linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "path.h"
  20#include "srcline.h"
  21#include "symbol.h"
  22#include "sort.h"
  23#include "strlist.h"
  24#include "target.h"
  25#include "thread.h"
  26#include "util.h"
  27#include "vdso.h"
  28#include <stdbool.h>
  29#include <sys/types.h>
  30#include <sys/stat.h>
  31#include <unistd.h>
  32#include "unwind.h"
  33#include "linux/hash.h"
  34#include "asm/bug.h"
  35#include "bpf-event.h"
  36#include <internal/lib.h> // page_size
  37#include "cgroup.h"
  38#include "arm64-frame-pointer-unwind-support.h"
  39
  40#include <linux/ctype.h>
  41#include <symbol/kallsyms.h>
  42#include <linux/mman.h>
  43#include <linux/string.h>
  44#include <linux/zalloc.h>
  45
  46static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  47
  48static struct dso *machine__kernel_dso(struct machine *machine)
  49{
  50        return machine->vmlinux_map->dso;
  51}
  52
  53static void dsos__init(struct dsos *dsos)
  54{
  55        INIT_LIST_HEAD(&dsos->head);
  56        dsos->root = RB_ROOT;
  57        init_rwsem(&dsos->lock);
  58}
  59
  60static void machine__threads_init(struct machine *machine)
  61{
  62        int i;
  63
  64        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  65                struct threads *threads = &machine->threads[i];
  66                threads->entries = RB_ROOT_CACHED;
  67                init_rwsem(&threads->lock);
  68                threads->nr = 0;
  69                INIT_LIST_HEAD(&threads->dead);
  70                threads->last_match = NULL;
  71        }
  72}
  73
  74static int machine__set_mmap_name(struct machine *machine)
  75{
  76        if (machine__is_host(machine))
  77                machine->mmap_name = strdup("[kernel.kallsyms]");
  78        else if (machine__is_default_guest(machine))
  79                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  80        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  81                          machine->pid) < 0)
  82                machine->mmap_name = NULL;
  83
  84        return machine->mmap_name ? 0 : -ENOMEM;
  85}
  86
  87int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  88{
  89        int err = -ENOMEM;
  90
  91        memset(machine, 0, sizeof(*machine));
  92        maps__init(&machine->kmaps, machine);
  93        RB_CLEAR_NODE(&machine->rb_node);
  94        dsos__init(&machine->dsos);
  95
  96        machine__threads_init(machine);
  97
  98        machine->vdso_info = NULL;
  99        machine->env = NULL;
 100
 101        machine->pid = pid;
 102
 103        machine->id_hdr_size = 0;
 104        machine->kptr_restrict_warned = false;
 105        machine->comm_exec = false;
 106        machine->kernel_start = 0;
 107        machine->vmlinux_map = NULL;
 108
 109        machine->root_dir = strdup(root_dir);
 110        if (machine->root_dir == NULL)
 111                return -ENOMEM;
 112
 113        if (machine__set_mmap_name(machine))
 114                goto out;
 115
 116        if (pid != HOST_KERNEL_ID) {
 117                struct thread *thread = machine__findnew_thread(machine, -1,
 118                                                                pid);
 119                char comm[64];
 120
 121                if (thread == NULL)
 122                        goto out;
 123
 124                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 125                thread__set_comm(thread, comm, 0);
 126                thread__put(thread);
 127        }
 128
 129        machine->current_tid = NULL;
 130        err = 0;
 131
 132out:
 133        if (err) {
 134                zfree(&machine->root_dir);
 135                zfree(&machine->mmap_name);
 136        }
 137        return 0;
 138}
 139
 140struct machine *machine__new_host(void)
 141{
 142        struct machine *machine = malloc(sizeof(*machine));
 143
 144        if (machine != NULL) {
 145                machine__init(machine, "", HOST_KERNEL_ID);
 146
 147                if (machine__create_kernel_maps(machine) < 0)
 148                        goto out_delete;
 149        }
 150
 151        return machine;
 152out_delete:
 153        free(machine);
 154        return NULL;
 155}
 156
 157struct machine *machine__new_kallsyms(void)
 158{
 159        struct machine *machine = machine__new_host();
 160        /*
 161         * FIXME:
 162         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 163         *    ask for not using the kcore parsing code, once this one is fixed
 164         *    to create a map per module.
 165         */
 166        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 167                machine__delete(machine);
 168                machine = NULL;
 169        }
 170
 171        return machine;
 172}
 173
 174static void dsos__purge(struct dsos *dsos)
 175{
 176        struct dso *pos, *n;
 177
 178        down_write(&dsos->lock);
 179
 180        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 181                RB_CLEAR_NODE(&pos->rb_node);
 182                pos->root = NULL;
 183                list_del_init(&pos->node);
 184                dso__put(pos);
 185        }
 186
 187        up_write(&dsos->lock);
 188}
 189
 190static void dsos__exit(struct dsos *dsos)
 191{
 192        dsos__purge(dsos);
 193        exit_rwsem(&dsos->lock);
 194}
 195
 196void machine__delete_threads(struct machine *machine)
 197{
 198        struct rb_node *nd;
 199        int i;
 200
 201        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 202                struct threads *threads = &machine->threads[i];
 203                down_write(&threads->lock);
 204                nd = rb_first_cached(&threads->entries);
 205                while (nd) {
 206                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 207
 208                        nd = rb_next(nd);
 209                        __machine__remove_thread(machine, t, false);
 210                }
 211                up_write(&threads->lock);
 212        }
 213}
 214
 215void machine__exit(struct machine *machine)
 216{
 217        int i;
 218
 219        if (machine == NULL)
 220                return;
 221
 222        machine__destroy_kernel_maps(machine);
 223        maps__exit(&machine->kmaps);
 224        dsos__exit(&machine->dsos);
 225        machine__exit_vdso(machine);
 226        zfree(&machine->root_dir);
 227        zfree(&machine->mmap_name);
 228        zfree(&machine->current_tid);
 229
 230        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 231                struct threads *threads = &machine->threads[i];
 232                struct thread *thread, *n;
 233                /*
 234                 * Forget about the dead, at this point whatever threads were
 235                 * left in the dead lists better have a reference count taken
 236                 * by who is using them, and then, when they drop those references
 237                 * and it finally hits zero, thread__put() will check and see that
 238                 * its not in the dead threads list and will not try to remove it
 239                 * from there, just calling thread__delete() straight away.
 240                 */
 241                list_for_each_entry_safe(thread, n, &threads->dead, node)
 242                        list_del_init(&thread->node);
 243
 244                exit_rwsem(&threads->lock);
 245        }
 246}
 247
 248void machine__delete(struct machine *machine)
 249{
 250        if (machine) {
 251                machine__exit(machine);
 252                free(machine);
 253        }
 254}
 255
 256void machines__init(struct machines *machines)
 257{
 258        machine__init(&machines->host, "", HOST_KERNEL_ID);
 259        machines->guests = RB_ROOT_CACHED;
 260}
 261
 262void machines__exit(struct machines *machines)
 263{
 264        machine__exit(&machines->host);
 265        /* XXX exit guest */
 266}
 267
 268struct machine *machines__add(struct machines *machines, pid_t pid,
 269                              const char *root_dir)
 270{
 271        struct rb_node **p = &machines->guests.rb_root.rb_node;
 272        struct rb_node *parent = NULL;
 273        struct machine *pos, *machine = malloc(sizeof(*machine));
 274        bool leftmost = true;
 275
 276        if (machine == NULL)
 277                return NULL;
 278
 279        if (machine__init(machine, root_dir, pid) != 0) {
 280                free(machine);
 281                return NULL;
 282        }
 283
 284        while (*p != NULL) {
 285                parent = *p;
 286                pos = rb_entry(parent, struct machine, rb_node);
 287                if (pid < pos->pid)
 288                        p = &(*p)->rb_left;
 289                else {
 290                        p = &(*p)->rb_right;
 291                        leftmost = false;
 292                }
 293        }
 294
 295        rb_link_node(&machine->rb_node, parent, p);
 296        rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 297
 298        return machine;
 299}
 300
 301void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 302{
 303        struct rb_node *nd;
 304
 305        machines->host.comm_exec = comm_exec;
 306
 307        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 308                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 309
 310                machine->comm_exec = comm_exec;
 311        }
 312}
 313
 314struct machine *machines__find(struct machines *machines, pid_t pid)
 315{
 316        struct rb_node **p = &machines->guests.rb_root.rb_node;
 317        struct rb_node *parent = NULL;
 318        struct machine *machine;
 319        struct machine *default_machine = NULL;
 320
 321        if (pid == HOST_KERNEL_ID)
 322                return &machines->host;
 323
 324        while (*p != NULL) {
 325                parent = *p;
 326                machine = rb_entry(parent, struct machine, rb_node);
 327                if (pid < machine->pid)
 328                        p = &(*p)->rb_left;
 329                else if (pid > machine->pid)
 330                        p = &(*p)->rb_right;
 331                else
 332                        return machine;
 333                if (!machine->pid)
 334                        default_machine = machine;
 335        }
 336
 337        return default_machine;
 338}
 339
 340struct machine *machines__findnew(struct machines *machines, pid_t pid)
 341{
 342        char path[PATH_MAX];
 343        const char *root_dir = "";
 344        struct machine *machine = machines__find(machines, pid);
 345
 346        if (machine && (machine->pid == pid))
 347                goto out;
 348
 349        if ((pid != HOST_KERNEL_ID) &&
 350            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 351            (symbol_conf.guestmount)) {
 352                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 353                if (access(path, R_OK)) {
 354                        static struct strlist *seen;
 355
 356                        if (!seen)
 357                                seen = strlist__new(NULL, NULL);
 358
 359                        if (!strlist__has_entry(seen, path)) {
 360                                pr_err("Can't access file %s\n", path);
 361                                strlist__add(seen, path);
 362                        }
 363                        machine = NULL;
 364                        goto out;
 365                }
 366                root_dir = path;
 367        }
 368
 369        machine = machines__add(machines, pid, root_dir);
 370out:
 371        return machine;
 372}
 373
 374struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 375{
 376        struct machine *machine = machines__find(machines, pid);
 377
 378        if (!machine)
 379                machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 380        return machine;
 381}
 382
 383void machines__process_guests(struct machines *machines,
 384                              machine__process_t process, void *data)
 385{
 386        struct rb_node *nd;
 387
 388        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 389                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 390                process(pos, data);
 391        }
 392}
 393
 394void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 395{
 396        struct rb_node *node;
 397        struct machine *machine;
 398
 399        machines->host.id_hdr_size = id_hdr_size;
 400
 401        for (node = rb_first_cached(&machines->guests); node;
 402             node = rb_next(node)) {
 403                machine = rb_entry(node, struct machine, rb_node);
 404                machine->id_hdr_size = id_hdr_size;
 405        }
 406
 407        return;
 408}
 409
 410static void machine__update_thread_pid(struct machine *machine,
 411                                       struct thread *th, pid_t pid)
 412{
 413        struct thread *leader;
 414
 415        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 416                return;
 417
 418        th->pid_ = pid;
 419
 420        if (th->pid_ == th->tid)
 421                return;
 422
 423        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 424        if (!leader)
 425                goto out_err;
 426
 427        if (!leader->maps)
 428                leader->maps = maps__new(machine);
 429
 430        if (!leader->maps)
 431                goto out_err;
 432
 433        if (th->maps == leader->maps)
 434                return;
 435
 436        if (th->maps) {
 437                /*
 438                 * Maps are created from MMAP events which provide the pid and
 439                 * tid.  Consequently there never should be any maps on a thread
 440                 * with an unknown pid.  Just print an error if there are.
 441                 */
 442                if (!maps__empty(th->maps))
 443                        pr_err("Discarding thread maps for %d:%d\n",
 444                               th->pid_, th->tid);
 445                maps__put(th->maps);
 446        }
 447
 448        th->maps = maps__get(leader->maps);
 449out_put:
 450        thread__put(leader);
 451        return;
 452out_err:
 453        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 454        goto out_put;
 455}
 456
 457/*
 458 * Front-end cache - TID lookups come in blocks,
 459 * so most of the time we dont have to look up
 460 * the full rbtree:
 461 */
 462static struct thread*
 463__threads__get_last_match(struct threads *threads, struct machine *machine,
 464                          int pid, int tid)
 465{
 466        struct thread *th;
 467
 468        th = threads->last_match;
 469        if (th != NULL) {
 470                if (th->tid == tid) {
 471                        machine__update_thread_pid(machine, th, pid);
 472                        return thread__get(th);
 473                }
 474
 475                threads->last_match = NULL;
 476        }
 477
 478        return NULL;
 479}
 480
 481static struct thread*
 482threads__get_last_match(struct threads *threads, struct machine *machine,
 483                        int pid, int tid)
 484{
 485        struct thread *th = NULL;
 486
 487        if (perf_singlethreaded)
 488                th = __threads__get_last_match(threads, machine, pid, tid);
 489
 490        return th;
 491}
 492
 493static void
 494__threads__set_last_match(struct threads *threads, struct thread *th)
 495{
 496        threads->last_match = th;
 497}
 498
 499static void
 500threads__set_last_match(struct threads *threads, struct thread *th)
 501{
 502        if (perf_singlethreaded)
 503                __threads__set_last_match(threads, th);
 504}
 505
 506/*
 507 * Caller must eventually drop thread->refcnt returned with a successful
 508 * lookup/new thread inserted.
 509 */
 510static struct thread *____machine__findnew_thread(struct machine *machine,
 511                                                  struct threads *threads,
 512                                                  pid_t pid, pid_t tid,
 513                                                  bool create)
 514{
 515        struct rb_node **p = &threads->entries.rb_root.rb_node;
 516        struct rb_node *parent = NULL;
 517        struct thread *th;
 518        bool leftmost = true;
 519
 520        th = threads__get_last_match(threads, machine, pid, tid);
 521        if (th)
 522                return th;
 523
 524        while (*p != NULL) {
 525                parent = *p;
 526                th = rb_entry(parent, struct thread, rb_node);
 527
 528                if (th->tid == tid) {
 529                        threads__set_last_match(threads, th);
 530                        machine__update_thread_pid(machine, th, pid);
 531                        return thread__get(th);
 532                }
 533
 534                if (tid < th->tid)
 535                        p = &(*p)->rb_left;
 536                else {
 537                        p = &(*p)->rb_right;
 538                        leftmost = false;
 539                }
 540        }
 541
 542        if (!create)
 543                return NULL;
 544
 545        th = thread__new(pid, tid);
 546        if (th != NULL) {
 547                rb_link_node(&th->rb_node, parent, p);
 548                rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 549
 550                /*
 551                 * We have to initialize maps separately after rb tree is updated.
 552                 *
 553                 * The reason is that we call machine__findnew_thread
 554                 * within thread__init_maps to find the thread
 555                 * leader and that would screwed the rb tree.
 556                 */
 557                if (thread__init_maps(th, machine)) {
 558                        rb_erase_cached(&th->rb_node, &threads->entries);
 559                        RB_CLEAR_NODE(&th->rb_node);
 560                        thread__put(th);
 561                        return NULL;
 562                }
 563                /*
 564                 * It is now in the rbtree, get a ref
 565                 */
 566                thread__get(th);
 567                threads__set_last_match(threads, th);
 568                ++threads->nr;
 569        }
 570
 571        return th;
 572}
 573
 574struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 575{
 576        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 577}
 578
 579struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 580                                       pid_t tid)
 581{
 582        struct threads *threads = machine__threads(machine, tid);
 583        struct thread *th;
 584
 585        down_write(&threads->lock);
 586        th = __machine__findnew_thread(machine, pid, tid);
 587        up_write(&threads->lock);
 588        return th;
 589}
 590
 591struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 592                                    pid_t tid)
 593{
 594        struct threads *threads = machine__threads(machine, tid);
 595        struct thread *th;
 596
 597        down_read(&threads->lock);
 598        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 599        up_read(&threads->lock);
 600        return th;
 601}
 602
 603/*
 604 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 605 * So here a single thread is created for that, but actually there is a separate
 606 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 607 * is only 1. That causes problems for some tools, requiring workarounds. For
 608 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 609 */
 610struct thread *machine__idle_thread(struct machine *machine)
 611{
 612        struct thread *thread = machine__findnew_thread(machine, 0, 0);
 613
 614        if (!thread || thread__set_comm(thread, "swapper", 0) ||
 615            thread__set_namespaces(thread, 0, NULL))
 616                pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 617
 618        return thread;
 619}
 620
 621struct comm *machine__thread_exec_comm(struct machine *machine,
 622                                       struct thread *thread)
 623{
 624        if (machine->comm_exec)
 625                return thread__exec_comm(thread);
 626        else
 627                return thread__comm(thread);
 628}
 629
 630int machine__process_comm_event(struct machine *machine, union perf_event *event,
 631                                struct perf_sample *sample)
 632{
 633        struct thread *thread = machine__findnew_thread(machine,
 634                                                        event->comm.pid,
 635                                                        event->comm.tid);
 636        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 637        int err = 0;
 638
 639        if (exec)
 640                machine->comm_exec = true;
 641
 642        if (dump_trace)
 643                perf_event__fprintf_comm(event, stdout);
 644
 645        if (thread == NULL ||
 646            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 647                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 648                err = -1;
 649        }
 650
 651        thread__put(thread);
 652
 653        return err;
 654}
 655
 656int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 657                                      union perf_event *event,
 658                                      struct perf_sample *sample __maybe_unused)
 659{
 660        struct thread *thread = machine__findnew_thread(machine,
 661                                                        event->namespaces.pid,
 662                                                        event->namespaces.tid);
 663        int err = 0;
 664
 665        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 666                  "\nWARNING: kernel seems to support more namespaces than perf"
 667                  " tool.\nTry updating the perf tool..\n\n");
 668
 669        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 670                  "\nWARNING: perf tool seems to support more namespaces than"
 671                  " the kernel.\nTry updating the kernel..\n\n");
 672
 673        if (dump_trace)
 674                perf_event__fprintf_namespaces(event, stdout);
 675
 676        if (thread == NULL ||
 677            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 678                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 679                err = -1;
 680        }
 681
 682        thread__put(thread);
 683
 684        return err;
 685}
 686
 687int machine__process_cgroup_event(struct machine *machine,
 688                                  union perf_event *event,
 689                                  struct perf_sample *sample __maybe_unused)
 690{
 691        struct cgroup *cgrp;
 692
 693        if (dump_trace)
 694                perf_event__fprintf_cgroup(event, stdout);
 695
 696        cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 697        if (cgrp == NULL)
 698                return -ENOMEM;
 699
 700        return 0;
 701}
 702
 703int machine__process_lost_event(struct machine *machine __maybe_unused,
 704                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 705{
 706        dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 707                    event->lost.id, event->lost.lost);
 708        return 0;
 709}
 710
 711int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 712                                        union perf_event *event, struct perf_sample *sample)
 713{
 714        dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 715                    sample->id, event->lost_samples.lost);
 716        return 0;
 717}
 718
 719static struct dso *machine__findnew_module_dso(struct machine *machine,
 720                                               struct kmod_path *m,
 721                                               const char *filename)
 722{
 723        struct dso *dso;
 724
 725        down_write(&machine->dsos.lock);
 726
 727        dso = __dsos__find(&machine->dsos, m->name, true);
 728        if (!dso) {
 729                dso = __dsos__addnew(&machine->dsos, m->name);
 730                if (dso == NULL)
 731                        goto out_unlock;
 732
 733                dso__set_module_info(dso, m, machine);
 734                dso__set_long_name(dso, strdup(filename), true);
 735                dso->kernel = DSO_SPACE__KERNEL;
 736        }
 737
 738        dso__get(dso);
 739out_unlock:
 740        up_write(&machine->dsos.lock);
 741        return dso;
 742}
 743
 744int machine__process_aux_event(struct machine *machine __maybe_unused,
 745                               union perf_event *event)
 746{
 747        if (dump_trace)
 748                perf_event__fprintf_aux(event, stdout);
 749        return 0;
 750}
 751
 752int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 753                                        union perf_event *event)
 754{
 755        if (dump_trace)
 756                perf_event__fprintf_itrace_start(event, stdout);
 757        return 0;
 758}
 759
 760int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
 761                                            union perf_event *event)
 762{
 763        if (dump_trace)
 764                perf_event__fprintf_aux_output_hw_id(event, stdout);
 765        return 0;
 766}
 767
 768int machine__process_switch_event(struct machine *machine __maybe_unused,
 769                                  union perf_event *event)
 770{
 771        if (dump_trace)
 772                perf_event__fprintf_switch(event, stdout);
 773        return 0;
 774}
 775
 776static int machine__process_ksymbol_register(struct machine *machine,
 777                                             union perf_event *event,
 778                                             struct perf_sample *sample __maybe_unused)
 779{
 780        struct symbol *sym;
 781        struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
 782
 783        if (!map) {
 784                struct dso *dso = dso__new(event->ksymbol.name);
 785
 786                if (dso) {
 787                        dso->kernel = DSO_SPACE__KERNEL;
 788                        map = map__new2(0, dso);
 789                        dso__put(dso);
 790                }
 791
 792                if (!dso || !map) {
 793                        return -ENOMEM;
 794                }
 795
 796                if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 797                        map->dso->binary_type = DSO_BINARY_TYPE__OOL;
 798                        map->dso->data.file_size = event->ksymbol.len;
 799                        dso__set_loaded(map->dso);
 800                }
 801
 802                map->start = event->ksymbol.addr;
 803                map->end = map->start + event->ksymbol.len;
 804                maps__insert(&machine->kmaps, map);
 805                map__put(map);
 806                dso__set_loaded(dso);
 807
 808                if (is_bpf_image(event->ksymbol.name)) {
 809                        dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 810                        dso__set_long_name(dso, "", false);
 811                }
 812        }
 813
 814        sym = symbol__new(map->map_ip(map, map->start),
 815                          event->ksymbol.len,
 816                          0, 0, event->ksymbol.name);
 817        if (!sym)
 818                return -ENOMEM;
 819        dso__insert_symbol(map->dso, sym);
 820        return 0;
 821}
 822
 823static int machine__process_ksymbol_unregister(struct machine *machine,
 824                                               union perf_event *event,
 825                                               struct perf_sample *sample __maybe_unused)
 826{
 827        struct symbol *sym;
 828        struct map *map;
 829
 830        map = maps__find(&machine->kmaps, event->ksymbol.addr);
 831        if (!map)
 832                return 0;
 833
 834        if (map != machine->vmlinux_map)
 835                maps__remove(&machine->kmaps, map);
 836        else {
 837                sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
 838                if (sym)
 839                        dso__delete_symbol(map->dso, sym);
 840        }
 841
 842        return 0;
 843}
 844
 845int machine__process_ksymbol(struct machine *machine __maybe_unused,
 846                             union perf_event *event,
 847                             struct perf_sample *sample)
 848{
 849        if (dump_trace)
 850                perf_event__fprintf_ksymbol(event, stdout);
 851
 852        if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 853                return machine__process_ksymbol_unregister(machine, event,
 854                                                           sample);
 855        return machine__process_ksymbol_register(machine, event, sample);
 856}
 857
 858int machine__process_text_poke(struct machine *machine, union perf_event *event,
 859                               struct perf_sample *sample __maybe_unused)
 860{
 861        struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
 862        u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 863
 864        if (dump_trace)
 865                perf_event__fprintf_text_poke(event, machine, stdout);
 866
 867        if (!event->text_poke.new_len)
 868                return 0;
 869
 870        if (cpumode != PERF_RECORD_MISC_KERNEL) {
 871                pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 872                return 0;
 873        }
 874
 875        if (map && map->dso) {
 876                u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 877                int ret;
 878
 879                /*
 880                 * Kernel maps might be changed when loading symbols so loading
 881                 * must be done prior to using kernel maps.
 882                 */
 883                map__load(map);
 884                ret = dso__data_write_cache_addr(map->dso, map, machine,
 885                                                 event->text_poke.addr,
 886                                                 new_bytes,
 887                                                 event->text_poke.new_len);
 888                if (ret != event->text_poke.new_len)
 889                        pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 890                                 event->text_poke.addr);
 891        } else {
 892                pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 893                         event->text_poke.addr);
 894        }
 895
 896        return 0;
 897}
 898
 899static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
 900                                              const char *filename)
 901{
 902        struct map *map = NULL;
 903        struct kmod_path m;
 904        struct dso *dso;
 905
 906        if (kmod_path__parse_name(&m, filename))
 907                return NULL;
 908
 909        dso = machine__findnew_module_dso(machine, &m, filename);
 910        if (dso == NULL)
 911                goto out;
 912
 913        map = map__new2(start, dso);
 914        if (map == NULL)
 915                goto out;
 916
 917        maps__insert(&machine->kmaps, map);
 918
 919        /* Put the map here because maps__insert already got it */
 920        map__put(map);
 921out:
 922        /* put the dso here, corresponding to  machine__findnew_module_dso */
 923        dso__put(dso);
 924        zfree(&m.name);
 925        return map;
 926}
 927
 928size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 929{
 930        struct rb_node *nd;
 931        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 932
 933        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 934                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 935                ret += __dsos__fprintf(&pos->dsos.head, fp);
 936        }
 937
 938        return ret;
 939}
 940
 941size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 942                                     bool (skip)(struct dso *dso, int parm), int parm)
 943{
 944        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 945}
 946
 947size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 948                                     bool (skip)(struct dso *dso, int parm), int parm)
 949{
 950        struct rb_node *nd;
 951        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 952
 953        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 954                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 955                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 956        }
 957        return ret;
 958}
 959
 960size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 961{
 962        int i;
 963        size_t printed = 0;
 964        struct dso *kdso = machine__kernel_dso(machine);
 965
 966        if (kdso->has_build_id) {
 967                char filename[PATH_MAX];
 968                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 969                                           false))
 970                        printed += fprintf(fp, "[0] %s\n", filename);
 971        }
 972
 973        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 974                printed += fprintf(fp, "[%d] %s\n",
 975                                   i + kdso->has_build_id, vmlinux_path[i]);
 976
 977        return printed;
 978}
 979
 980size_t machine__fprintf(struct machine *machine, FILE *fp)
 981{
 982        struct rb_node *nd;
 983        size_t ret;
 984        int i;
 985
 986        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 987                struct threads *threads = &machine->threads[i];
 988
 989                down_read(&threads->lock);
 990
 991                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 992
 993                for (nd = rb_first_cached(&threads->entries); nd;
 994                     nd = rb_next(nd)) {
 995                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 996
 997                        ret += thread__fprintf(pos, fp);
 998                }
 999
1000                up_read(&threads->lock);
1001        }
1002        return ret;
1003}
1004
1005static struct dso *machine__get_kernel(struct machine *machine)
1006{
1007        const char *vmlinux_name = machine->mmap_name;
1008        struct dso *kernel;
1009
1010        if (machine__is_host(machine)) {
1011                if (symbol_conf.vmlinux_name)
1012                        vmlinux_name = symbol_conf.vmlinux_name;
1013
1014                kernel = machine__findnew_kernel(machine, vmlinux_name,
1015                                                 "[kernel]", DSO_SPACE__KERNEL);
1016        } else {
1017                if (symbol_conf.default_guest_vmlinux_name)
1018                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1019
1020                kernel = machine__findnew_kernel(machine, vmlinux_name,
1021                                                 "[guest.kernel]",
1022                                                 DSO_SPACE__KERNEL_GUEST);
1023        }
1024
1025        if (kernel != NULL && (!kernel->has_build_id))
1026                dso__read_running_kernel_build_id(kernel, machine);
1027
1028        return kernel;
1029}
1030
1031struct process_args {
1032        u64 start;
1033};
1034
1035void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1036                                    size_t bufsz)
1037{
1038        if (machine__is_default_guest(machine))
1039                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1040        else
1041                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1042}
1043
1044const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1045
1046/* Figure out the start address of kernel map from /proc/kallsyms.
1047 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1048 * symbol_name if it's not that important.
1049 */
1050static int machine__get_running_kernel_start(struct machine *machine,
1051                                             const char **symbol_name,
1052                                             u64 *start, u64 *end)
1053{
1054        char filename[PATH_MAX];
1055        int i, err = -1;
1056        const char *name;
1057        u64 addr = 0;
1058
1059        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1060
1061        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1062                return 0;
1063
1064        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1065                err = kallsyms__get_function_start(filename, name, &addr);
1066                if (!err)
1067                        break;
1068        }
1069
1070        if (err)
1071                return -1;
1072
1073        if (symbol_name)
1074                *symbol_name = name;
1075
1076        *start = addr;
1077
1078        err = kallsyms__get_function_start(filename, "_etext", &addr);
1079        if (!err)
1080                *end = addr;
1081
1082        return 0;
1083}
1084
1085int machine__create_extra_kernel_map(struct machine *machine,
1086                                     struct dso *kernel,
1087                                     struct extra_kernel_map *xm)
1088{
1089        struct kmap *kmap;
1090        struct map *map;
1091
1092        map = map__new2(xm->start, kernel);
1093        if (!map)
1094                return -1;
1095
1096        map->end   = xm->end;
1097        map->pgoff = xm->pgoff;
1098
1099        kmap = map__kmap(map);
1100
1101        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1102
1103        maps__insert(&machine->kmaps, map);
1104
1105        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1106                  kmap->name, map->start, map->end);
1107
1108        map__put(map);
1109
1110        return 0;
1111}
1112
1113static u64 find_entry_trampoline(struct dso *dso)
1114{
1115        /* Duplicates are removed so lookup all aliases */
1116        const char *syms[] = {
1117                "_entry_trampoline",
1118                "__entry_trampoline_start",
1119                "entry_SYSCALL_64_trampoline",
1120        };
1121        struct symbol *sym = dso__first_symbol(dso);
1122        unsigned int i;
1123
1124        for (; sym; sym = dso__next_symbol(sym)) {
1125                if (sym->binding != STB_GLOBAL)
1126                        continue;
1127                for (i = 0; i < ARRAY_SIZE(syms); i++) {
1128                        if (!strcmp(sym->name, syms[i]))
1129                                return sym->start;
1130                }
1131        }
1132
1133        return 0;
1134}
1135
1136/*
1137 * These values can be used for kernels that do not have symbols for the entry
1138 * trampolines in kallsyms.
1139 */
1140#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1141#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1142#define X86_64_ENTRY_TRAMPOLINE         0x6000
1143
1144/* Map x86_64 PTI entry trampolines */
1145int machine__map_x86_64_entry_trampolines(struct machine *machine,
1146                                          struct dso *kernel)
1147{
1148        struct maps *kmaps = &machine->kmaps;
1149        int nr_cpus_avail, cpu;
1150        bool found = false;
1151        struct map *map;
1152        u64 pgoff;
1153
1154        /*
1155         * In the vmlinux case, pgoff is a virtual address which must now be
1156         * mapped to a vmlinux offset.
1157         */
1158        maps__for_each_entry(kmaps, map) {
1159                struct kmap *kmap = __map__kmap(map);
1160                struct map *dest_map;
1161
1162                if (!kmap || !is_entry_trampoline(kmap->name))
1163                        continue;
1164
1165                dest_map = maps__find(kmaps, map->pgoff);
1166                if (dest_map != map)
1167                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1168                found = true;
1169        }
1170        if (found || machine->trampolines_mapped)
1171                return 0;
1172
1173        pgoff = find_entry_trampoline(kernel);
1174        if (!pgoff)
1175                return 0;
1176
1177        nr_cpus_avail = machine__nr_cpus_avail(machine);
1178
1179        /* Add a 1 page map for each CPU's entry trampoline */
1180        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1181                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1182                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1183                         X86_64_ENTRY_TRAMPOLINE;
1184                struct extra_kernel_map xm = {
1185                        .start = va,
1186                        .end   = va + page_size,
1187                        .pgoff = pgoff,
1188                };
1189
1190                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1191
1192                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1193                        return -1;
1194        }
1195
1196        machine->trampolines_mapped = nr_cpus_avail;
1197
1198        return 0;
1199}
1200
1201int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1202                                             struct dso *kernel __maybe_unused)
1203{
1204        return 0;
1205}
1206
1207static int
1208__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1209{
1210        /* In case of renewal the kernel map, destroy previous one */
1211        machine__destroy_kernel_maps(machine);
1212
1213        machine->vmlinux_map = map__new2(0, kernel);
1214        if (machine->vmlinux_map == NULL)
1215                return -1;
1216
1217        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1218        maps__insert(&machine->kmaps, machine->vmlinux_map);
1219        return 0;
1220}
1221
1222void machine__destroy_kernel_maps(struct machine *machine)
1223{
1224        struct kmap *kmap;
1225        struct map *map = machine__kernel_map(machine);
1226
1227        if (map == NULL)
1228                return;
1229
1230        kmap = map__kmap(map);
1231        maps__remove(&machine->kmaps, map);
1232        if (kmap && kmap->ref_reloc_sym) {
1233                zfree((char **)&kmap->ref_reloc_sym->name);
1234                zfree(&kmap->ref_reloc_sym);
1235        }
1236
1237        map__zput(machine->vmlinux_map);
1238}
1239
1240int machines__create_guest_kernel_maps(struct machines *machines)
1241{
1242        int ret = 0;
1243        struct dirent **namelist = NULL;
1244        int i, items = 0;
1245        char path[PATH_MAX];
1246        pid_t pid;
1247        char *endp;
1248
1249        if (symbol_conf.default_guest_vmlinux_name ||
1250            symbol_conf.default_guest_modules ||
1251            symbol_conf.default_guest_kallsyms) {
1252                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1253        }
1254
1255        if (symbol_conf.guestmount) {
1256                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1257                if (items <= 0)
1258                        return -ENOENT;
1259                for (i = 0; i < items; i++) {
1260                        if (!isdigit(namelist[i]->d_name[0])) {
1261                                /* Filter out . and .. */
1262                                continue;
1263                        }
1264                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1265                        if ((*endp != '\0') ||
1266                            (endp == namelist[i]->d_name) ||
1267                            (errno == ERANGE)) {
1268                                pr_debug("invalid directory (%s). Skipping.\n",
1269                                         namelist[i]->d_name);
1270                                continue;
1271                        }
1272                        sprintf(path, "%s/%s/proc/kallsyms",
1273                                symbol_conf.guestmount,
1274                                namelist[i]->d_name);
1275                        ret = access(path, R_OK);
1276                        if (ret) {
1277                                pr_debug("Can't access file %s\n", path);
1278                                goto failure;
1279                        }
1280                        machines__create_kernel_maps(machines, pid);
1281                }
1282failure:
1283                free(namelist);
1284        }
1285
1286        return ret;
1287}
1288
1289void machines__destroy_kernel_maps(struct machines *machines)
1290{
1291        struct rb_node *next = rb_first_cached(&machines->guests);
1292
1293        machine__destroy_kernel_maps(&machines->host);
1294
1295        while (next) {
1296                struct machine *pos = rb_entry(next, struct machine, rb_node);
1297
1298                next = rb_next(&pos->rb_node);
1299                rb_erase_cached(&pos->rb_node, &machines->guests);
1300                machine__delete(pos);
1301        }
1302}
1303
1304int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1305{
1306        struct machine *machine = machines__findnew(machines, pid);
1307
1308        if (machine == NULL)
1309                return -1;
1310
1311        return machine__create_kernel_maps(machine);
1312}
1313
1314int machine__load_kallsyms(struct machine *machine, const char *filename)
1315{
1316        struct map *map = machine__kernel_map(machine);
1317        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1318
1319        if (ret > 0) {
1320                dso__set_loaded(map->dso);
1321                /*
1322                 * Since /proc/kallsyms will have multiple sessions for the
1323                 * kernel, with modules between them, fixup the end of all
1324                 * sections.
1325                 */
1326                maps__fixup_end(&machine->kmaps);
1327        }
1328
1329        return ret;
1330}
1331
1332int machine__load_vmlinux_path(struct machine *machine)
1333{
1334        struct map *map = machine__kernel_map(machine);
1335        int ret = dso__load_vmlinux_path(map->dso, map);
1336
1337        if (ret > 0)
1338                dso__set_loaded(map->dso);
1339
1340        return ret;
1341}
1342
1343static char *get_kernel_version(const char *root_dir)
1344{
1345        char version[PATH_MAX];
1346        FILE *file;
1347        char *name, *tmp;
1348        const char *prefix = "Linux version ";
1349
1350        sprintf(version, "%s/proc/version", root_dir);
1351        file = fopen(version, "r");
1352        if (!file)
1353                return NULL;
1354
1355        tmp = fgets(version, sizeof(version), file);
1356        fclose(file);
1357        if (!tmp)
1358                return NULL;
1359
1360        name = strstr(version, prefix);
1361        if (!name)
1362                return NULL;
1363        name += strlen(prefix);
1364        tmp = strchr(name, ' ');
1365        if (tmp)
1366                *tmp = '\0';
1367
1368        return strdup(name);
1369}
1370
1371static bool is_kmod_dso(struct dso *dso)
1372{
1373        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1374               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1375}
1376
1377static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1378{
1379        char *long_name;
1380        struct map *map = maps__find_by_name(maps, m->name);
1381
1382        if (map == NULL)
1383                return 0;
1384
1385        long_name = strdup(path);
1386        if (long_name == NULL)
1387                return -ENOMEM;
1388
1389        dso__set_long_name(map->dso, long_name, true);
1390        dso__kernel_module_get_build_id(map->dso, "");
1391
1392        /*
1393         * Full name could reveal us kmod compression, so
1394         * we need to update the symtab_type if needed.
1395         */
1396        if (m->comp && is_kmod_dso(map->dso)) {
1397                map->dso->symtab_type++;
1398                map->dso->comp = m->comp;
1399        }
1400
1401        return 0;
1402}
1403
1404static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1405{
1406        struct dirent *dent;
1407        DIR *dir = opendir(dir_name);
1408        int ret = 0;
1409
1410        if (!dir) {
1411                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1412                return -1;
1413        }
1414
1415        while ((dent = readdir(dir)) != NULL) {
1416                char path[PATH_MAX];
1417                struct stat st;
1418
1419                /*sshfs might return bad dent->d_type, so we have to stat*/
1420                path__join(path, sizeof(path), dir_name, dent->d_name);
1421                if (stat(path, &st))
1422                        continue;
1423
1424                if (S_ISDIR(st.st_mode)) {
1425                        if (!strcmp(dent->d_name, ".") ||
1426                            !strcmp(dent->d_name, ".."))
1427                                continue;
1428
1429                        /* Do not follow top-level source and build symlinks */
1430                        if (depth == 0) {
1431                                if (!strcmp(dent->d_name, "source") ||
1432                                    !strcmp(dent->d_name, "build"))
1433                                        continue;
1434                        }
1435
1436                        ret = maps__set_modules_path_dir(maps, path, depth + 1);
1437                        if (ret < 0)
1438                                goto out;
1439                } else {
1440                        struct kmod_path m;
1441
1442                        ret = kmod_path__parse_name(&m, dent->d_name);
1443                        if (ret)
1444                                goto out;
1445
1446                        if (m.kmod)
1447                                ret = maps__set_module_path(maps, path, &m);
1448
1449                        zfree(&m.name);
1450
1451                        if (ret)
1452                                goto out;
1453                }
1454        }
1455
1456out:
1457        closedir(dir);
1458        return ret;
1459}
1460
1461static int machine__set_modules_path(struct machine *machine)
1462{
1463        char *version;
1464        char modules_path[PATH_MAX];
1465
1466        version = get_kernel_version(machine->root_dir);
1467        if (!version)
1468                return -1;
1469
1470        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1471                 machine->root_dir, version);
1472        free(version);
1473
1474        return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1475}
1476int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1477                                u64 *size __maybe_unused,
1478                                const char *name __maybe_unused)
1479{
1480        return 0;
1481}
1482
1483static int machine__create_module(void *arg, const char *name, u64 start,
1484                                  u64 size)
1485{
1486        struct machine *machine = arg;
1487        struct map *map;
1488
1489        if (arch__fix_module_text_start(&start, &size, name) < 0)
1490                return -1;
1491
1492        map = machine__addnew_module_map(machine, start, name);
1493        if (map == NULL)
1494                return -1;
1495        map->end = start + size;
1496
1497        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1498
1499        return 0;
1500}
1501
1502static int machine__create_modules(struct machine *machine)
1503{
1504        const char *modules;
1505        char path[PATH_MAX];
1506
1507        if (machine__is_default_guest(machine)) {
1508                modules = symbol_conf.default_guest_modules;
1509        } else {
1510                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1511                modules = path;
1512        }
1513
1514        if (symbol__restricted_filename(modules, "/proc/modules"))
1515                return -1;
1516
1517        if (modules__parse(modules, machine, machine__create_module))
1518                return -1;
1519
1520        if (!machine__set_modules_path(machine))
1521                return 0;
1522
1523        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1524
1525        return 0;
1526}
1527
1528static void machine__set_kernel_mmap(struct machine *machine,
1529                                     u64 start, u64 end)
1530{
1531        machine->vmlinux_map->start = start;
1532        machine->vmlinux_map->end   = end;
1533        /*
1534         * Be a bit paranoid here, some perf.data file came with
1535         * a zero sized synthesized MMAP event for the kernel.
1536         */
1537        if (start == 0 && end == 0)
1538                machine->vmlinux_map->end = ~0ULL;
1539}
1540
1541static void machine__update_kernel_mmap(struct machine *machine,
1542                                     u64 start, u64 end)
1543{
1544        struct map *map = machine__kernel_map(machine);
1545
1546        map__get(map);
1547        maps__remove(&machine->kmaps, map);
1548
1549        machine__set_kernel_mmap(machine, start, end);
1550
1551        maps__insert(&machine->kmaps, map);
1552        map__put(map);
1553}
1554
1555int machine__create_kernel_maps(struct machine *machine)
1556{
1557        struct dso *kernel = machine__get_kernel(machine);
1558        const char *name = NULL;
1559        struct map *map;
1560        u64 start = 0, end = ~0ULL;
1561        int ret;
1562
1563        if (kernel == NULL)
1564                return -1;
1565
1566        ret = __machine__create_kernel_maps(machine, kernel);
1567        if (ret < 0)
1568                goto out_put;
1569
1570        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1571                if (machine__is_host(machine))
1572                        pr_debug("Problems creating module maps, "
1573                                 "continuing anyway...\n");
1574                else
1575                        pr_debug("Problems creating module maps for guest %d, "
1576                                 "continuing anyway...\n", machine->pid);
1577        }
1578
1579        if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1580                if (name &&
1581                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1582                        machine__destroy_kernel_maps(machine);
1583                        ret = -1;
1584                        goto out_put;
1585                }
1586
1587                /*
1588                 * we have a real start address now, so re-order the kmaps
1589                 * assume it's the last in the kmaps
1590                 */
1591                machine__update_kernel_mmap(machine, start, end);
1592        }
1593
1594        if (machine__create_extra_kernel_maps(machine, kernel))
1595                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1596
1597        if (end == ~0ULL) {
1598                /* update end address of the kernel map using adjacent module address */
1599                map = map__next(machine__kernel_map(machine));
1600                if (map)
1601                        machine__set_kernel_mmap(machine, start, map->start);
1602        }
1603
1604out_put:
1605        dso__put(kernel);
1606        return ret;
1607}
1608
1609static bool machine__uses_kcore(struct machine *machine)
1610{
1611        struct dso *dso;
1612
1613        list_for_each_entry(dso, &machine->dsos.head, node) {
1614                if (dso__is_kcore(dso))
1615                        return true;
1616        }
1617
1618        return false;
1619}
1620
1621static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1622                                             struct extra_kernel_map *xm)
1623{
1624        return machine__is(machine, "x86_64") &&
1625               is_entry_trampoline(xm->name);
1626}
1627
1628static int machine__process_extra_kernel_map(struct machine *machine,
1629                                             struct extra_kernel_map *xm)
1630{
1631        struct dso *kernel = machine__kernel_dso(machine);
1632
1633        if (kernel == NULL)
1634                return -1;
1635
1636        return machine__create_extra_kernel_map(machine, kernel, xm);
1637}
1638
1639static int machine__process_kernel_mmap_event(struct machine *machine,
1640                                              struct extra_kernel_map *xm,
1641                                              struct build_id *bid)
1642{
1643        struct map *map;
1644        enum dso_space_type dso_space;
1645        bool is_kernel_mmap;
1646
1647        /* If we have maps from kcore then we do not need or want any others */
1648        if (machine__uses_kcore(machine))
1649                return 0;
1650
1651        if (machine__is_host(machine))
1652                dso_space = DSO_SPACE__KERNEL;
1653        else
1654                dso_space = DSO_SPACE__KERNEL_GUEST;
1655
1656        is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1657                                strlen(machine->mmap_name) - 1) == 0;
1658        if (xm->name[0] == '/' ||
1659            (!is_kernel_mmap && xm->name[0] == '[')) {
1660                map = machine__addnew_module_map(machine, xm->start,
1661                                                 xm->name);
1662                if (map == NULL)
1663                        goto out_problem;
1664
1665                map->end = map->start + xm->end - xm->start;
1666
1667                if (build_id__is_defined(bid))
1668                        dso__set_build_id(map->dso, bid);
1669
1670        } else if (is_kernel_mmap) {
1671                const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1672                /*
1673                 * Should be there already, from the build-id table in
1674                 * the header.
1675                 */
1676                struct dso *kernel = NULL;
1677                struct dso *dso;
1678
1679                down_read(&machine->dsos.lock);
1680
1681                list_for_each_entry(dso, &machine->dsos.head, node) {
1682
1683                        /*
1684                         * The cpumode passed to is_kernel_module is not the
1685                         * cpumode of *this* event. If we insist on passing
1686                         * correct cpumode to is_kernel_module, we should
1687                         * record the cpumode when we adding this dso to the
1688                         * linked list.
1689                         *
1690                         * However we don't really need passing correct
1691                         * cpumode.  We know the correct cpumode must be kernel
1692                         * mode (if not, we should not link it onto kernel_dsos
1693                         * list).
1694                         *
1695                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1696                         * is_kernel_module() treats it as a kernel cpumode.
1697                         */
1698
1699                        if (!dso->kernel ||
1700                            is_kernel_module(dso->long_name,
1701                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1702                                continue;
1703
1704
1705                        kernel = dso;
1706                        break;
1707                }
1708
1709                up_read(&machine->dsos.lock);
1710
1711                if (kernel == NULL)
1712                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1713                if (kernel == NULL)
1714                        goto out_problem;
1715
1716                kernel->kernel = dso_space;
1717                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1718                        dso__put(kernel);
1719                        goto out_problem;
1720                }
1721
1722                if (strstr(kernel->long_name, "vmlinux"))
1723                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1724
1725                machine__update_kernel_mmap(machine, xm->start, xm->end);
1726
1727                if (build_id__is_defined(bid))
1728                        dso__set_build_id(kernel, bid);
1729
1730                /*
1731                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1732                 * symbol. Effectively having zero here means that at record
1733                 * time /proc/sys/kernel/kptr_restrict was non zero.
1734                 */
1735                if (xm->pgoff != 0) {
1736                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1737                                                        symbol_name,
1738                                                        xm->pgoff);
1739                }
1740
1741                if (machine__is_default_guest(machine)) {
1742                        /*
1743                         * preload dso of guest kernel and modules
1744                         */
1745                        dso__load(kernel, machine__kernel_map(machine));
1746                }
1747        } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1748                return machine__process_extra_kernel_map(machine, xm);
1749        }
1750        return 0;
1751out_problem:
1752        return -1;
1753}
1754
1755int machine__process_mmap2_event(struct machine *machine,
1756                                 union perf_event *event,
1757                                 struct perf_sample *sample)
1758{
1759        struct thread *thread;
1760        struct map *map;
1761        struct dso_id dso_id = {
1762                .maj = event->mmap2.maj,
1763                .min = event->mmap2.min,
1764                .ino = event->mmap2.ino,
1765                .ino_generation = event->mmap2.ino_generation,
1766        };
1767        struct build_id __bid, *bid = NULL;
1768        int ret = 0;
1769
1770        if (dump_trace)
1771                perf_event__fprintf_mmap2(event, stdout);
1772
1773        if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1774                bid = &__bid;
1775                build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1776        }
1777
1778        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1779            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1780                struct extra_kernel_map xm = {
1781                        .start = event->mmap2.start,
1782                        .end   = event->mmap2.start + event->mmap2.len,
1783                        .pgoff = event->mmap2.pgoff,
1784                };
1785
1786                strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1787                ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1788                if (ret < 0)
1789                        goto out_problem;
1790                return 0;
1791        }
1792
1793        thread = machine__findnew_thread(machine, event->mmap2.pid,
1794                                        event->mmap2.tid);
1795        if (thread == NULL)
1796                goto out_problem;
1797
1798        map = map__new(machine, event->mmap2.start,
1799                        event->mmap2.len, event->mmap2.pgoff,
1800                        &dso_id, event->mmap2.prot,
1801                        event->mmap2.flags, bid,
1802                        event->mmap2.filename, thread);
1803
1804        if (map == NULL)
1805                goto out_problem_map;
1806
1807        ret = thread__insert_map(thread, map);
1808        if (ret)
1809                goto out_problem_insert;
1810
1811        thread__put(thread);
1812        map__put(map);
1813        return 0;
1814
1815out_problem_insert:
1816        map__put(map);
1817out_problem_map:
1818        thread__put(thread);
1819out_problem:
1820        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1821        return 0;
1822}
1823
1824int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1825                                struct perf_sample *sample)
1826{
1827        struct thread *thread;
1828        struct map *map;
1829        u32 prot = 0;
1830        int ret = 0;
1831
1832        if (dump_trace)
1833                perf_event__fprintf_mmap(event, stdout);
1834
1835        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1836            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1837                struct extra_kernel_map xm = {
1838                        .start = event->mmap.start,
1839                        .end   = event->mmap.start + event->mmap.len,
1840                        .pgoff = event->mmap.pgoff,
1841                };
1842
1843                strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1844                ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1845                if (ret < 0)
1846                        goto out_problem;
1847                return 0;
1848        }
1849
1850        thread = machine__findnew_thread(machine, event->mmap.pid,
1851                                         event->mmap.tid);
1852        if (thread == NULL)
1853                goto out_problem;
1854
1855        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1856                prot = PROT_EXEC;
1857
1858        map = map__new(machine, event->mmap.start,
1859                        event->mmap.len, event->mmap.pgoff,
1860                        NULL, prot, 0, NULL, event->mmap.filename, thread);
1861
1862        if (map == NULL)
1863                goto out_problem_map;
1864
1865        ret = thread__insert_map(thread, map);
1866        if (ret)
1867                goto out_problem_insert;
1868
1869        thread__put(thread);
1870        map__put(map);
1871        return 0;
1872
1873out_problem_insert:
1874        map__put(map);
1875out_problem_map:
1876        thread__put(thread);
1877out_problem:
1878        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1879        return 0;
1880}
1881
1882static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1883{
1884        struct threads *threads = machine__threads(machine, th->tid);
1885
1886        if (threads->last_match == th)
1887                threads__set_last_match(threads, NULL);
1888
1889        if (lock)
1890                down_write(&threads->lock);
1891
1892        BUG_ON(refcount_read(&th->refcnt) == 0);
1893
1894        rb_erase_cached(&th->rb_node, &threads->entries);
1895        RB_CLEAR_NODE(&th->rb_node);
1896        --threads->nr;
1897        /*
1898         * Move it first to the dead_threads list, then drop the reference,
1899         * if this is the last reference, then the thread__delete destructor
1900         * will be called and we will remove it from the dead_threads list.
1901         */
1902        list_add_tail(&th->node, &threads->dead);
1903
1904        /*
1905         * We need to do the put here because if this is the last refcount,
1906         * then we will be touching the threads->dead head when removing the
1907         * thread.
1908         */
1909        thread__put(th);
1910
1911        if (lock)
1912                up_write(&threads->lock);
1913}
1914
1915void machine__remove_thread(struct machine *machine, struct thread *th)
1916{
1917        return __machine__remove_thread(machine, th, true);
1918}
1919
1920int machine__process_fork_event(struct machine *machine, union perf_event *event,
1921                                struct perf_sample *sample)
1922{
1923        struct thread *thread = machine__find_thread(machine,
1924                                                     event->fork.pid,
1925                                                     event->fork.tid);
1926        struct thread *parent = machine__findnew_thread(machine,
1927                                                        event->fork.ppid,
1928                                                        event->fork.ptid);
1929        bool do_maps_clone = true;
1930        int err = 0;
1931
1932        if (dump_trace)
1933                perf_event__fprintf_task(event, stdout);
1934
1935        /*
1936         * There may be an existing thread that is not actually the parent,
1937         * either because we are processing events out of order, or because the
1938         * (fork) event that would have removed the thread was lost. Assume the
1939         * latter case and continue on as best we can.
1940         */
1941        if (parent->pid_ != (pid_t)event->fork.ppid) {
1942                dump_printf("removing erroneous parent thread %d/%d\n",
1943                            parent->pid_, parent->tid);
1944                machine__remove_thread(machine, parent);
1945                thread__put(parent);
1946                parent = machine__findnew_thread(machine, event->fork.ppid,
1947                                                 event->fork.ptid);
1948        }
1949
1950        /* if a thread currently exists for the thread id remove it */
1951        if (thread != NULL) {
1952                machine__remove_thread(machine, thread);
1953                thread__put(thread);
1954        }
1955
1956        thread = machine__findnew_thread(machine, event->fork.pid,
1957                                         event->fork.tid);
1958        /*
1959         * When synthesizing FORK events, we are trying to create thread
1960         * objects for the already running tasks on the machine.
1961         *
1962         * Normally, for a kernel FORK event, we want to clone the parent's
1963         * maps because that is what the kernel just did.
1964         *
1965         * But when synthesizing, this should not be done.  If we do, we end up
1966         * with overlapping maps as we process the synthesized MMAP2 events that
1967         * get delivered shortly thereafter.
1968         *
1969         * Use the FORK event misc flags in an internal way to signal this
1970         * situation, so we can elide the map clone when appropriate.
1971         */
1972        if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1973                do_maps_clone = false;
1974
1975        if (thread == NULL || parent == NULL ||
1976            thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1977                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1978                err = -1;
1979        }
1980        thread__put(thread);
1981        thread__put(parent);
1982
1983        return err;
1984}
1985
1986int machine__process_exit_event(struct machine *machine, union perf_event *event,
1987                                struct perf_sample *sample __maybe_unused)
1988{
1989        struct thread *thread = machine__find_thread(machine,
1990                                                     event->fork.pid,
1991                                                     event->fork.tid);
1992
1993        if (dump_trace)
1994                perf_event__fprintf_task(event, stdout);
1995
1996        if (thread != NULL) {
1997                thread__exited(thread);
1998                thread__put(thread);
1999        }
2000
2001        return 0;
2002}
2003
2004int machine__process_event(struct machine *machine, union perf_event *event,
2005                           struct perf_sample *sample)
2006{
2007        int ret;
2008
2009        switch (event->header.type) {
2010        case PERF_RECORD_COMM:
2011                ret = machine__process_comm_event(machine, event, sample); break;
2012        case PERF_RECORD_MMAP:
2013                ret = machine__process_mmap_event(machine, event, sample); break;
2014        case PERF_RECORD_NAMESPACES:
2015                ret = machine__process_namespaces_event(machine, event, sample); break;
2016        case PERF_RECORD_CGROUP:
2017                ret = machine__process_cgroup_event(machine, event, sample); break;
2018        case PERF_RECORD_MMAP2:
2019                ret = machine__process_mmap2_event(machine, event, sample); break;
2020        case PERF_RECORD_FORK:
2021                ret = machine__process_fork_event(machine, event, sample); break;
2022        case PERF_RECORD_EXIT:
2023                ret = machine__process_exit_event(machine, event, sample); break;
2024        case PERF_RECORD_LOST:
2025                ret = machine__process_lost_event(machine, event, sample); break;
2026        case PERF_RECORD_AUX:
2027                ret = machine__process_aux_event(machine, event); break;
2028        case PERF_RECORD_ITRACE_START:
2029                ret = machine__process_itrace_start_event(machine, event); break;
2030        case PERF_RECORD_LOST_SAMPLES:
2031                ret = machine__process_lost_samples_event(machine, event, sample); break;
2032        case PERF_RECORD_SWITCH:
2033        case PERF_RECORD_SWITCH_CPU_WIDE:
2034                ret = machine__process_switch_event(machine, event); break;
2035        case PERF_RECORD_KSYMBOL:
2036                ret = machine__process_ksymbol(machine, event, sample); break;
2037        case PERF_RECORD_BPF_EVENT:
2038                ret = machine__process_bpf(machine, event, sample); break;
2039        case PERF_RECORD_TEXT_POKE:
2040                ret = machine__process_text_poke(machine, event, sample); break;
2041        case PERF_RECORD_AUX_OUTPUT_HW_ID:
2042                ret = machine__process_aux_output_hw_id_event(machine, event); break;
2043        default:
2044                ret = -1;
2045                break;
2046        }
2047
2048        return ret;
2049}
2050
2051static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2052{
2053        if (!regexec(regex, sym->name, 0, NULL, 0))
2054                return true;
2055        return false;
2056}
2057
2058static void ip__resolve_ams(struct thread *thread,
2059                            struct addr_map_symbol *ams,
2060                            u64 ip)
2061{
2062        struct addr_location al;
2063
2064        memset(&al, 0, sizeof(al));
2065        /*
2066         * We cannot use the header.misc hint to determine whether a
2067         * branch stack address is user, kernel, guest, hypervisor.
2068         * Branches may straddle the kernel/user/hypervisor boundaries.
2069         * Thus, we have to try consecutively until we find a match
2070         * or else, the symbol is unknown
2071         */
2072        thread__find_cpumode_addr_location(thread, ip, &al);
2073
2074        ams->addr = ip;
2075        ams->al_addr = al.addr;
2076        ams->al_level = al.level;
2077        ams->ms.maps = al.maps;
2078        ams->ms.sym = al.sym;
2079        ams->ms.map = al.map;
2080        ams->phys_addr = 0;
2081        ams->data_page_size = 0;
2082}
2083
2084static void ip__resolve_data(struct thread *thread,
2085                             u8 m, struct addr_map_symbol *ams,
2086                             u64 addr, u64 phys_addr, u64 daddr_page_size)
2087{
2088        struct addr_location al;
2089
2090        memset(&al, 0, sizeof(al));
2091
2092        thread__find_symbol(thread, m, addr, &al);
2093
2094        ams->addr = addr;
2095        ams->al_addr = al.addr;
2096        ams->al_level = al.level;
2097        ams->ms.maps = al.maps;
2098        ams->ms.sym = al.sym;
2099        ams->ms.map = al.map;
2100        ams->phys_addr = phys_addr;
2101        ams->data_page_size = daddr_page_size;
2102}
2103
2104struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2105                                     struct addr_location *al)
2106{
2107        struct mem_info *mi = mem_info__new();
2108
2109        if (!mi)
2110                return NULL;
2111
2112        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2113        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2114                         sample->addr, sample->phys_addr,
2115                         sample->data_page_size);
2116        mi->data_src.val = sample->data_src;
2117
2118        return mi;
2119}
2120
2121static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2122{
2123        struct map *map = ms->map;
2124        char *srcline = NULL;
2125
2126        if (!map || callchain_param.key == CCKEY_FUNCTION)
2127                return srcline;
2128
2129        srcline = srcline__tree_find(&map->dso->srclines, ip);
2130        if (!srcline) {
2131                bool show_sym = false;
2132                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2133
2134                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2135                                      ms->sym, show_sym, show_addr, ip);
2136                srcline__tree_insert(&map->dso->srclines, ip, srcline);
2137        }
2138
2139        return srcline;
2140}
2141
2142struct iterations {
2143        int nr_loop_iter;
2144        u64 cycles;
2145};
2146
2147static int add_callchain_ip(struct thread *thread,
2148                            struct callchain_cursor *cursor,
2149                            struct symbol **parent,
2150                            struct addr_location *root_al,
2151                            u8 *cpumode,
2152                            u64 ip,
2153                            bool branch,
2154                            struct branch_flags *flags,
2155                            struct iterations *iter,
2156                            u64 branch_from)
2157{
2158        struct map_symbol ms;
2159        struct addr_location al;
2160        int nr_loop_iter = 0;
2161        u64 iter_cycles = 0;
2162        const char *srcline = NULL;
2163
2164        al.filtered = 0;
2165        al.sym = NULL;
2166        al.srcline = NULL;
2167        if (!cpumode) {
2168                thread__find_cpumode_addr_location(thread, ip, &al);
2169        } else {
2170                if (ip >= PERF_CONTEXT_MAX) {
2171                        switch (ip) {
2172                        case PERF_CONTEXT_HV:
2173                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2174                                break;
2175                        case PERF_CONTEXT_KERNEL:
2176                                *cpumode = PERF_RECORD_MISC_KERNEL;
2177                                break;
2178                        case PERF_CONTEXT_USER:
2179                                *cpumode = PERF_RECORD_MISC_USER;
2180                                break;
2181                        default:
2182                                pr_debug("invalid callchain context: "
2183                                         "%"PRId64"\n", (s64) ip);
2184                                /*
2185                                 * It seems the callchain is corrupted.
2186                                 * Discard all.
2187                                 */
2188                                callchain_cursor_reset(cursor);
2189                                return 1;
2190                        }
2191                        return 0;
2192                }
2193                thread__find_symbol(thread, *cpumode, ip, &al);
2194        }
2195
2196        if (al.sym != NULL) {
2197                if (perf_hpp_list.parent && !*parent &&
2198                    symbol__match_regex(al.sym, &parent_regex))
2199                        *parent = al.sym;
2200                else if (have_ignore_callees && root_al &&
2201                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2202                        /* Treat this symbol as the root,
2203                           forgetting its callees. */
2204                        *root_al = al;
2205                        callchain_cursor_reset(cursor);
2206                }
2207        }
2208
2209        if (symbol_conf.hide_unresolved && al.sym == NULL)
2210                return 0;
2211
2212        if (iter) {
2213                nr_loop_iter = iter->nr_loop_iter;
2214                iter_cycles = iter->cycles;
2215        }
2216
2217        ms.maps = al.maps;
2218        ms.map = al.map;
2219        ms.sym = al.sym;
2220        srcline = callchain_srcline(&ms, al.addr);
2221        return callchain_cursor_append(cursor, ip, &ms,
2222                                       branch, flags, nr_loop_iter,
2223                                       iter_cycles, branch_from, srcline);
2224}
2225
2226struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2227                                           struct addr_location *al)
2228{
2229        unsigned int i;
2230        const struct branch_stack *bs = sample->branch_stack;
2231        struct branch_entry *entries = perf_sample__branch_entries(sample);
2232        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2233
2234        if (!bi)
2235                return NULL;
2236
2237        for (i = 0; i < bs->nr; i++) {
2238                ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2239                ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2240                bi[i].flags = entries[i].flags;
2241        }
2242        return bi;
2243}
2244
2245static void save_iterations(struct iterations *iter,
2246                            struct branch_entry *be, int nr)
2247{
2248        int i;
2249
2250        iter->nr_loop_iter++;
2251        iter->cycles = 0;
2252
2253        for (i = 0; i < nr; i++)
2254                iter->cycles += be[i].flags.cycles;
2255}
2256
2257#define CHASHSZ 127
2258#define CHASHBITS 7
2259#define NO_ENTRY 0xff
2260
2261#define PERF_MAX_BRANCH_DEPTH 127
2262
2263/* Remove loops. */
2264static int remove_loops(struct branch_entry *l, int nr,
2265                        struct iterations *iter)
2266{
2267        int i, j, off;
2268        unsigned char chash[CHASHSZ];
2269
2270        memset(chash, NO_ENTRY, sizeof(chash));
2271
2272        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2273
2274        for (i = 0; i < nr; i++) {
2275                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2276
2277                /* no collision handling for now */
2278                if (chash[h] == NO_ENTRY) {
2279                        chash[h] = i;
2280                } else if (l[chash[h]].from == l[i].from) {
2281                        bool is_loop = true;
2282                        /* check if it is a real loop */
2283                        off = 0;
2284                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2285                                if (l[j].from != l[i + off].from) {
2286                                        is_loop = false;
2287                                        break;
2288                                }
2289                        if (is_loop) {
2290                                j = nr - (i + off);
2291                                if (j > 0) {
2292                                        save_iterations(iter + i + off,
2293                                                l + i, off);
2294
2295                                        memmove(iter + i, iter + i + off,
2296                                                j * sizeof(*iter));
2297
2298                                        memmove(l + i, l + i + off,
2299                                                j * sizeof(*l));
2300                                }
2301
2302                                nr -= off;
2303                        }
2304                }
2305        }
2306        return nr;
2307}
2308
2309static int lbr_callchain_add_kernel_ip(struct thread *thread,
2310                                       struct callchain_cursor *cursor,
2311                                       struct perf_sample *sample,
2312                                       struct symbol **parent,
2313                                       struct addr_location *root_al,
2314                                       u64 branch_from,
2315                                       bool callee, int end)
2316{
2317        struct ip_callchain *chain = sample->callchain;
2318        u8 cpumode = PERF_RECORD_MISC_USER;
2319        int err, i;
2320
2321        if (callee) {
2322                for (i = 0; i < end + 1; i++) {
2323                        err = add_callchain_ip(thread, cursor, parent,
2324                                               root_al, &cpumode, chain->ips[i],
2325                                               false, NULL, NULL, branch_from);
2326                        if (err)
2327                                return err;
2328                }
2329                return 0;
2330        }
2331
2332        for (i = end; i >= 0; i--) {
2333                err = add_callchain_ip(thread, cursor, parent,
2334                                       root_al, &cpumode, chain->ips[i],
2335                                       false, NULL, NULL, branch_from);
2336                if (err)
2337                        return err;
2338        }
2339
2340        return 0;
2341}
2342
2343static void save_lbr_cursor_node(struct thread *thread,
2344                                 struct callchain_cursor *cursor,
2345                                 int idx)
2346{
2347        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2348
2349        if (!lbr_stitch)
2350                return;
2351
2352        if (cursor->pos == cursor->nr) {
2353                lbr_stitch->prev_lbr_cursor[idx].valid = false;
2354                return;
2355        }
2356
2357        if (!cursor->curr)
2358                cursor->curr = cursor->first;
2359        else
2360                cursor->curr = cursor->curr->next;
2361        memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2362               sizeof(struct callchain_cursor_node));
2363
2364        lbr_stitch->prev_lbr_cursor[idx].valid = true;
2365        cursor->pos++;
2366}
2367
2368static int lbr_callchain_add_lbr_ip(struct thread *thread,
2369                                    struct callchain_cursor *cursor,
2370                                    struct perf_sample *sample,
2371                                    struct symbol **parent,
2372                                    struct addr_location *root_al,
2373                                    u64 *branch_from,
2374                                    bool callee)
2375{
2376        struct branch_stack *lbr_stack = sample->branch_stack;
2377        struct branch_entry *entries = perf_sample__branch_entries(sample);
2378        u8 cpumode = PERF_RECORD_MISC_USER;
2379        int lbr_nr = lbr_stack->nr;
2380        struct branch_flags *flags;
2381        int err, i;
2382        u64 ip;
2383
2384        /*
2385         * The curr and pos are not used in writing session. They are cleared
2386         * in callchain_cursor_commit() when the writing session is closed.
2387         * Using curr and pos to track the current cursor node.
2388         */
2389        if (thread->lbr_stitch) {
2390                cursor->curr = NULL;
2391                cursor->pos = cursor->nr;
2392                if (cursor->nr) {
2393                        cursor->curr = cursor->first;
2394                        for (i = 0; i < (int)(cursor->nr - 1); i++)
2395                                cursor->curr = cursor->curr->next;
2396                }
2397        }
2398
2399        if (callee) {
2400                /* Add LBR ip from first entries.to */
2401                ip = entries[0].to;
2402                flags = &entries[0].flags;
2403                *branch_from = entries[0].from;
2404                err = add_callchain_ip(thread, cursor, parent,
2405                                       root_al, &cpumode, ip,
2406                                       true, flags, NULL,
2407                                       *branch_from);
2408                if (err)
2409                        return err;
2410
2411                /*
2412                 * The number of cursor node increases.
2413                 * Move the current cursor node.
2414                 * But does not need to save current cursor node for entry 0.
2415                 * It's impossible to stitch the whole LBRs of previous sample.
2416                 */
2417                if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2418                        if (!cursor->curr)
2419                                cursor->curr = cursor->first;
2420                        else
2421                                cursor->curr = cursor->curr->next;
2422                        cursor->pos++;
2423                }
2424
2425                /* Add LBR ip from entries.from one by one. */
2426                for (i = 0; i < lbr_nr; i++) {
2427                        ip = entries[i].from;
2428                        flags = &entries[i].flags;
2429                        err = add_callchain_ip(thread, cursor, parent,
2430                                               root_al, &cpumode, ip,
2431                                               true, flags, NULL,
2432                                               *branch_from);
2433                        if (err)
2434                                return err;
2435                        save_lbr_cursor_node(thread, cursor, i);
2436                }
2437                return 0;
2438        }
2439
2440        /* Add LBR ip from entries.from one by one. */
2441        for (i = lbr_nr - 1; i >= 0; i--) {
2442                ip = entries[i].from;
2443                flags = &entries[i].flags;
2444                err = add_callchain_ip(thread, cursor, parent,
2445                                       root_al, &cpumode, ip,
2446                                       true, flags, NULL,
2447                                       *branch_from);
2448                if (err)
2449                        return err;
2450                save_lbr_cursor_node(thread, cursor, i);
2451        }
2452
2453        /* Add LBR ip from first entries.to */
2454        ip = entries[0].to;
2455        flags = &entries[0].flags;
2456        *branch_from = entries[0].from;
2457        err = add_callchain_ip(thread, cursor, parent,
2458                               root_al, &cpumode, ip,
2459                               true, flags, NULL,
2460                               *branch_from);
2461        if (err)
2462                return err;
2463
2464        return 0;
2465}
2466
2467static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2468                                             struct callchain_cursor *cursor)
2469{
2470        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2471        struct callchain_cursor_node *cnode;
2472        struct stitch_list *stitch_node;
2473        int err;
2474
2475        list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2476                cnode = &stitch_node->cursor;
2477
2478                err = callchain_cursor_append(cursor, cnode->ip,
2479                                              &cnode->ms,
2480                                              cnode->branch,
2481                                              &cnode->branch_flags,
2482                                              cnode->nr_loop_iter,
2483                                              cnode->iter_cycles,
2484                                              cnode->branch_from,
2485                                              cnode->srcline);
2486                if (err)
2487                        return err;
2488        }
2489        return 0;
2490}
2491
2492static struct stitch_list *get_stitch_node(struct thread *thread)
2493{
2494        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2495        struct stitch_list *stitch_node;
2496
2497        if (!list_empty(&lbr_stitch->free_lists)) {
2498                stitch_node = list_first_entry(&lbr_stitch->free_lists,
2499                                               struct stitch_list, node);
2500                list_del(&stitch_node->node);
2501
2502                return stitch_node;
2503        }
2504
2505        return malloc(sizeof(struct stitch_list));
2506}
2507
2508static bool has_stitched_lbr(struct thread *thread,
2509                             struct perf_sample *cur,
2510                             struct perf_sample *prev,
2511                             unsigned int max_lbr,
2512                             bool callee)
2513{
2514        struct branch_stack *cur_stack = cur->branch_stack;
2515        struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2516        struct branch_stack *prev_stack = prev->branch_stack;
2517        struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2518        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2519        int i, j, nr_identical_branches = 0;
2520        struct stitch_list *stitch_node;
2521        u64 cur_base, distance;
2522
2523        if (!cur_stack || !prev_stack)
2524                return false;
2525
2526        /* Find the physical index of the base-of-stack for current sample. */
2527        cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2528
2529        distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2530                                                     (max_lbr + prev_stack->hw_idx - cur_base);
2531        /* Previous sample has shorter stack. Nothing can be stitched. */
2532        if (distance + 1 > prev_stack->nr)
2533                return false;
2534
2535        /*
2536         * Check if there are identical LBRs between two samples.
2537         * Identical LBRs must have same from, to and flags values. Also,
2538         * they have to be saved in the same LBR registers (same physical
2539         * index).
2540         *
2541         * Starts from the base-of-stack of current sample.
2542         */
2543        for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2544                if ((prev_entries[i].from != cur_entries[j].from) ||
2545                    (prev_entries[i].to != cur_entries[j].to) ||
2546                    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2547                        break;
2548                nr_identical_branches++;
2549        }
2550
2551        if (!nr_identical_branches)
2552                return false;
2553
2554        /*
2555         * Save the LBRs between the base-of-stack of previous sample
2556         * and the base-of-stack of current sample into lbr_stitch->lists.
2557         * These LBRs will be stitched later.
2558         */
2559        for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2560
2561                if (!lbr_stitch->prev_lbr_cursor[i].valid)
2562                        continue;
2563
2564                stitch_node = get_stitch_node(thread);
2565                if (!stitch_node)
2566                        return false;
2567
2568                memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2569                       sizeof(struct callchain_cursor_node));
2570
2571                if (callee)
2572                        list_add(&stitch_node->node, &lbr_stitch->lists);
2573                else
2574                        list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2575        }
2576
2577        return true;
2578}
2579
2580static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2581{
2582        if (thread->lbr_stitch)
2583                return true;
2584
2585        thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2586        if (!thread->lbr_stitch)
2587                goto err;
2588
2589        thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2590        if (!thread->lbr_stitch->prev_lbr_cursor)
2591                goto free_lbr_stitch;
2592
2593        INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2594        INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2595
2596        return true;
2597
2598free_lbr_stitch:
2599        zfree(&thread->lbr_stitch);
2600err:
2601        pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2602        thread->lbr_stitch_enable = false;
2603        return false;
2604}
2605
2606/*
2607 * Resolve LBR callstack chain sample
2608 * Return:
2609 * 1 on success get LBR callchain information
2610 * 0 no available LBR callchain information, should try fp
2611 * negative error code on other errors.
2612 */
2613static int resolve_lbr_callchain_sample(struct thread *thread,
2614                                        struct callchain_cursor *cursor,
2615                                        struct perf_sample *sample,
2616                                        struct symbol **parent,
2617                                        struct addr_location *root_al,
2618                                        int max_stack,
2619                                        unsigned int max_lbr)
2620{
2621        bool callee = (callchain_param.order == ORDER_CALLEE);
2622        struct ip_callchain *chain = sample->callchain;
2623        int chain_nr = min(max_stack, (int)chain->nr), i;
2624        struct lbr_stitch *lbr_stitch;
2625        bool stitched_lbr = false;
2626        u64 branch_from = 0;
2627        int err;
2628
2629        for (i = 0; i < chain_nr; i++) {
2630                if (chain->ips[i] == PERF_CONTEXT_USER)
2631                        break;
2632        }
2633
2634        /* LBR only affects the user callchain */
2635        if (i == chain_nr)
2636                return 0;
2637
2638        if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2639            (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2640                lbr_stitch = thread->lbr_stitch;
2641
2642                stitched_lbr = has_stitched_lbr(thread, sample,
2643                                                &lbr_stitch->prev_sample,
2644                                                max_lbr, callee);
2645
2646                if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2647                        list_replace_init(&lbr_stitch->lists,
2648                                          &lbr_stitch->free_lists);
2649                }
2650                memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2651        }
2652
2653        if (callee) {
2654                /* Add kernel ip */
2655                err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2656                                                  parent, root_al, branch_from,
2657                                                  true, i);
2658                if (err)
2659                        goto error;
2660
2661                err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2662                                               root_al, &branch_from, true);
2663                if (err)
2664                        goto error;
2665
2666                if (stitched_lbr) {
2667                        err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2668                        if (err)
2669                                goto error;
2670                }
2671
2672        } else {
2673                if (stitched_lbr) {
2674                        err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2675                        if (err)
2676                                goto error;
2677                }
2678                err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2679                                               root_al, &branch_from, false);
2680                if (err)
2681                        goto error;
2682
2683                /* Add kernel ip */
2684                err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2685                                                  parent, root_al, branch_from,
2686                                                  false, i);
2687                if (err)
2688                        goto error;
2689        }
2690        return 1;
2691
2692error:
2693        return (err < 0) ? err : 0;
2694}
2695
2696static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2697                             struct callchain_cursor *cursor,
2698                             struct symbol **parent,
2699                             struct addr_location *root_al,
2700                             u8 *cpumode, int ent)
2701{
2702        int err = 0;
2703
2704        while (--ent >= 0) {
2705                u64 ip = chain->ips[ent];
2706
2707                if (ip >= PERF_CONTEXT_MAX) {
2708                        err = add_callchain_ip(thread, cursor, parent,
2709                                               root_al, cpumode, ip,
2710                                               false, NULL, NULL, 0);
2711                        break;
2712                }
2713        }
2714        return err;
2715}
2716
2717static u64 get_leaf_frame_caller(struct perf_sample *sample,
2718                struct thread *thread, int usr_idx)
2719{
2720        if (machine__normalized_is(thread->maps->machine, "arm64"))
2721                return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2722        else
2723                return 0;
2724}
2725
2726static int thread__resolve_callchain_sample(struct thread *thread,
2727                                            struct callchain_cursor *cursor,
2728                                            struct evsel *evsel,
2729                                            struct perf_sample *sample,
2730                                            struct symbol **parent,
2731                                            struct addr_location *root_al,
2732                                            int max_stack)
2733{
2734        struct branch_stack *branch = sample->branch_stack;
2735        struct branch_entry *entries = perf_sample__branch_entries(sample);
2736        struct ip_callchain *chain = sample->callchain;
2737        int chain_nr = 0;
2738        u8 cpumode = PERF_RECORD_MISC_USER;
2739        int i, j, err, nr_entries, usr_idx;
2740        int skip_idx = -1;
2741        int first_call = 0;
2742        u64 leaf_frame_caller;
2743
2744        if (chain)
2745                chain_nr = chain->nr;
2746
2747        if (evsel__has_branch_callstack(evsel)) {
2748                struct perf_env *env = evsel__env(evsel);
2749
2750                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2751                                                   root_al, max_stack,
2752                                                   !env ? 0 : env->max_branches);
2753                if (err)
2754                        return (err < 0) ? err : 0;
2755        }
2756
2757        /*
2758         * Based on DWARF debug information, some architectures skip
2759         * a callchain entry saved by the kernel.
2760         */
2761        skip_idx = arch_skip_callchain_idx(thread, chain);
2762
2763        /*
2764         * Add branches to call stack for easier browsing. This gives
2765         * more context for a sample than just the callers.
2766         *
2767         * This uses individual histograms of paths compared to the
2768         * aggregated histograms the normal LBR mode uses.
2769         *
2770         * Limitations for now:
2771         * - No extra filters
2772         * - No annotations (should annotate somehow)
2773         */
2774
2775        if (branch && callchain_param.branch_callstack) {
2776                int nr = min(max_stack, (int)branch->nr);
2777                struct branch_entry be[nr];
2778                struct iterations iter[nr];
2779
2780                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2781                        pr_warning("corrupted branch chain. skipping...\n");
2782                        goto check_calls;
2783                }
2784
2785                for (i = 0; i < nr; i++) {
2786                        if (callchain_param.order == ORDER_CALLEE) {
2787                                be[i] = entries[i];
2788
2789                                if (chain == NULL)
2790                                        continue;
2791
2792                                /*
2793                                 * Check for overlap into the callchain.
2794                                 * The return address is one off compared to
2795                                 * the branch entry. To adjust for this
2796                                 * assume the calling instruction is not longer
2797                                 * than 8 bytes.
2798                                 */
2799                                if (i == skip_idx ||
2800                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2801                                        first_call++;
2802                                else if (be[i].from < chain->ips[first_call] &&
2803                                    be[i].from >= chain->ips[first_call] - 8)
2804                                        first_call++;
2805                        } else
2806                                be[i] = entries[branch->nr - i - 1];
2807                }
2808
2809                memset(iter, 0, sizeof(struct iterations) * nr);
2810                nr = remove_loops(be, nr, iter);
2811
2812                for (i = 0; i < nr; i++) {
2813                        err = add_callchain_ip(thread, cursor, parent,
2814                                               root_al,
2815                                               NULL, be[i].to,
2816                                               true, &be[i].flags,
2817                                               NULL, be[i].from);
2818
2819                        if (!err)
2820                                err = add_callchain_ip(thread, cursor, parent, root_al,
2821                                                       NULL, be[i].from,
2822                                                       true, &be[i].flags,
2823                                                       &iter[i], 0);
2824                        if (err == -EINVAL)
2825                                break;
2826                        if (err)
2827                                return err;
2828                }
2829
2830                if (chain_nr == 0)
2831                        return 0;
2832
2833                chain_nr -= nr;
2834        }
2835
2836check_calls:
2837        if (chain && callchain_param.order != ORDER_CALLEE) {
2838                err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2839                                        &cpumode, chain->nr - first_call);
2840                if (err)
2841                        return (err < 0) ? err : 0;
2842        }
2843        for (i = first_call, nr_entries = 0;
2844             i < chain_nr && nr_entries < max_stack; i++) {
2845                u64 ip;
2846
2847                if (callchain_param.order == ORDER_CALLEE)
2848                        j = i;
2849                else
2850                        j = chain->nr - i - 1;
2851
2852#ifdef HAVE_SKIP_CALLCHAIN_IDX
2853                if (j == skip_idx)
2854                        continue;
2855#endif
2856                ip = chain->ips[j];
2857                if (ip < PERF_CONTEXT_MAX)
2858                       ++nr_entries;
2859                else if (callchain_param.order != ORDER_CALLEE) {
2860                        err = find_prev_cpumode(chain, thread, cursor, parent,
2861                                                root_al, &cpumode, j);
2862                        if (err)
2863                                return (err < 0) ? err : 0;
2864                        continue;
2865                }
2866
2867                /*
2868                 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2869                 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2870                 * the index will be different in order to add the missing frame
2871                 * at the right place.
2872                 */
2873
2874                usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2875
2876                if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2877
2878                        leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2879
2880                        /*
2881                         * check if leaf_frame_Caller != ip to not add the same
2882                         * value twice.
2883                         */
2884
2885                        if (leaf_frame_caller && leaf_frame_caller != ip) {
2886
2887                                err = add_callchain_ip(thread, cursor, parent,
2888                                               root_al, &cpumode, leaf_frame_caller,
2889                                               false, NULL, NULL, 0);
2890                                if (err)
2891                                        return (err < 0) ? err : 0;
2892                        }
2893                }
2894
2895                err = add_callchain_ip(thread, cursor, parent,
2896                                       root_al, &cpumode, ip,
2897                                       false, NULL, NULL, 0);
2898
2899                if (err)
2900                        return (err < 0) ? err : 0;
2901        }
2902
2903        return 0;
2904}
2905
2906static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2907{
2908        struct symbol *sym = ms->sym;
2909        struct map *map = ms->map;
2910        struct inline_node *inline_node;
2911        struct inline_list *ilist;
2912        u64 addr;
2913        int ret = 1;
2914
2915        if (!symbol_conf.inline_name || !map || !sym)
2916                return ret;
2917
2918        addr = map__map_ip(map, ip);
2919        addr = map__rip_2objdump(map, addr);
2920
2921        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2922        if (!inline_node) {
2923                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2924                if (!inline_node)
2925                        return ret;
2926                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2927        }
2928
2929        list_for_each_entry(ilist, &inline_node->val, list) {
2930                struct map_symbol ilist_ms = {
2931                        .maps = ms->maps,
2932                        .map = map,
2933                        .sym = ilist->symbol,
2934                };
2935                ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2936                                              NULL, 0, 0, 0, ilist->srcline);
2937
2938                if (ret != 0)
2939                        return ret;
2940        }
2941
2942        return ret;
2943}
2944
2945static int unwind_entry(struct unwind_entry *entry, void *arg)
2946{
2947        struct callchain_cursor *cursor = arg;
2948        const char *srcline = NULL;
2949        u64 addr = entry->ip;
2950
2951        if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2952                return 0;
2953
2954        if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2955                return 0;
2956
2957        /*
2958         * Convert entry->ip from a virtual address to an offset in
2959         * its corresponding binary.
2960         */
2961        if (entry->ms.map)
2962                addr = map__map_ip(entry->ms.map, entry->ip);
2963
2964        srcline = callchain_srcline(&entry->ms, addr);
2965        return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2966                                       false, NULL, 0, 0, 0, srcline);
2967}
2968
2969static int thread__resolve_callchain_unwind(struct thread *thread,
2970                                            struct callchain_cursor *cursor,
2971                                            struct evsel *evsel,
2972                                            struct perf_sample *sample,
2973                                            int max_stack)
2974{
2975        /* Can we do dwarf post unwind? */
2976        if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2977              (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2978                return 0;
2979
2980        /* Bail out if nothing was captured. */
2981        if ((!sample->user_regs.regs) ||
2982            (!sample->user_stack.size))
2983                return 0;
2984
2985        return unwind__get_entries(unwind_entry, cursor,
2986                                   thread, sample, max_stack);
2987}
2988
2989int thread__resolve_callchain(struct thread *thread,
2990                              struct callchain_cursor *cursor,
2991                              struct evsel *evsel,
2992                              struct perf_sample *sample,
2993                              struct symbol **parent,
2994                              struct addr_location *root_al,
2995                              int max_stack)
2996{
2997        int ret = 0;
2998
2999        callchain_cursor_reset(cursor);
3000
3001        if (callchain_param.order == ORDER_CALLEE) {
3002                ret = thread__resolve_callchain_sample(thread, cursor,
3003                                                       evsel, sample,
3004                                                       parent, root_al,
3005                                                       max_stack);
3006                if (ret)
3007                        return ret;
3008                ret = thread__resolve_callchain_unwind(thread, cursor,
3009                                                       evsel, sample,
3010                                                       max_stack);
3011        } else {
3012                ret = thread__resolve_callchain_unwind(thread, cursor,
3013                                                       evsel, sample,
3014                                                       max_stack);
3015                if (ret)
3016                        return ret;
3017                ret = thread__resolve_callchain_sample(thread, cursor,
3018                                                       evsel, sample,
3019                                                       parent, root_al,
3020                                                       max_stack);
3021        }
3022
3023        return ret;
3024}
3025
3026int machine__for_each_thread(struct machine *machine,
3027                             int (*fn)(struct thread *thread, void *p),
3028                             void *priv)
3029{
3030        struct threads *threads;
3031        struct rb_node *nd;
3032        struct thread *thread;
3033        int rc = 0;
3034        int i;
3035
3036        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3037                threads = &machine->threads[i];
3038                for (nd = rb_first_cached(&threads->entries); nd;
3039                     nd = rb_next(nd)) {
3040                        thread = rb_entry(nd, struct thread, rb_node);
3041                        rc = fn(thread, priv);
3042                        if (rc != 0)
3043                                return rc;
3044                }
3045
3046                list_for_each_entry(thread, &threads->dead, node) {
3047                        rc = fn(thread, priv);
3048                        if (rc != 0)
3049                                return rc;
3050                }
3051        }
3052        return rc;
3053}
3054
3055int machines__for_each_thread(struct machines *machines,
3056                              int (*fn)(struct thread *thread, void *p),
3057                              void *priv)
3058{
3059        struct rb_node *nd;
3060        int rc = 0;
3061
3062        rc = machine__for_each_thread(&machines->host, fn, priv);
3063        if (rc != 0)
3064                return rc;
3065
3066        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3067                struct machine *machine = rb_entry(nd, struct machine, rb_node);
3068
3069                rc = machine__for_each_thread(machine, fn, priv);
3070                if (rc != 0)
3071                        return rc;
3072        }
3073        return rc;
3074}
3075
3076pid_t machine__get_current_tid(struct machine *machine, int cpu)
3077{
3078        int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3079
3080        if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3081                return -1;
3082
3083        return machine->current_tid[cpu];
3084}
3085
3086int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3087                             pid_t tid)
3088{
3089        struct thread *thread;
3090        int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3091
3092        if (cpu < 0)
3093                return -EINVAL;
3094
3095        if (!machine->current_tid) {
3096                int i;
3097
3098                machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3099                if (!machine->current_tid)
3100                        return -ENOMEM;
3101                for (i = 0; i < nr_cpus; i++)
3102                        machine->current_tid[i] = -1;
3103        }
3104
3105        if (cpu >= nr_cpus) {
3106                pr_err("Requested CPU %d too large. ", cpu);
3107                pr_err("Consider raising MAX_NR_CPUS\n");
3108                return -EINVAL;
3109        }
3110
3111        machine->current_tid[cpu] = tid;
3112
3113        thread = machine__findnew_thread(machine, pid, tid);
3114        if (!thread)
3115                return -ENOMEM;
3116
3117        thread->cpu = cpu;
3118        thread__put(thread);
3119
3120        return 0;
3121}
3122
3123/*
3124 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3125 * machine__normalized_is() if a normalized arch is needed.
3126 */
3127bool machine__is(struct machine *machine, const char *arch)
3128{
3129        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3130}
3131
3132bool machine__normalized_is(struct machine *machine, const char *arch)
3133{
3134        return machine && !strcmp(perf_env__arch(machine->env), arch);
3135}
3136
3137int machine__nr_cpus_avail(struct machine *machine)
3138{
3139        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3140}
3141
3142int machine__get_kernel_start(struct machine *machine)
3143{
3144        struct map *map = machine__kernel_map(machine);
3145        int err = 0;
3146
3147        /*
3148         * The only addresses above 2^63 are kernel addresses of a 64-bit
3149         * kernel.  Note that addresses are unsigned so that on a 32-bit system
3150         * all addresses including kernel addresses are less than 2^32.  In
3151         * that case (32-bit system), if the kernel mapping is unknown, all
3152         * addresses will be assumed to be in user space - see
3153         * machine__kernel_ip().
3154         */
3155        machine->kernel_start = 1ULL << 63;
3156        if (map) {
3157                err = map__load(map);
3158                /*
3159                 * On x86_64, PTI entry trampolines are less than the
3160                 * start of kernel text, but still above 2^63. So leave
3161                 * kernel_start = 1ULL << 63 for x86_64.
3162                 */
3163                if (!err && !machine__is(machine, "x86_64"))
3164                        machine->kernel_start = map->start;
3165        }
3166        return err;
3167}
3168
3169u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3170{
3171        u8 addr_cpumode = cpumode;
3172        bool kernel_ip;
3173
3174        if (!machine->single_address_space)
3175                goto out;
3176
3177        kernel_ip = machine__kernel_ip(machine, addr);
3178        switch (cpumode) {
3179        case PERF_RECORD_MISC_KERNEL:
3180        case PERF_RECORD_MISC_USER:
3181                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3182                                           PERF_RECORD_MISC_USER;
3183                break;
3184        case PERF_RECORD_MISC_GUEST_KERNEL:
3185        case PERF_RECORD_MISC_GUEST_USER:
3186                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3187                                           PERF_RECORD_MISC_GUEST_USER;
3188                break;
3189        default:
3190                break;
3191        }
3192out:
3193        return addr_cpumode;
3194}
3195
3196struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3197{
3198        return dsos__findnew_id(&machine->dsos, filename, id);
3199}
3200
3201struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3202{
3203        return machine__findnew_dso_id(machine, filename, NULL);
3204}
3205
3206char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3207{
3208        struct machine *machine = vmachine;
3209        struct map *map;
3210        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3211
3212        if (sym == NULL)
3213                return NULL;
3214
3215        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3216        *addrp = map->unmap_ip(map, sym->start);
3217        return sym->name;
3218}
3219
3220int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3221{
3222        struct dso *pos;
3223        int err = 0;
3224
3225        list_for_each_entry(pos, &machine->dsos.head, node) {
3226                if (fn(pos, machine, priv))
3227                        err = -1;
3228        }
3229        return err;
3230}
3231