linux/arch/powerpc/kvm/book3s_hv_ras.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/string.h>
   9#include <linux/kvm.h>
  10#include <linux/kvm_host.h>
  11#include <linux/kernel.h>
  12#include <asm/opal.h>
  13#include <asm/mce.h>
  14#include <asm/machdep.h>
  15#include <asm/cputhreads.h>
  16#include <asm/hmi.h>
  17#include <asm/kvm_ppc.h>
  18
  19/* SRR1 bits for machine check on POWER7 */
  20#define SRR1_MC_LDSTERR         (1ul << (63-42))
  21#define SRR1_MC_IFETCH_SH       (63-45)
  22#define SRR1_MC_IFETCH_MASK     0x7
  23#define SRR1_MC_IFETCH_SLBPAR           2       /* SLB parity error */
  24#define SRR1_MC_IFETCH_SLBMULTI         3       /* SLB multi-hit */
  25#define SRR1_MC_IFETCH_SLBPARMULTI      4       /* SLB parity + multi-hit */
  26#define SRR1_MC_IFETCH_TLBMULTI         5       /* I-TLB multi-hit */
  27
  28/* DSISR bits for machine check on POWER7 */
  29#define DSISR_MC_DERAT_MULTI    0x800           /* D-ERAT multi-hit */
  30#define DSISR_MC_TLB_MULTI      0x400           /* D-TLB multi-hit */
  31#define DSISR_MC_SLB_PARITY     0x100           /* SLB parity error */
  32#define DSISR_MC_SLB_MULTI      0x080           /* SLB multi-hit */
  33#define DSISR_MC_SLB_PARMULTI   0x040           /* SLB parity + multi-hit */
  34
  35/* POWER7 SLB flush and reload */
  36static void reload_slb(struct kvm_vcpu *vcpu)
  37{
  38        struct slb_shadow *slb;
  39        unsigned long i, n;
  40
  41        /* First clear out SLB */
  42        asm volatile("slbmte %0,%0; slbia" : : "r" (0));
  43
  44        /* Do they have an SLB shadow buffer registered? */
  45        slb = vcpu->arch.slb_shadow.pinned_addr;
  46        if (!slb)
  47                return;
  48
  49        /* Sanity check */
  50        n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
  51        if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
  52                return;
  53
  54        /* Load up the SLB from that */
  55        for (i = 0; i < n; ++i) {
  56                unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
  57                unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
  58
  59                rb = (rb & ~0xFFFul) | i;       /* insert entry number */
  60                asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
  61        }
  62}
  63
  64/*
  65 * On POWER7, see if we can handle a machine check that occurred inside
  66 * the guest in real mode, without switching to the host partition.
  67 */
  68static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
  69{
  70        unsigned long srr1 = vcpu->arch.shregs.msr;
  71        long handled = 1;
  72
  73        if (srr1 & SRR1_MC_LDSTERR) {
  74                /* error on load/store */
  75                unsigned long dsisr = vcpu->arch.shregs.dsisr;
  76
  77                if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  78                             DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
  79                        /* flush and reload SLB; flushes D-ERAT too */
  80                        reload_slb(vcpu);
  81                        dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  82                                   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
  83                }
  84                if (dsisr & DSISR_MC_TLB_MULTI) {
  85                        tlbiel_all_lpid(vcpu->kvm->arch.radix);
  86                        dsisr &= ~DSISR_MC_TLB_MULTI;
  87                }
  88                /* Any other errors we don't understand? */
  89                if (dsisr & 0xffffffffUL)
  90                        handled = 0;
  91        }
  92
  93        switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
  94        case 0:
  95                break;
  96        case SRR1_MC_IFETCH_SLBPAR:
  97        case SRR1_MC_IFETCH_SLBMULTI:
  98        case SRR1_MC_IFETCH_SLBPARMULTI:
  99                reload_slb(vcpu);
 100                break;
 101        case SRR1_MC_IFETCH_TLBMULTI:
 102                tlbiel_all_lpid(vcpu->kvm->arch.radix);
 103                break;
 104        default:
 105                handled = 0;
 106        }
 107
 108        return handled;
 109}
 110
 111void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
 112{
 113        struct machine_check_event mce_evt;
 114        long handled;
 115
 116        if (vcpu->kvm->arch.fwnmi_enabled) {
 117                /* FWNMI guests handle their own recovery */
 118                handled = 0;
 119        } else {
 120                handled = kvmppc_realmode_mc_power7(vcpu);
 121        }
 122
 123        /*
 124         * Now get the event and stash it in the vcpu struct so it can
 125         * be handled by the primary thread in virtual mode.  We can't
 126         * call machine_check_queue_event() here if we are running on
 127         * an offline secondary thread.
 128         */
 129        if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
 130                if (handled && mce_evt.version == MCE_V1)
 131                        mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
 132        } else {
 133                memset(&mce_evt, 0, sizeof(mce_evt));
 134        }
 135
 136        vcpu->arch.mce_evt = mce_evt;
 137}
 138
 139
 140long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu)
 141{
 142        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 143        long ret = 0;
 144
 145        /*
 146         * Unapply and clear the offset first. That way, if the TB was not
 147         * resynced then it will remain in host-offset, and if it was resynced
 148         * then it is brought into host-offset. Then the tb offset is
 149         * re-applied before continuing with the KVM exit.
 150         *
 151         * This way, we don't need to actually know whether not OPAL resynced
 152         * the timebase or do any of the complicated dance that the P7/8
 153         * path requires.
 154         */
 155        if (vc->tb_offset_applied) {
 156                u64 new_tb = mftb() - vc->tb_offset_applied;
 157                mtspr(SPRN_TBU40, new_tb);
 158                if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
 159                        new_tb += 0x1000000;
 160                        mtspr(SPRN_TBU40, new_tb);
 161                }
 162                vc->tb_offset_applied = 0;
 163        }
 164
 165        local_paca->hmi_irqs++;
 166
 167        if (hmi_handle_debugtrig(NULL) >= 0) {
 168                ret = 1;
 169                goto out;
 170        }
 171
 172        if (ppc_md.hmi_exception_early)
 173                ppc_md.hmi_exception_early(NULL);
 174
 175out:
 176        if (vc->tb_offset) {
 177                u64 new_tb = mftb() + vc->tb_offset;
 178                mtspr(SPRN_TBU40, new_tb);
 179                if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
 180                        new_tb += 0x1000000;
 181                        mtspr(SPRN_TBU40, new_tb);
 182                }
 183                vc->tb_offset_applied = vc->tb_offset;
 184        }
 185
 186        return ret;
 187}
 188
 189/*
 190 * The following subcore HMI handling is all only for pre-POWER9 CPUs.
 191 */
 192
 193/* Check if dynamic split is in force and return subcore size accordingly. */
 194static inline int kvmppc_cur_subcore_size(void)
 195{
 196        if (local_paca->kvm_hstate.kvm_split_mode)
 197                return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
 198
 199        return threads_per_subcore;
 200}
 201
 202void kvmppc_subcore_enter_guest(void)
 203{
 204        int thread_id, subcore_id;
 205
 206        thread_id = cpu_thread_in_core(local_paca->paca_index);
 207        subcore_id = thread_id / kvmppc_cur_subcore_size();
 208
 209        local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
 210}
 211EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
 212
 213void kvmppc_subcore_exit_guest(void)
 214{
 215        int thread_id, subcore_id;
 216
 217        thread_id = cpu_thread_in_core(local_paca->paca_index);
 218        subcore_id = thread_id / kvmppc_cur_subcore_size();
 219
 220        local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
 221}
 222EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
 223
 224static bool kvmppc_tb_resync_required(void)
 225{
 226        if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
 227                                &local_paca->sibling_subcore_state->flags))
 228                return false;
 229
 230        return true;
 231}
 232
 233static void kvmppc_tb_resync_done(void)
 234{
 235        clear_bit(CORE_TB_RESYNC_REQ_BIT,
 236                        &local_paca->sibling_subcore_state->flags);
 237}
 238
 239/*
 240 * kvmppc_realmode_hmi_handler() is called only by primary thread during
 241 * guest exit path.
 242 *
 243 * There are multiple reasons why HMI could occur, one of them is
 244 * Timebase (TB) error. If this HMI is due to TB error, then TB would
 245 * have been in stopped state. The opal hmi handler Will fix it and
 246 * restore the TB value with host timebase value. For HMI caused due
 247 * to non-TB errors, opal hmi handler will not touch/restore TB register
 248 * and hence there won't be any change in TB value.
 249 *
 250 * Since we are not sure about the cause of this HMI, we can't be sure
 251 * about the content of TB register whether it holds guest or host timebase
 252 * value. Hence the idea is to resync the TB on every HMI, so that we
 253 * know about the exact state of the TB value. Resync TB call will
 254 * restore TB to host timebase.
 255 *
 256 * Things to consider:
 257 * - On TB error, HMI interrupt is reported on all the threads of the core
 258 *   that has encountered TB error irrespective of split-core mode.
 259 * - The very first thread on the core that get chance to fix TB error
 260 *   would rsync the TB with local chipTOD value.
 261 * - The resync TB is a core level action i.e. it will sync all the TBs
 262 *   in that core independent of split-core mode. This means if we trigger
 263 *   TB sync from a thread from one subcore, it would affect TB values of
 264 *   sibling subcores of the same core.
 265 *
 266 * All threads need to co-ordinate before making opal hmi handler.
 267 * All threads will use sibling_subcore_state->in_guest[] (shared by all
 268 * threads in the core) in paca which holds information about whether
 269 * sibling subcores are in Guest mode or host mode. The in_guest[] array
 270 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
 271 * subcore status. Only primary threads from each subcore is responsible
 272 * to set/unset its designated array element while entering/exiting the
 273 * guset.
 274 *
 275 * After invoking opal hmi handler call, one of the thread (of entire core)
 276 * will need to resync the TB. Bit 63 from subcore state bitmap flags
 277 * (sibling_subcore_state->flags) will be used to co-ordinate between
 278 * primary threads to decide who takes up the responsibility.
 279 *
 280 * This is what we do:
 281 * - Primary thread from each subcore tries to set resync required bit[63]
 282 *   of paca->sibling_subcore_state->flags.
 283 * - The first primary thread that is able to set the flag takes the
 284 *   responsibility of TB resync. (Let us call it as thread leader)
 285 * - All other threads which are in host will call
 286 *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
 287 *   paca->sibling_subcore_state to get cleared.
 288 * - All the primary thread will clear its subcore status from subcore
 289 *   state in_guest[] array respectively.
 290 * - Once all primary threads clear in_guest[0-3], all of them will invoke
 291 *   opal hmi handler.
 292 * - Now all threads will wait for TB resync to complete by invoking
 293 *   wait_for_tb_resync() except the thread leader.
 294 * - Thread leader will do a TB resync by invoking opal_resync_timebase()
 295 *   call and the it will clear the resync required bit.
 296 * - All other threads will now come out of resync wait loop and proceed
 297 *   with individual execution.
 298 * - On return of this function, primary thread will signal all
 299 *   secondary threads to proceed.
 300 * - All secondary threads will eventually call opal hmi handler on
 301 *   their exit path.
 302 *
 303 * Returns 1 if the timebase offset should be applied, 0 if not.
 304 */
 305
 306long kvmppc_realmode_hmi_handler(void)
 307{
 308        bool resync_req;
 309
 310        local_paca->hmi_irqs++;
 311
 312        if (hmi_handle_debugtrig(NULL) >= 0)
 313                return 1;
 314
 315        /*
 316         * By now primary thread has already completed guest->host
 317         * partition switch but haven't signaled secondaries yet.
 318         * All the secondary threads on this subcore is waiting
 319         * for primary thread to signal them to go ahead.
 320         *
 321         * For threads from subcore which isn't in guest, they all will
 322         * wait until all other subcores on this core exit the guest.
 323         *
 324         * Now set the resync required bit. If you are the first to
 325         * set this bit then kvmppc_tb_resync_required() function will
 326         * return true. For rest all other subcores
 327         * kvmppc_tb_resync_required() will return false.
 328         *
 329         * If resync_req == true, then this thread is responsible to
 330         * initiate TB resync after hmi handler has completed.
 331         * All other threads on this core will wait until this thread
 332         * clears the resync required bit flag.
 333         */
 334        resync_req = kvmppc_tb_resync_required();
 335
 336        /* Reset the subcore status to indicate it has exited guest */
 337        kvmppc_subcore_exit_guest();
 338
 339        /*
 340         * Wait for other subcores on this core to exit the guest.
 341         * All the primary threads and threads from subcore that are
 342         * not in guest will wait here until all subcores are out
 343         * of guest context.
 344         */
 345        wait_for_subcore_guest_exit();
 346
 347        /*
 348         * At this point we are sure that primary threads from each
 349         * subcore on this core have completed guest->host partition
 350         * switch. Now it is safe to call HMI handler.
 351         */
 352        if (ppc_md.hmi_exception_early)
 353                ppc_md.hmi_exception_early(NULL);
 354
 355        /*
 356         * Check if this thread is responsible to resync TB.
 357         * All other threads will wait until this thread completes the
 358         * TB resync.
 359         */
 360        if (resync_req) {
 361                opal_resync_timebase();
 362                /* Reset TB resync req bit */
 363                kvmppc_tb_resync_done();
 364        } else {
 365                wait_for_tb_resync();
 366        }
 367
 368        /*
 369         * Reset tb_offset_applied so the guest exit code won't try
 370         * to subtract the previous timebase offset from the timebase.
 371         */
 372        if (local_paca->kvm_hstate.kvm_vcore)
 373                local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
 374
 375        return 0;
 376}
 377