btf_type *t;
1958        int sz, name_off = 0;
1959
1960        if (btf_ensure_modifiable(btf))
1961                return libbpf_err(-ENOMEM);
1962
1963        sz = sizeof(struct btf_type);
1964        t = btf_add_type_mem(btf, sz);
1965        if (!t)
1966                return libbpf_err(-ENOMEM);
1967
1968        if (name && name[0]) {
1969                name_off = btf__add_str(btf, name);
1970                if (name_off < 0)
1971                        return name_off;
1972        }
1973
1974        /* start out with vlen=0 and no kflag; this will be adjusted when
1975         * adding each member
1976         */
1977        t->name_off = name_off;
1978        t->info = btf_type_info(kind, 0, 0);
1979        t->size = bytes_sz;
1980
1981        return btf_commit_type(btf, sz);
1982}
1983
1984/*
1985 * Append new BTF_KIND_STRUCT type with:
1986 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1987 *   - *byte_sz* - size of the struct, in bytes;
1988 *
1989 * Struct initially has no fields in it. Fields can be added by
1990 * btf__add_field() right after btf__add_struct() succeeds.
1991 *
1992 * Returns:
1993 *   - >0, type ID of newly added BTF type;
1994 *   - <0, on error.
1995 */
1996int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1997{
1998        return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1999}
2000
2001/*
2002 * Append new BTF_KIND_UNION type with:
2003 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2004 *   - *byte_sz* - size of the union, in bytes;
2005 *
2006 * Union initially has no fields in it. Fields can be added by
2007 * btf__add_field() right after btf__add_union() succeeds. All fields
2008 * should have *bit_offset* of 0.
2009 *
2010 * Returns:
2011 *   - >0, type ID of newly added BTF type;
2012 *   - <0, on error.
2013 */
2014int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2015{
2016        return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2017}
2018
2019static struct btf_type *btf_last_type(struct btf *btf)
2020{
2021        return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2022}
2023
2024/*
2025 * Append new field for the current STRUCT/UNION type with:
2026 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2027 *   - *type_id* - type ID for the type describing field type;
2028 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2029 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2030 * Returns:
2031 *   -  0, on success;
2032 *   - <0, on error.
2033 */
2034int btf__add_field(struct btf *btf, const char *name, int type_id,
2035                   __u32 bit_offset, __u32 bit_size)
2036{
2037        struct btf_type *t;
2038        struct btf_member *m;
2039        bool is_bitfield;
2040        int sz, name_off = 0;
2041
2042        /* last type should be union/struct */
2043        if (btf->nr_types == 0)
2044                return libbpf_err(-EINVAL);
2045        t = btf_last_type(btf);
2046        if (!btf_is_composite(t))
2047                return libbpf_err(-EINVAL);
2048
2049        if (validate_type_id(type_id))
2050                return libbpf_err(-EINVAL);
2051        /* best-effort bit field offset/size enforcement */
2052        is_bitfield = bit_size || (bit_offset % 8 != 0);
2053        if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2054                return libbpf_err(-EINVAL);
2055
2056        /* only offset 0 is allowed for unions */
2057        if (btf_is_union(t) && bit_offset)
2058                return libbpf_err(-EINVAL);
2059
2060        /* decompose and invalidate raw data */
2061        if (btf_ensure_modifiable(btf))
2062                return libbpf_err(-ENOMEM);
2063
2064        sz = sizeof(struct btf_member);
2065        m = btf_add_type_mem(btf, sz);
2066        if (!m)
2067                return libbpf_err(-ENOMEM);
2068
2069        if (name && name[0]) {
2070                name_off = btf__add_str(btf, name);
2071                if (name_off < 0)
2072                        return name_off;
2073        }
2074
2075        m->name_off = name_off;
2076        m->type = type_id;
2077        m->offset = bit_offset | (bit_size << 24);
2078
2079        /* btf_add_type_mem can invalidate t pointer */
2080        t = btf_last_type(btf);
2081        /* update parent type's vlen and kflag */
2082        t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2083
2084        btf->hdr->type_len += sz;
2085        btf->hdr->str_off += sz;
2086        return 0;
2087}
2088
2089/*
2090 * Append new BTF_KIND_ENUM type with:
2091 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2092 *   - *byte_sz* - size of the enum, in bytes.
2093 *
2094 * Enum initially has no enum values in it (and corresponds to enum forward
2095 * declaration). Enumerator values can be added by btf__add_enum_value()
2096 * immediately after btf__add_enum() succeeds.
2097 *
2098 * Returns:
2099 *   - >0, type ID of newly added BTF type;
2100 *   - <0, on error.
2101 */
2102int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2103{
2104        struct btf_type *t;
2105        int sz, name_off = 0;
2106
2107        /* byte_sz must be power of 2 */
2108        if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2109                return libbpf_err(-EINVAL);
2110
2111        if (btf_ensure_modifiable(btf))
2112                return libbpf_err(-ENOMEM);
2113
2114        sz = sizeof(struct btf_type);
2115        t = btf_add_type_mem(btf, sz);
2116        if (!t)
2117                return libbpf_err(-ENOMEM);
2118
2119        if (name && name[0]) {
2120                name_off = btf__add_str(btf, name);
2121                if (name_off < 0)
2122                        return name_off;
2123        }
2124
2125        /* start out with vlen=0; it will be adjusted when adding enum values */
2126        t->name_off = name_off;
2127        t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2128        t->size = byte_sz;
2129
2130        return btf_commit_type(btf, sz);
2131}
2132
2133/*
2134 * Append new enum value for the current ENUM type with:
2135 *   - *name* - name of the enumerator value, can't be NULL or empty;
2136 *   - *value* - integer value corresponding to enum value *name*;
2137 * Returns:
2138 *   -  0, on success;
2139 *   - <0, on error.
2140 */
2141int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2142{
2143        struct btf_type *t;
2144        struct btf_enum *v;
2145        int sz, name_off;
2146
2147        /* last type should be BTF_KIND_ENUM */
2148        if (btf->nr_types == 0)
2149                return libbpf_err(-EINVAL);
2150        t = btf_last_type(btf);
2151        if (!btf_is_enum(t))
2152                return libbpf_err(-EINVAL);
2153
2154        /* non-empty name */
2155        if (!name || !name[0])
2156                return libbpf_err(-EINVAL);
2157        if (value < INT_MIN || value > UINT_MAX)
2158                return libbpf_err(-E2BIG);
2159
2160        /* decompose and invalidate raw data */
2161        if (btf_ensure_modifiable(btf))
2162                return libbpf_err(-ENOMEM);
2163
2164        sz = sizeof(struct btf_enum);
2165        v = btf_add_type_mem(btf, sz);
2166        if (!v)
2167                return libbpf_err(-ENOMEM);
2168
2169        name_off = btf__add_str(btf, name);
2170        if (name_off < 0)
2171                return name_off;
2172
2173        v->name_off = name_off;
2174        v->val = value;
2175
2176        /* update parent type's vlen */
2177        t = btf_last_type(btf);
2178        btf_type_inc_vlen(t);
2179
2180        btf->hdr->type_len += sz;
2181        btf->hdr->str_off += sz;
2182        return 0;
2183}
2184
2185/*
2186 * Append new BTF_KIND_FWD type with:
2187 *   - *name*, non-empty/non-NULL name;
2188 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2189 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2190 * Returns:
2191 *   - >0, type ID of newly added BTF type;
2192 *   - <0, on error.
2193 */
2194int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2195{
2196        if (!name || !name[0])
2197                return libbpf_err(-EINVAL);
2198
2199        switch (fwd_kind) {
2200        case BTF_FWD_STRUCT:
2201        case BTF_FWD_UNION: {
2202                struct btf_type *t;
2203                int id;
2204
2205                id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2206                if (id <= 0)
2207                        return id;
2208                t = btf_type_by_id(btf, id);
2209                t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2210                return id;
2211        }
2212        case BTF_FWD_ENUM:
2213                /* enum forward in BTF currently is just an enum with no enum
2214                 * values; we also assume a standard 4-byte size for it
2215                 */
2216                return btf__add_enum(btf, name, sizeof(int));
2217        default:
2218                return libbpf_err(-EINVAL);
2219        }
2220}
2221
2222/*
2223 * Append new BTF_KING_TYPEDEF type with:
2224 *   - *name*, non-empty/non-NULL name;
2225 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2226 * Returns:
2227 *   - >0, type ID of newly added BTF type;
2228 *   - <0, on error.
2229 */
2230int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2231{
2232        if (!name || !name[0])
2233                return libbpf_err(-EINVAL);
2234
2235        return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2236}
2237
2238/*
2239 * Append new BTF_KIND_VOLATILE type with:
2240 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2241 * Returns:
2242 *   - >0, type ID of newly added BTF type;
2243 *   - <0, on error.
2244 */
2245int btf__add_volatile(struct btf *btf, int ref_type_id)
2246{
2247        return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2248}
2249
2250/*
2251 * Append new BTF_KIND_CONST type with:
2252 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2253 * Returns:
2254 *   - >0, type ID of newly added BTF type;
2255 *   - <0, on error.
2256 */
2257int btf__add_const(struct btf *btf, int ref_type_id)
2258{
2259        return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2260}
2261
2262/*
2263 * Append new BTF_KIND_RESTRICT type with:
2264 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2265 * Returns:
2266 *   - >0, type ID of newly added BTF type;
2267 *   - <0, on error.
2268 */
2269int btf__add_restrict(struct btf *btf, int ref_type_id)
2270{
2271        return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2272}
2273
2274/*
2275 * Append new BTF_KIND_TYPE_TAG type with:
2276 *   - *value*, non-empty/non-NULL tag value;
2277 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2278 * Returns:
2279 *   - >0, type ID of newly added BTF type;
2280 *   - <0, on error.
2281 */
2282int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2283{
2284        if (!value|| !value[0])
2285                return libbpf_err(-EINVAL);
2286
2287        return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2288}
2289
2290/*
2291 * Append new BTF_KIND_FUNC type with:
2292 *   - *name*, non-empty/non-NULL name;
2293 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2294 * Returns:
2295 *   - >0, type ID of newly added BTF type;
2296 *   - <0, on error.
2297 */
2298int btf__add_func(struct btf *btf, const char *name,
2299                  enum btf_func_linkage linkage, int proto_type_id)
2300{
2301        int id;
2302
2303        if (!name || !name[0])
2304                return libbpf_err(-EINVAL);
2305        if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2306            linkage != BTF_FUNC_EXTERN)
2307                return libbpf_err(-EINVAL);
2308
2309        id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2310        if (id > 0) {
2311                struct btf_type *t = btf_type_by_id(btf, id);
2312
2313                t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2314        }
2315        return libbpf_err(id);
2316}
2317
2318/*
2319 * Append new BTF_KIND_FUNC_PROTO with:
2320 *   - *ret_type_id* - type ID for return result of a function.
2321 *
2322 * Function prototype initially has no arguments, but they can be added by
2323 * btf__add_func_param() one by one, immediately after
2324 * btf__add_func_proto() succeeded.
2325 *
2326 * Returns:
2327 *   - >0, type ID of newly added BTF type;
2328 *   - <0, on error.
2329 */
2330int btf__add_func_proto(struct btf *btf, int ret_type_id)
2331{
2332        struct btf_type *t;
2333        int sz;
2334
2335        if (validate_type_id(ret_type_id))
2336                return libbpf_err(-EINVAL);
2337
2338        if (btf_ensure_modifiable(btf))
2339                return libbpf_err(-ENOMEM);
2340
2341        sz = sizeof(struct btf_type);
2342        t = btf_add_type_mem(btf, sz);
2343        if (!t)
2344                return libbpf_err(-ENOMEM);
2345
2346        /* start out with vlen=0; this will be adjusted when adding enum
2347         * values, if necessary
2348         */
2349        t->name_off = 0;
2350        t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2351        t->type = ret_type_id;
2352
2353        return btf_commit_type(btf, sz);
2354}
2355
2356/*
2357 * Append new function parameter for current FUNC_PROTO type with:
2358 *   - *name* - parameter name, can be NULL or empty;
2359 *   - *type_id* - type ID describing the type of the parameter.
2360 * Returns:
2361 *   -  0, on success;
2362 *   - <0, on error.
2363 */
2364int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2365{
2366        struct btf_type *t;
2367        struct btf_param *p;
2368        int sz, name_off = 0;
2369
2370        if (validate_type_id(type_id))
2371                return libbpf_err(-EINVAL);
2372
2373        /* last type should be BTF_KIND_FUNC_PROTO */
2374        if (btf->nr_types == 0)
2375                return libbpf_err(-EINVAL);
2376        t = btf_last_type(btf);
2377        if (!btf_is_func_proto(t))
2378                return libbpf_err(-EINVAL);
2379
2380        /* decompose and invalidate raw data */
2381        if (btf_ensure_modifiable(btf))
2382                return libbpf_err(-ENOMEM);
2383
2384        sz = sizeof(struct btf_param);
2385        p = btf_add_type_mem(btf, sz);
2386        if (!p)
2387                return libbpf_err(-ENOMEM);
2388
2389        if (name && name[0]) {
2390                name_off = btf__add_str(btf, name);
2391                if (name_off < 0)
2392                        return name_off;
2393        }
2394
2395        p->name_off = name_off;
2396        p->type = type_id;
2397
2398        /* update parent type's vlen */
2399        t = btf_last_type(btf);
2400        btf_type_inc_vlen(t);
2401
2402        btf->hdr->type_len += sz;
2403        btf->hdr->str_off += sz;
2404        return 0;
2405}
2406
2407/*
2408 * Append new BTF_KIND_VAR type with:
2409 *   - *name* - non-empty/non-NULL name;
2410 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2411 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2412 *   - *type_id* - type ID of the type describing the type of the variable.
2413 * Returns:
2414 *   - >0, type ID of newly added BTF type;
2415 *   - <0, on error.
2416 */
2417int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2418{
2419        struct btf_type *t;
2420        struct btf_var *v;
2421        int sz, name_off;
2422
2423        /* non-empty name */
2424        if (!name || !name[0])
2425                return libbpf_err(-EINVAL);
2426        if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2427            linkage != BTF_VAR_GLOBAL_EXTERN)
2428                return libbpf_err(-EINVAL);
2429        if (validate_type_id(type_id))
2430                return libbpf_err(-EINVAL);
2431
2432        /* deconstruct BTF, if necessary, and invalidate raw_data */
2433        if (btf_ensure_modifiable(btf))
2434                return libbpf_err(-ENOMEM);
2435
2436        sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2437        t = btf_add_type_mem(btf, sz);
2438        if (!t)
2439                return libbpf_err(-ENOMEM);
2440
2441        name_off = btf__add_str(btf, name);
2442        if (name_off < 0)
2443                return name_off;
2444
2445        t->name_off = name_off;
2446        t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2447        t->type = type_id;
2448
2449        v = btf_var(t);
2450        v->linkage = linkage;
2451
2452        return btf_commit_type(btf, sz);
2453}
2454
2455/*
2456 * Append new BTF_KIND_DATASEC type with:
2457 *   - *name* - non-empty/non-NULL name;
2458 *   - *byte_sz* - data section size, in bytes.
2459 *
2460 * Data section is initially empty. Variables info can be added with
2461 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2462 *
2463 * Returns:
2464 *   - >0, type ID of newly added BTF type;
2465 *   - <0, on error.
2466 */
2467int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2468{
2469        struct btf_type *t;
2470        int sz, name_off;
2471
2472        /* non-empty name */
2473        if (!name || !name[0])
2474                return libbpf_err(-EINVAL);
2475
2476        if (btf_ensure_modifiable(btf))
2477                return libbpf_err(-ENOMEM);
2478
2479        sz = sizeof(struct btf_type);
2480        t = btf_add_type_mem(btf, sz);
2481        if (!t)
2482                return libbpf_err(-ENOMEM);
2483
2484        name_off = btf__add_str(btf, name);
2485        if (name_off < 0)
2486                return name_off;
2487
2488        /* start with vlen=0, which will be update as var_secinfos are added */
2489        t->name_off = name_off;
2490        t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2491        t->size = byte_sz;
2492
2493        return btf_commit_type(btf, sz);
2494}
2495
2496/*
2497 * Append new data section variable information entry for current DATASEC type:
2498 *   - *var_type_id* - type ID, describing type of the variable;
2499 *   - *offset* - variable offset within data section, in bytes;
2500 *   - *byte_sz* - variable size, in bytes.
2501 *
2502 * Returns:
2503 *   -  0, on success;
2504 *   - <0, on error.
2505 */
2506int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2507{
2508        struct btf_type *t;
2509        struct btf_var_secinfo *v;
2510        int sz;
2511
2512        /* last type should be BTF_KIND_DATASEC */
2513        if (btf->nr_types == 0)
2514                return libbpf_err(-EINVAL);
2515        t = btf_last_type(btf);
2516        if (!btf_is_datasec(t))
2517                return libbpf_err(-EINVAL);
2518
2519        if (validate_type_id(var_type_id))
2520                return libbpf_err(-EINVAL);
2521
2522        /* decompose and invalidate raw data */
2523        if (btf_ensure_modifiable(btf))
2524                return libbpf_err(-ENOMEM);
2525
2526        sz = sizeof(struct btf_var_secinfo);
2527        v = btf_add_type_mem(btf, sz);
2528        if (!v)
2529                return libbpf_err(-ENOMEM);
2530
2531        v->type = var_type_id;
2532        v->offset = offset;
2533        v->size = byte_sz;
2534
2535        /* update parent type's vlen */
2536        t = btf_last_type(btf);
2537        btf_type_inc_vlen(t);
2538
2539        btf->hdr->type_len += sz;
2540        btf->hdr->str_off += sz;
2541        return 0;
2542}
2543
2544/*
2545 * Append new BTF_KIND_DECL_TAG type with:
2546 *   - *value* - non-empty/non-NULL string;
2547 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2548 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2549 *     member or function argument index;
2550 * Returns:
2551 *   - >0, type ID of newly added BTF type;
2552 *   - <0, on error.
2553 */
2554int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2555                 int component_idx)
2556{
2557        struct btf_type *t;
2558        int sz, value_off;
2559
2560        if (!value || !value[0] || component_idx < -1)
2561                return libbpf_err(-EINVAL);
2562
2563        if (validate_type_id(ref_type_id))
2564                return libbpf_err(-EINVAL);
2565
2566        if (btf_ensure_modifiable(btf))
2567                return libbpf_err(-ENOMEM);
2568
2569        sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2570        t = btf_add_type_mem(btf, sz);
2571        if (!t)
2572                return libbpf_err(-ENOMEM);
2573
2574        value_off = btf__add_str(btf, value);
2575        if (value_off < 0)
2576                return value_off;
2577
2578        t->name_off = value_off;
2579        t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2580        t->type = ref_type_id;
2581        btf_decl_tag(t)->component_idx = component_idx;
2582
2583        return btf_commit_type(btf, sz);
2584}
2585
2586struct btf_ext_sec_setup_param {
2587        __u32 off;
2588        __u32 len;
2589        __u32 min_rec_size;
2590        struct btf_ext_info *ext_info;
2591        const char *desc;
2592};
2593
2594static int btf_ext_setup_info(struct btf_ext *btf_ext,
2595                              struct btf_ext_sec_setup_param *ext_sec)
2596{
2597        const struct btf_ext_info_sec *sinfo;
2598        struct btf_ext_info *ext_info;
2599        __u32 info_left, record_size;
2600        /* The start of the info sec (including the __u32 record_size). */
2601        void *info;
2602
2603        if (ext_sec->len == 0)
2604                return 0;
2605
2606        if (ext_sec->off & 0x03) {
2607                pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2608                     ext_sec->desc);
2609                return -EINVAL;
2610        }
2611
2612        info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2613        info_left = ext_sec->len;
2614
2615        if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2616                pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2617                         ext_sec->desc, ext_sec->off, ext_sec->len);
2618                return -EINVAL;
2619        }
2620
2621        /* At least a record size */
2622        if (info_left < sizeof(__u32)) {
2623                pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2624                return -EINVAL;
2625        }
2626
2627        /* The record size needs to meet the minimum standard */
2628        record_size = *(__u32 *)info;
2629        if (record_size < ext_sec->min_rec_size ||
2630            record_size & 0x03) {
2631                pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2632                         ext_sec->desc, record_size);
2633                return -EINVAL;
2634        }
2635
2636        sinfo = info + sizeof(__u32);
2637        info_left -= sizeof(__u32);
2638
2639        /* If no records, return failure now so .BTF.ext won't be used. */
2640        if (!info_left) {
2641                pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2642                return -EINVAL;
2643        }
2644
2645        while (info_left) {
2646                unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2647                __u64 total_record_size;
2648                __u32 num_records;
2649
2650                if (info_left < sec_hdrlen) {
2651                        pr_debug("%s section header is not found in .BTF.ext\n",
2652                             ext_sec->desc);
2653                        return -EINVAL;
2654                }
2655
2656                num_records = sinfo->num_info;
2657                if (num_records == 0) {
2658                        pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2659                             ext_sec->desc);
2660                        return -EINVAL;
2661                }
2662
2663                total_record_size = sec_hdrlen +
2664                                    (__u64)num_records * record_size;
2665                if (info_left < total_record_size) {
2666                        pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2667                             ext_sec->desc);
2668                        return -EINVAL;
2669                }
2670
2671                info_left -= total_record_size;
2672                sinfo = (void *)sinfo + total_record_size;
2673        }
2674
2675        ext_info = ext_sec->ext_info;
2676        ext_info->len = ext_sec->len - sizeof(__u32);
2677        ext_info->rec_size = record_size;
2678        ext_info->info = info + sizeof(__u32);
2679
2680        return 0;
2681}
2682
2683static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2684{
2685        struct btf_ext_sec_setup_param param = {
2686                .off = btf_ext->hdr->func_info_off,
2687                .len = btf_ext->hdr->func_info_len,
2688                .min_rec_size = sizeof(struct bpf_func_info_min),
2689                .ext_info = &btf_ext->func_info,
2690                .desc = "func_info"
2691        };
2692
2693        return btf_ext_setup_info(btf_ext, &param);
2694}
2695
2696static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2697{
2698        struct btf_ext_sec_setup_param param = {
2699                .off = btf_ext->hdr->line_info_off,
2700                .len = btf_ext->hdr->line_info_len,
2701                .min_rec_size = sizeof(struct bpf_line_info_min),
2702                .ext_info = &btf_ext->line_info,
2703                .desc = "line_info",
2704        };
2705
2706        return btf_ext_setup_info(btf_ext, &param);
2707}
2708
2709static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2710{
2711        struct btf_ext_sec_setup_param param = {
2712                .off = btf_ext->hdr->core_relo_off,
2713                .len = btf_ext->hdr->core_relo_len,
2714                .min_rec_size = sizeof(struct bpf_core_relo),
2715                .ext_info = &btf_ext->core_relo_info,
2716                .desc = "core_relo",
2717        };
2718
2719        return btf_ext_setup_info(btf_ext, &param);
2720}
2721
2722static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2723{
2724        const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2725
2726        if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2727            data_size < hdr->hdr_len) {
2728                pr_debug("BTF.ext header not found");
2729                return -EINVAL;
2730        }
2731
2732        if (hdr->magic == bswap_16(BTF_MAGIC)) {
2733                pr_warn("BTF.ext in non-native endianness is not supported\n");
2734                return -ENOTSUP;
2735        } else if (hdr->magic != BTF_MAGIC) {
2736                pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2737                return -EINVAL;
2738        }
2739
2740        if (hdr->version != BTF_VERSION) {
2741                pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2742                return -ENOTSUP;
2743        }
2744
2745        if (hdr->flags) {
2746                pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2747                return -ENOTSUP;
2748        }
2749
2750        if (data_size == hdr->hdr_len) {
2751                pr_debug("BTF.ext has no data\n");
2752                return -EINVAL;
2753        }
2754
2755        return 0;
2756}
2757
2758void btf_ext__free(struct btf_ext *btf_ext)
2759{
2760        if (IS_ERR_OR_NULL(btf_ext))
2761                return;
2762        free(btf_ext->data);
2763        free(btf_ext);
2764}
2765
2766struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2767{
2768        struct btf_ext *btf_ext;
2769        int err;
2770
2771        btf_ext = calloc(1, sizeof(struct btf_ext));
2772        if (!btf_ext)
2773                return libbpf_err_ptr(-ENOMEM);
2774
2775        btf_ext->data_size = size;
2776        btf_ext->data = malloc(size);
2777        if (!btf_ext->data) {
2778                err = -ENOMEM;
2779                goto done;
2780        }
2781        memcpy(btf_ext->data, data, size);
2782
2783        err = btf_ext_parse_hdr(btf_ext->data, size);
2784        if (err)
2785                goto done;
2786
2787        if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2788                err = -EINVAL;
2789                goto done;
2790        }
2791
2792        err = btf_ext_setup_func_info(btf_ext);
2793        if (err)
2794                goto done;
2795
2796        err = btf_ext_setup_line_info(btf_ext);
2797        if (err)
2798                goto done;
2799
2800        if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2801                err = -EINVAL;
2802                goto done;
2803        }
2804
2805        err = btf_ext_setup_core_relos(btf_ext);
2806        if (err)
2807                goto done;
2808
2809done:
2810        if (err) {
2811                btf_ext__free(btf_ext);
2812                return libbpf_err_ptr(err);
2813        }
2814
2815        return btf_ext;
2816}
2817
2818const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2819{
2820        *size = btf_ext->data_size;
2821        return btf_ext->data;
2822}
2823
2824static int btf_ext_reloc_info(const struct btf *btf,
2825                              const struct btf_ext_info *ext_info,
2826                              const char *sec_name, __u32 insns_cnt,
2827                              void **info, __u32 *cnt)
2828{
2829        __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2830        __u32 i, record_size, existing_len, records_len;
2831        struct btf_ext_info_sec *sinfo;
2832        const char *info_sec_name;
2833        __u64 remain_len;
2834        void *data;
2835
2836        record_size = ext_info->rec_size;
2837        sinfo = ext_info->info;
2838        remain_len = ext_info->len;
2839        while (remain_len > 0) {
2840                records_len = sinfo->num_info * record_size;
2841                info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2842                if (strcmp(info_sec_name, sec_name)) {
2843                        remain_len -= sec_hdrlen + records_len;
2844                        sinfo = (void *)sinfo + sec_hdrlen + records_len;
2845                        continue;
2846                }
2847
2848                existing_len = (*cnt) * record_size;
2849                data = realloc(*info, existing_len + records_len);
2850                if (!data)
2851                        return libbpf_err(-ENOMEM);
2852
2853                memcpy(data + existing_len, sinfo->data, records_len);
2854                /* adjust insn_off only, the rest data will be passed
2855                 * to the kernel.
2856                 */
2857                for (i = 0; i < sinfo->num_info; i++) {
2858                        __u32 *insn_off;
2859
2860                        insn_off = data + existing_len + (i * record_size);
2861                        *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2862                }
2863                *info = data;
2864                *cnt += sinfo->num_info;
2865                return 0;
2866        }
2867
2868        return libbpf_err(-ENOENT);
2869}
2870
2871int btf_ext__reloc_func_info(const struct btf *btf,
2872                             const struct btf_ext *btf_ext,
2873                             const char *sec_name, __u32 insns_cnt,
2874                             void **func_info, __u32 *cnt)
2875{
2876        return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2877                                  insns_cnt, func_info, cnt);
2878}
2879
2880int btf_ext__reloc_line_info(const struct btf *btf,
2881                             const struct btf_ext *btf_ext,
2882                             const char *sec_name, __u32 insns_cnt,
2883                             void **line_info, __u32 *cnt)
2884{
2885        return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2886                                  insns_cnt, line_info, cnt);
2887}
2888
2889__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2890{
2891        return btf_ext->func_info.rec_size;
2892}
2893
2894__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2895{
2896        return btf_ext->line_info.rec_size;
2897}
2898
2899struct btf_dedup;
2900
2901static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2902static void btf_dedup_free(struct btf_dedup *d);
2903static int btf_dedup_prep(struct btf_dedup *d);
2904static int btf_dedup_strings(struct btf_dedup *d);
2905static int btf_dedup_prim_types(struct btf_dedup *d);
2906static int btf_dedup_struct_types(struct btf_dedup *d);
2907static int btf_dedup_ref_types(struct btf_dedup *d);
2908static int btf_dedup_compact_types(struct btf_dedup *d);
2909static int btf_dedup_remap_types(struct btf_dedup *d);
2910
2911/*
2912 * Deduplicate BTF types and strings.
2913 *
2914 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2915 * section with all BTF type descriptors and string data. It overwrites that
2916 * memory in-place with deduplicated types and strings without any loss of
2917 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2918 * is provided, all the strings referenced from .BTF.ext section are honored
2919 * and updated to point to the right offsets after deduplication.
2920 *
2921 * If function returns with error, type/string data might be garbled and should
2922 * be discarded.
2923 *
2924 * More verbose and detailed description of both problem btf_dedup is solving,
2925 * as well as solution could be found at:
2926 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2927 *
2928 * Problem description and justification
2929 * =====================================
2930 *
2931 * BTF type information is typically emitted either as a result of conversion
2932 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2933 * unit contains information about a subset of all the types that are used
2934 * in an application. These subsets are frequently overlapping and contain a lot
2935 * of duplicated information when later concatenated together into a single
2936 * binary. This algorithm ensures that each unique type is represented by single
2937 * BTF type descriptor, greatly reducing resulting size of BTF data.
2938 *
2939 * Compilation unit isolation and subsequent duplication of data is not the only
2940 * problem. The same type hierarchy (e.g., struct and all the type that struct
2941 * references) in different compilation units can be represented in BTF to
2942 * various degrees of completeness (or, rather, incompleteness) due to
2943 * struct/union forward declarations.
2944 *
2945 * Let's take a look at an example, that we'll use to better understand the
2946 * problem (and solution). Suppose we have two compilation units, each using
2947 * same `struct S`, but each of them having incomplete type information about
2948 * struct's fields:
2949 *
2950 * // CU #1:
2951 * struct S;
2952 * struct A {
2953 *      int a;
2954 *      struct A* self;
2955 *      struct S* parent;
2956 * };
2957 * struct B;
2958 * struct S {
2959 *      struct A* a_ptr;
2960 *      struct B* b_ptr;
2961 * };
2962 *
2963 * // CU #2:
2964 * struct S;
2965 * struct A;
2966 * struct B {
2967 *      int b;
2968 *      struct B* self;
2969 *      struct S* parent;
2970 * };
2971 * struct S {
2972 *      struct A* a_ptr;
2973 *      struct B* b_ptr;
2974 * };
2975 *
2976 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2977 * more), but will know the complete type information about `struct A`. While
2978 * for CU #2, it will know full type information about `struct B`, but will
2979 * only know about forward declaration of `struct A` (in BTF terms, it will
2980 * have `BTF_KIND_FWD` type descriptor with name `B`).
2981 *
2982 * This compilation unit isolation means that it's possible that there is no
2983 * single CU with complete type information describing structs `S`, `A`, and
2984 * `B`. Also, we might get tons of duplicated and redundant type information.
2985 *
2986 * Additional complication we need to keep in mind comes from the fact that
2987 * types, in general, can form graphs containing cycles, not just DAGs.
2988 *
2989 * While algorithm does deduplication, it also merges and resolves type
2990 * information (unless disabled throught `struct btf_opts`), whenever possible.
2991 * E.g., in the example above with two compilation units having partial type
2992 * information for structs `A` and `B`, the output of algorithm will emit
2993 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2994 * (as well as type information for `int` and pointers), as if they were defined
2995 * in a single compilation unit as:
2996 *
2997 * struct A {
2998 *      int a;
2999 *      struct A* self;
3000 *      struct S* parent;
3001 * };
3002 * struct B {
3003 *      int b;
3004 *      struct B* self;
3005 *      struct S* parent;
3006 * };
3007 * struct S {
3008 *      struct A* a_ptr;
3009 *      struct B* b_ptr;
3010 * };
3011 *
3012 * Algorithm summary
3013 * =================
3014 *
3015 * Algorithm completes its work in 6 separate passes:
3016 *
3017 * 1. Strings deduplication.
3018 * 2. Primitive types deduplication (int, enum, fwd).
3019 * 3. Struct/union types deduplication.
3020 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3021 *    protos, and const/volatile/restrict modifiers).
3022 * 5. Types compaction.
3023 * 6. Types remapping.
3024 *
3025 * Algorithm determines canonical type descriptor, which is a single
3026 * representative type for each truly unique type. This canonical type is the
3027 * one that will go into final deduplicated BTF type information. For
3028 * struct/unions, it is also the type that algorithm will merge additional type
3029 * information into (while resolving FWDs), as it discovers it from data in
3030 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3031 * that type is canonical, or to some other type, if that type is equivalent
3032 * and was chosen as canonical representative. This mapping is stored in
3033 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3034 * FWD type got resolved to.
3035 *
3036 * To facilitate fast discovery of canonical types, we also maintain canonical
3037 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3038 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3039 * that match that signature. With sufficiently good choice of type signature
3040 * hashing function, we can limit number of canonical types for each unique type
3041 * signature to a very small number, allowing to find canonical type for any
3042 * duplicated type very quickly.
3043 *
3044 * Struct/union deduplication is the most critical part and algorithm for
3045 * deduplicating structs/unions is described in greater details in comments for
3046 * `btf_dedup_is_equiv` function.
3047 */
3048
3049DEFAULT_VERSION(btf__dedup_v0_6_0, btf__dedup, LIBBPF_0.6.0)
3050int btf__dedup_v0_6_0(struct btf *btf, const struct btf_dedup_opts *opts)
3051{
3052        struct btf_dedup *d;
3053        int err;
3054
3055        if (!OPTS_VALID(opts, btf_dedup_opts))
3056                return libbpf_err(-EINVAL);
3057
3058        d = btf_dedup_new(btf, opts);
3059        if (IS_ERR(d)) {
3060                pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3061                return libbpf_err(-EINVAL);
3062        }
3063
3064        if (btf_ensure_modifiable(btf)) {
3065                err = -ENOMEM;
3066                goto done;
3067        }
3068
3069        err = btf_dedup_prep(d);
3070        if (err) {
3071                pr_debug("btf_dedup_prep failed:%d\n", err);
3072                goto done;
3073        }
3074        err = btf_dedup_strings(d);
3075        if (err < 0) {
3076                pr_debug("btf_dedup_strings failed:%d\n", err);
3077                goto done;
3078        }
3079        err = btf_dedup_prim_types(d);
3080        if (err < 0) {
3081                pr_debug("btf_dedup_prim_types failed:%d\n", err);
3082                goto done;
3083        }
3084        err = btf_dedup_struct_types(d);
3085        if (err < 0) {
3086                pr_debug("btf_dedup_struct_types failed:%d\n", err);
3087                goto done;
3088        }
3089        err = btf_dedup_ref_types(d);
3090        if (err < 0) {
3091                pr_debug("btf_dedup_ref_types failed:%d\n", err);
3092                goto done;
3093        }
3094        err = btf_dedup_compact_types(d);
3095        if (err < 0) {
3096                pr_debug("btf_dedup_compact_types failed:%d\n", err);
3097                goto done;
3098        }
3099        err = btf_dedup_remap_types(d);
3100        if (err < 0) {
3101                pr_debug("btf_dedup_remap_types failed:%d\n", err);
3102                goto done;
3103        }
3104
3105done:
3106        btf_dedup_free(d);
3107        return libbpf_err(err);
3108}
3109
3110COMPAT_VERSION(btf__dedup_deprecated, btf__dedup, LIBBPF_0.0.2)
3111int btf__dedup_deprecated(struct btf *btf, struct btf_ext *btf_ext, const void *unused_opts)
3112{
3113        LIBBPF_OPTS(btf_dedup_opts, opts, .btf_ext = btf_ext);
3114
3115        if (unused_opts) {
3116                pr_warn("please use new version of btf__dedup() that supports options\n");
3117                return libbpf_err(-ENOTSUP);
3118        }
3119
3120        return btf__dedup(btf, &opts);
3121}
3122
3123#define BTF_UNPROCESSED_ID ((__u32)-1)
3124#define BTF_IN_PROGRESS_ID ((__u32)-2)
3125
3126struct btf_dedup {
3127        /* .BTF section to be deduped in-place */
3128        struct btf *btf;
3129        /*
3130         * Optional .BTF.ext section. When provided, any strings referenced
3131         * from it will be taken into account when deduping strings
3132         */
3133        struct btf_ext *btf_ext;
3134        /*
3135         * This is a map from any type's signature hash to a list of possible
3136         * canonical representative type candidates. Hash collisions are
3137         * ignored, so even types of various kinds can share same list of
3138         * candidates, which is fine because we rely on subsequent
3139         * btf_xxx_equal() checks to authoritatively verify type equality.
3140         */
3141        struct hashmap *dedup_table;
3142        /* Canonical types map */
3143        __u32 *map;
3144        /* Hypothetical mapping, used during type graph equivalence checks */
3145        __u32 *hypot_map;
3146        __u32 *hypot_list;
3147        size_t hypot_cnt;
3148        size_t hypot_cap;
3149        /* Whether hypothetical mapping, if successful, would need to adjust
3150         * already canonicalized types (due to a new forward declaration to
3151         * concrete type resolution). In such case, during split BTF dedup
3152         * candidate type would still be considered as different, because base
3153         * BTF is considered to be immutable.
3154         */
3155        bool hypot_adjust_canon;
3156        /* Various option modifying behavior of algorithm */
3157        struct btf_dedup_opts opts;
3158        /* temporary strings deduplication state */
3159        struct strset *strs_set;
3160};
3161
3162static long hash_combine(long h, long value)
3163{
3164        return h * 31 + value;
3165}
3166
3167#define for_each_dedup_cand(d, node, hash) \
3168        hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3169
3170static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3171{
3172        return hashmap__append(d->dedup_table,
3173                               (void *)hash, (void *)(long)type_id);
3174}
3175
3176static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3177                                   __u32 from_id, __u32 to_id)
3178{
3179        if (d->hypot_cnt == d->hypot_cap) {
3180                __u32 *new_list;
3181
3182                d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3183                new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3184                if (!new_list)
3185                        return -ENOMEM;
3186                d->hypot_list = new_list;
3187        }
3188        d->hypot_list[d->hypot_cnt++] = from_id;
3189        d->hypot_map[from_id] = to_id;
3190        return 0;
3191}
3192
3193static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3194{
3195        int i;
3196
3197        for (i = 0; i < d->hypot_cnt; i++)
3198                d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3199        d->hypot_cnt = 0;
3200        d->hypot_adjust_canon = false;
3201}
3202
3203static void btf_dedup_free(struct btf_dedup *d)
3204{
3205        hashmap__free(d->dedup_table);
3206        d->dedup_table = NULL;
3207
3208        free(d->map);
3209        d->map = NULL;
3210
3211        free(d->hypot_map);
3212        d->hypot_map = NULL;
3213
3214        free(d->hypot_list);
3215        d->hypot_list = NULL;
3216
3217        free(d);
3218}
3219
3220static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3221{
3222        return (size_t)key;
3223}
3224
3225static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3226{
3227        return 0;
3228}
3229
3230static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3231{
3232        return k1 == k2;
3233}
3234
3235static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3236{
3237        struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3238        hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3239        int i, err = 0, type_cnt;
3240
3241        if (!d)
3242                return ERR_PTR(-ENOMEM);
3243
3244        if (OPTS_GET(opts, force_collisions, false))
3245                hash_fn = btf_dedup_collision_hash_fn;
3246
3247        d->btf = btf;
3248        d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3249
3250        d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3251        if (IS_ERR(d->dedup_table)) {
3252                err = PTR_ERR(d->dedup_table);
3253                d->dedup_table = NULL;
3254                goto done;
3255        }
3256
3257        type_cnt = btf__type_cnt(btf);
3258        d->map = malloc(sizeof(__u32) * type_cnt);
3259        if (!d->map) {
3260                err = -ENOMEM;
3261                goto done;
3262        }
3263        /* special BTF "void" type is made canonical immediately */
3264        d->map[0] = 0;
3265        for (i = 1; i < type_cnt; i++) {
3266                struct btf_type *t = btf_type_by_id(d->btf, i);
3267
3268                /* VAR and DATASEC are never deduped and are self-canonical */
3269                if (btf_is_var(t) || btf_is_datasec(t))
3270                        d->map[i] = i;
3271                else
3272                        d->map[i] = BTF_UNPROCESSED_ID;
3273        }
3274
3275        d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3276        if (!d->hypot_map) {
3277                err = -ENOMEM;
3278                goto done;
3279        }
3280        for (i = 0; i < type_cnt; i++)
3281                d->hypot_map[i] = BTF_UNPROCESSED_ID;
3282
3283done:
3284        if (err) {
3285                btf_dedup_free(d);
3286                return ERR_PTR(err);
3287        }
3288
3289        return d;
3290}
3291
3292/*
3293 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3294 * string and pass pointer to it to a provided callback `fn`.
3295 */
3296static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3297{
3298        int i, r;
3299
3300        for (i = 0; i < d->btf->nr_types; i++) {
3301                struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3302
3303                r = btf_type_visit_str_offs(t, fn, ctx);
3304                if (r)
3305                        return r;
3306        }
3307
3308        if (!d->btf_ext)
3309                return 0;
3310
3311        r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3312        if (r)
3313                return r;
3314
3315        return 0;
3316}
3317
3318static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3319{
3320        struct btf_dedup *d = ctx;
3321        __u32 str_off = *str_off_ptr;
3322        const char *s;
3323        int off, err;
3324
3325        /* don't touch empty string or string in main BTF */
3326        if (str_off == 0 || str_off < d->btf->start_str_off)
3327                return 0;
3328
3329        s = btf__str_by_offset(d->btf, str_off);
3330        if (d->btf->base_btf) {
3331                err = btf__find_str(d->btf->base_btf, s);
3332                if (err >= 0) {
3333                        *str_off_ptr = err;
3334                        return 0;
3335                }
3336                if (err != -ENOENT)
3337                        return err;
3338        }
3339
3340        off = strset__add_str(d->strs_set, s);
3341        if (off < 0)
3342                return off;
3343
3344        *str_off_ptr = d->btf->start_str_off + off;
3345        return 0;
3346}
3347
3348/*
3349 * Dedup string and filter out those that are not referenced from either .BTF
3350 * or .BTF.ext (if provided) sections.
3351 *
3352 * This is done by building index of all strings in BTF's string section,
3353 * then iterating over all entities that can reference strings (e.g., type
3354 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3355 * strings as used. After that all used strings are deduped and compacted into
3356 * sequential blob of memory and new offsets are calculated. Then all the string
3357 * references are iterated again and rewritten using new offsets.
3358 */
3359static int btf_dedup_strings(struct btf_dedup *d)
3360{
3361        int err;
3362
3363        if (d->btf->strs_deduped)
3364                return 0;
3365
3366        d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3367        if (IS_ERR(d->strs_set)) {
3368                err = PTR_ERR(d->strs_set);
3369                goto err_out;
3370        }
3371
3372        if (!d->btf->base_btf) {
3373                /* insert empty string; we won't be looking it up during strings
3374                 * dedup, but it's good to have it for generic BTF string lookups
3375                 */
3376                err = strset__add_str(d->strs_set, "");
3377                if (err < 0)
3378                        goto err_out;
3379        }
3380
3381        /* remap string offsets */
3382        err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3383        if (err)
3384                goto err_out;
3385
3386        /* replace BTF string data and hash with deduped ones */
3387        strset__free(d->btf->strs_set);
3388        d->btf->hdr->str_len = strset__data_size(d->strs_set);
3389        d->btf->strs_set = d->strs_set;
3390        d->strs_set = NULL;
3391        d->btf->strs_deduped = true;
3392        return 0;
3393
3394err_out:
3395        strset__free(d->strs_set);
3396        d->strs_set = NULL;
3397
3398        return err;
3399}
3400
3401static long btf_hash_common(struct btf_type *t)
3402{
3403        long h;
3404
3405        h = hash_combine(0, t->name_off);
3406        h = hash_combine(h, t->info);
3407        h = hash_combine(h, t->size);
3408        return h;
3409}
3410
3411static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3412{
3413        return t1->name_off == t2->name_off &&
3414               t1->info == t2->info &&
3415               t1->size == t2->size;
3416}
3417
3418/* Calculate type signature hash of INT or TAG. */
3419static long btf_hash_int_decl_tag(struct btf_type *t)
3420{
3421        __u32 info = *(__u32 *)(t + 1);
3422        long h;
3423
3424        h = btf_hash_common(t);
3425        h = hash_combine(h, info);
3426        return h;
3427}
3428
3429/* Check structural equality of two INTs or TAGs. */
3430static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3431{
3432        __u32 info1, info2;
3433
3434        if (!btf_equal_common(t1, t2))
3435                return false;
3436        info1 = *(__u32 *)(t1 + 1);
3437        info2 = *(__u32 *)(t2 + 1);
3438        return info1 == info2;
3439}
3440
3441/* Calculate type signature hash of ENUM. */
3442static long btf_hash_enum(struct btf_type *t)
3443{
3444        long h;
3445
3446        /* don't hash vlen and enum members to support enum fwd resolving */
3447        h = hash_combine(0, t->name_off);
3448        h = hash_combine(h, t->info & ~0xffff);
3449        h = hash_combine(h, t->size);
3450        return h;
3451}
3452
3453/* Check structural equality of two ENUMs. */
3454static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3455{
3456        const struct btf_enum *m1, *m2;
3457        __u16 vlen;
3458        int i;
3459
3460        if (!btf_equal_common(t1, t2))
3461                return false;
3462
3463        vlen = btf_vlen(t1);
3464        m1 = btf_enum(t1);
3465        m2 = btf_enum(t2);
3466        for (i = 0; i < vlen; i++) {
3467                if (m1->name_off != m2->name_off || m1->val != m2->val)
3468                        return false;
3469                m1++;
3470                m2++;
3471        }
3472        return true;
3473}
3474
3475static inline bool btf_is_enum_fwd(struct btf_type *t)
3476{
3477        return btf_is_enum(t) && btf_vlen(t) == 0;
3478}
3479
3480static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3481{
3482        if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3483                return btf_equal_enum(t1, t2);
3484        /* ignore vlen when comparing */
3485        return t1->name_off == t2->name_off &&
3486               (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3487               t1->size == t2->size;
3488}
3489
3490/*
3491 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3492 * as referenced type IDs equivalence is established separately during type
3493 * graph equivalence check algorithm.
3494 */
3495static long btf_hash_struct(struct btf_type *t)
3496{
3497        const struct btf_member *member = btf_members(t);
3498        __u32 vlen = btf_vlen(t);
3499        long h = btf_hash_common(t);
3500        int i;
3501
3502        for (i = 0; i < vlen; i++) {
3503                h = hash_combine(h, member->name_off);
3504                h = hash_combine(h, member->offset);
3505                /* no hashing of referenced type ID, it can be unresolved yet */
3506                member++;
3507        }
3508        return h;
3509}
3510
3511/*
3512 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3513 * type IDs. This check is performed during type graph equivalence check and
3514 * referenced types equivalence is checked separately.
3515 */
3516static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3517{
3518        const struct btf_member *m1, *m2;
3519        __u16 vlen;
3520        int i;
3521
3522        if (!btf_equal_common(t1, t2))
3523                return false;
3524
3525        vlen = btf_vlen(t1);
3526        m1 = btf_members(t1);
3527        m2 = btf_members(t2);
3528        for (i = 0; i < vlen; i++) {
3529                if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3530                        return false;
3531                m1++;
3532                m2++;
3533        }
3534        return true;
3535}
3536
3537/*
3538 * Calculate type signature hash of ARRAY, including referenced type IDs,
3539 * under assumption that they were already resolved to canonical type IDs and
3540 * are not going to change.
3541 */
3542static long btf_hash_array(struct btf_type *t)
3543{
3544        const struct btf_array *info = btf_array(t);
3545        long h = btf_hash_common(t);
3546
3547        h = hash_combine(h, info->type);
3548        h = hash_combine(h, info->index_type);
3549        h = hash_combine(h, info->nelems);
3550        return h;
3551}
3552
3553/*
3554 * Check exact equality of two ARRAYs, taking into account referenced
3555 * type IDs, under assumption that they were already resolved to canonical
3556 * type IDs and are not going to change.
3557 * This function is called during reference types deduplication to compare
3558 * ARRAY to potential canonical representative.
3559 */
3560static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3561{
3562        const struct btf_array *info1, *info2;
3563
3564        if (!btf_equal_common(t1, t2))
3565                return false;
3566
3567        info1 = btf_array(t1);
3568        info2 = btf_array(t2);
3569        return info1->type == info2->type &&
3570               info1->index_type == info2->index_type &&
3571               info1->nelems == info2->nelems;
3572}
3573
3574/*
3575 * Check structural compatibility of two ARRAYs, ignoring referenced type
3576 * IDs. This check is performed during type graph equivalence check and
3577 * referenced types equivalence is checked separately.
3578 */
3579static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3580{
3581        if (!btf_equal_common(t1, t2))
3582                return false;
3583
3584        return btf_array(t1)->nelems == btf_array(t2)->nelems;
3585}
3586
3587/*
3588 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3589 * under assumption that they were already resolved to canonical type IDs and
3590 * are not going to change.
3591 */
3592static long btf_hash_fnproto(struct btf_type *t)
3593{
3594        const struct btf_param *member = btf_params(t);
3595        __u16 vlen = btf_vlen(t);
3596        long h = btf_hash_common(t);
3597        int i;
3598
3599        for (i = 0; i < vlen; i++) {
3600                h = hash_combine(h, member->name_off);
3601                h = hash_combine(h, member->type);
3602                member++;
3603        }
3604        return h;
3605}
3606
3607/*
3608 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3609 * type IDs, under assumption that they were already resolved to canonical
3610 * type IDs and are not going to change.
3611 * This function is called during reference types deduplication to compare
3612 * FUNC_PROTO to potential canonical representative.
3613 */
3614static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3615{
3616        const struct btf_param *m1, *m2;
3617        __u16 vlen;
3618        int i;
3619
3620        if (!btf_equal_common(t1, t2))
3621                return false;
3622
3623        vlen = btf_vlen(t1);
3624        m1 = btf_params(t1);
3625        m2 = btf_params(t2);
3626        for (i = 0; i < vlen; i++) {
3627                if (m1->name_off != m2->name_off || m1->type != m2->type)
3628                        return false;
3629                m1++;
3630                m2++;
3631        }
3632        return true;
3633}
3634
3635/*
3636 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3637 * IDs. This check is performed during type graph equivalence check and
3638 * referenced types equivalence is checked separately.
3639 */
3640static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3641{
3642        const struct btf_param *m1, *m2;
3643        __u16 vlen;
3644        int i;
3645
3646        /* skip return type ID */
3647        if (t1->name_off != t2->name_off || t1->info != t2->info)
3648                return false;
3649
3650        vlen = btf_vlen(t1);
3651        m1 = btf_params(t1);
3652        m2 = btf_params(t2);
3653        for (i = 0; i < vlen; i++) {
3654                if (m1->name_off != m2->name_off)
3655                        return false;
3656                m1++;
3657                m2++;
3658        }
3659        return true;
3660}
3661
3662/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3663 * types and initializing the rest of the state (canonical type mapping) for
3664 * the fixed base BTF part.
3665 */
3666static int btf_dedup_prep(struct btf_dedup *d)
3667{
3668        struct btf_type *t;
3669        int type_id;
3670        long h;
3671
3672        if (!d->btf->base_btf)
3673                return 0;
3674
3675        for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3676                t = btf_type_by_id(d->btf, type_id);
3677
3678                /* all base BTF types are self-canonical by definition */
3679                d->map[type_id] = type_id;
3680
3681                switch (btf_kind(t)) {
3682                case BTF_KIND_VAR:
3683                case BTF_KIND_DATASEC:
3684                        /* VAR and DATASEC are never hash/deduplicated */
3685                        continue;
3686                case BTF_KIND_CONST:
3687                case BTF_KIND_VOLATILE:
3688                case BTF_KIND_RESTRICT:
3689                case BTF_KIND_PTR:
3690                case BTF_KIND_FWD:
3691                case BTF_KIND_TYPEDEF:
3692                case BTF_KIND_FUNC:
3693                case BTF_KIND_FLOAT:
3694                case BTF_KIND_TYPE_TAG:
3695                        h = btf_hash_common(t);
3696                        break;
3697                case BTF_KIND_INT:
3698                case BTF_KIND_DECL_TAG:
3699                        h = btf_hash_int_decl_tag(t);
3700                        break;
3701                case BTF_KIND_ENUM:
3702                        h = btf_hash_enum(t);
3703                        break;
3704                case BTF_KIND_STRUCT:
3705                case BTF_KIND_UNION:
3706                        h = btf_hash_struct(t);
3707                        break;
3708                case BTF_KIND_ARRAY:
3709                        h = btf_hash_array(t);
3710                        break;
3711                case BTF_KIND_FUNC_PROTO:
3712                        h = btf_hash_fnproto(t);
3713                        break;
3714                default:
3715                        pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3716                        return -EINVAL;
3717                }
3718                if (btf_dedup_table_add(d, h, type_id))
3719                        return -ENOMEM;
3720        }
3721
3722        return 0;
3723}
3724
3725/*
3726 * Deduplicate primitive types, that can't reference other types, by calculating
3727 * their type signature hash and comparing them with any possible canonical
3728 * candidate. If no canonical candidate matches, type itself is marked as
3729 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3730 */
3731static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3732{
3733        struct btf_type *t = btf_type_by_id(d->btf, type_id);
3734        struct hashmap_entry *hash_entry;
3735        struct btf_type *cand;
3736        /* if we don't find equivalent type, then we are canonical */
3737        __u32 new_id = type_id;
3738        __u32 cand_id;
3739        long h;
3740
3741        switch (btf_kind(t)) {
3742        case BTF_KIND_CONST:
3743        case BTF_KIND_VOLATILE:
3744        case BTF_KIND_RESTRICT:
3745        case BTF_KIND_PTR:
3746        case BTF_KIND_TYPEDEF:
3747        case BTF_KIND_ARRAY:
3748        case BTF_KIND_STRUCT:
3749        case BTF_KIND_UNION:
3750        case BTF_KIND_FUNC:
3751        case BTF_KIND_FUNC_PROTO:
3752        case BTF_KIND_VAR:
3753        case BTF_KIND_DATASEC:
3754        case BTF_KIND_DECL_TAG:
3755        case BTF_KIND_TYPE_TAG:
3756                return 0;
3757
3758        case BTF_KIND_INT:
3759                h = btf_hash_int_decl_tag(t);
3760                for_each_dedup_cand(d, hash_entry, h) {
3761                        cand_id = (__u32)(long)hash_entry->value;
3762                        cand = btf_type_by_id(d->btf, cand_id);
3763                        if (btf_equal_int_tag(t, cand)) {
3764                                new_id = cand_id;
3765                                break;
3766                        }
3767                }
3768                break;
3769
3770        case BTF_KIND_ENUM:
3771                h = btf_hash_enum(t);
3772                for_each_dedup_cand(d, hash_entry, h) {
3773                        cand_id = (__u32)(long)hash_entry->value;
3774                        cand = btf_type_by_id(d->btf, cand_id);
3775                        if (btf_equal_enum(t, cand)) {
3776                                new_id = cand_id;
3777                                break;
3778                        }
3779                        if (btf_compat_enum(t, cand)) {
3780                                if (btf_is_enum_fwd(t)) {
3781                                        /* resolve fwd to full enum */
3782                                        new_id = cand_id;
3783                                        break;
3784                                }
3785                                /* resolve canonical enum fwd to full enum */
3786                                d->map[cand_id] = type_id;
3787                        }
3788                }
3789                break;
3790
3791        case BTF_KIND_FWD:
3792        case BTF_KIND_FLOAT:
3793                h = btf_hash_common(t);
3794                for_each_dedup_cand(d, hash_entry, h) {
3795                        cand_id = (__u32)(long)hash_entry->value;
3796                        cand = btf_type_by_id(d->btf, cand_id);
3797                        if (btf_equal_common(t, cand)) {
3798                                new_id = cand_id;
3799                                break;
3800                        }
3801                }
3802                break;
3803
3804        default:
3805                return -EINVAL;
3806        }
3807
3808        d->map[type_id] = new_id;
3809        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3810                return -ENOMEM;
3811
3812        return 0;
3813}
3814
3815static int btf_dedup_prim_types(struct btf_dedup *d)
3816{
3817        int i, err;
3818
3819        for (i = 0; i < d->btf->nr_types; i++) {
3820                err = btf_dedup_prim_type(d, d->btf->start_id + i);
3821                if (err)
3822                        return err;
3823        }
3824        return 0;
3825}
3826
3827/*
3828 * Check whether type is already mapped into canonical one (could be to itself).
3829 */
3830static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3831{
3832        return d->map[type_id] <= BTF_MAX_NR_TYPES;
3833}
3834
3835/*
3836 * Resolve type ID into its canonical type ID, if any; otherwise return original
3837 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3838 * STRUCT/UNION link and resolve it into canonical type ID as well.
3839 */
3840static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3841{
3842        while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3843                type_id = d->map[type_id];
3844        return type_id;
3845}
3846
3847/*
3848 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3849 * type ID.
3850 */
3851static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3852{
3853        __u32 orig_type_id = type_id;
3854
3855        if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3856                return type_id;
3857
3858        while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3859                type_id = d->map[type_id];
3860
3861        if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3862                return type_id;
3863
3864        return orig_type_id;
3865}
3866
3867
3868static inline __u16 btf_fwd_kind(struct btf_type *t)
3869{
3870        return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3871}
3872
3873/* Check if given two types are identical ARRAY definitions */
3874static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3875{
3876        struct btf_type *t1, *t2;
3877
3878        t1 = btf_type_by_id(d->btf, id1);
3879        t2 = btf_type_by_id(d->btf, id2);
3880        if (!btf_is_array(t1) || !btf_is_array(t2))
3881                return 0;
3882
3883        return btf_equal_array(t1, t2);
3884}
3885
3886/* Check if given two types are identical STRUCT/UNION definitions */
3887static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3888{
3889        const struct btf_member *m1, *m2;
3890        struct btf_type *t1, *t2;
3891        int n, i;
3892
3893        t1 = btf_type_by_id(d->btf, id1);
3894        t2 = btf_type_by_id(d->btf, id2);
3895
3896        if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3897                return false;
3898
3899        if (!btf_shallow_equal_struct(t1, t2))
3900                return false;
3901
3902        m1 = btf_members(t1);
3903        m2 = btf_members(t2);
3904        for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3905                if (m1->type != m2->type)
3906                        return false;
3907        }
3908        return true;
3909}
3910
3911/*
3912 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3913 * call it "candidate graph" in this description for brevity) to a type graph
3914 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3915 * here, though keep in mind that not all types in canonical graph are
3916 * necessarily canonical representatives themselves, some of them might be
3917 * duplicates or its uniqueness might not have been established yet).
3918 * Returns:
3919 *  - >0, if type graphs are equivalent;
3920 *  -  0, if not equivalent;
3921 *  - <0, on error.
3922 *
3923 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3924 * equivalence of BTF types at each step. If at any point BTF types in candidate
3925 * and canonical graphs are not compatible structurally, whole graphs are
3926 * incompatible. If types are structurally equivalent (i.e., all information
3927 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3928 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3929 * If a type references other types, then those referenced types are checked
3930 * for equivalence recursively.
3931 *
3932 * During DFS traversal, if we find that for current `canon_id` type we
3933 * already have some mapping in hypothetical map, we check for two possible
3934 * situations:
3935 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3936 *     happen when type graphs have cycles. In this case we assume those two
3937 *     types are equivalent.
3938 *   - `canon_id` is mapped to different type. This is contradiction in our
3939 *     hypothetical mapping, because same graph in canonical graph corresponds
3940 *     to two different types in candidate graph, which for equivalent type
3941 *     graphs shouldn't happen. This condition terminates equivalence check
3942 *     with negative result.
3943 *
3944 * If type graphs traversal exhausts types to check and find no contradiction,
3945 * then type graphs are equivalent.
3946 *
3947 * When checking types for equivalence, there is one special case: FWD types.
3948 * If FWD type resolution is allowed and one of the types (either from canonical
3949 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3950 * flag) and their names match, hypothetical mapping is updated to point from
3951 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3952 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3953 *
3954 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3955 * if there are two exactly named (or anonymous) structs/unions that are
3956 * compatible structurally, one of which has FWD field, while other is concrete
3957 * STRUCT/UNION, but according to C sources they are different structs/unions
3958 * that are referencing different types with the same name. This is extremely
3959 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3960 * this logic is causing problems.
3961 *
3962 * Doing FWD resolution means that both candidate and/or canonical graphs can
3963 * consists of portions of the graph that come from multiple compilation units.
3964 * This is due to the fact that types within single compilation unit are always
3965 * deduplicated and FWDs are already resolved, if referenced struct/union
3966 * definiton is available. So, if we had unresolved FWD and found corresponding
3967 * STRUCT/UNION, they will be from different compilation units. This
3968 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3969 * type graph will likely have at least two different BTF types that describe
3970 * same type (e.g., most probably there will be two different BTF types for the
3971 * same 'int' primitive type) and could even have "overlapping" parts of type
3972 * graph that describe same subset of types.
3973 *
3974 * This in turn means that our assumption that each type in canonical graph
3975 * must correspond to exactly one type in candidate graph might not hold
3976 * anymore and will make it harder to detect contradictions using hypothetical
3977 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3978 * resolution only in canonical graph. FWDs in candidate graphs are never
3979 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3980 * that can occur:
3981 *   - Both types in canonical and candidate graphs are FWDs. If they are
3982 *     structurally equivalent, then they can either be both resolved to the
3983 *     same STRUCT/UNION or not resolved at all. In both cases they are
3984 *     equivalent and there is no need to resolve FWD on candidate side.
3985 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3986 *     so nothing to resolve as well, algorithm will check equivalence anyway.
3987 *   - Type in canonical graph is FWD, while type in candidate is concrete
3988 *     STRUCT/UNION. In this case candidate graph comes from single compilation
3989 *     unit, so there is exactly one BTF type for each unique C type. After
3990 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3991 *     in canonical graph mapping to single BTF type in candidate graph, but
3992 *     because hypothetical mapping maps from canonical to candidate types, it's
3993 *     alright, and we still maintain the property of having single `canon_id`
3994 *     mapping to single `cand_id` (there could be two different `canon_id`
3995 *     mapped to the same `cand_id`, but it's not contradictory).
3996 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3997 *     graph is FWD. In this case we are just going to check compatibility of
3998 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3999 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4000 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4001 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4002 *     canonical graph.
4003 */
4004static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4005                              __u32 canon_id)
4006{
4007        struct btf_type *cand_type;
4008        struct btf_type *canon_type;
4009        __u32 hypot_type_id;
4010        __u16 cand_kind;
4011        __u16 canon_kind;
4012        int i, eq;
4013
4014        /* if both resolve to the same canonical, they must be equivalent */
4015        if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4016                return 1;
4017
4018        canon_id = resolve_fwd_id(d, canon_id);
4019
4020        hypot_type_id = d->hypot_map[canon_id];
4021        if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4022                if (hypot_type_id == cand_id)
4023                        return 1;
4024                /* In some cases compiler will generate different DWARF types
4025                 * for *identical* array type definitions and use them for
4026                 * different fields within the *same* struct. This breaks type
4027                 * equivalence check, which makes an assumption that candidate
4028                 * types sub-graph has a consistent and deduped-by-compiler
4029                 * types within a single CU. So work around that by explicitly
4030                 * allowing identical array types here.
4031                 */
4032                if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4033                        return 1;
4034                /* It turns out that similar situation can happen with
4035                 * struct/union sometimes, sigh... Handle the case where
4036                 * structs/unions are exactly the same, down to the referenced
4037                 * type IDs. Anything more complicated (e.g., if referenced
4038                 * types are different, but equivalent) is *way more*
4039                 * complicated and requires a many-to-many equivalence mapping.
4040                 */
4041                if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4042                        return 1;
4043                return 0;
4044        }
4045
4046        if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4047                return -ENOMEM;
4048
4049        cand_type = btf_type_by_id(d->btf, cand_id);
4050        canon_type = btf_type_by_id(d->btf, canon_id);
4051        cand_kind = btf_kind(cand_type);
4052        canon_kind = btf_kind(canon_type);
4053
4054        if (cand_type->name_off != canon_type->name_off)
4055                return 0;
4056
4057        /* FWD <--> STRUCT/UNION equivalence check, if enabled */
4058        if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4059            && cand_kind != canon_kind) {
4060                __u16 real_kind;
4061                __u16 fwd_kind;
4062
4063                if (cand_kind == BTF_KIND_FWD) {
4064                        real_kind = canon_kind;
4065                        fwd_kind = btf_fwd_kind(cand_type);
4066                } else {
4067                        real_kind = cand_kind;
4068                        fwd_kind = btf_fwd_kind(canon_type);
4069                        /* we'd need to resolve base FWD to STRUCT/UNION */
4070                        if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4071                                d->hypot_adjust_canon = true;
4072                }
4073                return fwd_kind == real_kind;
4074        }
4075
4076        if (cand_kind != canon_kind)
4077                return 0;
4078
4079        switch (cand_kind) {
4080        case BTF_KIND_INT:
4081                return btf_equal_int_tag(cand_type, canon_type);
4082
4083        case BTF_KIND_ENUM:
4084                return btf_compat_enum(cand_type, canon_type);
4085
4086        case BTF_KIND_FWD:
4087        case BTF_KIND_FLOAT:
4088                return btf_equal_common(cand_type, canon_type);
4089
4090        case BTF_KIND_CONST:
4091        case BTF_KIND_VOLATILE:
4092        case BTF_KIND_RESTRICT:
4093        case BTF_KIND_PTR:
4094        case BTF_KIND_TYPEDEF:
4095        case BTF_KIND_FUNC:
4096        case BTF_KIND_TYPE_TAG:
4097                if (cand_type->info != canon_type->info)
4098                        return 0;
4099                return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4100
4101        case BTF_KIND_ARRAY: {
4102                const struct btf_array *cand_arr, *canon_arr;
4103
4104                if (!btf_compat_array(cand_type, canon_type))
4105                        return 0;
4106                cand_arr = btf_array(cand_type);
4107                canon_arr = btf_array(canon_type);
4108                eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4109                if (eq <= 0)
4110                        return eq;
4111                return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4112        }
4113
4114        case BTF_KIND_STRUCT:
4115        case BTF_KIND_UNION: {
4116                const struct btf_member *cand_m, *canon_m;
4117                __u16 vlen;
4118
4119                if (!btf_shallow_equal_struct(cand_type, canon_type))
4120                        return 0;
4121                vlen = btf_vlen(cand_type);
4122                cand_m = btf_members(cand_type);
4123                canon_m = btf_members(canon_type);
4124                for (i = 0; i < vlen; i++) {
4125                        eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4126                        if (eq <= 0)
4127                                return eq;
4128                        cand_m++;
4129                        canon_m++;
4130                }
4131
4132                return 1;
4133        }
4134
4135        case BTF_KIND_FUNC_PROTO: {
4136                const struct btf_param *cand_p, *canon_p;
4137                __u16 vlen;
4138
4139                if (!btf_compat_fnproto(cand_type, canon_type))
4140                        return 0;
4141                eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4142                if (eq <= 0)
4143                        return eq;
4144                vlen = btf_vlen(cand_type);
4145                cand_p = btf_params(cand_type);
4146                canon_p = btf_params(canon_type);
4147                for (i = 0; i < vlen; i++) {
4148                        eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4149                        if (eq <= 0)
4150                                return eq;
4151                        cand_p++;
4152                        canon_p++;
4153                }
4154                return 1;
4155        }
4156
4157        default:
4158                return -EINVAL;
4159        }
4160        return 0;
4161}
4162
4163/*
4164 * Use hypothetical mapping, produced by successful type graph equivalence
4165 * check, to augment existing struct/union canonical mapping, where possible.
4166 *
4167 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4168 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4169 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4170 * we are recording the mapping anyway. As opposed to carefulness required
4171 * for struct/union correspondence mapping (described below), for FWD resolution
4172 * it's not important, as by the time that FWD type (reference type) will be
4173 * deduplicated all structs/unions will be deduped already anyway.
4174 *
4175 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4176 * not required for correctness. It needs to be done carefully to ensure that
4177 * struct/union from candidate's type graph is not mapped into corresponding
4178 * struct/union from canonical type graph that itself hasn't been resolved into
4179 * canonical representative. The only guarantee we have is that canonical
4180 * struct/union was determined as canonical and that won't change. But any
4181 * types referenced through that struct/union fields could have been not yet
4182 * resolved, so in case like that it's too early to establish any kind of
4183 * correspondence between structs/unions.
4184 *
4185 * No canonical correspondence is derived for primitive types (they are already
4186 * deduplicated completely already anyway) or reference types (they rely on
4187 * stability of struct/union canonical relationship for equivalence checks).
4188 */
4189static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4190{
4191        __u32 canon_type_id, targ_type_id;
4192        __u16 t_kind, c_kind;
4193        __u32 t_id, c_id;
4194        int i;
4195
4196        for (i = 0; i < d->hypot_cnt; i++) {
4197                canon_type_id = d->hypot_list[i];
4198                targ_type_id = d->hypot_map[canon_type_id];
4199                t_id = resolve_type_id(d, targ_type_id);
4200                c_id = resolve_type_id(d, canon_type_id);
4201                t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4202                c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4203                /*
4204                 * Resolve FWD into STRUCT/UNION.
4205                 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4206                 * mapped to canonical representative (as opposed to
4207                 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4208                 * eventually that struct is going to be mapped and all resolved
4209                 * FWDs will automatically resolve to correct canonical
4210                 * representative. This will happen before ref type deduping,
4211                 * which critically depends on stability of these mapping. This
4212                 * stability is not a requirement for STRUCT/UNION equivalence
4213                 * checks, though.
4214                 */
4215
4216                /* if it's the split BTF case, we still need to point base FWD
4217                 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4218                 * will be resolved against base FWD. If we don't point base
4219                 * canonical FWD to the resolved STRUCT/UNION, then all the
4220                 * FWDs in split BTF won't be correctly resolved to a proper
4221                 * STRUCT/UNION.
4222                 */
4223                if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4224                        d->map[c_id] = t_id;
4225
4226                /* if graph equivalence determined that we'd need to adjust
4227                 * base canonical types, then we need to only point base FWDs
4228                 * to STRUCTs/UNIONs and do no more modifications. For all
4229                 * other purposes the type graphs were not equivalent.
4230                 */
4231                if (d->hypot_adjust_canon)
4232                        continue;
4233
4234                if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4235                        d->map[t_id] = c_id;
4236
4237                if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4238                    c_kind != BTF_KIND_FWD &&
4239                    is_type_mapped(d, c_id) &&
4240                    !is_type_mapped(d, t_id)) {
4241                        /*
4242                         * as a perf optimization, we can map struct/union
4243                         * that's part of type graph we just verified for
4244                         * equivalence. We can do that for struct/union that has
4245                         * canonical representative only, though.
4246                         */
4247                        d->map[t_id] = c_id;
4248                }
4249        }
4250}
4251
4252/*
4253 * Deduplicate struct/union types.
4254 *
4255 * For each struct/union type its type signature hash is calculated, taking
4256 * into account type's name, size, number, order and names of fields, but
4257 * ignoring type ID's referenced from fields, because they might not be deduped
4258 * completely until after reference types deduplication phase. This type hash
4259 * is used to iterate over all potential canonical types, sharing same hash.
4260 * For each canonical candidate we check whether type graphs that they form
4261 * (through referenced types in fields and so on) are equivalent using algorithm
4262 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4263 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4264 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4265 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4266 * potentially map other structs/unions to their canonical representatives,
4267 * if such relationship hasn't yet been established. This speeds up algorithm
4268 * by eliminating some of the duplicate work.
4269 *
4270 * If no matching canonical representative was found, struct/union is marked
4271 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4272 * for further look ups.
4273 */
4274static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4275{
4276        struct btf_type *cand_type, *t;
4277        struct hashmap_entry *hash_entry;
4278        /* if we don't find equivalent type, then we are canonical */
4279        __u32 new_id = type_id;
4280        __u16 kind;
4281        long h;
4282
4283        /* already deduped or is in process of deduping (loop detected) */
4284        if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4285                return 0;
4286
4287        t = btf_type_by_id(d->btf, type_id);
4288        kind = btf_kind(t);
4289
4290        if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4291                return 0;
4292
4293        h = btf_hash_struct(t);
4294        for_each_dedup_cand(d, hash_entry, h) {
4295                __u32 cand_id = (__u32)(long)hash_entry->value;
4296                int eq;
4297
4298                /*
4299                 * Even though btf_dedup_is_equiv() checks for
4300                 * btf_shallow_equal_struct() internally when checking two
4301                 * structs (unions) for equivalence, we need to guard here
4302                 * from picking matching FWD type as a dedup candidate.
4303                 * This can happen due to hash collision. In such case just
4304                 * relying on btf_dedup_is_equiv() would lead to potentially
4305                 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4306                 * FWD and compatible STRUCT/UNION are considered equivalent.
4307                 */
4308                cand_type = btf_type_by_id(d->btf, cand_id);
4309                if (!btf_shallow_equal_struct(t, cand_type))
4310                        continue;
4311
4312                btf_dedup_clear_hypot_map(d);
4313                eq = btf_dedup_is_equiv(d, type_id, cand_id);
4314                if (eq < 0)
4315                        return eq;
4316                if (!eq)
4317                        continue;
4318                btf_dedup_merge_hypot_map(d);
4319                if (d->hypot_adjust_canon) /* not really equivalent */
4320                        continue;
4321                new_id = cand_id;
4322                break;
4323        }
4324
4325        d->map[type_id] = new_id;
4326        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4327                return -ENOMEM;
4328
4329        return 0;
4330}
4331
4332static int btf_dedup_struct_types(struct btf_dedup *d)
4333{
4334        int i, err;
4335
4336        for (i = 0; i < d->btf->nr_types; i++) {
4337                err = btf_dedup_struct_type(d, d->btf->start_id + i);
4338                if (err)
4339                        return err;
4340        }
4341        return 0;
4342}
4343
4344/*
4345 * Deduplicate reference type.
4346 *
4347 * Once all primitive and struct/union types got deduplicated, we can easily
4348 * deduplicate all other (reference) BTF types. This is done in two steps:
4349 *
4350 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4351 * resolution can be done either immediately for primitive or struct/union types
4352 * (because they were deduped in previous two phases) or recursively for
4353 * reference types. Recursion will always terminate at either primitive or
4354 * struct/union type, at which point we can "unwind" chain of reference types
4355 * one by one. There is no danger of encountering cycles because in C type
4356 * system the only way to form type cycle is through struct/union, so any chain
4357 * of reference types, even those taking part in a type cycle, will inevitably
4358 * reach struct/union at some point.
4359 *
4360 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4361 * becomes "stable", in the sense that no further deduplication will cause
4362 * any changes to it. With that, it's now possible to calculate type's signature
4363 * hash (this time taking into account referenced type IDs) and loop over all
4364 * potential canonical representatives. If no match was found, current type
4365 * will become canonical representative of itself and will be added into
4366 * btf_dedup->dedup_table as another possible canonical representative.
4367 */
4368static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4369{
4370        struct hashmap_entry *hash_entry;
4371        __u32 new_id = type_id, cand_id;
4372        struct btf_type *t, *cand;
4373        /* if we don't find equivalent type, then we are representative type */
4374        int ref_type_id;
4375        long h;
4376
4377        if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4378                return -ELOOP;
4379        if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4380                return resolve_type_id(d, type_id);
4381
4382        t = btf_type_by_id(d->btf, type_id);
4383        d->map[type_id] = BTF_IN_PROGRESS_ID;
4384
4385        switch (btf_kind(t)) {
4386        case BTF_KIND_CONST:
4387        case BTF_KIND_VOLATILE:
4388        case BTF_KIND_RESTRICT:
4389        case BTF_KIND_PTR:
4390        case BTF_KIND_TYPEDEF:
4391        case BTF_KIND_FUNC:
4392        case BTF_KIND_TYPE_TAG:
4393                ref_type_id = btf_dedup_ref_type(d, t->type);
4394                if (ref_type_id < 0)
4395                        return ref_type_id;
4396                t->type = ref_type_id;
4397
4398                h = btf_hash_common(t);
4399                for_each_dedup_cand(d, hash_entry, h) {
4400                        cand_id = (__u32)(long)hash_entry->value;
4401                        cand = btf_type_by_id(d->btf, cand_id);
4402                        if (btf_equal_common(t, cand)) {
4403                                new_id = cand_id;
4404                                break;
4405                        }
4406                }
4407                break;
4408
4409        case BTF_KIND_DECL_TAG:
4410                ref_type_id = btf_dedup_ref_type(d, t->type);
4411                if (ref_type_id < 0)
4412                        return ref_type_id;
4413                t->type = ref_type_id;
4414
4415                h = btf_hash_int_decl_tag(t);
4416                for_each_dedup_cand(d, hash_entry, h) {
4417                        cand_id = (__u32)(long)hash_entry->value;
4418                        cand = btf_type_by_id(d->btf, cand_id);
4419                        if (btf_equal_int_tag(t, cand)) {
4420                                new_id = cand_id;
4421                                break;
4422                        }
4423                }
4424                break;
4425
4426        case BTF_KIND_ARRAY: {
4427                struct btf_array *info = btf_array(t);
4428
4429                ref_type_id = btf_dedup_ref_type(d, info->type);
4430                if (ref_type_id < 0)
4431                        return ref_type_id;
4432                info->type = ref_type_id;
4433
4434                ref_type_id = btf_dedup_ref_type(d, info->index_type);
4435                if (ref_type_id < 0)
4436                        return ref_type_id;
4437                info->index_type = ref_type_id;
4438
4439                h = btf_hash_array(t);
4440                for_each_dedup_cand(d, hash_entry, h) {
4441                        cand_id = (__u32)(long)hash_entry->value;
4442                        cand = btf_type_by_id(d->btf, cand_id);
4443                        if (btf_equal_array(t, cand)) {
4444                                new_id = cand_id;
4445                                break;
4446                        }
4447                }
4448                break;
4449        }
4450
4451        case BTF_KIND_FUNC_PROTO: {
4452                struct btf_param *param;
4453                __u16 vlen;
4454                int i;
4455
4456                ref_type_id = btf_dedup_ref_type(d, t->type);
4457                if (ref_type_id < 0)
4458                        return ref_type_id;
4459                t->type = ref_type_id;
4460
4461                vlen = btf_vlen(t);
4462                param = btf_params(t);
4463                for (i = 0; i < vlen; i++) {
4464                        ref_type_id = btf_dedup_ref_type(d, param->type);
4465                        if (ref_type_id < 0)
4466                                return ref_type_id;
4467                        param->type = ref_type_id;
4468                        param++;
4469                }
4470
4471                h = btf_hash_fnproto(t);
4472                for_each_dedup_cand(d, hash_entry, h) {
4473                        cand_id = (__u32)(long)hash_entry->value;
4474                        cand = btf_type_by_id(d->btf, cand_id);
4475                        if (btf_equal_fnproto(t, cand)) {
4476                                new_id = cand_id;
4477                                break;
4478                        }
4479                }
4480                break;
4481        }
4482
4483        default:
4484                return -EINVAL;
4485        }
4486
4487        d->map[type_id] = new_id;
4488        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4489                return -ENOMEM;
4490
4491        return new_id;
4492}
4493
4494static int btf_dedup_ref_types(struct btf_dedup *d)
4495{
4496        int i, err;
4497
4498        for (i = 0; i < d->btf->nr_types; i++) {
4499                err = btf_dedup_ref_type(d, d->btf->start_id + i);
4500                if (err < 0)
4501                        return err;
4502        }
4503        /* we won't need d->dedup_table anymore */
4504        hashmap__free(d->dedup_table);
4505        d->dedup_table = NULL;
4506        return 0;
4507}
4508
4509/*
4510 * Compact types.
4511 *
4512 * After we established for each type its corresponding canonical representative
4513 * type, we now can eliminate types that are not canonical and leave only
4514 * canonical ones layed out sequentially in memory by copying them over
4515 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4516 * a map from original type ID to a new compacted type ID, which will be used
4517 * during next phase to "fix up" type IDs, referenced from struct/union and
4518 * reference types.
4519 */
4520static int btf_dedup_compact_types(struct btf_dedup *d)
4521{
4522        __u32 *new_offs;
4523        __u32 next_type_id = d->btf->start_id;
4524        const struct btf_type *t;
4525        void *p;
4526        int i, id, len;
4527
4528        /* we are going to reuse hypot_map to store compaction remapping */
4529        d->hypot_map[0] = 0;
4530        /* base BTF types are not renumbered */
4531        for (id = 1; id < d->btf->start_id; id++)
4532                d->hypot_map[id] = id;
4533        for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4534                d->hypot_map[id] = BTF_UNPROCESSED_ID;
4535
4536        p = d->btf->types_data;
4537
4538        for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4539                if (d->map[id] != id)
4540                        continue;
4541
4542                t = btf__type_by_id(d->btf, id);
4543                len = btf_type_size(t);
4544                if (len < 0)
4545                        return len;
4546
4547                memmove(p, t, len);
4548                d->hypot_map[id] = next_type_id;
4549                d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4550                p += len;
4551                next_type_id++;
4552        }
4553
4554        /* shrink struct btf's internal types index and update btf_header */
4555        d->btf->nr_types = next_type_id - d->btf->start_id;
4556        d->btf->type_offs_cap = d->btf->nr_types;
4557        d->btf->hdr->type_len = p - d->btf->types_data;
4558        new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4559                                       sizeof(*new_offs));
4560        if (d->btf->type_offs_cap && !new_offs)
4561                return -ENOMEM;
4562        d->btf->type_offs = new_offs;
4563        d->btf->hdr->str_off = d->btf->hdr->type_len;
4564        d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4565        return 0;
4566}
4567
4568/*
4569 * Figure out final (deduplicated and compacted) type ID for provided original
4570 * `type_id` by first resolving it into corresponding canonical type ID and
4571 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4572 * which is populated during compaction phase.
4573 */
4574static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4575{
4576        struct btf_dedup *d = ctx;
4577        __u32 resolved_type_id, new_type_id;
4578
4579        resolved_type_id = resolve_type_id(d, *type_id);
4580        new_type_id = d->hypot_map[resolved_type_id];
4581        if (new_type_id > BTF_MAX_NR_TYPES)
4582                return -EINVAL;
4583
4584        *type_id = new_type_id;
4585        return 0;
4586}
4587
4588/*
4589 * Remap referenced type IDs into deduped type IDs.
4590 *
4591 * After BTF types are deduplicated and compacted, their final type IDs may
4592 * differ from original ones. The map from original to a corresponding
4593 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4594 * compaction phase. During remapping phase we are rewriting all type IDs
4595 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4596 * their final deduped type IDs.
4597 */
4598static int btf_dedup_remap_types(struct btf_dedup *d)
4599{
4600        int i, r;
4601
4602        for (i = 0; i < d->btf->nr_types; i++) {
4603                struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4604
4605                r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4606                if (r)
4607                        return r;
4608        }
4609
4610        if (!d->btf_ext)
4611                return 0;
4612
4613        r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4614        if (r)
4615                return r;
4616
4617        return 0;
4618}
4619
4620/*
4621 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4622 * data out of it to use for target BTF.
4623 */
4624struct btf *btf__load_vmlinux_btf(void)
4625{
4626        struct {
4627                const char *path_fmt;
4628                bool raw_btf;
4629        } locations[] = {
4630                /* try canonical vmlinux BTF through sysfs first */
4631                { "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4632                /* fall back to trying to find vmlinux ELF on disk otherwise */
4633                { "/boot/vmlinux-%1$s" },
4634                { "/lib/modules/%1$s/vmlinux-%1$s" },
4635                { "/lib/modules/%1$s/build/vmlinux" },
4636                { "/usr/lib/modules/%1$s/kernel/vmlinux" },
4637                { "/usr/lib/debug/boot/vmlinux-%1$s" },
4638                { "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4639                { "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4640        };
4641        char path[PATH_MAX + 1];
4642        struct utsname buf;
4643        struct btf *btf;
4644        int i, err;
4645
4646        uname(&buf);
4647
4648        for (i = 0; i < ARRAY_SIZE(locations); i++) {
4649                snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4650
4651                if (access(path, R_OK))
4652                        continue;
4653
4654                if (locations[i].raw_btf)
4655                        btf = btf__parse_raw(path);
4656                else
4657                        btf = btf__parse_elf(path, NULL);
4658                err = libbpf_get_error(btf);
4659                pr_debug("loading kernel BTF '%s': %d\n", path, err);
4660                if (err)
4661                        continue;
4662
4663                return btf;
4664        }
4665
4666        pr_warn("failed to find valid kernel BTF\n");
4667        return libbpf_err_ptr(-ESRCH);
4668}
4669
4670struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4671
4672struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4673{
4674        char path[80];
4675
4676        snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4677        return btf__parse_split(path, vmlinux_btf);
4678}
4679
4680int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4681{
4682        int i, n, err;
4683
4684        switch (btf_kind(t)) {
4685        case BTF_KIND_INT:
4686        case BTF_KIND_FLOAT:
4687        case BTF_KIND_ENUM:
4688                return 0;
4689
4690        case BTF_KIND_FWD:
4691        case BTF_KIND_CONST:
4692        case BTF_KIND_VOLATILE:
4693        case BTF_KIND_RESTRICT:
4694        case BTF_KIND_PTR:
4695        case BTF_KIND_TYPEDEF:
4696        case BTF_KIND_FUNC:
4697        case BTF_KIND_VAR:
4698        case BTF_KIND_DECL_TAG:
4699        case BTF_KIND_TYPE_TAG:
4700                return visit(&t->type, ctx);
4701
4702        case BTF_KIND_ARRAY: {
4703                struct btf_array *a = btf_array(t);
4704
4705                err = visit(&a->type, ctx);
4706                err = err ?: visit(&a->index_type, ctx);
4707                return err;
4708        }
4709
4710        case BTF_KIND_STRUCT:
4711        case BTF_KIND_UNION: {
4712                struct btf_member *m = btf_members(t);
4713
4714                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4715                        err = visit(&m->type, ctx);
4716                        if (err)
4717                                return err;
4718                }
4719                return 0;
4720        }
4721
4722        case BTF_KIND_FUNC_PROTO: {
4723                struct btf_param *m = btf_params(t);
4724
4725                err = visit(&t->type, ctx);
4726                if (err)
4727                        return err;
4728                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4729                        err = visit(&m->type, ctx);
4730                        if (err)
4731                                return err;
4732                }
4733                return 0;
4734        }
4735
4736        case BTF_KIND_DATASEC: {
4737                struct btf_var_secinfo *m = btf_var_secinfos(t);
4738
4739                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4740                        err = visit(&m->type, ctx);
4741                        if (err)
4742                                return err;
4743                }
4744                return 0;
4745        }
4746
4747        default:
4748                return -EINVAL;
4749        }
4750}
4751
4752int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4753{
4754        int i, n, err;
4755
4756        err = visit(&t->name_off, ctx);
4757        if (err)
4758                return err;
4759
4760        switch (btf_kind(t)) {
4761        case BTF_KIND_STRUCT:
4762        case BTF_KIND_UNION: {
4763                struct btf_member *m = btf_members(t);
4764
4765                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4766                        err = visit(&m->name_off, ctx);
4767                        if (err)
4768                                return err;
4769                }
4770                break;
4771        }
4772        case BTF_KIND_ENUM: {
4773                struct btf_enum *m = btf_enum(t);
4774
4775                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4776                        err = visit(&m->name_off, ctx);
4777                        if (err)
4778                                return err;
4779                }
4780                break;
4781        }
4782        case BTF_KIND_FUNC_PROTO: {
4783                struct btf_param *m = btf_params(t);
4784
4785                for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4786                        err = visit(&m->name_off, ctx);
4787                        if (err)
4788                                return err;
4789                }
4790                break;
4791        }
4792        default:
4793                break;
4794        }
4795
4796        return 0;
4797}
4798
4799int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4800{
4801        const struct btf_ext_info *seg;
4802        struct btf_ext_info_sec *sec;
4803        int i, err;
4804
4805        seg = &btf_ext->func_info;
4806        for_each_btf_ext_sec(seg, sec) {
4807                struct bpf_func_info_min *rec;
4808
4809                for_each_btf_ext_rec(seg, sec, i, rec) {
4810                        err = visit(&rec->type_id, ctx);
4811                        if (err < 0)
4812                                return err;
4813                }
4814        }
4815
4816        seg = &btf_ext->core_relo_info;
4817        for_each_btf_ext_sec(seg, sec) {
4818                struct bpf_core_relo *rec;
4819
4820                for_each_btf_ext_rec(seg, sec, i, rec) {
4821                        err = visit(&rec->type_id, ctx);
4822                        if (err < 0)
4823                                return err;
4824                }
4825        }
4826
4827        return 0;
4828}
4829
4830int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4831{
4832        const struct btf_ext_info *seg;
4833        struct btf_ext_info_sec *sec;
4834        int i, err;
4835
4836        seg = &btf_ext->func_info;
4837        for_each_btf_ext_sec(seg, sec) {
4838                err = visit(&sec->sec_name_off, ctx);
4839                if (err)
4840                        return err;
4841        }
4842
4843        seg = &btf_ext->line_info;
4844        for_each_btf_ext_sec(seg, sec) {
4845                struct bpf_line_info_min *rec;
4846
4847                err = visit(&sec->sec_name_off, ctx);
4848                if (err)
4849                        return err;
4850
4851                for_each_btf_ext_rec(seg, sec, i, rec) {
4852                        err = visit(&rec->file_name_off, ctx);
4853                        if (err)
4854                                return err;
4855                        err = visit(&rec->line_off, ctx);
4856                        if (err)
4857                                return err;
4858                }
4859        }
4860
4861        seg = &btf_ext->core_relo_info;
4862        for_each_btf_ext_sec(seg, sec) {
4863                struct bpf_core_relo *rec;
4864
4865                err = visit(&sec->sec_name_off, ctx);
4866                if (err)
4867                        return err;
4868
4869                for_each_btf_ext_rec(seg, sec, i, rec) {
4870                        err = visit(&rec->access_str_off, ctx);
4871                        if (err)
4872                                return err;
4873                }
4874        }
4875
4876        return 0;
4877}
4878