linux/tools/testing/selftests/kvm/lib/kvm_util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * tools/testing/selftests/kvm/lib/kvm_util.c
   4 *
   5 * Copyright (C) 2018, Google LLC.
   6 */
   7
   8#define _GNU_SOURCE /* for program_invocation_name */
   9#include "test_util.h"
  10#include "kvm_util.h"
  11#include "kvm_util_internal.h"
  12#include "processor.h"
  13
  14#include <assert.h>
  15#include <sys/mman.h>
  16#include <sys/types.h>
  17#include <sys/stat.h>
  18#include <unistd.h>
  19#include <linux/kernel.h>
  20
  21#define KVM_UTIL_MIN_PFN        2
  22
  23static int vcpu_mmap_sz(void);
  24
  25int open_path_or_exit(const char *path, int flags)
  26{
  27        int fd;
  28
  29        fd = open(path, flags);
  30        if (fd < 0) {
  31                print_skip("%s not available (errno: %d)", path, errno);
  32                exit(KSFT_SKIP);
  33        }
  34
  35        return fd;
  36}
  37
  38/*
  39 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
  40 *
  41 * Input Args:
  42 *   flags - The flags to pass when opening KVM_DEV_PATH.
  43 *
  44 * Return:
  45 *   The opened file descriptor of /dev/kvm.
  46 */
  47static int _open_kvm_dev_path_or_exit(int flags)
  48{
  49        return open_path_or_exit(KVM_DEV_PATH, flags);
  50}
  51
  52int open_kvm_dev_path_or_exit(void)
  53{
  54        return _open_kvm_dev_path_or_exit(O_RDONLY);
  55}
  56
  57/*
  58 * Capability
  59 *
  60 * Input Args:
  61 *   cap - Capability
  62 *
  63 * Output Args: None
  64 *
  65 * Return:
  66 *   On success, the Value corresponding to the capability (KVM_CAP_*)
  67 *   specified by the value of cap.  On failure a TEST_ASSERT failure
  68 *   is produced.
  69 *
  70 * Looks up and returns the value corresponding to the capability
  71 * (KVM_CAP_*) given by cap.
  72 */
  73int kvm_check_cap(long cap)
  74{
  75        int ret;
  76        int kvm_fd;
  77
  78        kvm_fd = open_kvm_dev_path_or_exit();
  79        ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
  80        TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
  81                "  rc: %i errno: %i", ret, errno);
  82
  83        close(kvm_fd);
  84
  85        return ret;
  86}
  87
  88/* VM Check Capability
  89 *
  90 * Input Args:
  91 *   vm - Virtual Machine
  92 *   cap - Capability
  93 *
  94 * Output Args: None
  95 *
  96 * Return:
  97 *   On success, the Value corresponding to the capability (KVM_CAP_*)
  98 *   specified by the value of cap.  On failure a TEST_ASSERT failure
  99 *   is produced.
 100 *
 101 * Looks up and returns the value corresponding to the capability
 102 * (KVM_CAP_*) given by cap.
 103 */
 104int vm_check_cap(struct kvm_vm *vm, long cap)
 105{
 106        int ret;
 107
 108        ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap);
 109        TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n"
 110                "  rc: %i errno: %i", ret, errno);
 111
 112        return ret;
 113}
 114
 115/* VM Enable Capability
 116 *
 117 * Input Args:
 118 *   vm - Virtual Machine
 119 *   cap - Capability
 120 *
 121 * Output Args: None
 122 *
 123 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
 124 *
 125 * Enables a capability (KVM_CAP_*) on the VM.
 126 */
 127int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
 128{
 129        int ret;
 130
 131        ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
 132        TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
 133                "  rc: %i errno: %i", ret, errno);
 134
 135        return ret;
 136}
 137
 138/* VCPU Enable Capability
 139 *
 140 * Input Args:
 141 *   vm - Virtual Machine
 142 *   vcpu_id - VCPU
 143 *   cap - Capability
 144 *
 145 * Output Args: None
 146 *
 147 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
 148 *
 149 * Enables a capability (KVM_CAP_*) on the VCPU.
 150 */
 151int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
 152                    struct kvm_enable_cap *cap)
 153{
 154        struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
 155        int r;
 156
 157        TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
 158
 159        r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
 160        TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
 161                        "  rc: %i, errno: %i", r, errno);
 162
 163        return r;
 164}
 165
 166void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
 167{
 168        struct kvm_enable_cap cap = { 0 };
 169
 170        cap.cap = KVM_CAP_DIRTY_LOG_RING;
 171        cap.args[0] = ring_size;
 172        vm_enable_cap(vm, &cap);
 173        vm->dirty_ring_size = ring_size;
 174}
 175
 176static void vm_open(struct kvm_vm *vm, int perm)
 177{
 178        vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
 179
 180        if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
 181                print_skip("immediate_exit not available");
 182                exit(KSFT_SKIP);
 183        }
 184
 185        vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
 186        TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
 187                "rc: %i errno: %i", vm->fd, errno);
 188}
 189
 190const char *vm_guest_mode_string(uint32_t i)
 191{
 192        static const char * const strings[] = {
 193                [VM_MODE_P52V48_4K]     = "PA-bits:52,  VA-bits:48,  4K pages",
 194                [VM_MODE_P52V48_64K]    = "PA-bits:52,  VA-bits:48, 64K pages",
 195                [VM_MODE_P48V48_4K]     = "PA-bits:48,  VA-bits:48,  4K pages",
 196                [VM_MODE_P48V48_16K]    = "PA-bits:48,  VA-bits:48, 16K pages",
 197                [VM_MODE_P48V48_64K]    = "PA-bits:48,  VA-bits:48, 64K pages",
 198                [VM_MODE_P40V48_4K]     = "PA-bits:40,  VA-bits:48,  4K pages",
 199                [VM_MODE_P40V48_16K]    = "PA-bits:40,  VA-bits:48, 16K pages",
 200                [VM_MODE_P40V48_64K]    = "PA-bits:40,  VA-bits:48, 64K pages",
 201                [VM_MODE_PXXV48_4K]     = "PA-bits:ANY, VA-bits:48,  4K pages",
 202                [VM_MODE_P47V64_4K]     = "PA-bits:47,  VA-bits:64,  4K pages",
 203                [VM_MODE_P44V64_4K]     = "PA-bits:44,  VA-bits:64,  4K pages",
 204                [VM_MODE_P36V48_4K]     = "PA-bits:36,  VA-bits:48,  4K pages",
 205                [VM_MODE_P36V48_16K]    = "PA-bits:36,  VA-bits:48, 16K pages",
 206                [VM_MODE_P36V48_64K]    = "PA-bits:36,  VA-bits:48, 64K pages",
 207                [VM_MODE_P36V47_16K]    = "PA-bits:36,  VA-bits:47, 16K pages",
 208        };
 209        _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
 210                       "Missing new mode strings?");
 211
 212        TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
 213
 214        return strings[i];
 215}
 216
 217const struct vm_guest_mode_params vm_guest_mode_params[] = {
 218        [VM_MODE_P52V48_4K]     = { 52, 48,  0x1000, 12 },
 219        [VM_MODE_P52V48_64K]    = { 52, 48, 0x10000, 16 },
 220        [VM_MODE_P48V48_4K]     = { 48, 48,  0x1000, 12 },
 221        [VM_MODE_P48V48_16K]    = { 48, 48,  0x4000, 14 },
 222        [VM_MODE_P48V48_64K]    = { 48, 48, 0x10000, 16 },
 223        [VM_MODE_P40V48_4K]     = { 40, 48,  0x1000, 12 },
 224        [VM_MODE_P40V48_16K]    = { 40, 48,  0x4000, 14 },
 225        [VM_MODE_P40V48_64K]    = { 40, 48, 0x10000, 16 },
 226        [VM_MODE_PXXV48_4K]     = {  0,  0,  0x1000, 12 },
 227        [VM_MODE_P47V64_4K]     = { 47, 64,  0x1000, 12 },
 228        [VM_MODE_P44V64_4K]     = { 44, 64,  0x1000, 12 },
 229        [VM_MODE_P36V48_4K]     = { 36, 48,  0x1000, 12 },
 230        [VM_MODE_P36V48_16K]    = { 36, 48,  0x4000, 14 },
 231        [VM_MODE_P36V48_64K]    = { 36, 48, 0x10000, 16 },
 232        [VM_MODE_P36V47_16K]    = { 36, 47,  0x4000, 14 },
 233};
 234_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
 235               "Missing new mode params?");
 236
 237/*
 238 * VM Create
 239 *
 240 * Input Args:
 241 *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
 242 *   phy_pages - Physical memory pages
 243 *   perm - permission
 244 *
 245 * Output Args: None
 246 *
 247 * Return:
 248 *   Pointer to opaque structure that describes the created VM.
 249 *
 250 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
 251 * When phy_pages is non-zero, a memory region of phy_pages physical pages
 252 * is created and mapped starting at guest physical address 0.  The file
 253 * descriptor to control the created VM is created with the permissions
 254 * given by perm (e.g. O_RDWR).
 255 */
 256struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
 257{
 258        struct kvm_vm *vm;
 259
 260        pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
 261                 vm_guest_mode_string(mode), phy_pages, perm);
 262
 263        vm = calloc(1, sizeof(*vm));
 264        TEST_ASSERT(vm != NULL, "Insufficient Memory");
 265
 266        INIT_LIST_HEAD(&vm->vcpus);
 267        vm->regions.gpa_tree = RB_ROOT;
 268        vm->regions.hva_tree = RB_ROOT;
 269        hash_init(vm->regions.slot_hash);
 270
 271        vm->mode = mode;
 272        vm->type = 0;
 273
 274        vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
 275        vm->va_bits = vm_guest_mode_params[mode].va_bits;
 276        vm->page_size = vm_guest_mode_params[mode].page_size;
 277        vm->page_shift = vm_guest_mode_params[mode].page_shift;
 278
 279        /* Setup mode specific traits. */
 280        switch (vm->mode) {
 281        case VM_MODE_P52V48_4K:
 282                vm->pgtable_levels = 4;
 283                break;
 284        case VM_MODE_P52V48_64K:
 285                vm->pgtable_levels = 3;
 286                break;
 287        case VM_MODE_P48V48_4K:
 288                vm->pgtable_levels = 4;
 289                break;
 290        case VM_MODE_P48V48_64K:
 291                vm->pgtable_levels = 3;
 292                break;
 293        case VM_MODE_P40V48_4K:
 294        case VM_MODE_P36V48_4K:
 295                vm->pgtable_levels = 4;
 296                break;
 297        case VM_MODE_P40V48_64K:
 298        case VM_MODE_P36V48_64K:
 299                vm->pgtable_levels = 3;
 300                break;
 301        case VM_MODE_P48V48_16K:
 302        case VM_MODE_P40V48_16K:
 303        case VM_MODE_P36V48_16K:
 304                vm->pgtable_levels = 4;
 305                break;
 306        case VM_MODE_P36V47_16K:
 307                vm->pgtable_levels = 3;
 308                break;
 309        case VM_MODE_PXXV48_4K:
 310#ifdef __x86_64__
 311                kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
 312                /*
 313                 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
 314                 * it doesn't take effect unless a CR4.LA57 is set, which it
 315                 * isn't for this VM_MODE.
 316                 */
 317                TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
 318                            "Linear address width (%d bits) not supported",
 319                            vm->va_bits);
 320                pr_debug("Guest physical address width detected: %d\n",
 321                         vm->pa_bits);
 322                vm->pgtable_levels = 4;
 323                vm->va_bits = 48;
 324#else
 325                TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
 326#endif
 327                break;
 328        case VM_MODE_P47V64_4K:
 329                vm->pgtable_levels = 5;
 330                break;
 331        case VM_MODE_P44V64_4K:
 332                vm->pgtable_levels = 5;
 333                break;
 334        default:
 335                TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
 336        }
 337
 338#ifdef __aarch64__
 339        if (vm->pa_bits != 40)
 340                vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
 341#endif
 342
 343        vm_open(vm, perm);
 344
 345        /* Limit to VA-bit canonical virtual addresses. */
 346        vm->vpages_valid = sparsebit_alloc();
 347        sparsebit_set_num(vm->vpages_valid,
 348                0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 349        sparsebit_set_num(vm->vpages_valid,
 350                (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
 351                (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 352
 353        /* Limit physical addresses to PA-bits. */
 354        vm->max_gfn = vm_compute_max_gfn(vm);
 355
 356        /* Allocate and setup memory for guest. */
 357        vm->vpages_mapped = sparsebit_alloc();
 358        if (phy_pages != 0)
 359                vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
 360                                            0, 0, phy_pages, 0);
 361
 362        return vm;
 363}
 364
 365/*
 366 * VM Create with customized parameters
 367 *
 368 * Input Args:
 369 *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
 370 *   nr_vcpus - VCPU count
 371 *   slot0_mem_pages - Slot0 physical memory size
 372 *   extra_mem_pages - Non-slot0 physical memory total size
 373 *   num_percpu_pages - Per-cpu physical memory pages
 374 *   guest_code - Guest entry point
 375 *   vcpuids - VCPU IDs
 376 *
 377 * Output Args: None
 378 *
 379 * Return:
 380 *   Pointer to opaque structure that describes the created VM.
 381 *
 382 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
 383 * with customized slot0 memory size, at least 512 pages currently.
 384 * extra_mem_pages is only used to calculate the maximum page table size,
 385 * no real memory allocation for non-slot0 memory in this function.
 386 */
 387struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
 388                                    uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
 389                                    uint32_t num_percpu_pages, void *guest_code,
 390                                    uint32_t vcpuids[])
 391{
 392        uint64_t vcpu_pages, extra_pg_pages, pages;
 393        struct kvm_vm *vm;
 394        int i;
 395
 396        /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
 397        if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
 398                slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
 399
 400        /* The maximum page table size for a memory region will be when the
 401         * smallest pages are used. Considering each page contains x page
 402         * table descriptors, the total extra size for page tables (for extra
 403         * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
 404         * than N/x*2.
 405         */
 406        vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
 407        extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
 408        pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
 409
 410        TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
 411                    "nr_vcpus = %d too large for host, max-vcpus = %d",
 412                    nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
 413
 414        pages = vm_adjust_num_guest_pages(mode, pages);
 415        vm = vm_create(mode, pages, O_RDWR);
 416
 417        kvm_vm_elf_load(vm, program_invocation_name);
 418
 419#ifdef __x86_64__
 420        vm_create_irqchip(vm);
 421#endif
 422
 423        for (i = 0; i < nr_vcpus; ++i) {
 424                uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
 425
 426                vm_vcpu_add_default(vm, vcpuid, guest_code);
 427        }
 428
 429        return vm;
 430}
 431
 432struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
 433                                            uint32_t num_percpu_pages, void *guest_code,
 434                                            uint32_t vcpuids[])
 435{
 436        return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
 437                                    extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
 438}
 439
 440struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
 441                                 void *guest_code)
 442{
 443        return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
 444                                            (uint32_t []){ vcpuid });
 445}
 446
 447/*
 448 * VM Restart
 449 *
 450 * Input Args:
 451 *   vm - VM that has been released before
 452 *   perm - permission
 453 *
 454 * Output Args: None
 455 *
 456 * Reopens the file descriptors associated to the VM and reinstates the
 457 * global state, such as the irqchip and the memory regions that are mapped
 458 * into the guest.
 459 */
 460void kvm_vm_restart(struct kvm_vm *vmp, int perm)
 461{
 462        int ctr;
 463        struct userspace_mem_region *region;
 464
 465        vm_open(vmp, perm);
 466        if (vmp->has_irqchip)
 467                vm_create_irqchip(vmp);
 468
 469        hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
 470                int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 471                TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
 472                            "  rc: %i errno: %i\n"
 473                            "  slot: %u flags: 0x%x\n"
 474                            "  guest_phys_addr: 0x%llx size: 0x%llx",
 475                            ret, errno, region->region.slot,
 476                            region->region.flags,
 477                            region->region.guest_phys_addr,
 478                            region->region.memory_size);
 479        }
 480}
 481
 482void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
 483{
 484        struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
 485        int ret;
 486
 487        ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
 488        TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
 489                    __func__, strerror(-ret));
 490}
 491
 492void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
 493                            uint64_t first_page, uint32_t num_pages)
 494{
 495        struct kvm_clear_dirty_log args = {
 496                .dirty_bitmap = log, .slot = slot,
 497                .first_page = first_page,
 498                .num_pages = num_pages
 499        };
 500        int ret;
 501
 502        ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
 503        TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
 504                    __func__, strerror(-ret));
 505}
 506
 507uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
 508{
 509        return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
 510}
 511
 512/*
 513 * Userspace Memory Region Find
 514 *
 515 * Input Args:
 516 *   vm - Virtual Machine
 517 *   start - Starting VM physical address
 518 *   end - Ending VM physical address, inclusive.
 519 *
 520 * Output Args: None
 521 *
 522 * Return:
 523 *   Pointer to overlapping region, NULL if no such region.
 524 *
 525 * Searches for a region with any physical memory that overlaps with
 526 * any portion of the guest physical addresses from start to end
 527 * inclusive.  If multiple overlapping regions exist, a pointer to any
 528 * of the regions is returned.  Null is returned only when no overlapping
 529 * region exists.
 530 */
 531static struct userspace_mem_region *
 532userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
 533{
 534        struct rb_node *node;
 535
 536        for (node = vm->regions.gpa_tree.rb_node; node; ) {
 537                struct userspace_mem_region *region =
 538                        container_of(node, struct userspace_mem_region, gpa_node);
 539                uint64_t existing_start = region->region.guest_phys_addr;
 540                uint64_t existing_end = region->region.guest_phys_addr
 541                        + region->region.memory_size - 1;
 542                if (start <= existing_end && end >= existing_start)
 543                        return region;
 544
 545                if (start < existing_start)
 546                        node = node->rb_left;
 547                else
 548                        node = node->rb_right;
 549        }
 550
 551        return NULL;
 552}
 553
 554/*
 555 * KVM Userspace Memory Region Find
 556 *
 557 * Input Args:
 558 *   vm - Virtual Machine
 559 *   start - Starting VM physical address
 560 *   end - Ending VM physical address, inclusive.
 561 *
 562 * Output Args: None
 563 *
 564 * Return:
 565 *   Pointer to overlapping region, NULL if no such region.
 566 *
 567 * Public interface to userspace_mem_region_find. Allows tests to look up
 568 * the memslot datastructure for a given range of guest physical memory.
 569 */
 570struct kvm_userspace_memory_region *
 571kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
 572                                 uint64_t end)
 573{
 574        struct userspace_mem_region *region;
 575
 576        region = userspace_mem_region_find(vm, start, end);
 577        if (!region)
 578                return NULL;
 579
 580        return &region->region;
 581}
 582
 583/*
 584 * VCPU Find
 585 *
 586 * Input Args:
 587 *   vm - Virtual Machine
 588 *   vcpuid - VCPU ID
 589 *
 590 * Output Args: None
 591 *
 592 * Return:
 593 *   Pointer to VCPU structure
 594 *
 595 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
 596 * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
 597 * for the specified vcpuid.
 598 */
 599struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
 600{
 601        struct vcpu *vcpu;
 602
 603        list_for_each_entry(vcpu, &vm->vcpus, list) {
 604                if (vcpu->id == vcpuid)
 605                        return vcpu;
 606        }
 607
 608        return NULL;
 609}
 610
 611/*
 612 * VM VCPU Remove
 613 *
 614 * Input Args:
 615 *   vcpu - VCPU to remove
 616 *
 617 * Output Args: None
 618 *
 619 * Return: None, TEST_ASSERT failures for all error conditions
 620 *
 621 * Removes a vCPU from a VM and frees its resources.
 622 */
 623static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
 624{
 625        int ret;
 626
 627        if (vcpu->dirty_gfns) {
 628                ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
 629                TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
 630                            "rc: %i errno: %i", ret, errno);
 631                vcpu->dirty_gfns = NULL;
 632        }
 633
 634        ret = munmap(vcpu->state, vcpu_mmap_sz());
 635        TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
 636                "errno: %i", ret, errno);
 637        ret = close(vcpu->fd);
 638        TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
 639                "errno: %i", ret, errno);
 640
 641        list_del(&vcpu->list);
 642        free(vcpu);
 643}
 644
 645void kvm_vm_release(struct kvm_vm *vmp)
 646{
 647        struct vcpu *vcpu, *tmp;
 648        int ret;
 649
 650        list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
 651                vm_vcpu_rm(vmp, vcpu);
 652
 653        ret = close(vmp->fd);
 654        TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
 655                "  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
 656
 657        ret = close(vmp->kvm_fd);
 658        TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
 659                "  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
 660}
 661
 662static void __vm_mem_region_delete(struct kvm_vm *vm,
 663                                   struct userspace_mem_region *region,
 664                                   bool unlink)
 665{
 666        int ret;
 667
 668        if (unlink) {
 669                rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
 670                rb_erase(&region->hva_node, &vm->regions.hva_tree);
 671                hash_del(&region->slot_node);
 672        }
 673
 674        region->region.memory_size = 0;
 675        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 676        TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
 677                    "rc: %i errno: %i", ret, errno);
 678
 679        sparsebit_free(&region->unused_phy_pages);
 680        ret = munmap(region->mmap_start, region->mmap_size);
 681        TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
 682
 683        free(region);
 684}
 685
 686/*
 687 * Destroys and frees the VM pointed to by vmp.
 688 */
 689void kvm_vm_free(struct kvm_vm *vmp)
 690{
 691        int ctr;
 692        struct hlist_node *node;
 693        struct userspace_mem_region *region;
 694
 695        if (vmp == NULL)
 696                return;
 697
 698        /* Free userspace_mem_regions. */
 699        hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
 700                __vm_mem_region_delete(vmp, region, false);
 701
 702        /* Free sparsebit arrays. */
 703        sparsebit_free(&vmp->vpages_valid);
 704        sparsebit_free(&vmp->vpages_mapped);
 705
 706        kvm_vm_release(vmp);
 707
 708        /* Free the structure describing the VM. */
 709        free(vmp);
 710}
 711
 712/*
 713 * Memory Compare, host virtual to guest virtual
 714 *
 715 * Input Args:
 716 *   hva - Starting host virtual address
 717 *   vm - Virtual Machine
 718 *   gva - Starting guest virtual address
 719 *   len - number of bytes to compare
 720 *
 721 * Output Args: None
 722 *
 723 * Input/Output Args: None
 724 *
 725 * Return:
 726 *   Returns 0 if the bytes starting at hva for a length of len
 727 *   are equal the guest virtual bytes starting at gva.  Returns
 728 *   a value < 0, if bytes at hva are less than those at gva.
 729 *   Otherwise a value > 0 is returned.
 730 *
 731 * Compares the bytes starting at the host virtual address hva, for
 732 * a length of len, to the guest bytes starting at the guest virtual
 733 * address given by gva.
 734 */
 735int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
 736{
 737        size_t amt;
 738
 739        /*
 740         * Compare a batch of bytes until either a match is found
 741         * or all the bytes have been compared.
 742         */
 743        for (uintptr_t offset = 0; offset < len; offset += amt) {
 744                uintptr_t ptr1 = (uintptr_t)hva + offset;
 745
 746                /*
 747                 * Determine host address for guest virtual address
 748                 * at offset.
 749                 */
 750                uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
 751
 752                /*
 753                 * Determine amount to compare on this pass.
 754                 * Don't allow the comparsion to cross a page boundary.
 755                 */
 756                amt = len - offset;
 757                if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
 758                        amt = vm->page_size - (ptr1 % vm->page_size);
 759                if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
 760                        amt = vm->page_size - (ptr2 % vm->page_size);
 761
 762                assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
 763                assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
 764
 765                /*
 766                 * Perform the comparison.  If there is a difference
 767                 * return that result to the caller, otherwise need
 768                 * to continue on looking for a mismatch.
 769                 */
 770                int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
 771                if (ret != 0)
 772                        return ret;
 773        }
 774
 775        /*
 776         * No mismatch found.  Let the caller know the two memory
 777         * areas are equal.
 778         */
 779        return 0;
 780}
 781
 782static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
 783                                               struct userspace_mem_region *region)
 784{
 785        struct rb_node **cur, *parent;
 786
 787        for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
 788                struct userspace_mem_region *cregion;
 789
 790                cregion = container_of(*cur, typeof(*cregion), gpa_node);
 791                parent = *cur;
 792                if (region->region.guest_phys_addr <
 793                    cregion->region.guest_phys_addr)
 794                        cur = &(*cur)->rb_left;
 795                else {
 796                        TEST_ASSERT(region->region.guest_phys_addr !=
 797                                    cregion->region.guest_phys_addr,
 798                                    "Duplicate GPA in region tree");
 799
 800                        cur = &(*cur)->rb_right;
 801                }
 802        }
 803
 804        rb_link_node(&region->gpa_node, parent, cur);
 805        rb_insert_color(&region->gpa_node, gpa_tree);
 806}
 807
 808static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
 809                                               struct userspace_mem_region *region)
 810{
 811        struct rb_node **cur, *parent;
 812
 813        for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
 814                struct userspace_mem_region *cregion;
 815
 816                cregion = container_of(*cur, typeof(*cregion), hva_node);
 817                parent = *cur;
 818                if (region->host_mem < cregion->host_mem)
 819                        cur = &(*cur)->rb_left;
 820                else {
 821                        TEST_ASSERT(region->host_mem !=
 822                                    cregion->host_mem,
 823                                    "Duplicate HVA in region tree");
 824
 825                        cur = &(*cur)->rb_right;
 826                }
 827        }
 828
 829        rb_link_node(&region->hva_node, parent, cur);
 830        rb_insert_color(&region->hva_node, hva_tree);
 831}
 832
 833/*
 834 * VM Userspace Memory Region Add
 835 *
 836 * Input Args:
 837 *   vm - Virtual Machine
 838 *   src_type - Storage source for this region.
 839 *              NULL to use anonymous memory.
 840 *   guest_paddr - Starting guest physical address
 841 *   slot - KVM region slot
 842 *   npages - Number of physical pages
 843 *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
 844 *
 845 * Output Args: None
 846 *
 847 * Return: None
 848 *
 849 * Allocates a memory area of the number of pages specified by npages
 850 * and maps it to the VM specified by vm, at a starting physical address
 851 * given by guest_paddr.  The region is created with a KVM region slot
 852 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
 853 * region is created with the flags given by flags.
 854 */
 855void vm_userspace_mem_region_add(struct kvm_vm *vm,
 856        enum vm_mem_backing_src_type src_type,
 857        uint64_t guest_paddr, uint32_t slot, uint64_t npages,
 858        uint32_t flags)
 859{
 860        int ret;
 861        struct userspace_mem_region *region;
 862        size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
 863        size_t alignment;
 864
 865        TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
 866                "Number of guest pages is not compatible with the host. "
 867                "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
 868
 869        TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
 870                "address not on a page boundary.\n"
 871                "  guest_paddr: 0x%lx vm->page_size: 0x%x",
 872                guest_paddr, vm->page_size);
 873        TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
 874                <= vm->max_gfn, "Physical range beyond maximum "
 875                "supported physical address,\n"
 876                "  guest_paddr: 0x%lx npages: 0x%lx\n"
 877                "  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
 878                guest_paddr, npages, vm->max_gfn, vm->page_size);
 879
 880        /*
 881         * Confirm a mem region with an overlapping address doesn't
 882         * already exist.
 883         */
 884        region = (struct userspace_mem_region *) userspace_mem_region_find(
 885                vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
 886        if (region != NULL)
 887                TEST_FAIL("overlapping userspace_mem_region already "
 888                        "exists\n"
 889                        "  requested guest_paddr: 0x%lx npages: 0x%lx "
 890                        "page_size: 0x%x\n"
 891                        "  existing guest_paddr: 0x%lx size: 0x%lx",
 892                        guest_paddr, npages, vm->page_size,
 893                        (uint64_t) region->region.guest_phys_addr,
 894                        (uint64_t) region->region.memory_size);
 895
 896        /* Confirm no region with the requested slot already exists. */
 897        hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
 898                               slot) {
 899                if (region->region.slot != slot)
 900                        continue;
 901
 902                TEST_FAIL("A mem region with the requested slot "
 903                        "already exists.\n"
 904                        "  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
 905                        "  existing slot: %u paddr: 0x%lx size: 0x%lx",
 906                        slot, guest_paddr, npages,
 907                        region->region.slot,
 908                        (uint64_t) region->region.guest_phys_addr,
 909                        (uint64_t) region->region.memory_size);
 910        }
 911
 912        /* Allocate and initialize new mem region structure. */
 913        region = calloc(1, sizeof(*region));
 914        TEST_ASSERT(region != NULL, "Insufficient Memory");
 915        region->mmap_size = npages * vm->page_size;
 916
 917#ifdef __s390x__
 918        /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
 919        alignment = 0x100000;
 920#else
 921        alignment = 1;
 922#endif
 923
 924        /*
 925         * When using THP mmap is not guaranteed to returned a hugepage aligned
 926         * address so we have to pad the mmap. Padding is not needed for HugeTLB
 927         * because mmap will always return an address aligned to the HugeTLB
 928         * page size.
 929         */
 930        if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
 931                alignment = max(backing_src_pagesz, alignment);
 932
 933        ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
 934
 935        /* Add enough memory to align up if necessary */
 936        if (alignment > 1)
 937                region->mmap_size += alignment;
 938
 939        region->fd = -1;
 940        if (backing_src_is_shared(src_type)) {
 941                int memfd_flags = MFD_CLOEXEC;
 942
 943                if (src_type == VM_MEM_SRC_SHARED_HUGETLB)
 944                        memfd_flags |= MFD_HUGETLB;
 945
 946                region->fd = memfd_create("kvm_selftest", memfd_flags);
 947                TEST_ASSERT(region->fd != -1,
 948                            "memfd_create failed, errno: %i", errno);
 949
 950                ret = ftruncate(region->fd, region->mmap_size);
 951                TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno);
 952
 953                ret = fallocate(region->fd,
 954                                FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0,
 955                                region->mmap_size);
 956                TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno);
 957        }
 958
 959        region->mmap_start = mmap(NULL, region->mmap_size,
 960                                  PROT_READ | PROT_WRITE,
 961                                  vm_mem_backing_src_alias(src_type)->flag,
 962                                  region->fd, 0);
 963        TEST_ASSERT(region->mmap_start != MAP_FAILED,
 964                    "test_malloc failed, mmap_start: %p errno: %i",
 965                    region->mmap_start, errno);
 966
 967        TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
 968                    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
 969                    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
 970                    region->mmap_start, backing_src_pagesz);
 971
 972        /* Align host address */
 973        region->host_mem = align_ptr_up(region->mmap_start, alignment);
 974
 975        /* As needed perform madvise */
 976        if ((src_type == VM_MEM_SRC_ANONYMOUS ||
 977             src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
 978                ret = madvise(region->host_mem, npages * vm->page_size,
 979                              src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
 980                TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
 981                            region->host_mem, npages * vm->page_size,
 982                            vm_mem_backing_src_alias(src_type)->name);
 983        }
 984
 985        region->unused_phy_pages = sparsebit_alloc();
 986        sparsebit_set_num(region->unused_phy_pages,
 987                guest_paddr >> vm->page_shift, npages);
 988        region->region.slot = slot;
 989        region->region.flags = flags;
 990        region->region.guest_phys_addr = guest_paddr;
 991        region->region.memory_size = npages * vm->page_size;
 992        region->region.userspace_addr = (uintptr_t) region->host_mem;
 993        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 994        TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
 995                "  rc: %i errno: %i\n"
 996                "  slot: %u flags: 0x%x\n"
 997                "  guest_phys_addr: 0x%lx size: 0x%lx",
 998                ret, errno, slot, flags,
 999                guest_paddr, (uint64_t) region->region.memory_size);
1000
1001        /* Add to quick lookup data structures */
1002        vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1003        vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1004        hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1005
1006        /* If shared memory, create an alias. */
1007        if (region->fd >= 0) {
1008                region->mmap_alias = mmap(NULL, region->mmap_size,
1009                                          PROT_READ | PROT_WRITE,
1010                                          vm_mem_backing_src_alias(src_type)->flag,
1011                                          region->fd, 0);
1012                TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1013                            "mmap of alias failed, errno: %i", errno);
1014
1015                /* Align host alias address */
1016                region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1017        }
1018}
1019
1020/*
1021 * Memslot to region
1022 *
1023 * Input Args:
1024 *   vm - Virtual Machine
1025 *   memslot - KVM memory slot ID
1026 *
1027 * Output Args: None
1028 *
1029 * Return:
1030 *   Pointer to memory region structure that describe memory region
1031 *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1032 *   on error (e.g. currently no memory region using memslot as a KVM
1033 *   memory slot ID).
1034 */
1035struct userspace_mem_region *
1036memslot2region(struct kvm_vm *vm, uint32_t memslot)
1037{
1038        struct userspace_mem_region *region;
1039
1040        hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1041                               memslot)
1042                if (region->region.slot == memslot)
1043                        return region;
1044
1045        fprintf(stderr, "No mem region with the requested slot found,\n"
1046                "  requested slot: %u\n", memslot);
1047        fputs("---- vm dump ----\n", stderr);
1048        vm_dump(stderr, vm, 2);
1049        TEST_FAIL("Mem region not found");
1050        return NULL;
1051}
1052
1053/*
1054 * VM Memory Region Flags Set
1055 *
1056 * Input Args:
1057 *   vm - Virtual Machine
1058 *   flags - Starting guest physical address
1059 *
1060 * Output Args: None
1061 *
1062 * Return: None
1063 *
1064 * Sets the flags of the memory region specified by the value of slot,
1065 * to the values given by flags.
1066 */
1067void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1068{
1069        int ret;
1070        struct userspace_mem_region *region;
1071
1072        region = memslot2region(vm, slot);
1073
1074        region->region.flags = flags;
1075
1076        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1077
1078        TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1079                "  rc: %i errno: %i slot: %u flags: 0x%x",
1080                ret, errno, slot, flags);
1081}
1082
1083/*
1084 * VM Memory Region Move
1085 *
1086 * Input Args:
1087 *   vm - Virtual Machine
1088 *   slot - Slot of the memory region to move
1089 *   new_gpa - Starting guest physical address
1090 *
1091 * Output Args: None
1092 *
1093 * Return: None
1094 *
1095 * Change the gpa of a memory region.
1096 */
1097void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1098{
1099        struct userspace_mem_region *region;
1100        int ret;
1101
1102        region = memslot2region(vm, slot);
1103
1104        region->region.guest_phys_addr = new_gpa;
1105
1106        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1107
1108        TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1109                    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1110                    ret, errno, slot, new_gpa);
1111}
1112
1113/*
1114 * VM Memory Region Delete
1115 *
1116 * Input Args:
1117 *   vm - Virtual Machine
1118 *   slot - Slot of the memory region to delete
1119 *
1120 * Output Args: None
1121 *
1122 * Return: None
1123 *
1124 * Delete a memory region.
1125 */
1126void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1127{
1128        __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1129}
1130
1131/*
1132 * VCPU mmap Size
1133 *
1134 * Input Args: None
1135 *
1136 * Output Args: None
1137 *
1138 * Return:
1139 *   Size of VCPU state
1140 *
1141 * Returns the size of the structure pointed to by the return value
1142 * of vcpu_state().
1143 */
1144static int vcpu_mmap_sz(void)
1145{
1146        int dev_fd, ret;
1147
1148        dev_fd = open_kvm_dev_path_or_exit();
1149
1150        ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1151        TEST_ASSERT(ret >= sizeof(struct kvm_run),
1152                "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1153                __func__, ret, errno);
1154
1155        close(dev_fd);
1156
1157        return ret;
1158}
1159
1160/*
1161 * VM VCPU Add
1162 *
1163 * Input Args:
1164 *   vm - Virtual Machine
1165 *   vcpuid - VCPU ID
1166 *
1167 * Output Args: None
1168 *
1169 * Return: None
1170 *
1171 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1172 * No additional VCPU setup is done.
1173 */
1174void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1175{
1176        struct vcpu *vcpu;
1177
1178        /* Confirm a vcpu with the specified id doesn't already exist. */
1179        vcpu = vcpu_find(vm, vcpuid);
1180        if (vcpu != NULL)
1181                TEST_FAIL("vcpu with the specified id "
1182                        "already exists,\n"
1183                        "  requested vcpuid: %u\n"
1184                        "  existing vcpuid: %u state: %p",
1185                        vcpuid, vcpu->id, vcpu->state);
1186
1187        /* Allocate and initialize new vcpu structure. */
1188        vcpu = calloc(1, sizeof(*vcpu));
1189        TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1190        vcpu->id = vcpuid;
1191        vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1192        TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1193                vcpu->fd, errno);
1194
1195        TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1196                "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1197                vcpu_mmap_sz(), sizeof(*vcpu->state));
1198        vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1199                PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1200        TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1201                "vcpu id: %u errno: %i", vcpuid, errno);
1202
1203        /* Add to linked-list of VCPUs. */
1204        list_add(&vcpu->list, &vm->vcpus);
1205}
1206
1207/*
1208 * VM Virtual Address Unused Gap
1209 *
1210 * Input Args:
1211 *   vm - Virtual Machine
1212 *   sz - Size (bytes)
1213 *   vaddr_min - Minimum Virtual Address
1214 *
1215 * Output Args: None
1216 *
1217 * Return:
1218 *   Lowest virtual address at or below vaddr_min, with at least
1219 *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1220 *   size sz is available.
1221 *
1222 * Within the VM specified by vm, locates the lowest starting virtual
1223 * address >= vaddr_min, that has at least sz unallocated bytes.  A
1224 * TEST_ASSERT failure occurs for invalid input or no area of at least
1225 * sz unallocated bytes >= vaddr_min is available.
1226 */
1227static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1228                                      vm_vaddr_t vaddr_min)
1229{
1230        uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1231
1232        /* Determine lowest permitted virtual page index. */
1233        uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1234        if ((pgidx_start * vm->page_size) < vaddr_min)
1235                goto no_va_found;
1236
1237        /* Loop over section with enough valid virtual page indexes. */
1238        if (!sparsebit_is_set_num(vm->vpages_valid,
1239                pgidx_start, pages))
1240                pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1241                        pgidx_start, pages);
1242        do {
1243                /*
1244                 * Are there enough unused virtual pages available at
1245                 * the currently proposed starting virtual page index.
1246                 * If not, adjust proposed starting index to next
1247                 * possible.
1248                 */
1249                if (sparsebit_is_clear_num(vm->vpages_mapped,
1250                        pgidx_start, pages))
1251                        goto va_found;
1252                pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1253                        pgidx_start, pages);
1254                if (pgidx_start == 0)
1255                        goto no_va_found;
1256
1257                /*
1258                 * If needed, adjust proposed starting virtual address,
1259                 * to next range of valid virtual addresses.
1260                 */
1261                if (!sparsebit_is_set_num(vm->vpages_valid,
1262                        pgidx_start, pages)) {
1263                        pgidx_start = sparsebit_next_set_num(
1264                                vm->vpages_valid, pgidx_start, pages);
1265                        if (pgidx_start == 0)
1266                                goto no_va_found;
1267                }
1268        } while (pgidx_start != 0);
1269
1270no_va_found:
1271        TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1272
1273        /* NOT REACHED */
1274        return -1;
1275
1276va_found:
1277        TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1278                pgidx_start, pages),
1279                "Unexpected, invalid virtual page index range,\n"
1280                "  pgidx_start: 0x%lx\n"
1281                "  pages: 0x%lx",
1282                pgidx_start, pages);
1283        TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1284                pgidx_start, pages),
1285                "Unexpected, pages already mapped,\n"
1286                "  pgidx_start: 0x%lx\n"
1287                "  pages: 0x%lx",
1288                pgidx_start, pages);
1289
1290        return pgidx_start * vm->page_size;
1291}
1292
1293/*
1294 * VM Virtual Address Allocate
1295 *
1296 * Input Args:
1297 *   vm - Virtual Machine
1298 *   sz - Size in bytes
1299 *   vaddr_min - Minimum starting virtual address
1300 *   data_memslot - Memory region slot for data pages
1301 *   pgd_memslot - Memory region slot for new virtual translation tables
1302 *
1303 * Output Args: None
1304 *
1305 * Return:
1306 *   Starting guest virtual address
1307 *
1308 * Allocates at least sz bytes within the virtual address space of the vm
1309 * given by vm.  The allocated bytes are mapped to a virtual address >=
1310 * the address given by vaddr_min.  Note that each allocation uses a
1311 * a unique set of pages, with the minimum real allocation being at least
1312 * a page.
1313 */
1314vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1315{
1316        uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1317
1318        virt_pgd_alloc(vm);
1319        vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1320                                              KVM_UTIL_MIN_PFN * vm->page_size, 0);
1321
1322        /*
1323         * Find an unused range of virtual page addresses of at least
1324         * pages in length.
1325         */
1326        vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1327
1328        /* Map the virtual pages. */
1329        for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1330                pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1331
1332                virt_pg_map(vm, vaddr, paddr);
1333
1334                sparsebit_set(vm->vpages_mapped,
1335                        vaddr >> vm->page_shift);
1336        }
1337
1338        return vaddr_start;
1339}
1340
1341/*
1342 * VM Virtual Address Allocate Pages
1343 *
1344 * Input Args:
1345 *   vm - Virtual Machine
1346 *
1347 * Output Args: None
1348 *
1349 * Return:
1350 *   Starting guest virtual address
1351 *
1352 * Allocates at least N system pages worth of bytes within the virtual address
1353 * space of the vm.
1354 */
1355vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1356{
1357        return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1358}
1359
1360/*
1361 * VM Virtual Address Allocate Page
1362 *
1363 * Input Args:
1364 *   vm - Virtual Machine
1365 *
1366 * Output Args: None
1367 *
1368 * Return:
1369 *   Starting guest virtual address
1370 *
1371 * Allocates at least one system page worth of bytes within the virtual address
1372 * space of the vm.
1373 */
1374vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1375{
1376        return vm_vaddr_alloc_pages(vm, 1);
1377}
1378
1379/*
1380 * Map a range of VM virtual address to the VM's physical address
1381 *
1382 * Input Args:
1383 *   vm - Virtual Machine
1384 *   vaddr - Virtuall address to map
1385 *   paddr - VM Physical Address
1386 *   npages - The number of pages to map
1387 *   pgd_memslot - Memory region slot for new virtual translation tables
1388 *
1389 * Output Args: None
1390 *
1391 * Return: None
1392 *
1393 * Within the VM given by @vm, creates a virtual translation for
1394 * @npages starting at @vaddr to the page range starting at @paddr.
1395 */
1396void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1397              unsigned int npages)
1398{
1399        size_t page_size = vm->page_size;
1400        size_t size = npages * page_size;
1401
1402        TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1403        TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1404
1405        while (npages--) {
1406                virt_pg_map(vm, vaddr, paddr);
1407                vaddr += page_size;
1408                paddr += page_size;
1409        }
1410}
1411
1412/*
1413 * Address VM Physical to Host Virtual
1414 *
1415 * Input Args:
1416 *   vm - Virtual Machine
1417 *   gpa - VM physical address
1418 *
1419 * Output Args: None
1420 *
1421 * Return:
1422 *   Equivalent host virtual address
1423 *
1424 * Locates the memory region containing the VM physical address given
1425 * by gpa, within the VM given by vm.  When found, the host virtual
1426 * address providing the memory to the vm physical address is returned.
1427 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1428 */
1429void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1430{
1431        struct userspace_mem_region *region;
1432
1433        region = userspace_mem_region_find(vm, gpa, gpa);
1434        if (!region) {
1435                TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1436                return NULL;
1437        }
1438
1439        return (void *)((uintptr_t)region->host_mem
1440                + (gpa - region->region.guest_phys_addr));
1441}
1442
1443/*
1444 * Address Host Virtual to VM Physical
1445 *
1446 * Input Args:
1447 *   vm - Virtual Machine
1448 *   hva - Host virtual address
1449 *
1450 * Output Args: None
1451 *
1452 * Return:
1453 *   Equivalent VM physical address
1454 *
1455 * Locates the memory region containing the host virtual address given
1456 * by hva, within the VM given by vm.  When found, the equivalent
1457 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1458 * region containing hva exists.
1459 */
1460vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1461{
1462        struct rb_node *node;
1463
1464        for (node = vm->regions.hva_tree.rb_node; node; ) {
1465                struct userspace_mem_region *region =
1466                        container_of(node, struct userspace_mem_region, hva_node);
1467
1468                if (hva >= region->host_mem) {
1469                        if (hva <= (region->host_mem
1470                                + region->region.memory_size - 1))
1471                                return (vm_paddr_t)((uintptr_t)
1472                                        region->region.guest_phys_addr
1473                                        + (hva - (uintptr_t)region->host_mem));
1474
1475                        node = node->rb_right;
1476                } else
1477                        node = node->rb_left;
1478        }
1479
1480        TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1481        return -1;
1482}
1483
1484/*
1485 * Address VM physical to Host Virtual *alias*.
1486 *
1487 * Input Args:
1488 *   vm - Virtual Machine
1489 *   gpa - VM physical address
1490 *
1491 * Output Args: None
1492 *
1493 * Return:
1494 *   Equivalent address within the host virtual *alias* area, or NULL
1495 *   (without failing the test) if the guest memory is not shared (so
1496 *   no alias exists).
1497 *
1498 * When vm_create() and related functions are called with a shared memory
1499 * src_type, we also create a writable, shared alias mapping of the
1500 * underlying guest memory. This allows the host to manipulate guest memory
1501 * without mapping that memory in the guest's address space. And, for
1502 * userfaultfd-based demand paging, we can do so without triggering userfaults.
1503 */
1504void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1505{
1506        struct userspace_mem_region *region;
1507        uintptr_t offset;
1508
1509        region = userspace_mem_region_find(vm, gpa, gpa);
1510        if (!region)
1511                return NULL;
1512
1513        if (!region->host_alias)
1514                return NULL;
1515
1516        offset = gpa - region->region.guest_phys_addr;
1517        return (void *) ((uintptr_t) region->host_alias + offset);
1518}
1519
1520/*
1521 * VM Create IRQ Chip
1522 *
1523 * Input Args:
1524 *   vm - Virtual Machine
1525 *
1526 * Output Args: None
1527 *
1528 * Return: None
1529 *
1530 * Creates an interrupt controller chip for the VM specified by vm.
1531 */
1532void vm_create_irqchip(struct kvm_vm *vm)
1533{
1534        int ret;
1535
1536        ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1537        TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1538                "rc: %i errno: %i", ret, errno);
1539
1540        vm->has_irqchip = true;
1541}
1542
1543/*
1544 * VM VCPU State
1545 *
1546 * Input Args:
1547 *   vm - Virtual Machine
1548 *   vcpuid - VCPU ID
1549 *
1550 * Output Args: None
1551 *
1552 * Return:
1553 *   Pointer to structure that describes the state of the VCPU.
1554 *
1555 * Locates and returns a pointer to a structure that describes the
1556 * state of the VCPU with the given vcpuid.
1557 */
1558struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1559{
1560        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1561        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1562
1563        return vcpu->state;
1564}
1565
1566/*
1567 * VM VCPU Run
1568 *
1569 * Input Args:
1570 *   vm - Virtual Machine
1571 *   vcpuid - VCPU ID
1572 *
1573 * Output Args: None
1574 *
1575 * Return: None
1576 *
1577 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1578 * given by vm.
1579 */
1580void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1581{
1582        int ret = _vcpu_run(vm, vcpuid);
1583        TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1584                "rc: %i errno: %i", ret, errno);
1585}
1586
1587int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1588{
1589        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1590        int rc;
1591
1592        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1593        do {
1594                rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1595        } while (rc == -1 && errno == EINTR);
1596
1597        assert_on_unhandled_exception(vm, vcpuid);
1598
1599        return rc;
1600}
1601
1602int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1603{
1604        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1605
1606        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1607
1608        return vcpu->fd;
1609}
1610
1611void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1612{
1613        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1614        int ret;
1615
1616        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1617
1618        vcpu->state->immediate_exit = 1;
1619        ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1620        vcpu->state->immediate_exit = 0;
1621
1622        TEST_ASSERT(ret == -1 && errno == EINTR,
1623                    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1624                    ret, errno);
1625}
1626
1627void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1628                          struct kvm_guest_debug *debug)
1629{
1630        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1631        int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1632
1633        TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1634}
1635
1636/*
1637 * VM VCPU Set MP State
1638 *
1639 * Input Args:
1640 *   vm - Virtual Machine
1641 *   vcpuid - VCPU ID
1642 *   mp_state - mp_state to be set
1643 *
1644 * Output Args: None
1645 *
1646 * Return: None
1647 *
1648 * Sets the MP state of the VCPU given by vcpuid, to the state given
1649 * by mp_state.
1650 */
1651void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1652                       struct kvm_mp_state *mp_state)
1653{
1654        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1655        int ret;
1656
1657        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1658
1659        ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1660        TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1661                "rc: %i errno: %i", ret, errno);
1662}
1663
1664/*
1665 * VM VCPU Get Reg List
1666 *
1667 * Input Args:
1668 *   vm - Virtual Machine
1669 *   vcpuid - VCPU ID
1670 *
1671 * Output Args:
1672 *   None
1673 *
1674 * Return:
1675 *   A pointer to an allocated struct kvm_reg_list
1676 *
1677 * Get the list of guest registers which are supported for
1678 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1679 */
1680struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1681{
1682        struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1683        int ret;
1684
1685        ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1686        TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1687        reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1688        reg_list->n = reg_list_n.n;
1689        vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1690        return reg_list;
1691}
1692
1693/*
1694 * VM VCPU Regs Get
1695 *
1696 * Input Args:
1697 *   vm - Virtual Machine
1698 *   vcpuid - VCPU ID
1699 *
1700 * Output Args:
1701 *   regs - current state of VCPU regs
1702 *
1703 * Return: None
1704 *
1705 * Obtains the current register state for the VCPU specified by vcpuid
1706 * and stores it at the location given by regs.
1707 */
1708void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1709{
1710        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1711        int ret;
1712
1713        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1714
1715        ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1716        TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1717                ret, errno);
1718}
1719
1720/*
1721 * VM VCPU Regs Set
1722 *
1723 * Input Args:
1724 *   vm - Virtual Machine
1725 *   vcpuid - VCPU ID
1726 *   regs - Values to set VCPU regs to
1727 *
1728 * Output Args: None
1729 *
1730 * Return: None
1731 *
1732 * Sets the regs of the VCPU specified by vcpuid to the values
1733 * given by regs.
1734 */
1735void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1736{
1737        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1738        int ret;
1739
1740        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1741
1742        ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1743        TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1744                ret, errno);
1745}
1746
1747#ifdef __KVM_HAVE_VCPU_EVENTS
1748void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1749                     struct kvm_vcpu_events *events)
1750{
1751        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1752        int ret;
1753
1754        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1755
1756        ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1757        TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1758                ret, errno);
1759}
1760
1761void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1762                     struct kvm_vcpu_events *events)
1763{
1764        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1765        int ret;
1766
1767        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1768
1769        ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1770        TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1771                ret, errno);
1772}
1773#endif
1774
1775#ifdef __x86_64__
1776void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1777                           struct kvm_nested_state *state)
1778{
1779        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1780        int ret;
1781
1782        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1783
1784        ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1785        TEST_ASSERT(ret == 0,
1786                "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1787                ret, errno);
1788}
1789
1790int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1791                          struct kvm_nested_state *state, bool ignore_error)
1792{
1793        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1794        int ret;
1795
1796        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1797
1798        ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1799        if (!ignore_error) {
1800                TEST_ASSERT(ret == 0,
1801                        "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1802                        ret, errno);
1803        }
1804
1805        return ret;
1806}
1807#endif
1808
1809/*
1810 * VM VCPU System Regs Get
1811 *
1812 * Input Args:
1813 *   vm - Virtual Machine
1814 *   vcpuid - VCPU ID
1815 *
1816 * Output Args:
1817 *   sregs - current state of VCPU system regs
1818 *
1819 * Return: None
1820 *
1821 * Obtains the current system register state for the VCPU specified by
1822 * vcpuid and stores it at the location given by sregs.
1823 */
1824void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1825{
1826        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1827        int ret;
1828
1829        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1830
1831        ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1832        TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1833                ret, errno);
1834}
1835
1836/*
1837 * VM VCPU System Regs Set
1838 *
1839 * Input Args:
1840 *   vm - Virtual Machine
1841 *   vcpuid - VCPU ID
1842 *   sregs - Values to set VCPU system regs to
1843 *
1844 * Output Args: None
1845 *
1846 * Return: None
1847 *
1848 * Sets the system regs of the VCPU specified by vcpuid to the values
1849 * given by sregs.
1850 */
1851void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1852{
1853        int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1854        TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, "
1855                "rc: %i errno: %i", ret, errno);
1856}
1857
1858int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1859{
1860        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1861
1862        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1863
1864        return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1865}
1866
1867void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1868{
1869        int ret;
1870
1871        ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1872        TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1873                    ret, errno, strerror(errno));
1874}
1875
1876void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1877{
1878        int ret;
1879
1880        ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1881        TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1882                    ret, errno, strerror(errno));
1883}
1884
1885void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1886{
1887        int ret;
1888
1889        ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1890        TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1891                    ret, errno, strerror(errno));
1892}
1893
1894void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1895{
1896        int ret;
1897
1898        ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1899        TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1900                    ret, errno, strerror(errno));
1901}
1902
1903/*
1904 * VCPU Ioctl
1905 *
1906 * Input Args:
1907 *   vm - Virtual Machine
1908 *   vcpuid - VCPU ID
1909 *   cmd - Ioctl number
1910 *   arg - Argument to pass to the ioctl
1911 *
1912 * Return: None
1913 *
1914 * Issues an arbitrary ioctl on a VCPU fd.
1915 */
1916void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1917                unsigned long cmd, void *arg)
1918{
1919        int ret;
1920
1921        ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1922        TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1923                cmd, ret, errno, strerror(errno));
1924}
1925
1926int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1927                unsigned long cmd, void *arg)
1928{
1929        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1930        int ret;
1931
1932        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1933
1934        ret = ioctl(vcpu->fd, cmd, arg);
1935
1936        return ret;
1937}
1938
1939void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1940{
1941        struct vcpu *vcpu;
1942        uint32_t size = vm->dirty_ring_size;
1943
1944        TEST_ASSERT(size > 0, "Should enable dirty ring first");
1945
1946        vcpu = vcpu_find(vm, vcpuid);
1947
1948        TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1949
1950        if (!vcpu->dirty_gfns) {
1951                void *addr;
1952
1953                addr = mmap(NULL, size, PROT_READ,
1954                            MAP_PRIVATE, vcpu->fd,
1955                            vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1956                TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1957
1958                addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1959                            MAP_PRIVATE, vcpu->fd,
1960                            vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1961                TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1962
1963                addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1964                            MAP_SHARED, vcpu->fd,
1965                            vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1966                TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1967
1968                vcpu->dirty_gfns = addr;
1969                vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1970        }
1971
1972        return vcpu->dirty_gfns;
1973}
1974
1975/*
1976 * VM Ioctl
1977 *
1978 * Input Args:
1979 *   vm - Virtual Machine
1980 *   cmd - Ioctl number
1981 *   arg - Argument to pass to the ioctl
1982 *
1983 * Return: None
1984 *
1985 * Issues an arbitrary ioctl on a VM fd.
1986 */
1987void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1988{
1989        int ret;
1990
1991        ret = _vm_ioctl(vm, cmd, arg);
1992        TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1993                cmd, ret, errno, strerror(errno));
1994}
1995
1996int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1997{
1998        return ioctl(vm->fd, cmd, arg);
1999}
2000
2001/*
2002 * KVM system ioctl
2003 *
2004 * Input Args:
2005 *   vm - Virtual Machine
2006 *   cmd - Ioctl number
2007 *   arg - Argument to pass to the ioctl
2008 *
2009 * Return: None
2010 *
2011 * Issues an arbitrary ioctl on a KVM fd.
2012 */
2013void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2014{
2015        int ret;
2016
2017        ret = ioctl(vm->kvm_fd, cmd, arg);
2018        TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
2019                cmd, ret, errno, strerror(errno));
2020}
2021
2022int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2023{
2024        return ioctl(vm->kvm_fd, cmd, arg);
2025}
2026
2027/*
2028 * Device Ioctl
2029 */
2030
2031int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2032{
2033        struct kvm_device_attr attribute = {
2034                .group = group,
2035                .attr = attr,
2036                .flags = 0,
2037        };
2038
2039        return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
2040}
2041
2042int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2043{
2044        int ret = _kvm_device_check_attr(dev_fd, group, attr);
2045
2046        TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
2047        return ret;
2048}
2049
2050int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
2051{
2052        struct kvm_create_device create_dev;
2053        int ret;
2054
2055        create_dev.type = type;
2056        create_dev.fd = -1;
2057        create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2058        ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2059        *fd = create_dev.fd;
2060        return ret;
2061}
2062
2063int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2064{
2065        int fd, ret;
2066
2067        ret = _kvm_create_device(vm, type, test, &fd);
2068
2069        if (!test) {
2070                TEST_ASSERT(!ret,
2071                            "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2072                return fd;
2073        }
2074        return ret;
2075}
2076
2077int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2078                      void *val, bool write)
2079{
2080        struct kvm_device_attr kvmattr = {
2081                .group = group,
2082                .attr = attr,
2083                .flags = 0,
2084                .addr = (uintptr_t)val,
2085        };
2086        int ret;
2087
2088        ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2089                    &kvmattr);
2090        return ret;
2091}
2092
2093int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2094                      void *val, bool write)
2095{
2096        int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2097
2098        TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2099        return ret;
2100}
2101
2102int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2103                          uint64_t attr)
2104{
2105        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2106
2107        TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2108
2109        return _kvm_device_check_attr(vcpu->fd, group, attr);
2110}
2111
2112int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2113                                 uint64_t attr)
2114{
2115        int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr);
2116
2117        TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2118        return ret;
2119}
2120
2121int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2122                             uint64_t attr, void *val, bool write)
2123{
2124        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2125
2126        TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2127
2128        return _kvm_device_access(vcpu->fd, group, attr, val, write);
2129}
2130
2131int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2132                            uint64_t attr, void *val, bool write)
2133{
2134        int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write);
2135
2136        TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2137        return ret;
2138}
2139
2140/*
2141 * IRQ related functions.
2142 */
2143
2144int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2145{
2146        struct kvm_irq_level irq_level = {
2147                .irq    = irq,
2148                .level  = level,
2149        };
2150
2151        return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
2152}
2153
2154void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2155{
2156        int ret = _kvm_irq_line(vm, irq, level);
2157
2158        TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno);
2159}
2160
2161struct kvm_irq_routing *kvm_gsi_routing_create(void)
2162{
2163        struct kvm_irq_routing *routing;
2164        size_t size;
2165
2166        size = sizeof(struct kvm_irq_routing);
2167        /* Allocate space for the max number of entries: this wastes 196 KBs. */
2168        size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
2169        routing = calloc(1, size);
2170        assert(routing);
2171
2172        return routing;
2173}
2174
2175void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
2176                uint32_t gsi, uint32_t pin)
2177{
2178        int i;
2179
2180        assert(routing);
2181        assert(routing->nr < KVM_MAX_IRQ_ROUTES);
2182
2183        i = routing->nr;
2184        routing->entries[i].gsi = gsi;
2185        routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
2186        routing->entries[i].flags = 0;
2187        routing->entries[i].u.irqchip.irqchip = 0;
2188        routing->entries[i].u.irqchip.pin = pin;
2189        routing->nr++;
2190}
2191
2192int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2193{
2194        int ret;
2195
2196        assert(routing);
2197        ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing);
2198        free(routing);
2199
2200        return ret;
2201}
2202
2203void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2204{
2205        int ret;
2206
2207        ret = _kvm_gsi_routing_write(vm, routing);
2208        TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i",
2209                                ret, errno);
2210}
2211
2212/*
2213 * VM Dump
2214 *
2215 * Input Args:
2216 *   vm - Virtual Machine
2217 *   indent - Left margin indent amount
2218 *
2219 * Output Args:
2220 *   stream - Output FILE stream
2221 *
2222 * Return: None
2223 *
2224 * Dumps the current state of the VM given by vm, to the FILE stream
2225 * given by stream.
2226 */
2227void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2228{
2229        int ctr;
2230        struct userspace_mem_region *region;
2231        struct vcpu *vcpu;
2232
2233        fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2234        fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2235        fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2236        fprintf(stream, "%*sMem Regions:\n", indent, "");
2237        hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2238                fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2239                        "host_virt: %p\n", indent + 2, "",
2240                        (uint64_t) region->region.guest_phys_addr,
2241                        (uint64_t) region->region.memory_size,
2242                        region->host_mem);
2243                fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2244                sparsebit_dump(stream, region->unused_phy_pages, 0);
2245        }
2246        fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2247        sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2248        fprintf(stream, "%*spgd_created: %u\n", indent, "",
2249                vm->pgd_created);
2250        if (vm->pgd_created) {
2251                fprintf(stream, "%*sVirtual Translation Tables:\n",
2252                        indent + 2, "");
2253                virt_dump(stream, vm, indent + 4);
2254        }
2255        fprintf(stream, "%*sVCPUs:\n", indent, "");
2256        list_for_each_entry(vcpu, &vm->vcpus, list)
2257                vcpu_dump(stream, vm, vcpu->id, indent + 2);
2258}
2259
2260/* Known KVM exit reasons */
2261static struct exit_reason {
2262        unsigned int reason;
2263        const char *name;
2264} exit_reasons_known[] = {
2265        {KVM_EXIT_UNKNOWN, "UNKNOWN"},
2266        {KVM_EXIT_EXCEPTION, "EXCEPTION"},
2267        {KVM_EXIT_IO, "IO"},
2268        {KVM_EXIT_HYPERCALL, "HYPERCALL"},
2269        {KVM_EXIT_DEBUG, "DEBUG"},
2270        {KVM_EXIT_HLT, "HLT"},
2271        {KVM_EXIT_MMIO, "MMIO"},
2272        {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2273        {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2274        {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2275        {KVM_EXIT_INTR, "INTR"},
2276        {KVM_EXIT_SET_TPR, "SET_TPR"},
2277        {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2278        {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2279        {KVM_EXIT_S390_RESET, "S390_RESET"},
2280        {KVM_EXIT_DCR, "DCR"},
2281        {KVM_EXIT_NMI, "NMI"},
2282        {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2283        {KVM_EXIT_OSI, "OSI"},
2284        {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2285        {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2286        {KVM_EXIT_X86_RDMSR, "RDMSR"},
2287        {KVM_EXIT_X86_WRMSR, "WRMSR"},
2288        {KVM_EXIT_XEN, "XEN"},
2289#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2290        {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2291#endif
2292};
2293
2294/*
2295 * Exit Reason String
2296 *
2297 * Input Args:
2298 *   exit_reason - Exit reason
2299 *
2300 * Output Args: None
2301 *
2302 * Return:
2303 *   Constant string pointer describing the exit reason.
2304 *
2305 * Locates and returns a constant string that describes the KVM exit
2306 * reason given by exit_reason.  If no such string is found, a constant
2307 * string of "Unknown" is returned.
2308 */
2309const char *exit_reason_str(unsigned int exit_reason)
2310{
2311        unsigned int n1;
2312
2313        for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2314                if (exit_reason == exit_reasons_known[n1].reason)
2315                        return exit_reasons_known[n1].name;
2316        }
2317
2318        return "Unknown";
2319}
2320
2321/*
2322 * Physical Contiguous Page Allocator
2323 *
2324 * Input Args:
2325 *   vm - Virtual Machine
2326 *   num - number of pages
2327 *   paddr_min - Physical address minimum
2328 *   memslot - Memory region to allocate page from
2329 *
2330 * Output Args: None
2331 *
2332 * Return:
2333 *   Starting physical address
2334 *
2335 * Within the VM specified by vm, locates a range of available physical
2336 * pages at or above paddr_min. If found, the pages are marked as in use
2337 * and their base address is returned. A TEST_ASSERT failure occurs if
2338 * not enough pages are available at or above paddr_min.
2339 */
2340vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2341                              vm_paddr_t paddr_min, uint32_t memslot)
2342{
2343        struct userspace_mem_region *region;
2344        sparsebit_idx_t pg, base;
2345
2346        TEST_ASSERT(num > 0, "Must allocate at least one page");
2347
2348        TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2349                "not divisible by page size.\n"
2350                "  paddr_min: 0x%lx page_size: 0x%x",
2351                paddr_min, vm->page_size);
2352
2353        region = memslot2region(vm, memslot);
2354        base = pg = paddr_min >> vm->page_shift;
2355
2356        do {
2357                for (; pg < base + num; ++pg) {
2358                        if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2359                                base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2360                                break;
2361                        }
2362                }
2363        } while (pg && pg != base + num);
2364
2365        if (pg == 0) {
2366                fprintf(stderr, "No guest physical page available, "
2367                        "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2368                        paddr_min, vm->page_size, memslot);
2369                fputs("---- vm dump ----\n", stderr);
2370                vm_dump(stderr, vm, 2);
2371                abort();
2372        }
2373
2374        for (pg = base; pg < base + num; ++pg)
2375                sparsebit_clear(region->unused_phy_pages, pg);
2376
2377        return base * vm->page_size;
2378}
2379
2380vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2381                             uint32_t memslot)
2382{
2383        return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2384}
2385
2386/* Arbitrary minimum physical address used for virtual translation tables. */
2387#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2388
2389vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2390{
2391        return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2392}
2393
2394/*
2395 * Address Guest Virtual to Host Virtual
2396 *
2397 * Input Args:
2398 *   vm - Virtual Machine
2399 *   gva - VM virtual address
2400 *
2401 * Output Args: None
2402 *
2403 * Return:
2404 *   Equivalent host virtual address
2405 */
2406void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2407{
2408        return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2409}
2410
2411/*
2412 * Is Unrestricted Guest
2413 *
2414 * Input Args:
2415 *   vm - Virtual Machine
2416 *
2417 * Output Args: None
2418 *
2419 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2420 *
2421 * Check if the unrestricted guest flag is enabled.
2422 */
2423bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2424{
2425        char val = 'N';
2426        size_t count;
2427        FILE *f;
2428
2429        if (vm == NULL) {
2430                /* Ensure that the KVM vendor-specific module is loaded. */
2431                close(open_kvm_dev_path_or_exit());
2432        }
2433
2434        f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2435        if (f) {
2436                count = fread(&val, sizeof(char), 1, f);
2437                TEST_ASSERT(count == 1, "Unable to read from param file.");
2438                fclose(f);
2439        }
2440
2441        return val == 'Y';
2442}
2443
2444unsigned int vm_get_page_size(struct kvm_vm *vm)
2445{
2446        return vm->page_size;
2447}
2448
2449unsigned int vm_get_page_shift(struct kvm_vm *vm)
2450{
2451        return vm->page_shift;
2452}
2453
2454unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm)
2455{
2456        return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2457}
2458
2459uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2460{
2461        return vm->max_gfn;
2462}
2463
2464int vm_get_fd(struct kvm_vm *vm)
2465{
2466        return vm->fd;
2467}
2468
2469static unsigned int vm_calc_num_pages(unsigned int num_pages,
2470                                      unsigned int page_shift,
2471                                      unsigned int new_page_shift,
2472                                      bool ceil)
2473{
2474        unsigned int n = 1 << (new_page_shift - page_shift);
2475
2476        if (page_shift >= new_page_shift)
2477                return num_pages * (1 << (page_shift - new_page_shift));
2478
2479        return num_pages / n + !!(ceil && num_pages % n);
2480}
2481
2482static inline int getpageshift(void)
2483{
2484        return __builtin_ffs(getpagesize()) - 1;
2485}
2486
2487unsigned int
2488vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2489{
2490        return vm_calc_num_pages(num_guest_pages,
2491                                 vm_guest_mode_params[mode].page_shift,
2492                                 getpageshift(), true);
2493}
2494
2495unsigned int
2496vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2497{
2498        return vm_calc_num_pages(num_host_pages, getpageshift(),
2499                                 vm_guest_mode_params[mode].page_shift, false);
2500}
2501
2502unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2503{
2504        unsigned int n;
2505        n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2506        return vm_adjust_num_guest_pages(mode, n);
2507}
2508
2509int vm_get_stats_fd(struct kvm_vm *vm)
2510{
2511        return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2512}
2513
2514int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2515{
2516        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2517
2518        return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2519}
2520