linux/arch/s390/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *    Time of day based timer functions.
   4 *
   5 *  S390 version
   6 *    Copyright IBM Corp. 1999, 2008
   7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
  10 *
  11 *  Derived from "arch/i386/kernel/time.c"
  12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  13 */
  14
  15#define KMSG_COMPONENT "time"
  16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  17
  18#include <linux/kernel_stat.h>
  19#include <linux/errno.h>
  20#include <linux/export.h>
  21#include <linux/sched.h>
  22#include <linux/sched/clock.h>
  23#include <linux/kernel.h>
  24#include <linux/param.h>
  25#include <linux/string.h>
  26#include <linux/mm.h>
  27#include <linux/interrupt.h>
  28#include <linux/cpu.h>
  29#include <linux/stop_machine.h>
  30#include <linux/time.h>
  31#include <linux/device.h>
  32#include <linux/delay.h>
  33#include <linux/init.h>
  34#include <linux/smp.h>
  35#include <linux/types.h>
  36#include <linux/profile.h>
  37#include <linux/timex.h>
  38#include <linux/notifier.h>
  39#include <linux/timekeeper_internal.h>
  40#include <linux/clockchips.h>
  41#include <linux/gfp.h>
  42#include <linux/kprobes.h>
  43#include <linux/uaccess.h>
  44#include <vdso/vsyscall.h>
  45#include <vdso/clocksource.h>
  46#include <vdso/helpers.h>
  47#include <asm/facility.h>
  48#include <asm/delay.h>
  49#include <asm/div64.h>
  50#include <asm/vdso.h>
  51#include <asm/irq.h>
  52#include <asm/irq_regs.h>
  53#include <asm/vtimer.h>
  54#include <asm/stp.h>
  55#include <asm/cio.h>
  56#include "entry.h"
  57
  58union tod_clock tod_clock_base __section(".data");
  59EXPORT_SYMBOL_GPL(tod_clock_base);
  60
  61u64 clock_comparator_max = -1ULL;
  62EXPORT_SYMBOL_GPL(clock_comparator_max);
  63
  64static DEFINE_PER_CPU(struct clock_event_device, comparators);
  65
  66ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
  67EXPORT_SYMBOL(s390_epoch_delta_notifier);
  68
  69unsigned char ptff_function_mask[16];
  70
  71static unsigned long lpar_offset;
  72static unsigned long initial_leap_seconds;
  73static unsigned long tod_steering_end;
  74static long tod_steering_delta;
  75
  76/*
  77 * Get time offsets with PTFF
  78 */
  79void __init time_early_init(void)
  80{
  81        struct ptff_qto qto;
  82        struct ptff_qui qui;
  83        int cs;
  84
  85        /* Initialize TOD steering parameters */
  86        tod_steering_end = tod_clock_base.tod;
  87        for (cs = 0; cs < CS_BASES; cs++)
  88                vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
  89
  90        if (!test_facility(28))
  91                return;
  92
  93        ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
  94
  95        /* get LPAR offset */
  96        if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
  97                lpar_offset = qto.tod_epoch_difference;
  98
  99        /* get initial leap seconds */
 100        if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
 101                initial_leap_seconds = (unsigned long)
 102                        ((long) qui.old_leap * 4096000000L);
 103}
 104
 105/*
 106 * Scheduler clock - returns current time in nanosec units.
 107 */
 108unsigned long long notrace sched_clock(void)
 109{
 110        return tod_to_ns(get_tod_clock_monotonic());
 111}
 112NOKPROBE_SYMBOL(sched_clock);
 113
 114static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
 115{
 116        unsigned long rem, sec, nsec;
 117
 118        sec = clk->us;
 119        rem = do_div(sec, 1000000);
 120        nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
 121        xt->tv_sec = sec;
 122        xt->tv_nsec = nsec;
 123}
 124
 125void clock_comparator_work(void)
 126{
 127        struct clock_event_device *cd;
 128
 129        S390_lowcore.clock_comparator = clock_comparator_max;
 130        cd = this_cpu_ptr(&comparators);
 131        cd->event_handler(cd);
 132}
 133
 134static int s390_next_event(unsigned long delta,
 135                           struct clock_event_device *evt)
 136{
 137        S390_lowcore.clock_comparator = get_tod_clock() + delta;
 138        set_clock_comparator(S390_lowcore.clock_comparator);
 139        return 0;
 140}
 141
 142/*
 143 * Set up lowcore and control register of the current cpu to
 144 * enable TOD clock and clock comparator interrupts.
 145 */
 146void init_cpu_timer(void)
 147{
 148        struct clock_event_device *cd;
 149        int cpu;
 150
 151        S390_lowcore.clock_comparator = clock_comparator_max;
 152        set_clock_comparator(S390_lowcore.clock_comparator);
 153
 154        cpu = smp_processor_id();
 155        cd = &per_cpu(comparators, cpu);
 156        cd->name                = "comparator";
 157        cd->features            = CLOCK_EVT_FEAT_ONESHOT;
 158        cd->mult                = 16777;
 159        cd->shift               = 12;
 160        cd->min_delta_ns        = 1;
 161        cd->min_delta_ticks     = 1;
 162        cd->max_delta_ns        = LONG_MAX;
 163        cd->max_delta_ticks     = ULONG_MAX;
 164        cd->rating              = 400;
 165        cd->cpumask             = cpumask_of(cpu);
 166        cd->set_next_event      = s390_next_event;
 167
 168        clockevents_register_device(cd);
 169
 170        /* Enable clock comparator timer interrupt. */
 171        __ctl_set_bit(0,11);
 172
 173        /* Always allow the timing alert external interrupt. */
 174        __ctl_set_bit(0, 4);
 175}
 176
 177static void clock_comparator_interrupt(struct ext_code ext_code,
 178                                       unsigned int param32,
 179                                       unsigned long param64)
 180{
 181        inc_irq_stat(IRQEXT_CLK);
 182        if (S390_lowcore.clock_comparator == clock_comparator_max)
 183                set_clock_comparator(S390_lowcore.clock_comparator);
 184}
 185
 186static void stp_timing_alert(struct stp_irq_parm *);
 187
 188static void timing_alert_interrupt(struct ext_code ext_code,
 189                                   unsigned int param32, unsigned long param64)
 190{
 191        inc_irq_stat(IRQEXT_TLA);
 192        if (param32 & 0x00038000)
 193                stp_timing_alert((struct stp_irq_parm *) &param32);
 194}
 195
 196static void stp_reset(void);
 197
 198void read_persistent_clock64(struct timespec64 *ts)
 199{
 200        union tod_clock clk;
 201        u64 delta;
 202
 203        delta = initial_leap_seconds + TOD_UNIX_EPOCH;
 204        store_tod_clock_ext(&clk);
 205        clk.eitod -= delta;
 206        ext_to_timespec64(&clk, ts);
 207}
 208
 209void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
 210                                                 struct timespec64 *boot_offset)
 211{
 212        struct timespec64 boot_time;
 213        union tod_clock clk;
 214        u64 delta;
 215
 216        delta = initial_leap_seconds + TOD_UNIX_EPOCH;
 217        clk = tod_clock_base;
 218        clk.eitod -= delta;
 219        ext_to_timespec64(&clk, &boot_time);
 220
 221        read_persistent_clock64(wall_time);
 222        *boot_offset = timespec64_sub(*wall_time, boot_time);
 223}
 224
 225static u64 read_tod_clock(struct clocksource *cs)
 226{
 227        unsigned long now, adj;
 228
 229        preempt_disable(); /* protect from changes to steering parameters */
 230        now = get_tod_clock();
 231        adj = tod_steering_end - now;
 232        if (unlikely((s64) adj > 0))
 233                /*
 234                 * manually steer by 1 cycle every 2^16 cycles. This
 235                 * corresponds to shifting the tod delta by 15. 1s is
 236                 * therefore steered in ~9h. The adjust will decrease
 237                 * over time, until it finally reaches 0.
 238                 */
 239                now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
 240        preempt_enable();
 241        return now;
 242}
 243
 244static struct clocksource clocksource_tod = {
 245        .name           = "tod",
 246        .rating         = 400,
 247        .read           = read_tod_clock,
 248        .mask           = CLOCKSOURCE_MASK(64),
 249        .mult           = 1000,
 250        .shift          = 12,
 251        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 252        .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
 253};
 254
 255struct clocksource * __init clocksource_default_clock(void)
 256{
 257        return &clocksource_tod;
 258}
 259
 260/*
 261 * Initialize the TOD clock and the CPU timer of
 262 * the boot cpu.
 263 */
 264void __init time_init(void)
 265{
 266        /* Reset time synchronization interfaces. */
 267        stp_reset();
 268
 269        /* request the clock comparator external interrupt */
 270        if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
 271                panic("Couldn't request external interrupt 0x1004");
 272
 273        /* request the timing alert external interrupt */
 274        if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
 275                panic("Couldn't request external interrupt 0x1406");
 276
 277        if (__clocksource_register(&clocksource_tod) != 0)
 278                panic("Could not register TOD clock source");
 279
 280        /* Enable TOD clock interrupts on the boot cpu. */
 281        init_cpu_timer();
 282
 283        /* Enable cpu timer interrupts on the boot cpu. */
 284        vtime_init();
 285}
 286
 287static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 288static DEFINE_MUTEX(stp_mutex);
 289static unsigned long clock_sync_flags;
 290
 291#define CLOCK_SYNC_HAS_STP              0
 292#define CLOCK_SYNC_STP                  1
 293#define CLOCK_SYNC_STPINFO_VALID        2
 294
 295/*
 296 * The get_clock function for the physical clock. It will get the current
 297 * TOD clock, subtract the LPAR offset and write the result to *clock.
 298 * The function returns 0 if the clock is in sync with the external time
 299 * source. If the clock mode is local it will return -EOPNOTSUPP and
 300 * -EAGAIN if the clock is not in sync with the external reference.
 301 */
 302int get_phys_clock(unsigned long *clock)
 303{
 304        atomic_t *sw_ptr;
 305        unsigned int sw0, sw1;
 306
 307        sw_ptr = &get_cpu_var(clock_sync_word);
 308        sw0 = atomic_read(sw_ptr);
 309        *clock = get_tod_clock() - lpar_offset;
 310        sw1 = atomic_read(sw_ptr);
 311        put_cpu_var(clock_sync_word);
 312        if (sw0 == sw1 && (sw0 & 0x80000000U))
 313                /* Success: time is in sync. */
 314                return 0;
 315        if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 316                return -EOPNOTSUPP;
 317        if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 318                return -EACCES;
 319        return -EAGAIN;
 320}
 321EXPORT_SYMBOL(get_phys_clock);
 322
 323/*
 324 * Make get_phys_clock() return -EAGAIN.
 325 */
 326static void disable_sync_clock(void *dummy)
 327{
 328        atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
 329        /*
 330         * Clear the in-sync bit 2^31. All get_phys_clock calls will
 331         * fail until the sync bit is turned back on. In addition
 332         * increase the "sequence" counter to avoid the race of an
 333         * stp event and the complete recovery against get_phys_clock.
 334         */
 335        atomic_andnot(0x80000000, sw_ptr);
 336        atomic_inc(sw_ptr);
 337}
 338
 339/*
 340 * Make get_phys_clock() return 0 again.
 341 * Needs to be called from a context disabled for preemption.
 342 */
 343static void enable_sync_clock(void)
 344{
 345        atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
 346        atomic_or(0x80000000, sw_ptr);
 347}
 348
 349/*
 350 * Function to check if the clock is in sync.
 351 */
 352static inline int check_sync_clock(void)
 353{
 354        atomic_t *sw_ptr;
 355        int rc;
 356
 357        sw_ptr = &get_cpu_var(clock_sync_word);
 358        rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 359        put_cpu_var(clock_sync_word);
 360        return rc;
 361}
 362
 363/*
 364 * Apply clock delta to the global data structures.
 365 * This is called once on the CPU that performed the clock sync.
 366 */
 367static void clock_sync_global(unsigned long delta)
 368{
 369        unsigned long now, adj;
 370        struct ptff_qto qto;
 371        int cs;
 372
 373        /* Fixup the monotonic sched clock. */
 374        tod_clock_base.eitod += delta;
 375        /* Adjust TOD steering parameters. */
 376        now = get_tod_clock();
 377        adj = tod_steering_end - now;
 378        if (unlikely((s64) adj >= 0))
 379                /* Calculate how much of the old adjustment is left. */
 380                tod_steering_delta = (tod_steering_delta < 0) ?
 381                        -(adj >> 15) : (adj >> 15);
 382        tod_steering_delta += delta;
 383        if ((abs(tod_steering_delta) >> 48) != 0)
 384                panic("TOD clock sync offset %li is too large to drift\n",
 385                      tod_steering_delta);
 386        tod_steering_end = now + (abs(tod_steering_delta) << 15);
 387        for (cs = 0; cs < CS_BASES; cs++) {
 388                vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
 389                vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
 390        }
 391
 392        /* Update LPAR offset. */
 393        if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
 394                lpar_offset = qto.tod_epoch_difference;
 395        /* Call the TOD clock change notifier. */
 396        atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
 397}
 398
 399/*
 400 * Apply clock delta to the per-CPU data structures of this CPU.
 401 * This is called for each online CPU after the call to clock_sync_global.
 402 */
 403static void clock_sync_local(unsigned long delta)
 404{
 405        /* Add the delta to the clock comparator. */
 406        if (S390_lowcore.clock_comparator != clock_comparator_max) {
 407                S390_lowcore.clock_comparator += delta;
 408                set_clock_comparator(S390_lowcore.clock_comparator);
 409        }
 410        /* Adjust the last_update_clock time-stamp. */
 411        S390_lowcore.last_update_clock += delta;
 412}
 413
 414/* Single threaded workqueue used for stp sync events */
 415static struct workqueue_struct *time_sync_wq;
 416
 417static void __init time_init_wq(void)
 418{
 419        if (time_sync_wq)
 420                return;
 421        time_sync_wq = create_singlethread_workqueue("timesync");
 422}
 423
 424struct clock_sync_data {
 425        atomic_t cpus;
 426        int in_sync;
 427        unsigned long clock_delta;
 428};
 429
 430/*
 431 * Server Time Protocol (STP) code.
 432 */
 433static bool stp_online;
 434static struct stp_sstpi stp_info;
 435static void *stp_page;
 436
 437static void stp_work_fn(struct work_struct *work);
 438static DECLARE_WORK(stp_work, stp_work_fn);
 439static struct timer_list stp_timer;
 440
 441static int __init early_parse_stp(char *p)
 442{
 443        return kstrtobool(p, &stp_online);
 444}
 445early_param("stp", early_parse_stp);
 446
 447/*
 448 * Reset STP attachment.
 449 */
 450static void __init stp_reset(void)
 451{
 452        int rc;
 453
 454        stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
 455        rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
 456        if (rc == 0)
 457                set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
 458        else if (stp_online) {
 459                pr_warn("The real or virtual hardware system does not provide an STP interface\n");
 460                free_page((unsigned long) stp_page);
 461                stp_page = NULL;
 462                stp_online = false;
 463        }
 464}
 465
 466static void stp_timeout(struct timer_list *unused)
 467{
 468        queue_work(time_sync_wq, &stp_work);
 469}
 470
 471static int __init stp_init(void)
 472{
 473        if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 474                return 0;
 475        timer_setup(&stp_timer, stp_timeout, 0);
 476        time_init_wq();
 477        if (!stp_online)
 478                return 0;
 479        queue_work(time_sync_wq, &stp_work);
 480        return 0;
 481}
 482
 483arch_initcall(stp_init);
 484
 485/*
 486 * STP timing alert. There are three causes:
 487 * 1) timing status change
 488 * 2) link availability change
 489 * 3) time control parameter change
 490 * In all three cases we are only interested in the clock source state.
 491 * If a STP clock source is now available use it.
 492 */
 493static void stp_timing_alert(struct stp_irq_parm *intparm)
 494{
 495        if (intparm->tsc || intparm->lac || intparm->tcpc)
 496                queue_work(time_sync_wq, &stp_work);
 497}
 498
 499/*
 500 * STP sync check machine check. This is called when the timing state
 501 * changes from the synchronized state to the unsynchronized state.
 502 * After a STP sync check the clock is not in sync. The machine check
 503 * is broadcasted to all cpus at the same time.
 504 */
 505int stp_sync_check(void)
 506{
 507        disable_sync_clock(NULL);
 508        return 1;
 509}
 510
 511/*
 512 * STP island condition machine check. This is called when an attached
 513 * server  attempts to communicate over an STP link and the servers
 514 * have matching CTN ids and have a valid stratum-1 configuration
 515 * but the configurations do not match.
 516 */
 517int stp_island_check(void)
 518{
 519        disable_sync_clock(NULL);
 520        return 1;
 521}
 522
 523void stp_queue_work(void)
 524{
 525        queue_work(time_sync_wq, &stp_work);
 526}
 527
 528static int __store_stpinfo(void)
 529{
 530        int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
 531
 532        if (rc)
 533                clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
 534        else
 535                set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
 536        return rc;
 537}
 538
 539static int stpinfo_valid(void)
 540{
 541        return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
 542}
 543
 544static int stp_sync_clock(void *data)
 545{
 546        struct clock_sync_data *sync = data;
 547        u64 clock_delta, flags;
 548        static int first;
 549        int rc;
 550
 551        enable_sync_clock();
 552        if (xchg(&first, 1) == 0) {
 553                /* Wait until all other cpus entered the sync function. */
 554                while (atomic_read(&sync->cpus) != 0)
 555                        cpu_relax();
 556                rc = 0;
 557                if (stp_info.todoff[0] || stp_info.todoff[1] ||
 558                    stp_info.todoff[2] || stp_info.todoff[3] ||
 559                    stp_info.tmd != 2) {
 560                        flags = vdso_update_begin();
 561                        rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
 562                                        &clock_delta);
 563                        if (rc == 0) {
 564                                sync->clock_delta = clock_delta;
 565                                clock_sync_global(clock_delta);
 566                                rc = __store_stpinfo();
 567                                if (rc == 0 && stp_info.tmd != 2)
 568                                        rc = -EAGAIN;
 569                        }
 570                        vdso_update_end(flags);
 571                }
 572                sync->in_sync = rc ? -EAGAIN : 1;
 573                xchg(&first, 0);
 574        } else {
 575                /* Slave */
 576                atomic_dec(&sync->cpus);
 577                /* Wait for in_sync to be set. */
 578                while (READ_ONCE(sync->in_sync) == 0)
 579                        __udelay(1);
 580        }
 581        if (sync->in_sync != 1)
 582                /* Didn't work. Clear per-cpu in sync bit again. */
 583                disable_sync_clock(NULL);
 584        /* Apply clock delta to per-CPU fields of this CPU. */
 585        clock_sync_local(sync->clock_delta);
 586
 587        return 0;
 588}
 589
 590static int stp_clear_leap(void)
 591{
 592        struct __kernel_timex txc;
 593        int ret;
 594
 595        memset(&txc, 0, sizeof(txc));
 596
 597        ret = do_adjtimex(&txc);
 598        if (ret < 0)
 599                return ret;
 600
 601        txc.modes = ADJ_STATUS;
 602        txc.status &= ~(STA_INS|STA_DEL);
 603        return do_adjtimex(&txc);
 604}
 605
 606static void stp_check_leap(void)
 607{
 608        struct stp_stzi stzi;
 609        struct stp_lsoib *lsoib = &stzi.lsoib;
 610        struct __kernel_timex txc;
 611        int64_t timediff;
 612        int leapdiff, ret;
 613
 614        if (!stp_info.lu || !check_sync_clock()) {
 615                /*
 616                 * Either a scheduled leap second was removed by the operator,
 617                 * or STP is out of sync. In both cases, clear the leap second
 618                 * kernel flags.
 619                 */
 620                if (stp_clear_leap() < 0)
 621                        pr_err("failed to clear leap second flags\n");
 622                return;
 623        }
 624
 625        if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
 626                pr_err("stzi failed\n");
 627                return;
 628        }
 629
 630        timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
 631        leapdiff = lsoib->nlso - lsoib->also;
 632
 633        if (leapdiff != 1 && leapdiff != -1) {
 634                pr_err("Cannot schedule %d leap seconds\n", leapdiff);
 635                return;
 636        }
 637
 638        if (timediff < 0) {
 639                if (stp_clear_leap() < 0)
 640                        pr_err("failed to clear leap second flags\n");
 641        } else if (timediff < 7200) {
 642                memset(&txc, 0, sizeof(txc));
 643                ret = do_adjtimex(&txc);
 644                if (ret < 0)
 645                        return;
 646
 647                txc.modes = ADJ_STATUS;
 648                if (leapdiff > 0)
 649                        txc.status |= STA_INS;
 650                else
 651                        txc.status |= STA_DEL;
 652                ret = do_adjtimex(&txc);
 653                if (ret < 0)
 654                        pr_err("failed to set leap second flags\n");
 655                /* arm Timer to clear leap second flags */
 656                mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
 657        } else {
 658                /* The day the leap second is scheduled for hasn't been reached. Retry
 659                 * in one hour.
 660                 */
 661                mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
 662        }
 663}
 664
 665/*
 666 * STP work. Check for the STP state and take over the clock
 667 * synchronization if the STP clock source is usable.
 668 */
 669static void stp_work_fn(struct work_struct *work)
 670{
 671        struct clock_sync_data stp_sync;
 672        int rc;
 673
 674        /* prevent multiple execution. */
 675        mutex_lock(&stp_mutex);
 676
 677        if (!stp_online) {
 678                chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
 679                del_timer_sync(&stp_timer);
 680                goto out_unlock;
 681        }
 682
 683        rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
 684        if (rc)
 685                goto out_unlock;
 686
 687        rc = __store_stpinfo();
 688        if (rc || stp_info.c == 0)
 689                goto out_unlock;
 690
 691        /* Skip synchronization if the clock is already in sync. */
 692        if (!check_sync_clock()) {
 693                memset(&stp_sync, 0, sizeof(stp_sync));
 694                cpus_read_lock();
 695                atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
 696                stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
 697                cpus_read_unlock();
 698        }
 699
 700        if (!check_sync_clock())
 701                /*
 702                 * There is a usable clock but the synchonization failed.
 703                 * Retry after a second.
 704                 */
 705                mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
 706        else if (stp_info.lu)
 707                stp_check_leap();
 708
 709out_unlock:
 710        mutex_unlock(&stp_mutex);
 711}
 712
 713/*
 714 * STP subsys sysfs interface functions
 715 */
 716static struct bus_type stp_subsys = {
 717        .name           = "stp",
 718        .dev_name       = "stp",
 719};
 720
 721static ssize_t ctn_id_show(struct device *dev,
 722                                struct device_attribute *attr,
 723                                char *buf)
 724{
 725        ssize_t ret = -ENODATA;
 726
 727        mutex_lock(&stp_mutex);
 728        if (stpinfo_valid())
 729                ret = sprintf(buf, "%016lx\n",
 730                              *(unsigned long *) stp_info.ctnid);
 731        mutex_unlock(&stp_mutex);
 732        return ret;
 733}
 734
 735static DEVICE_ATTR_RO(ctn_id);
 736
 737static ssize_t ctn_type_show(struct device *dev,
 738                                struct device_attribute *attr,
 739                                char *buf)
 740{
 741        ssize_t ret = -ENODATA;
 742
 743        mutex_lock(&stp_mutex);
 744        if (stpinfo_valid())
 745                ret = sprintf(buf, "%i\n", stp_info.ctn);
 746        mutex_unlock(&stp_mutex);
 747        return ret;
 748}
 749
 750static DEVICE_ATTR_RO(ctn_type);
 751
 752static ssize_t dst_offset_show(struct device *dev,
 753                                   struct device_attribute *attr,
 754                                   char *buf)
 755{
 756        ssize_t ret = -ENODATA;
 757
 758        mutex_lock(&stp_mutex);
 759        if (stpinfo_valid() && (stp_info.vbits & 0x2000))
 760                ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
 761        mutex_unlock(&stp_mutex);
 762        return ret;
 763}
 764
 765static DEVICE_ATTR_RO(dst_offset);
 766
 767static ssize_t leap_seconds_show(struct device *dev,
 768                                        struct device_attribute *attr,
 769                                        char *buf)
 770{
 771        ssize_t ret = -ENODATA;
 772
 773        mutex_lock(&stp_mutex);
 774        if (stpinfo_valid() && (stp_info.vbits & 0x8000))
 775                ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
 776        mutex_unlock(&stp_mutex);
 777        return ret;
 778}
 779
 780static DEVICE_ATTR_RO(leap_seconds);
 781
 782static ssize_t leap_seconds_scheduled_show(struct device *dev,
 783                                                struct device_attribute *attr,
 784                                                char *buf)
 785{
 786        struct stp_stzi stzi;
 787        ssize_t ret;
 788
 789        mutex_lock(&stp_mutex);
 790        if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
 791                mutex_unlock(&stp_mutex);
 792                return -ENODATA;
 793        }
 794
 795        ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
 796        mutex_unlock(&stp_mutex);
 797        if (ret < 0)
 798                return ret;
 799
 800        if (!stzi.lsoib.p)
 801                return sprintf(buf, "0,0\n");
 802
 803        return sprintf(buf, "%lu,%d\n",
 804                       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
 805                       stzi.lsoib.nlso - stzi.lsoib.also);
 806}
 807
 808static DEVICE_ATTR_RO(leap_seconds_scheduled);
 809
 810static ssize_t stratum_show(struct device *dev,
 811                                struct device_attribute *attr,
 812                                char *buf)
 813{
 814        ssize_t ret = -ENODATA;
 815
 816        mutex_lock(&stp_mutex);
 817        if (stpinfo_valid())
 818                ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
 819        mutex_unlock(&stp_mutex);
 820        return ret;
 821}
 822
 823static DEVICE_ATTR_RO(stratum);
 824
 825static ssize_t time_offset_show(struct device *dev,
 826                                struct device_attribute *attr,
 827                                char *buf)
 828{
 829        ssize_t ret = -ENODATA;
 830
 831        mutex_lock(&stp_mutex);
 832        if (stpinfo_valid() && (stp_info.vbits & 0x0800))
 833                ret = sprintf(buf, "%i\n", (int) stp_info.tto);
 834        mutex_unlock(&stp_mutex);
 835        return ret;
 836}
 837
 838static DEVICE_ATTR_RO(time_offset);
 839
 840static ssize_t time_zone_offset_show(struct device *dev,
 841                                struct device_attribute *attr,
 842                                char *buf)
 843{
 844        ssize_t ret = -ENODATA;
 845
 846        mutex_lock(&stp_mutex);
 847        if (stpinfo_valid() && (stp_info.vbits & 0x4000))
 848                ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
 849        mutex_unlock(&stp_mutex);
 850        return ret;
 851}
 852
 853static DEVICE_ATTR_RO(time_zone_offset);
 854
 855static ssize_t timing_mode_show(struct device *dev,
 856                                struct device_attribute *attr,
 857                                char *buf)
 858{
 859        ssize_t ret = -ENODATA;
 860
 861        mutex_lock(&stp_mutex);
 862        if (stpinfo_valid())
 863                ret = sprintf(buf, "%i\n", stp_info.tmd);
 864        mutex_unlock(&stp_mutex);
 865        return ret;
 866}
 867
 868static DEVICE_ATTR_RO(timing_mode);
 869
 870static ssize_t timing_state_show(struct device *dev,
 871                                struct device_attribute *attr,
 872                                char *buf)
 873{
 874        ssize_t ret = -ENODATA;
 875
 876        mutex_lock(&stp_mutex);
 877        if (stpinfo_valid())
 878                ret = sprintf(buf, "%i\n", stp_info.tst);
 879        mutex_unlock(&stp_mutex);
 880        return ret;
 881}
 882
 883static DEVICE_ATTR_RO(timing_state);
 884
 885static ssize_t online_show(struct device *dev,
 886                                struct device_attribute *attr,
 887                                char *buf)
 888{
 889        return sprintf(buf, "%i\n", stp_online);
 890}
 891
 892static ssize_t online_store(struct device *dev,
 893                                struct device_attribute *attr,
 894                                const char *buf, size_t count)
 895{
 896        unsigned int value;
 897
 898        value = simple_strtoul(buf, NULL, 0);
 899        if (value != 0 && value != 1)
 900                return -EINVAL;
 901        if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 902                return -EOPNOTSUPP;
 903        mutex_lock(&stp_mutex);
 904        stp_online = value;
 905        if (stp_online)
 906                set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
 907        else
 908                clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
 909        queue_work(time_sync_wq, &stp_work);
 910        mutex_unlock(&stp_mutex);
 911        return count;
 912}
 913
 914/*
 915 * Can't use DEVICE_ATTR because the attribute should be named
 916 * stp/online but dev_attr_online already exists in this file ..
 917 */
 918static DEVICE_ATTR_RW(online);
 919
 920static struct attribute *stp_dev_attrs[] = {
 921        &dev_attr_ctn_id.attr,
 922        &dev_attr_ctn_type.attr,
 923        &dev_attr_dst_offset.attr,
 924        &dev_attr_leap_seconds.attr,
 925        &dev_attr_online.attr,
 926        &dev_attr_leap_seconds_scheduled.attr,
 927        &dev_attr_stratum.attr,
 928        &dev_attr_time_offset.attr,
 929        &dev_attr_time_zone_offset.attr,
 930        &dev_attr_timing_mode.attr,
 931        &dev_attr_timing_state.attr,
 932        NULL
 933};
 934ATTRIBUTE_GROUPS(stp_dev);
 935
 936static int __init stp_init_sysfs(void)
 937{
 938        return subsys_system_register(&stp_subsys, stp_dev_groups);
 939}
 940
 941device_initcall(stp_init_sysfs);
 942