linux/arch/sparc/math-emu/math_32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * arch/sparc/math-emu/math.c
   4 *
   5 * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk)
   6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
   7 * Copyright (C) 1999 David S. Miller (davem@redhat.com)
   8 *
   9 * This is a good place to start if you're trying to understand the
  10 * emulation code, because it's pretty simple. What we do is
  11 * essentially analyse the instruction to work out what the operation
  12 * is and which registers are involved. We then execute the appropriate
  13 * FXXXX function. [The floating point queue introduces a minor wrinkle;
  14 * see below...]
  15 * The fxxxxx.c files each emulate a single insn. They look relatively
  16 * simple because the complexity is hidden away in an unholy tangle
  17 * of preprocessor macros.
  18 *
  19 * The first layer of macros is single.h, double.h, quad.h. Generally
  20 * these files define macros for working with floating point numbers
  21 * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
  22 * for instance. These macros are usually defined as calls to more
  23 * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
  24 * of machine words required to store the given IEEE format is passed
  25 * as a parameter. [double.h and co check the number of bits in a word
  26 * and define FP_ADD_D & co appropriately].
  27 * The generic macros are defined in op-common.h. This is where all
  28 * the grotty stuff like handling NaNs is coded. To handle the possible
  29 * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
  30 * where wc is the 'number of machine words' parameter (here 2).
  31 * These are defined in the third layer of macros: op-1.h, op-2.h
  32 * and op-4.h. These handle operations on floating point numbers composed
  33 * of 1,2 and 4 machine words respectively. [For example, on sparc64
  34 * doubles are one machine word so macros in double.h eventually use
  35 * constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
  36 * soft-fp.h is on the same level as op-common.h, and defines some
  37 * macros which are independent of both word size and FP format.
  38 * Finally, sfp-machine.h is the machine dependent part of the
  39 * code: it defines the word size and what type a word is. It also
  40 * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
  41 * provide several possible flavours of multiply algorithm, most
  42 * of which require that you supply some form of asm or C primitive to
  43 * do the actual multiply. (such asm primitives should be defined
  44 * in sfp-machine.h too). udivmodti4.c is the same sort of thing.
  45 *
  46 * There may be some errors here because I'm working from a
  47 * SPARC architecture manual V9, and what I really want is V8...
  48 * Also, the insns which can generate exceptions seem to be a
  49 * greater subset of the FPops than for V9 (for example, FCMPED
  50 * has to be emulated on V8). So I think I'm going to have
  51 * to emulate them all just to be on the safe side...
  52 *
  53 * Emulation routines originate from soft-fp package, which is
  54 * part of glibc and has appropriate copyrights in it (allegedly).
  55 *
  56 * NB: on sparc int == long == 4 bytes, long long == 8 bytes.
  57 * Most bits of the kernel seem to go for long rather than int,
  58 * so we follow that practice...
  59 */
  60
  61/* TODO:
  62 * fpsave() saves the FP queue but fpload() doesn't reload it.
  63 * Therefore when we context switch or change FPU ownership
  64 * we have to check to see if the queue had anything in it and
  65 * emulate it if it did. This is going to be a pain.
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/sched.h>
  70#include <linux/mm.h>
  71#include <linux/perf_event.h>
  72#include <linux/uaccess.h>
  73
  74#include "sfp-util_32.h"
  75#include <math-emu/soft-fp.h>
  76#include <math-emu/single.h>
  77#include <math-emu/double.h>
  78#include <math-emu/quad.h>
  79
  80#define FLOATFUNC(x) extern int x(void *,void *,void *)
  81
  82/* The Vn labels indicate what version of the SPARC architecture gas thinks
  83 * each insn is. This is from the binutils source :->
  84 */
  85/* quadword instructions */
  86#define FSQRTQ  0x02b           /* v8 */
  87#define FADDQ   0x043           /* v8 */
  88#define FSUBQ   0x047           /* v8 */
  89#define FMULQ   0x04b           /* v8 */
  90#define FDIVQ   0x04f           /* v8 */
  91#define FDMULQ  0x06e           /* v8 */
  92#define FQTOS   0x0c7           /* v8 */
  93#define FQTOD   0x0cb           /* v8 */
  94#define FITOQ   0x0cc           /* v8 */
  95#define FSTOQ   0x0cd           /* v8 */
  96#define FDTOQ   0x0ce           /* v8 */
  97#define FQTOI   0x0d3           /* v8 */
  98#define FCMPQ   0x053           /* v8 */
  99#define FCMPEQ  0x057           /* v8 */
 100/* single/double instructions (subnormal): should all work */
 101#define FSQRTS  0x029           /* v7 */
 102#define FSQRTD  0x02a           /* v7 */
 103#define FADDS   0x041           /* v6 */
 104#define FADDD   0x042           /* v6 */
 105#define FSUBS   0x045           /* v6 */
 106#define FSUBD   0x046           /* v6 */
 107#define FMULS   0x049           /* v6 */
 108#define FMULD   0x04a           /* v6 */
 109#define FDIVS   0x04d           /* v6 */
 110#define FDIVD   0x04e           /* v6 */
 111#define FSMULD  0x069           /* v6 */
 112#define FDTOS   0x0c6           /* v6 */
 113#define FSTOD   0x0c9           /* v6 */
 114#define FSTOI   0x0d1           /* v6 */
 115#define FDTOI   0x0d2           /* v6 */
 116#define FABSS   0x009           /* v6 */
 117#define FCMPS   0x051           /* v6 */
 118#define FCMPES  0x055           /* v6 */
 119#define FCMPD   0x052           /* v6 */
 120#define FCMPED  0x056           /* v6 */
 121#define FMOVS   0x001           /* v6 */
 122#define FNEGS   0x005           /* v6 */
 123#define FITOS   0x0c4           /* v6 */
 124#define FITOD   0x0c8           /* v6 */
 125
 126#define FSR_TEM_SHIFT   23UL
 127#define FSR_TEM_MASK    (0x1fUL << FSR_TEM_SHIFT)
 128#define FSR_AEXC_SHIFT  5UL
 129#define FSR_AEXC_MASK   (0x1fUL << FSR_AEXC_SHIFT)
 130#define FSR_CEXC_SHIFT  0UL
 131#define FSR_CEXC_MASK   (0x1fUL << FSR_CEXC_SHIFT)
 132
 133static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
 134
 135/* Unlike the Sparc64 version (which has a struct fpustate), we
 136 * pass the taskstruct corresponding to the task which currently owns the
 137 * FPU. This is partly because we don't have the fpustate struct and
 138 * partly because the task owning the FPU isn't always current (as is
 139 * the case for the Sparc64 port). This is probably SMP-related...
 140 * This function returns 1 if all queued insns were emulated successfully.
 141 * The test for unimplemented FPop in kernel mode has been moved into
 142 * kernel/traps.c for simplicity.
 143 */
 144int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
 145{
 146        /* regs->pc isn't necessarily the PC at which the offending insn is sitting.
 147         * The FPU maintains a queue of FPops which cause traps.
 148         * When it hits an instruction that requires that the trapped op succeeded
 149         * (usually because it reads a reg. that the trapped op wrote) then it
 150         * causes this exception. We need to emulate all the insns on the queue
 151         * and then allow the op to proceed.
 152         * This code should also handle the case where the trap was precise,
 153         * in which case the queue length is zero and regs->pc points at the
 154         * single FPop to be emulated. (this case is untested, though :->)
 155         * You'll need this case if you want to be able to emulate all FPops
 156         * because the FPU either doesn't exist or has been software-disabled.
 157         * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
 158         * might sound because the Ultra does funky things with a superscalar
 159         * architecture.]
 160         */
 161
 162        /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
 163
 164        int i;
 165        int retcode = 0;                               /* assume all succeed */
 166        unsigned long insn;
 167
 168        perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 169
 170#ifdef DEBUG_MATHEMU
 171        printk("In do_mathemu()... pc is %08lx\n", regs->pc);
 172        printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
 173        for (i = 0; i < fpt->thread.fpqdepth; i++)
 174                printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
 175                       (unsigned long)fpt->thread.fpqueue[i].insn_addr);
 176#endif
 177
 178        if (fpt->thread.fpqdepth == 0) {                   /* no queue, guilty insn is at regs->pc */
 179#ifdef DEBUG_MATHEMU
 180                printk("precise trap at %08lx\n", regs->pc);
 181#endif
 182                if (!get_user(insn, (u32 __user *) regs->pc)) {
 183                        retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
 184                        if (retcode) {
 185                                /* in this case we need to fix up PC & nPC */
 186                                regs->pc = regs->npc;
 187                                regs->npc += 4;
 188                        }
 189                }
 190                return retcode;
 191        }
 192
 193        /* Normal case: need to empty the queue... */
 194        for (i = 0; i < fpt->thread.fpqdepth; i++) {
 195                retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
 196                if (!retcode)                               /* insn failed, no point doing any more */
 197                        break;
 198        }
 199        /* Now empty the queue and clear the queue_not_empty flag */
 200        if (retcode)
 201                fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
 202        else
 203                fpt->thread.fsr &= ~0x3000;
 204        fpt->thread.fpqdepth = 0;
 205
 206        return retcode;
 207}
 208
 209/* All routines returning an exception to raise should detect
 210 * such exceptions _before_ rounding to be consistent with
 211 * the behavior of the hardware in the implemented cases
 212 * (and thus with the recommendations in the V9 architecture
 213 * manual).
 214 *
 215 * We return 0 if a SIGFPE should be sent, 1 otherwise.
 216 */
 217static inline int record_exception(unsigned long *pfsr, int eflag)
 218{
 219        unsigned long fsr = *pfsr;
 220        int would_trap;
 221
 222        /* Determine if this exception would have generated a trap. */
 223        would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
 224
 225        /* If trapping, we only want to signal one bit. */
 226        if (would_trap != 0) {
 227                eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
 228                if ((eflag & (eflag - 1)) != 0) {
 229                        if (eflag & FP_EX_INVALID)
 230                                eflag = FP_EX_INVALID;
 231                        else if (eflag & FP_EX_OVERFLOW)
 232                                eflag = FP_EX_OVERFLOW;
 233                        else if (eflag & FP_EX_UNDERFLOW)
 234                                eflag = FP_EX_UNDERFLOW;
 235                        else if (eflag & FP_EX_DIVZERO)
 236                                eflag = FP_EX_DIVZERO;
 237                        else if (eflag & FP_EX_INEXACT)
 238                                eflag = FP_EX_INEXACT;
 239                }
 240        }
 241
 242        /* Set CEXC, here is the rule:
 243         *
 244         *    In general all FPU ops will set one and only one
 245         *    bit in the CEXC field, this is always the case
 246         *    when the IEEE exception trap is enabled in TEM.
 247         */
 248        fsr &= ~(FSR_CEXC_MASK);
 249        fsr |= ((long)eflag << FSR_CEXC_SHIFT);
 250
 251        /* Set the AEXC field, rule is:
 252         *
 253         *    If a trap would not be generated, the
 254         *    CEXC just generated is OR'd into the
 255         *    existing value of AEXC.
 256         */
 257        if (would_trap == 0)
 258                fsr |= ((long)eflag << FSR_AEXC_SHIFT);
 259
 260        /* If trapping, indicate fault trap type IEEE. */
 261        if (would_trap != 0)
 262                fsr |= (1UL << 14);
 263
 264        *pfsr = fsr;
 265
 266        return (would_trap ? 0 : 1);
 267}
 268
 269typedef union {
 270        u32 s;
 271        u64 d;
 272        u64 q[2];
 273} *argp;
 274
 275static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
 276{
 277        /* Emulate the given insn, updating fsr and fregs appropriately. */
 278        int type = 0;
 279        /* r is rd, b is rs2 and a is rs1. The *u arg tells
 280           whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
 281           non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
 282#define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
 283        int freg;
 284        argp rs1 = NULL, rs2 = NULL, rd = NULL;
 285        FP_DECL_EX;
 286        FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
 287        FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
 288        FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
 289        int IR;
 290        long fsr;
 291
 292#ifdef DEBUG_MATHEMU
 293        printk("In do_mathemu(), emulating %08lx\n", insn);
 294#endif
 295
 296        if ((insn & 0xc1f80000) == 0x81a00000)  /* FPOP1 */ {
 297                switch ((insn >> 5) & 0x1ff) {
 298                case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
 299                case FADDQ:
 300                case FSUBQ:
 301                case FMULQ:
 302                case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
 303                case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
 304                case FQTOS: TYPE(3,1,1,3,1,0,0); break;
 305                case FQTOD: TYPE(3,2,1,3,1,0,0); break;
 306                case FITOQ: TYPE(3,3,1,1,0,0,0); break;
 307                case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
 308                case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
 309                case FQTOI: TYPE(3,1,0,3,1,0,0); break;
 310                case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
 311                case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
 312                case FADDD:
 313                case FSUBD:
 314                case FMULD:
 315                case FDIVD: TYPE(2,2,1,2,1,2,1); break;
 316                case FADDS:
 317                case FSUBS:
 318                case FMULS:
 319                case FDIVS: TYPE(2,1,1,1,1,1,1); break;
 320                case FSMULD: TYPE(2,2,1,1,1,1,1); break;
 321                case FDTOS: TYPE(2,1,1,2,1,0,0); break;
 322                case FSTOD: TYPE(2,2,1,1,1,0,0); break;
 323                case FSTOI: TYPE(2,1,0,1,1,0,0); break;
 324                case FDTOI: TYPE(2,1,0,2,1,0,0); break;
 325                case FITOS: TYPE(2,1,1,1,0,0,0); break;
 326                case FITOD: TYPE(2,2,1,1,0,0,0); break;
 327                case FMOVS:
 328                case FABSS:
 329                case FNEGS: TYPE(2,1,0,1,0,0,0); break;
 330                }
 331        } else if ((insn & 0xc1f80000) == 0x81a80000)   /* FPOP2 */ {
 332                switch ((insn >> 5) & 0x1ff) {
 333                case FCMPS: TYPE(3,0,0,1,1,1,1); break;
 334                case FCMPES: TYPE(3,0,0,1,1,1,1); break;
 335                case FCMPD: TYPE(3,0,0,2,1,2,1); break;
 336                case FCMPED: TYPE(3,0,0,2,1,2,1); break;
 337                case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
 338                case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
 339                }
 340        }
 341
 342        if (!type) {    /* oops, didn't recognise that FPop */
 343#ifdef DEBUG_MATHEMU
 344                printk("attempt to emulate unrecognised FPop!\n");
 345#endif
 346                return 0;
 347        }
 348
 349        /* Decode the registers to be used */
 350        freg = (*pfsr >> 14) & 0xf;
 351
 352        *pfsr &= ~0x1c000;                              /* clear the traptype bits */
 353        
 354        freg = ((insn >> 14) & 0x1f);
 355        switch (type & 0x3) {                           /* is rs1 single, double or quad? */
 356        case 3:
 357                if (freg & 3) {                         /* quadwords must have bits 4&5 of the */
 358                                                        /* encoded reg. number set to zero. */
 359                        *pfsr |= (6 << 14);
 360                        return 0;                       /* simulate invalid_fp_register exception */
 361                }
 362                fallthrough;
 363        case 2:
 364                if (freg & 1) {                         /* doublewords must have bit 5 zeroed */
 365                        *pfsr |= (6 << 14);
 366                        return 0;
 367                }
 368        }
 369        rs1 = (argp)&fregs[freg];
 370        switch (type & 0x7) {
 371        case 7: FP_UNPACK_QP (QA, rs1); break;
 372        case 6: FP_UNPACK_DP (DA, rs1); break;
 373        case 5: FP_UNPACK_SP (SA, rs1); break;
 374        }
 375        freg = (insn & 0x1f);
 376        switch ((type >> 3) & 0x3) {                    /* same again for rs2 */
 377        case 3:
 378                if (freg & 3) {                         /* quadwords must have bits 4&5 of the */
 379                                                        /* encoded reg. number set to zero. */
 380                        *pfsr |= (6 << 14);
 381                        return 0;                       /* simulate invalid_fp_register exception */
 382                }
 383                fallthrough;
 384        case 2:
 385                if (freg & 1) {                         /* doublewords must have bit 5 zeroed */
 386                        *pfsr |= (6 << 14);
 387                        return 0;
 388                }
 389        }
 390        rs2 = (argp)&fregs[freg];
 391        switch ((type >> 3) & 0x7) {
 392        case 7: FP_UNPACK_QP (QB, rs2); break;
 393        case 6: FP_UNPACK_DP (DB, rs2); break;
 394        case 5: FP_UNPACK_SP (SB, rs2); break;
 395        }
 396        freg = ((insn >> 25) & 0x1f);
 397        switch ((type >> 6) & 0x3) {                    /* and finally rd. This one's a bit different */
 398        case 0:                                         /* dest is fcc. (this must be FCMPQ or FCMPEQ) */
 399                if (freg) {                             /* V8 has only one set of condition codes, so */
 400                                                        /* anything but 0 in the rd field is an error */
 401                        *pfsr |= (6 << 14);             /* (should probably flag as invalid opcode */
 402                        return 0;                       /* but SIGFPE will do :-> ) */
 403                }
 404                break;
 405        case 3:
 406                if (freg & 3) {                         /* quadwords must have bits 4&5 of the */
 407                                                        /* encoded reg. number set to zero. */
 408                        *pfsr |= (6 << 14);
 409                        return 0;                       /* simulate invalid_fp_register exception */
 410                }
 411                fallthrough;
 412        case 2:
 413                if (freg & 1) {                         /* doublewords must have bit 5 zeroed */
 414                        *pfsr |= (6 << 14);
 415                        return 0;
 416                }
 417                fallthrough;
 418        case 1:
 419                rd = (void *)&fregs[freg];
 420                break;
 421        }
 422#ifdef DEBUG_MATHEMU
 423        printk("executing insn...\n");
 424#endif
 425        /* do the Right Thing */
 426        switch ((insn >> 5) & 0x1ff) {
 427        /* + */
 428        case FADDS: FP_ADD_S (SR, SA, SB); break;
 429        case FADDD: FP_ADD_D (DR, DA, DB); break;
 430        case FADDQ: FP_ADD_Q (QR, QA, QB); break;
 431        /* - */
 432        case FSUBS: FP_SUB_S (SR, SA, SB); break;
 433        case FSUBD: FP_SUB_D (DR, DA, DB); break;
 434        case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
 435        /* * */
 436        case FMULS: FP_MUL_S (SR, SA, SB); break;
 437        case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
 438                     FP_CONV (D, S, 2, 1, DB, SB);
 439        case FMULD: FP_MUL_D (DR, DA, DB); break;
 440        case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
 441                     FP_CONV (Q, D, 4, 2, QB, DB);
 442        case FMULQ: FP_MUL_Q (QR, QA, QB); break;
 443        /* / */
 444        case FDIVS: FP_DIV_S (SR, SA, SB); break;
 445        case FDIVD: FP_DIV_D (DR, DA, DB); break;
 446        case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
 447        /* sqrt */
 448        case FSQRTS: FP_SQRT_S (SR, SB); break;
 449        case FSQRTD: FP_SQRT_D (DR, DB); break;
 450        case FSQRTQ: FP_SQRT_Q (QR, QB); break;
 451        /* mov */
 452        case FMOVS: rd->s = rs2->s; break;
 453        case FABSS: rd->s = rs2->s & 0x7fffffff; break;
 454        case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
 455        /* float to int */
 456        case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
 457        case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
 458        case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
 459        /* int to float */
 460        case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
 461        case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
 462        case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
 463        /* float to float */
 464        case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
 465        case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
 466        case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
 467        case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
 468        case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
 469        case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
 470        /* comparison */
 471        case FCMPS:
 472        case FCMPES:
 473                FP_CMP_S(IR, SB, SA, 3);
 474                if (IR == 3 &&
 475                    (((insn >> 5) & 0x1ff) == FCMPES ||
 476                     FP_ISSIGNAN_S(SA) ||
 477                     FP_ISSIGNAN_S(SB)))
 478                        FP_SET_EXCEPTION (FP_EX_INVALID);
 479                break;
 480        case FCMPD:
 481        case FCMPED:
 482                FP_CMP_D(IR, DB, DA, 3);
 483                if (IR == 3 &&
 484                    (((insn >> 5) & 0x1ff) == FCMPED ||
 485                     FP_ISSIGNAN_D(DA) ||
 486                     FP_ISSIGNAN_D(DB)))
 487                        FP_SET_EXCEPTION (FP_EX_INVALID);
 488                break;
 489        case FCMPQ:
 490        case FCMPEQ:
 491                FP_CMP_Q(IR, QB, QA, 3);
 492                if (IR == 3 &&
 493                    (((insn >> 5) & 0x1ff) == FCMPEQ ||
 494                     FP_ISSIGNAN_Q(QA) ||
 495                     FP_ISSIGNAN_Q(QB)))
 496                        FP_SET_EXCEPTION (FP_EX_INVALID);
 497        }
 498        if (!FP_INHIBIT_RESULTS) {
 499                switch ((type >> 6) & 0x7) {
 500                case 0: fsr = *pfsr;
 501                        if (IR == -1) IR = 2;
 502                        /* fcc is always fcc0 */
 503                        fsr &= ~0xc00; fsr |= (IR << 10);
 504                        *pfsr = fsr;
 505                        break;
 506                case 1: rd->s = IR; break;
 507                case 5: FP_PACK_SP (rd, SR); break;
 508                case 6: FP_PACK_DP (rd, DR); break;
 509                case 7: FP_PACK_QP (rd, QR); break;
 510                }
 511        }
 512        if (_fex == 0)
 513                return 1;                               /* success! */
 514        return record_exception(pfsr, _fex);
 515}
 516