linux/arch/powerpc/kvm/book3s_hv_nested.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright IBM Corporation, 2018
   4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
   5 *         Paul Mackerras <paulus@ozlabs.org>
   6 *
   7 * Description: KVM functions specific to running nested KVM-HV guests
   8 * on Book3S processors (specifically POWER9 and later).
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/kvm_host.h>
  13#include <linux/llist.h>
  14#include <linux/pgtable.h>
  15
  16#include <asm/kvm_ppc.h>
  17#include <asm/kvm_book3s.h>
  18#include <asm/mmu.h>
  19#include <asm/pgalloc.h>
  20#include <asm/pte-walk.h>
  21#include <asm/reg.h>
  22#include <asm/plpar_wrappers.h>
  23
  24static struct patb_entry *pseries_partition_tb;
  25
  26static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
  27static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
  28
  29void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
  30{
  31        struct kvmppc_vcore *vc = vcpu->arch.vcore;
  32
  33        hr->pcr = vc->pcr | PCR_MASK;
  34        hr->dpdes = vc->dpdes;
  35        hr->hfscr = vcpu->arch.hfscr;
  36        hr->tb_offset = vc->tb_offset;
  37        hr->dawr0 = vcpu->arch.dawr0;
  38        hr->dawrx0 = vcpu->arch.dawrx0;
  39        hr->ciabr = vcpu->arch.ciabr;
  40        hr->purr = vcpu->arch.purr;
  41        hr->spurr = vcpu->arch.spurr;
  42        hr->ic = vcpu->arch.ic;
  43        hr->vtb = vc->vtb;
  44        hr->srr0 = vcpu->arch.shregs.srr0;
  45        hr->srr1 = vcpu->arch.shregs.srr1;
  46        hr->sprg[0] = vcpu->arch.shregs.sprg0;
  47        hr->sprg[1] = vcpu->arch.shregs.sprg1;
  48        hr->sprg[2] = vcpu->arch.shregs.sprg2;
  49        hr->sprg[3] = vcpu->arch.shregs.sprg3;
  50        hr->pidr = vcpu->arch.pid;
  51        hr->cfar = vcpu->arch.cfar;
  52        hr->ppr = vcpu->arch.ppr;
  53        hr->dawr1 = vcpu->arch.dawr1;
  54        hr->dawrx1 = vcpu->arch.dawrx1;
  55}
  56
  57/* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
  58static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
  59{
  60        unsigned long *addr = (unsigned long *) regs;
  61
  62        for (; addr < ((unsigned long *) (regs + 1)); addr++)
  63                *addr = swab64(*addr);
  64}
  65
  66static void byteswap_hv_regs(struct hv_guest_state *hr)
  67{
  68        hr->version = swab64(hr->version);
  69        hr->lpid = swab32(hr->lpid);
  70        hr->vcpu_token = swab32(hr->vcpu_token);
  71        hr->lpcr = swab64(hr->lpcr);
  72        hr->pcr = swab64(hr->pcr) | PCR_MASK;
  73        hr->amor = swab64(hr->amor);
  74        hr->dpdes = swab64(hr->dpdes);
  75        hr->hfscr = swab64(hr->hfscr);
  76        hr->tb_offset = swab64(hr->tb_offset);
  77        hr->dawr0 = swab64(hr->dawr0);
  78        hr->dawrx0 = swab64(hr->dawrx0);
  79        hr->ciabr = swab64(hr->ciabr);
  80        hr->hdec_expiry = swab64(hr->hdec_expiry);
  81        hr->purr = swab64(hr->purr);
  82        hr->spurr = swab64(hr->spurr);
  83        hr->ic = swab64(hr->ic);
  84        hr->vtb = swab64(hr->vtb);
  85        hr->hdar = swab64(hr->hdar);
  86        hr->hdsisr = swab64(hr->hdsisr);
  87        hr->heir = swab64(hr->heir);
  88        hr->asdr = swab64(hr->asdr);
  89        hr->srr0 = swab64(hr->srr0);
  90        hr->srr1 = swab64(hr->srr1);
  91        hr->sprg[0] = swab64(hr->sprg[0]);
  92        hr->sprg[1] = swab64(hr->sprg[1]);
  93        hr->sprg[2] = swab64(hr->sprg[2]);
  94        hr->sprg[3] = swab64(hr->sprg[3]);
  95        hr->pidr = swab64(hr->pidr);
  96        hr->cfar = swab64(hr->cfar);
  97        hr->ppr = swab64(hr->ppr);
  98        hr->dawr1 = swab64(hr->dawr1);
  99        hr->dawrx1 = swab64(hr->dawrx1);
 100}
 101
 102static void save_hv_return_state(struct kvm_vcpu *vcpu,
 103                                 struct hv_guest_state *hr)
 104{
 105        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 106
 107        hr->dpdes = vc->dpdes;
 108        hr->purr = vcpu->arch.purr;
 109        hr->spurr = vcpu->arch.spurr;
 110        hr->ic = vcpu->arch.ic;
 111        hr->vtb = vc->vtb;
 112        hr->srr0 = vcpu->arch.shregs.srr0;
 113        hr->srr1 = vcpu->arch.shregs.srr1;
 114        hr->sprg[0] = vcpu->arch.shregs.sprg0;
 115        hr->sprg[1] = vcpu->arch.shregs.sprg1;
 116        hr->sprg[2] = vcpu->arch.shregs.sprg2;
 117        hr->sprg[3] = vcpu->arch.shregs.sprg3;
 118        hr->pidr = vcpu->arch.pid;
 119        hr->cfar = vcpu->arch.cfar;
 120        hr->ppr = vcpu->arch.ppr;
 121        switch (vcpu->arch.trap) {
 122        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
 123                hr->hdar = vcpu->arch.fault_dar;
 124                hr->hdsisr = vcpu->arch.fault_dsisr;
 125                hr->asdr = vcpu->arch.fault_gpa;
 126                break;
 127        case BOOK3S_INTERRUPT_H_INST_STORAGE:
 128                hr->asdr = vcpu->arch.fault_gpa;
 129                break;
 130        case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
 131                hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
 132                             (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
 133                break;
 134        case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
 135                hr->heir = vcpu->arch.emul_inst;
 136                break;
 137        }
 138}
 139
 140static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
 141{
 142        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 143
 144        vc->pcr = hr->pcr | PCR_MASK;
 145        vc->dpdes = hr->dpdes;
 146        vcpu->arch.hfscr = hr->hfscr;
 147        vcpu->arch.dawr0 = hr->dawr0;
 148        vcpu->arch.dawrx0 = hr->dawrx0;
 149        vcpu->arch.ciabr = hr->ciabr;
 150        vcpu->arch.purr = hr->purr;
 151        vcpu->arch.spurr = hr->spurr;
 152        vcpu->arch.ic = hr->ic;
 153        vc->vtb = hr->vtb;
 154        vcpu->arch.shregs.srr0 = hr->srr0;
 155        vcpu->arch.shregs.srr1 = hr->srr1;
 156        vcpu->arch.shregs.sprg0 = hr->sprg[0];
 157        vcpu->arch.shregs.sprg1 = hr->sprg[1];
 158        vcpu->arch.shregs.sprg2 = hr->sprg[2];
 159        vcpu->arch.shregs.sprg3 = hr->sprg[3];
 160        vcpu->arch.pid = hr->pidr;
 161        vcpu->arch.cfar = hr->cfar;
 162        vcpu->arch.ppr = hr->ppr;
 163        vcpu->arch.dawr1 = hr->dawr1;
 164        vcpu->arch.dawrx1 = hr->dawrx1;
 165}
 166
 167void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
 168                                   struct hv_guest_state *hr)
 169{
 170        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 171
 172        vc->dpdes = hr->dpdes;
 173        vcpu->arch.hfscr = hr->hfscr;
 174        vcpu->arch.purr = hr->purr;
 175        vcpu->arch.spurr = hr->spurr;
 176        vcpu->arch.ic = hr->ic;
 177        vc->vtb = hr->vtb;
 178        vcpu->arch.fault_dar = hr->hdar;
 179        vcpu->arch.fault_dsisr = hr->hdsisr;
 180        vcpu->arch.fault_gpa = hr->asdr;
 181        vcpu->arch.emul_inst = hr->heir;
 182        vcpu->arch.shregs.srr0 = hr->srr0;
 183        vcpu->arch.shregs.srr1 = hr->srr1;
 184        vcpu->arch.shregs.sprg0 = hr->sprg[0];
 185        vcpu->arch.shregs.sprg1 = hr->sprg[1];
 186        vcpu->arch.shregs.sprg2 = hr->sprg[2];
 187        vcpu->arch.shregs.sprg3 = hr->sprg[3];
 188        vcpu->arch.pid = hr->pidr;
 189        vcpu->arch.cfar = hr->cfar;
 190        vcpu->arch.ppr = hr->ppr;
 191}
 192
 193static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
 194{
 195        /* No need to reflect the page fault to L1, we've handled it */
 196        vcpu->arch.trap = 0;
 197
 198        /*
 199         * Since the L2 gprs have already been written back into L1 memory when
 200         * we complete the mmio, store the L1 memory location of the L2 gpr
 201         * being loaded into by the mmio so that the loaded value can be
 202         * written there in kvmppc_complete_mmio_load()
 203         */
 204        if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
 205            && (vcpu->mmio_is_write == 0)) {
 206                vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
 207                                           offsetof(struct pt_regs,
 208                                                    gpr[vcpu->arch.io_gpr]);
 209                vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
 210        }
 211}
 212
 213static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
 214                                           struct hv_guest_state *l2_hv,
 215                                           struct pt_regs *l2_regs,
 216                                           u64 hv_ptr, u64 regs_ptr)
 217{
 218        int size;
 219
 220        if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
 221                                sizeof(l2_hv->version)))
 222                return -1;
 223
 224        if (kvmppc_need_byteswap(vcpu))
 225                l2_hv->version = swab64(l2_hv->version);
 226
 227        size = hv_guest_state_size(l2_hv->version);
 228        if (size < 0)
 229                return -1;
 230
 231        return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
 232                kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
 233                                    sizeof(struct pt_regs));
 234}
 235
 236static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
 237                                            struct hv_guest_state *l2_hv,
 238                                            struct pt_regs *l2_regs,
 239                                            u64 hv_ptr, u64 regs_ptr)
 240{
 241        int size;
 242
 243        size = hv_guest_state_size(l2_hv->version);
 244        if (size < 0)
 245                return -1;
 246
 247        return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
 248                kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
 249                                     sizeof(struct pt_regs));
 250}
 251
 252static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
 253                            const struct hv_guest_state *l2_hv,
 254                            const struct hv_guest_state *l1_hv, u64 *lpcr)
 255{
 256        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 257        u64 mask;
 258
 259        restore_hv_regs(vcpu, l2_hv);
 260
 261        /*
 262         * Don't let L1 change LPCR bits for the L2 except these:
 263         */
 264        mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
 265                LPCR_LPES | LPCR_MER;
 266
 267        /*
 268         * Additional filtering is required depending on hardware
 269         * and configuration.
 270         */
 271        *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
 272                                      (vc->lpcr & ~mask) | (*lpcr & mask));
 273
 274        /*
 275         * Don't let L1 enable features for L2 which we don't allow for L1,
 276         * but preserve the interrupt cause field.
 277         */
 278        vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
 279
 280        /* Don't let data address watchpoint match in hypervisor state */
 281        vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
 282        vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
 283
 284        /* Don't let completed instruction address breakpt match in HV state */
 285        if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
 286                vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
 287}
 288
 289long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
 290{
 291        long int err, r;
 292        struct kvm_nested_guest *l2;
 293        struct pt_regs l2_regs, saved_l1_regs;
 294        struct hv_guest_state l2_hv = {0}, saved_l1_hv;
 295        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 296        u64 hv_ptr, regs_ptr;
 297        u64 hdec_exp, lpcr;
 298        s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
 299
 300        if (vcpu->kvm->arch.l1_ptcr == 0)
 301                return H_NOT_AVAILABLE;
 302
 303        if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
 304                return H_BAD_MODE;
 305
 306        /* copy parameters in */
 307        hv_ptr = kvmppc_get_gpr(vcpu, 4);
 308        regs_ptr = kvmppc_get_gpr(vcpu, 5);
 309        kvm_vcpu_srcu_read_lock(vcpu);
 310        err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
 311                                              hv_ptr, regs_ptr);
 312        kvm_vcpu_srcu_read_unlock(vcpu);
 313        if (err)
 314                return H_PARAMETER;
 315
 316        if (kvmppc_need_byteswap(vcpu))
 317                byteswap_hv_regs(&l2_hv);
 318        if (l2_hv.version > HV_GUEST_STATE_VERSION)
 319                return H_P2;
 320
 321        if (kvmppc_need_byteswap(vcpu))
 322                byteswap_pt_regs(&l2_regs);
 323        if (l2_hv.vcpu_token >= NR_CPUS)
 324                return H_PARAMETER;
 325
 326        /*
 327         * L1 must have set up a suspended state to enter the L2 in a
 328         * transactional state, and only in that case. These have to be
 329         * filtered out here to prevent causing a TM Bad Thing in the
 330         * host HRFID. We could synthesize a TM Bad Thing back to the L1
 331         * here but there doesn't seem like much point.
 332         */
 333        if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
 334                if (!MSR_TM_ACTIVE(l2_regs.msr))
 335                        return H_BAD_MODE;
 336        } else {
 337                if (l2_regs.msr & MSR_TS_MASK)
 338                        return H_BAD_MODE;
 339                if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
 340                        return H_BAD_MODE;
 341        }
 342
 343        /* translate lpid */
 344        l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
 345        if (!l2)
 346                return H_PARAMETER;
 347        if (!l2->l1_gr_to_hr) {
 348                mutex_lock(&l2->tlb_lock);
 349                kvmhv_update_ptbl_cache(l2);
 350                mutex_unlock(&l2->tlb_lock);
 351        }
 352
 353        /* save l1 values of things */
 354        vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
 355        saved_l1_regs = vcpu->arch.regs;
 356        kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
 357
 358        /* convert TB values/offsets to host (L0) values */
 359        hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
 360        vc->tb_offset += l2_hv.tb_offset;
 361        vcpu->arch.dec_expires += l2_hv.tb_offset;
 362
 363        /* set L1 state to L2 state */
 364        vcpu->arch.nested = l2;
 365        vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
 366        vcpu->arch.nested_hfscr = l2_hv.hfscr;
 367        vcpu->arch.regs = l2_regs;
 368
 369        /* Guest must always run with ME enabled, HV disabled. */
 370        vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
 371
 372        lpcr = l2_hv.lpcr;
 373        load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
 374
 375        vcpu->arch.ret = RESUME_GUEST;
 376        vcpu->arch.trap = 0;
 377        do {
 378                r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
 379        } while (is_kvmppc_resume_guest(r));
 380
 381        /* save L2 state for return */
 382        l2_regs = vcpu->arch.regs;
 383        l2_regs.msr = vcpu->arch.shregs.msr;
 384        delta_purr = vcpu->arch.purr - l2_hv.purr;
 385        delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
 386        delta_ic = vcpu->arch.ic - l2_hv.ic;
 387        delta_vtb = vc->vtb - l2_hv.vtb;
 388        save_hv_return_state(vcpu, &l2_hv);
 389
 390        /* restore L1 state */
 391        vcpu->arch.nested = NULL;
 392        vcpu->arch.regs = saved_l1_regs;
 393        vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
 394        /* set L1 MSR TS field according to L2 transaction state */
 395        if (l2_regs.msr & MSR_TS_MASK)
 396                vcpu->arch.shregs.msr |= MSR_TS_S;
 397        vc->tb_offset = saved_l1_hv.tb_offset;
 398        /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
 399        vcpu->arch.dec_expires -= l2_hv.tb_offset;
 400        restore_hv_regs(vcpu, &saved_l1_hv);
 401        vcpu->arch.purr += delta_purr;
 402        vcpu->arch.spurr += delta_spurr;
 403        vcpu->arch.ic += delta_ic;
 404        vc->vtb += delta_vtb;
 405
 406        kvmhv_put_nested(l2);
 407
 408        /* copy l2_hv_state and regs back to guest */
 409        if (kvmppc_need_byteswap(vcpu)) {
 410                byteswap_hv_regs(&l2_hv);
 411                byteswap_pt_regs(&l2_regs);
 412        }
 413        kvm_vcpu_srcu_read_lock(vcpu);
 414        err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
 415                                               hv_ptr, regs_ptr);
 416        kvm_vcpu_srcu_read_unlock(vcpu);
 417        if (err)
 418                return H_AUTHORITY;
 419
 420        if (r == -EINTR)
 421                return H_INTERRUPT;
 422
 423        if (vcpu->mmio_needed) {
 424                kvmhv_nested_mmio_needed(vcpu, regs_ptr);
 425                return H_TOO_HARD;
 426        }
 427
 428        return vcpu->arch.trap;
 429}
 430
 431long kvmhv_nested_init(void)
 432{
 433        long int ptb_order;
 434        unsigned long ptcr;
 435        long rc;
 436
 437        if (!kvmhv_on_pseries())
 438                return 0;
 439        if (!radix_enabled())
 440                return -ENODEV;
 441
 442        /* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
 443        ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
 444        if (ptb_order < 8)
 445                ptb_order = 8;
 446        pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
 447                                       GFP_KERNEL);
 448        if (!pseries_partition_tb) {
 449                pr_err("kvm-hv: failed to allocated nested partition table\n");
 450                return -ENOMEM;
 451        }
 452
 453        ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
 454        rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
 455        if (rc != H_SUCCESS) {
 456                pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
 457                       rc);
 458                kfree(pseries_partition_tb);
 459                pseries_partition_tb = NULL;
 460                return -ENODEV;
 461        }
 462
 463        return 0;
 464}
 465
 466void kvmhv_nested_exit(void)
 467{
 468        /*
 469         * N.B. the kvmhv_on_pseries() test is there because it enables
 470         * the compiler to remove the call to plpar_hcall_norets()
 471         * when CONFIG_PPC_PSERIES=n.
 472         */
 473        if (kvmhv_on_pseries() && pseries_partition_tb) {
 474                plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
 475                kfree(pseries_partition_tb);
 476                pseries_partition_tb = NULL;
 477        }
 478}
 479
 480static void kvmhv_flush_lpid(unsigned int lpid)
 481{
 482        long rc;
 483
 484        if (!kvmhv_on_pseries()) {
 485                radix__flush_all_lpid(lpid);
 486                return;
 487        }
 488
 489        if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
 490                rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
 491                                        lpid, TLBIEL_INVAL_SET_LPID);
 492        else
 493                rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
 494                                            H_RPTI_TYPE_NESTED |
 495                                            H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
 496                                            H_RPTI_TYPE_PAT,
 497                                            H_RPTI_PAGE_ALL, 0, -1UL);
 498        if (rc)
 499                pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
 500}
 501
 502void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
 503{
 504        if (!kvmhv_on_pseries()) {
 505                mmu_partition_table_set_entry(lpid, dw0, dw1, true);
 506                return;
 507        }
 508
 509        pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
 510        pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
 511        /* L0 will do the necessary barriers */
 512        kvmhv_flush_lpid(lpid);
 513}
 514
 515static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
 516{
 517        unsigned long dw0;
 518
 519        dw0 = PATB_HR | radix__get_tree_size() |
 520                __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
 521        kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
 522}
 523
 524void kvmhv_vm_nested_init(struct kvm *kvm)
 525{
 526        kvm->arch.max_nested_lpid = -1;
 527}
 528
 529/*
 530 * Handle the H_SET_PARTITION_TABLE hcall.
 531 * r4 = guest real address of partition table + log_2(size) - 12
 532 * (formatted as for the PTCR).
 533 */
 534long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
 535{
 536        struct kvm *kvm = vcpu->kvm;
 537        unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
 538        int srcu_idx;
 539        long ret = H_SUCCESS;
 540
 541        srcu_idx = srcu_read_lock(&kvm->srcu);
 542        /*
 543         * Limit the partition table to 4096 entries (because that's what
 544         * hardware supports), and check the base address.
 545         */
 546        if ((ptcr & PRTS_MASK) > 12 - 8 ||
 547            !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
 548                ret = H_PARAMETER;
 549        srcu_read_unlock(&kvm->srcu, srcu_idx);
 550        if (ret == H_SUCCESS)
 551                kvm->arch.l1_ptcr = ptcr;
 552        return ret;
 553}
 554
 555/*
 556 * Handle the H_COPY_TOFROM_GUEST hcall.
 557 * r4 = L1 lpid of nested guest
 558 * r5 = pid
 559 * r6 = eaddr to access
 560 * r7 = to buffer (L1 gpa)
 561 * r8 = from buffer (L1 gpa)
 562 * r9 = n bytes to copy
 563 */
 564long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
 565{
 566        struct kvm_nested_guest *gp;
 567        int l1_lpid = kvmppc_get_gpr(vcpu, 4);
 568        int pid = kvmppc_get_gpr(vcpu, 5);
 569        gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
 570        gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
 571        gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
 572        void *buf;
 573        unsigned long n = kvmppc_get_gpr(vcpu, 9);
 574        bool is_load = !!gp_to;
 575        long rc;
 576
 577        if (gp_to && gp_from) /* One must be NULL to determine the direction */
 578                return H_PARAMETER;
 579
 580        if (eaddr & (0xFFFUL << 52))
 581                return H_PARAMETER;
 582
 583        buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
 584        if (!buf)
 585                return H_NO_MEM;
 586
 587        gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
 588        if (!gp) {
 589                rc = H_PARAMETER;
 590                goto out_free;
 591        }
 592
 593        mutex_lock(&gp->tlb_lock);
 594
 595        if (is_load) {
 596                /* Load from the nested guest into our buffer */
 597                rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
 598                                                     eaddr, buf, NULL, n);
 599                if (rc)
 600                        goto not_found;
 601
 602                /* Write what was loaded into our buffer back to the L1 guest */
 603                kvm_vcpu_srcu_read_lock(vcpu);
 604                rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
 605                kvm_vcpu_srcu_read_unlock(vcpu);
 606                if (rc)
 607                        goto not_found;
 608        } else {
 609                /* Load the data to be stored from the L1 guest into our buf */
 610                kvm_vcpu_srcu_read_lock(vcpu);
 611                rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
 612                kvm_vcpu_srcu_read_unlock(vcpu);
 613                if (rc)
 614                        goto not_found;
 615
 616                /* Store from our buffer into the nested guest */
 617                rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
 618                                                     eaddr, NULL, buf, n);
 619                if (rc)
 620                        goto not_found;
 621        }
 622
 623out_unlock:
 624        mutex_unlock(&gp->tlb_lock);
 625        kvmhv_put_nested(gp);
 626out_free:
 627        kfree(buf);
 628        return rc;
 629not_found:
 630        rc = H_NOT_FOUND;
 631        goto out_unlock;
 632}
 633
 634/*
 635 * Reload the partition table entry for a guest.
 636 * Caller must hold gp->tlb_lock.
 637 */
 638static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
 639{
 640        int ret;
 641        struct patb_entry ptbl_entry;
 642        unsigned long ptbl_addr;
 643        struct kvm *kvm = gp->l1_host;
 644
 645        ret = -EFAULT;
 646        ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
 647        if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) {
 648                int srcu_idx = srcu_read_lock(&kvm->srcu);
 649                ret = kvm_read_guest(kvm, ptbl_addr,
 650                                     &ptbl_entry, sizeof(ptbl_entry));
 651                srcu_read_unlock(&kvm->srcu, srcu_idx);
 652        }
 653        if (ret) {
 654                gp->l1_gr_to_hr = 0;
 655                gp->process_table = 0;
 656        } else {
 657                gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
 658                gp->process_table = be64_to_cpu(ptbl_entry.patb1);
 659        }
 660        kvmhv_set_nested_ptbl(gp);
 661}
 662
 663static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
 664{
 665        struct kvm_nested_guest *gp;
 666        long shadow_lpid;
 667
 668        gp = kzalloc(sizeof(*gp), GFP_KERNEL);
 669        if (!gp)
 670                return NULL;
 671        gp->l1_host = kvm;
 672        gp->l1_lpid = lpid;
 673        mutex_init(&gp->tlb_lock);
 674        gp->shadow_pgtable = pgd_alloc(kvm->mm);
 675        if (!gp->shadow_pgtable)
 676                goto out_free;
 677        shadow_lpid = kvmppc_alloc_lpid();
 678        if (shadow_lpid < 0)
 679                goto out_free2;
 680        gp->shadow_lpid = shadow_lpid;
 681        gp->radix = 1;
 682
 683        memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
 684
 685        return gp;
 686
 687 out_free2:
 688        pgd_free(kvm->mm, gp->shadow_pgtable);
 689 out_free:
 690        kfree(gp);
 691        return NULL;
 692}
 693
 694/*
 695 * Free up any resources allocated for a nested guest.
 696 */
 697static void kvmhv_release_nested(struct kvm_nested_guest *gp)
 698{
 699        struct kvm *kvm = gp->l1_host;
 700
 701        if (gp->shadow_pgtable) {
 702                /*
 703                 * No vcpu is using this struct and no call to
 704                 * kvmhv_get_nested can find this struct,
 705                 * so we don't need to hold kvm->mmu_lock.
 706                 */
 707                kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
 708                                          gp->shadow_lpid);
 709                pgd_free(kvm->mm, gp->shadow_pgtable);
 710        }
 711        kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
 712        kvmppc_free_lpid(gp->shadow_lpid);
 713        kfree(gp);
 714}
 715
 716static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
 717{
 718        struct kvm *kvm = gp->l1_host;
 719        int lpid = gp->l1_lpid;
 720        long ref;
 721
 722        spin_lock(&kvm->mmu_lock);
 723        if (gp == kvm->arch.nested_guests[lpid]) {
 724                kvm->arch.nested_guests[lpid] = NULL;
 725                if (lpid == kvm->arch.max_nested_lpid) {
 726                        while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
 727                                ;
 728                        kvm->arch.max_nested_lpid = lpid;
 729                }
 730                --gp->refcnt;
 731        }
 732        ref = gp->refcnt;
 733        spin_unlock(&kvm->mmu_lock);
 734        if (ref == 0)
 735                kvmhv_release_nested(gp);
 736}
 737
 738/*
 739 * Free up all nested resources allocated for this guest.
 740 * This is called with no vcpus of the guest running, when
 741 * switching the guest to HPT mode or when destroying the
 742 * guest.
 743 */
 744void kvmhv_release_all_nested(struct kvm *kvm)
 745{
 746        int i;
 747        struct kvm_nested_guest *gp;
 748        struct kvm_nested_guest *freelist = NULL;
 749        struct kvm_memory_slot *memslot;
 750        int srcu_idx, bkt;
 751
 752        spin_lock(&kvm->mmu_lock);
 753        for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
 754                gp = kvm->arch.nested_guests[i];
 755                if (!gp)
 756                        continue;
 757                kvm->arch.nested_guests[i] = NULL;
 758                if (--gp->refcnt == 0) {
 759                        gp->next = freelist;
 760                        freelist = gp;
 761                }
 762        }
 763        kvm->arch.max_nested_lpid = -1;
 764        spin_unlock(&kvm->mmu_lock);
 765        while ((gp = freelist) != NULL) {
 766                freelist = gp->next;
 767                kvmhv_release_nested(gp);
 768        }
 769
 770        srcu_idx = srcu_read_lock(&kvm->srcu);
 771        kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
 772                kvmhv_free_memslot_nest_rmap(memslot);
 773        srcu_read_unlock(&kvm->srcu, srcu_idx);
 774}
 775
 776/* caller must hold gp->tlb_lock */
 777static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
 778{
 779        struct kvm *kvm = gp->l1_host;
 780
 781        spin_lock(&kvm->mmu_lock);
 782        kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
 783        spin_unlock(&kvm->mmu_lock);
 784        kvmhv_flush_lpid(gp->shadow_lpid);
 785        kvmhv_update_ptbl_cache(gp);
 786        if (gp->l1_gr_to_hr == 0)
 787                kvmhv_remove_nested(gp);
 788}
 789
 790struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
 791                                          bool create)
 792{
 793        struct kvm_nested_guest *gp, *newgp;
 794
 795        if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
 796            l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
 797                return NULL;
 798
 799        spin_lock(&kvm->mmu_lock);
 800        gp = kvm->arch.nested_guests[l1_lpid];
 801        if (gp)
 802                ++gp->refcnt;
 803        spin_unlock(&kvm->mmu_lock);
 804
 805        if (gp || !create)
 806                return gp;
 807
 808        newgp = kvmhv_alloc_nested(kvm, l1_lpid);
 809        if (!newgp)
 810                return NULL;
 811        spin_lock(&kvm->mmu_lock);
 812        if (kvm->arch.nested_guests[l1_lpid]) {
 813                /* someone else beat us to it */
 814                gp = kvm->arch.nested_guests[l1_lpid];
 815        } else {
 816                kvm->arch.nested_guests[l1_lpid] = newgp;
 817                ++newgp->refcnt;
 818                gp = newgp;
 819                newgp = NULL;
 820                if (l1_lpid > kvm->arch.max_nested_lpid)
 821                        kvm->arch.max_nested_lpid = l1_lpid;
 822        }
 823        ++gp->refcnt;
 824        spin_unlock(&kvm->mmu_lock);
 825
 826        if (newgp)
 827                kvmhv_release_nested(newgp);
 828
 829        return gp;
 830}
 831
 832void kvmhv_put_nested(struct kvm_nested_guest *gp)
 833{
 834        struct kvm *kvm = gp->l1_host;
 835        long ref;
 836
 837        spin_lock(&kvm->mmu_lock);
 838        ref = --gp->refcnt;
 839        spin_unlock(&kvm->mmu_lock);
 840        if (ref == 0)
 841                kvmhv_release_nested(gp);
 842}
 843
 844static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid)
 845{
 846        if (lpid > kvm->arch.max_nested_lpid)
 847                return NULL;
 848        return kvm->arch.nested_guests[lpid];
 849}
 850
 851pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
 852                                 unsigned long ea, unsigned *hshift)
 853{
 854        struct kvm_nested_guest *gp;
 855        pte_t *pte;
 856
 857        gp = kvmhv_find_nested(kvm, lpid);
 858        if (!gp)
 859                return NULL;
 860
 861        VM_WARN(!spin_is_locked(&kvm->mmu_lock),
 862                "%s called with kvm mmu_lock not held \n", __func__);
 863        pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
 864
 865        return pte;
 866}
 867
 868static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
 869{
 870        return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
 871                                       RMAP_NESTED_GPA_MASK));
 872}
 873
 874void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
 875                            struct rmap_nested **n_rmap)
 876{
 877        struct llist_node *entry = ((struct llist_head *) rmapp)->first;
 878        struct rmap_nested *cursor;
 879        u64 rmap, new_rmap = (*n_rmap)->rmap;
 880
 881        /* Are there any existing entries? */
 882        if (!(*rmapp)) {
 883                /* No -> use the rmap as a single entry */
 884                *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
 885                return;
 886        }
 887
 888        /* Do any entries match what we're trying to insert? */
 889        for_each_nest_rmap_safe(cursor, entry, &rmap) {
 890                if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
 891                        return;
 892        }
 893
 894        /* Do we need to create a list or just add the new entry? */
 895        rmap = *rmapp;
 896        if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
 897                *rmapp = 0UL;
 898        llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
 899        if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
 900                (*n_rmap)->list.next = (struct llist_node *) rmap;
 901
 902        /* Set NULL so not freed by caller */
 903        *n_rmap = NULL;
 904}
 905
 906static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
 907                                      unsigned long clr, unsigned long set,
 908                                      unsigned long hpa, unsigned long mask)
 909{
 910        unsigned long gpa;
 911        unsigned int shift, lpid;
 912        pte_t *ptep;
 913
 914        gpa = n_rmap & RMAP_NESTED_GPA_MASK;
 915        lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
 916
 917        /* Find the pte */
 918        ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
 919        /*
 920         * If the pte is present and the pfn is still the same, update the pte.
 921         * If the pfn has changed then this is a stale rmap entry, the nested
 922         * gpa actually points somewhere else now, and there is nothing to do.
 923         * XXX A future optimisation would be to remove the rmap entry here.
 924         */
 925        if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
 926                __radix_pte_update(ptep, clr, set);
 927                kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
 928        }
 929}
 930
 931/*
 932 * For a given list of rmap entries, update the rc bits in all ptes in shadow
 933 * page tables for nested guests which are referenced by the rmap list.
 934 */
 935void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
 936                                    unsigned long clr, unsigned long set,
 937                                    unsigned long hpa, unsigned long nbytes)
 938{
 939        struct llist_node *entry = ((struct llist_head *) rmapp)->first;
 940        struct rmap_nested *cursor;
 941        unsigned long rmap, mask;
 942
 943        if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
 944                return;
 945
 946        mask = PTE_RPN_MASK & ~(nbytes - 1);
 947        hpa &= mask;
 948
 949        for_each_nest_rmap_safe(cursor, entry, &rmap)
 950                kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
 951}
 952
 953static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
 954                                   unsigned long hpa, unsigned long mask)
 955{
 956        struct kvm_nested_guest *gp;
 957        unsigned long gpa;
 958        unsigned int shift, lpid;
 959        pte_t *ptep;
 960
 961        gpa = n_rmap & RMAP_NESTED_GPA_MASK;
 962        lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
 963        gp = kvmhv_find_nested(kvm, lpid);
 964        if (!gp)
 965                return;
 966
 967        /* Find and invalidate the pte */
 968        ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
 969        /* Don't spuriously invalidate ptes if the pfn has changed */
 970        if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
 971                kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
 972}
 973
 974static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
 975                                        unsigned long hpa, unsigned long mask)
 976{
 977        struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
 978        struct rmap_nested *cursor;
 979        unsigned long rmap;
 980
 981        for_each_nest_rmap_safe(cursor, entry, &rmap) {
 982                kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
 983                kfree(cursor);
 984        }
 985}
 986
 987/* called with kvm->mmu_lock held */
 988void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
 989                                  const struct kvm_memory_slot *memslot,
 990                                  unsigned long gpa, unsigned long hpa,
 991                                  unsigned long nbytes)
 992{
 993        unsigned long gfn, end_gfn;
 994        unsigned long addr_mask;
 995
 996        if (!memslot)
 997                return;
 998        gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
 999        end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1000
1001        addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1002        hpa &= addr_mask;
1003
1004        for (; gfn < end_gfn; gfn++) {
1005                unsigned long *rmap = &memslot->arch.rmap[gfn];
1006                kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1007        }
1008}
1009
1010static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1011{
1012        unsigned long page;
1013
1014        for (page = 0; page < free->npages; page++) {
1015                unsigned long rmap, *rmapp = &free->arch.rmap[page];
1016                struct rmap_nested *cursor;
1017                struct llist_node *entry;
1018
1019                entry = llist_del_all((struct llist_head *) rmapp);
1020                for_each_nest_rmap_safe(cursor, entry, &rmap)
1021                        kfree(cursor);
1022        }
1023}
1024
1025static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1026                                        struct kvm_nested_guest *gp,
1027                                        long gpa, int *shift_ret)
1028{
1029        struct kvm *kvm = vcpu->kvm;
1030        bool ret = false;
1031        pte_t *ptep;
1032        int shift;
1033
1034        spin_lock(&kvm->mmu_lock);
1035        ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1036        if (!shift)
1037                shift = PAGE_SHIFT;
1038        if (ptep && pte_present(*ptep)) {
1039                kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1040                ret = true;
1041        }
1042        spin_unlock(&kvm->mmu_lock);
1043
1044        if (shift_ret)
1045                *shift_ret = shift;
1046        return ret;
1047}
1048
1049static inline int get_ric(unsigned int instr)
1050{
1051        return (instr >> 18) & 0x3;
1052}
1053
1054static inline int get_prs(unsigned int instr)
1055{
1056        return (instr >> 17) & 0x1;
1057}
1058
1059static inline int get_r(unsigned int instr)
1060{
1061        return (instr >> 16) & 0x1;
1062}
1063
1064static inline int get_lpid(unsigned long r_val)
1065{
1066        return r_val & 0xffffffff;
1067}
1068
1069static inline int get_is(unsigned long r_val)
1070{
1071        return (r_val >> 10) & 0x3;
1072}
1073
1074static inline int get_ap(unsigned long r_val)
1075{
1076        return (r_val >> 5) & 0x7;
1077}
1078
1079static inline long get_epn(unsigned long r_val)
1080{
1081        return r_val >> 12;
1082}
1083
1084static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1085                                        int ap, long epn)
1086{
1087        struct kvm *kvm = vcpu->kvm;
1088        struct kvm_nested_guest *gp;
1089        long npages;
1090        int shift, shadow_shift;
1091        unsigned long addr;
1092
1093        shift = ap_to_shift(ap);
1094        addr = epn << 12;
1095        if (shift < 0)
1096                /* Invalid ap encoding */
1097                return -EINVAL;
1098
1099        addr &= ~((1UL << shift) - 1);
1100        npages = 1UL << (shift - PAGE_SHIFT);
1101
1102        gp = kvmhv_get_nested(kvm, lpid, false);
1103        if (!gp) /* No such guest -> nothing to do */
1104                return 0;
1105        mutex_lock(&gp->tlb_lock);
1106
1107        /* There may be more than one host page backing this single guest pte */
1108        do {
1109                kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1110
1111                npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1112                addr += 1UL << shadow_shift;
1113        } while (npages > 0);
1114
1115        mutex_unlock(&gp->tlb_lock);
1116        kvmhv_put_nested(gp);
1117        return 0;
1118}
1119
1120static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1121                                     struct kvm_nested_guest *gp, int ric)
1122{
1123        struct kvm *kvm = vcpu->kvm;
1124
1125        mutex_lock(&gp->tlb_lock);
1126        switch (ric) {
1127        case 0:
1128                /* Invalidate TLB */
1129                spin_lock(&kvm->mmu_lock);
1130                kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1131                                          gp->shadow_lpid);
1132                kvmhv_flush_lpid(gp->shadow_lpid);
1133                spin_unlock(&kvm->mmu_lock);
1134                break;
1135        case 1:
1136                /*
1137                 * Invalidate PWC
1138                 * We don't cache this -> nothing to do
1139                 */
1140                break;
1141        case 2:
1142                /* Invalidate TLB, PWC and caching of partition table entries */
1143                kvmhv_flush_nested(gp);
1144                break;
1145        default:
1146                break;
1147        }
1148        mutex_unlock(&gp->tlb_lock);
1149}
1150
1151static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1152{
1153        struct kvm *kvm = vcpu->kvm;
1154        struct kvm_nested_guest *gp;
1155        int i;
1156
1157        spin_lock(&kvm->mmu_lock);
1158        for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
1159                gp = kvm->arch.nested_guests[i];
1160                if (gp) {
1161                        spin_unlock(&kvm->mmu_lock);
1162                        kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1163                        spin_lock(&kvm->mmu_lock);
1164                }
1165        }
1166        spin_unlock(&kvm->mmu_lock);
1167}
1168
1169static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1170                                    unsigned long rsval, unsigned long rbval)
1171{
1172        struct kvm *kvm = vcpu->kvm;
1173        struct kvm_nested_guest *gp;
1174        int r, ric, prs, is, ap;
1175        int lpid;
1176        long epn;
1177        int ret = 0;
1178
1179        ric = get_ric(instr);
1180        prs = get_prs(instr);
1181        r = get_r(instr);
1182        lpid = get_lpid(rsval);
1183        is = get_is(rbval);
1184
1185        /*
1186         * These cases are invalid and are not handled:
1187         * r   != 1 -> Only radix supported
1188         * prs == 1 -> Not HV privileged
1189         * ric == 3 -> No cluster bombs for radix
1190         * is  == 1 -> Partition scoped translations not associated with pid
1191         * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1192         */
1193        if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1194            ((!is) && (ric == 1 || ric == 2)))
1195                return -EINVAL;
1196
1197        switch (is) {
1198        case 0:
1199                /*
1200                 * We know ric == 0
1201                 * Invalidate TLB for a given target address
1202                 */
1203                epn = get_epn(rbval);
1204                ap = get_ap(rbval);
1205                ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1206                break;
1207        case 2:
1208                /* Invalidate matching LPID */
1209                gp = kvmhv_get_nested(kvm, lpid, false);
1210                if (gp) {
1211                        kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1212                        kvmhv_put_nested(gp);
1213                }
1214                break;
1215        case 3:
1216                /* Invalidate ALL LPIDs */
1217                kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1218                break;
1219        default:
1220                ret = -EINVAL;
1221                break;
1222        }
1223
1224        return ret;
1225}
1226
1227/*
1228 * This handles the H_TLB_INVALIDATE hcall.
1229 * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1230 * (r6) rB contents.
1231 */
1232long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1233{
1234        int ret;
1235
1236        ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1237                        kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1238        if (ret)
1239                return H_PARAMETER;
1240        return H_SUCCESS;
1241}
1242
1243static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1244                                         unsigned long lpid, unsigned long ric)
1245{
1246        struct kvm *kvm = vcpu->kvm;
1247        struct kvm_nested_guest *gp;
1248
1249        gp = kvmhv_get_nested(kvm, lpid, false);
1250        if (gp) {
1251                kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1252                kvmhv_put_nested(gp);
1253        }
1254        return H_SUCCESS;
1255}
1256
1257/*
1258 * Number of pages above which we invalidate the entire LPID rather than
1259 * flush individual pages.
1260 */
1261static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1262
1263static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1264                                         unsigned long lpid,
1265                                         unsigned long pg_sizes,
1266                                         unsigned long start,
1267                                         unsigned long end)
1268{
1269        int ret = H_P4;
1270        unsigned long addr, nr_pages;
1271        struct mmu_psize_def *def;
1272        unsigned long psize, ap, page_size;
1273        bool flush_lpid;
1274
1275        for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1276                def = &mmu_psize_defs[psize];
1277                if (!(pg_sizes & def->h_rpt_pgsize))
1278                        continue;
1279
1280                nr_pages = (end - start) >> def->shift;
1281                flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1282                if (flush_lpid)
1283                        return do_tlb_invalidate_nested_all(vcpu, lpid,
1284                                                        RIC_FLUSH_TLB);
1285                addr = start;
1286                ap = mmu_get_ap(psize);
1287                page_size = 1UL << def->shift;
1288                do {
1289                        ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1290                                                   get_epn(addr));
1291                        if (ret)
1292                                return H_P4;
1293                        addr += page_size;
1294                } while (addr < end);
1295        }
1296        return ret;
1297}
1298
1299/*
1300 * Performs partition-scoped invalidations for nested guests
1301 * as part of H_RPT_INVALIDATE hcall.
1302 */
1303long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1304                             unsigned long type, unsigned long pg_sizes,
1305                             unsigned long start, unsigned long end)
1306{
1307        /*
1308         * If L2 lpid isn't valid, we need to return H_PARAMETER.
1309         *
1310         * However, nested KVM issues a L2 lpid flush call when creating
1311         * partition table entries for L2. This happens even before the
1312         * corresponding shadow lpid is created in HV which happens in
1313         * H_ENTER_NESTED call. Since we can't differentiate this case from
1314         * the invalid case, we ignore such flush requests and return success.
1315         */
1316        if (!kvmhv_find_nested(vcpu->kvm, lpid))
1317                return H_SUCCESS;
1318
1319        /*
1320         * A flush all request can be handled by a full lpid flush only.
1321         */
1322        if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1323                return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1324
1325        /*
1326         * We don't need to handle a PWC flush like process table here,
1327         * because intermediate partition scoped table in nested guest doesn't
1328         * really have PWC. Only level we have PWC is in L0 and for nested
1329         * invalidate at L0 we always do kvm_flush_lpid() which does
1330         * radix__flush_all_lpid(). For range invalidate at any level, we
1331         * are not removing the higher level page tables and hence there is
1332         * no PWC invalidate needed.
1333         *
1334         * if (type & H_RPTI_TYPE_PWC) {
1335         *      ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1336         *      if (ret)
1337         *              return H_P4;
1338         * }
1339         */
1340
1341        if (start == 0 && end == -1)
1342                return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1343
1344        if (type & H_RPTI_TYPE_TLB)
1345                return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1346                                                    start, end);
1347        return H_SUCCESS;
1348}
1349
1350/* Used to convert a nested guest real address to a L1 guest real address */
1351static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1352                                       struct kvm_nested_guest *gp,
1353                                       unsigned long n_gpa, unsigned long dsisr,
1354                                       struct kvmppc_pte *gpte_p)
1355{
1356        u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1357        int ret;
1358
1359        ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1360                                         &fault_addr);
1361
1362        if (ret) {
1363                /* We didn't find a pte */
1364                if (ret == -EINVAL) {
1365                        /* Unsupported mmu config */
1366                        flags |= DSISR_UNSUPP_MMU;
1367                } else if (ret == -ENOENT) {
1368                        /* No translation found */
1369                        flags |= DSISR_NOHPTE;
1370                } else if (ret == -EFAULT) {
1371                        /* Couldn't access L1 real address */
1372                        flags |= DSISR_PRTABLE_FAULT;
1373                        vcpu->arch.fault_gpa = fault_addr;
1374                } else {
1375                        /* Unknown error */
1376                        return ret;
1377                }
1378                goto forward_to_l1;
1379        } else {
1380                /* We found a pte -> check permissions */
1381                if (dsisr & DSISR_ISSTORE) {
1382                        /* Can we write? */
1383                        if (!gpte_p->may_write) {
1384                                flags |= DSISR_PROTFAULT;
1385                                goto forward_to_l1;
1386                        }
1387                } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1388                        /* Can we execute? */
1389                        if (!gpte_p->may_execute) {
1390                                flags |= SRR1_ISI_N_G_OR_CIP;
1391                                goto forward_to_l1;
1392                        }
1393                } else {
1394                        /* Can we read? */
1395                        if (!gpte_p->may_read && !gpte_p->may_write) {
1396                                flags |= DSISR_PROTFAULT;
1397                                goto forward_to_l1;
1398                        }
1399                }
1400        }
1401
1402        return 0;
1403
1404forward_to_l1:
1405        vcpu->arch.fault_dsisr = flags;
1406        if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1407                vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1408                vcpu->arch.shregs.msr |= flags;
1409        }
1410        return RESUME_HOST;
1411}
1412
1413static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1414                                       struct kvm_nested_guest *gp,
1415                                       unsigned long n_gpa,
1416                                       struct kvmppc_pte gpte,
1417                                       unsigned long dsisr)
1418{
1419        struct kvm *kvm = vcpu->kvm;
1420        bool writing = !!(dsisr & DSISR_ISSTORE);
1421        u64 pgflags;
1422        long ret;
1423
1424        /* Are the rc bits set in the L1 partition scoped pte? */
1425        pgflags = _PAGE_ACCESSED;
1426        if (writing)
1427                pgflags |= _PAGE_DIRTY;
1428        if (pgflags & ~gpte.rc)
1429                return RESUME_HOST;
1430
1431        spin_lock(&kvm->mmu_lock);
1432        /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1433        ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1434                                      gpte.raddr, kvm->arch.lpid);
1435        if (!ret) {
1436                ret = -EINVAL;
1437                goto out_unlock;
1438        }
1439
1440        /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1441        ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1442                                      n_gpa, gp->l1_lpid);
1443        if (!ret)
1444                ret = -EINVAL;
1445        else
1446                ret = 0;
1447
1448out_unlock:
1449        spin_unlock(&kvm->mmu_lock);
1450        return ret;
1451}
1452
1453static inline int kvmppc_radix_level_to_shift(int level)
1454{
1455        switch (level) {
1456        case 2:
1457                return PUD_SHIFT;
1458        case 1:
1459                return PMD_SHIFT;
1460        default:
1461                return PAGE_SHIFT;
1462        }
1463}
1464
1465static inline int kvmppc_radix_shift_to_level(int shift)
1466{
1467        if (shift == PUD_SHIFT)
1468                return 2;
1469        if (shift == PMD_SHIFT)
1470                return 1;
1471        if (shift == PAGE_SHIFT)
1472                return 0;
1473        WARN_ON_ONCE(1);
1474        return 0;
1475}
1476
1477/* called with gp->tlb_lock held */
1478static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1479                                          struct kvm_nested_guest *gp)
1480{
1481        struct kvm *kvm = vcpu->kvm;
1482        struct kvm_memory_slot *memslot;
1483        struct rmap_nested *n_rmap;
1484        struct kvmppc_pte gpte;
1485        pte_t pte, *pte_p;
1486        unsigned long mmu_seq;
1487        unsigned long dsisr = vcpu->arch.fault_dsisr;
1488        unsigned long ea = vcpu->arch.fault_dar;
1489        unsigned long *rmapp;
1490        unsigned long n_gpa, gpa, gfn, perm = 0UL;
1491        unsigned int shift, l1_shift, level;
1492        bool writing = !!(dsisr & DSISR_ISSTORE);
1493        bool kvm_ro = false;
1494        long int ret;
1495
1496        if (!gp->l1_gr_to_hr) {
1497                kvmhv_update_ptbl_cache(gp);
1498                if (!gp->l1_gr_to_hr)
1499                        return RESUME_HOST;
1500        }
1501
1502        /* Convert the nested guest real address into a L1 guest real address */
1503
1504        n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1505        if (!(dsisr & DSISR_PRTABLE_FAULT))
1506                n_gpa |= ea & 0xFFF;
1507        ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1508
1509        /*
1510         * If the hardware found a translation but we don't now have a usable
1511         * translation in the l1 partition-scoped tree, remove the shadow pte
1512         * and let the guest retry.
1513         */
1514        if (ret == RESUME_HOST &&
1515            (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1516                      DSISR_BAD_COPYPASTE)))
1517                goto inval;
1518        if (ret)
1519                return ret;
1520
1521        /* Failed to set the reference/change bits */
1522        if (dsisr & DSISR_SET_RC) {
1523                ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1524                if (ret == RESUME_HOST)
1525                        return ret;
1526                if (ret)
1527                        goto inval;
1528                dsisr &= ~DSISR_SET_RC;
1529                if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1530                               DSISR_PROTFAULT)))
1531                        return RESUME_GUEST;
1532        }
1533
1534        /*
1535         * We took an HISI or HDSI while we were running a nested guest which
1536         * means we have no partition scoped translation for that. This means
1537         * we need to insert a pte for the mapping into our shadow_pgtable.
1538         */
1539
1540        l1_shift = gpte.page_shift;
1541        if (l1_shift < PAGE_SHIFT) {
1542                /* We don't support l1 using a page size smaller than our own */
1543                pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1544                        l1_shift, PAGE_SHIFT);
1545                return -EINVAL;
1546        }
1547        gpa = gpte.raddr;
1548        gfn = gpa >> PAGE_SHIFT;
1549
1550        /* 1. Get the corresponding host memslot */
1551
1552        memslot = gfn_to_memslot(kvm, gfn);
1553        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1554                if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1555                        /* unusual error -> reflect to the guest as a DSI */
1556                        kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
1557                        return RESUME_GUEST;
1558                }
1559
1560                /* passthrough of emulated MMIO case */
1561                return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1562        }
1563        if (memslot->flags & KVM_MEM_READONLY) {
1564                if (writing) {
1565                        /* Give the guest a DSI */
1566                        kvmppc_core_queue_data_storage(vcpu, ea,
1567                                        DSISR_ISSTORE | DSISR_PROTFAULT);
1568                        return RESUME_GUEST;
1569                }
1570                kvm_ro = true;
1571        }
1572
1573        /* 2. Find the host pte for this L1 guest real address */
1574
1575        /* Used to check for invalidations in progress */
1576        mmu_seq = kvm->mmu_notifier_seq;
1577        smp_rmb();
1578
1579        /* See if can find translation in our partition scoped tables for L1 */
1580        pte = __pte(0);
1581        spin_lock(&kvm->mmu_lock);
1582        pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1583        if (!shift)
1584                shift = PAGE_SHIFT;
1585        if (pte_p)
1586                pte = *pte_p;
1587        spin_unlock(&kvm->mmu_lock);
1588
1589        if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1590                /* No suitable pte found -> try to insert a mapping */
1591                ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1592                                        writing, kvm_ro, &pte, &level);
1593                if (ret == -EAGAIN)
1594                        return RESUME_GUEST;
1595                else if (ret)
1596                        return ret;
1597                shift = kvmppc_radix_level_to_shift(level);
1598        }
1599        /* Align gfn to the start of the page */
1600        gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1601
1602        /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1603
1604        /* The permissions is the combination of the host and l1 guest ptes */
1605        perm |= gpte.may_read ? 0UL : _PAGE_READ;
1606        perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1607        perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1608        /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1609        perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1610        perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1611        pte = __pte(pte_val(pte) & ~perm);
1612
1613        /* What size pte can we insert? */
1614        if (shift > l1_shift) {
1615                u64 mask;
1616                unsigned int actual_shift = PAGE_SHIFT;
1617                if (PMD_SHIFT < l1_shift)
1618                        actual_shift = PMD_SHIFT;
1619                mask = (1UL << shift) - (1UL << actual_shift);
1620                pte = __pte(pte_val(pte) | (gpa & mask));
1621                shift = actual_shift;
1622        }
1623        level = kvmppc_radix_shift_to_level(shift);
1624        n_gpa &= ~((1UL << shift) - 1);
1625
1626        /* 4. Insert the pte into our shadow_pgtable */
1627
1628        n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1629        if (!n_rmap)
1630                return RESUME_GUEST; /* Let the guest try again */
1631        n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1632                (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1633        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1634        ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1635                                mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1636        kfree(n_rmap);
1637        if (ret == -EAGAIN)
1638                ret = RESUME_GUEST;     /* Let the guest try again */
1639
1640        return ret;
1641
1642 inval:
1643        kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1644        return RESUME_GUEST;
1645}
1646
1647long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1648{
1649        struct kvm_nested_guest *gp = vcpu->arch.nested;
1650        long int ret;
1651
1652        mutex_lock(&gp->tlb_lock);
1653        ret = __kvmhv_nested_page_fault(vcpu, gp);
1654        mutex_unlock(&gp->tlb_lock);
1655        return ret;
1656}
1657
1658int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1659{
1660        int ret = -1;
1661
1662        spin_lock(&kvm->mmu_lock);
1663        while (++lpid <= kvm->arch.max_nested_lpid) {
1664                if (kvm->arch.nested_guests[lpid]) {
1665                        ret = lpid;
1666                        break;
1667                }
1668        }
1669        spin_unlock(&kvm->mmu_lock);
1670        return ret;
1671}
1672