linux/arch/um/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
   4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
   5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   6 * Copyright 2003 PathScale, Inc.
   7 */
   8
   9#include <linux/stddef.h>
  10#include <linux/err.h>
  11#include <linux/hardirq.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/personality.h>
  15#include <linux/proc_fs.h>
  16#include <linux/ptrace.h>
  17#include <linux/random.h>
  18#include <linux/slab.h>
  19#include <linux/sched.h>
  20#include <linux/sched/debug.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/seq_file.h>
  24#include <linux/tick.h>
  25#include <linux/threads.h>
  26#include <linux/resume_user_mode.h>
  27#include <asm/current.h>
  28#include <asm/mmu_context.h>
  29#include <linux/uaccess.h>
  30#include <as-layout.h>
  31#include <kern_util.h>
  32#include <os.h>
  33#include <skas.h>
  34#include <registers.h>
  35#include <linux/time-internal.h>
  36
  37/*
  38 * This is a per-cpu array.  A processor only modifies its entry and it only
  39 * cares about its entry, so it's OK if another processor is modifying its
  40 * entry.
  41 */
  42struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  43
  44static inline int external_pid(void)
  45{
  46        /* FIXME: Need to look up userspace_pid by cpu */
  47        return userspace_pid[0];
  48}
  49
  50int pid_to_processor_id(int pid)
  51{
  52        int i;
  53
  54        for (i = 0; i < ncpus; i++) {
  55                if (cpu_tasks[i].pid == pid)
  56                        return i;
  57        }
  58        return -1;
  59}
  60
  61void free_stack(unsigned long stack, int order)
  62{
  63        free_pages(stack, order);
  64}
  65
  66unsigned long alloc_stack(int order, int atomic)
  67{
  68        unsigned long page;
  69        gfp_t flags = GFP_KERNEL;
  70
  71        if (atomic)
  72                flags = GFP_ATOMIC;
  73        page = __get_free_pages(flags, order);
  74
  75        return page;
  76}
  77
  78static inline void set_current(struct task_struct *task)
  79{
  80        cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  81                { external_pid(), task });
  82}
  83
  84extern void arch_switch_to(struct task_struct *to);
  85
  86void *__switch_to(struct task_struct *from, struct task_struct *to)
  87{
  88        to->thread.prev_sched = from;
  89        set_current(to);
  90
  91        switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
  92        arch_switch_to(current);
  93
  94        return current->thread.prev_sched;
  95}
  96
  97void interrupt_end(void)
  98{
  99        struct pt_regs *regs = &current->thread.regs;
 100
 101        if (need_resched())
 102                schedule();
 103        if (test_thread_flag(TIF_SIGPENDING) ||
 104            test_thread_flag(TIF_NOTIFY_SIGNAL))
 105                do_signal(regs);
 106        if (test_thread_flag(TIF_NOTIFY_RESUME))
 107                resume_user_mode_work(regs);
 108}
 109
 110int get_current_pid(void)
 111{
 112        return task_pid_nr(current);
 113}
 114
 115/*
 116 * This is called magically, by its address being stuffed in a jmp_buf
 117 * and being longjmp-d to.
 118 */
 119void new_thread_handler(void)
 120{
 121        int (*fn)(void *), n;
 122        void *arg;
 123
 124        if (current->thread.prev_sched != NULL)
 125                schedule_tail(current->thread.prev_sched);
 126        current->thread.prev_sched = NULL;
 127
 128        fn = current->thread.request.u.thread.proc;
 129        arg = current->thread.request.u.thread.arg;
 130
 131        /*
 132         * callback returns only if the kernel thread execs a process
 133         */
 134        n = fn(arg);
 135        userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
 136}
 137
 138/* Called magically, see new_thread_handler above */
 139void fork_handler(void)
 140{
 141        force_flush_all();
 142
 143        schedule_tail(current->thread.prev_sched);
 144
 145        /*
 146         * XXX: if interrupt_end() calls schedule, this call to
 147         * arch_switch_to isn't needed. We could want to apply this to
 148         * improve performance. -bb
 149         */
 150        arch_switch_to(current);
 151
 152        current->thread.prev_sched = NULL;
 153
 154        userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
 155}
 156
 157int copy_thread(unsigned long clone_flags, unsigned long sp,
 158                unsigned long arg, struct task_struct * p, unsigned long tls)
 159{
 160        void (*handler)(void);
 161        int kthread = current->flags & (PF_KTHREAD | PF_IO_WORKER);
 162        int ret = 0;
 163
 164        p->thread = (struct thread_struct) INIT_THREAD;
 165
 166        if (!kthread) {
 167                memcpy(&p->thread.regs.regs, current_pt_regs(),
 168                       sizeof(p->thread.regs.regs));
 169                PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
 170                if (sp != 0)
 171                        REGS_SP(p->thread.regs.regs.gp) = sp;
 172
 173                handler = fork_handler;
 174
 175                arch_copy_thread(&current->thread.arch, &p->thread.arch);
 176        } else {
 177                get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
 178                p->thread.request.u.thread.proc = (int (*)(void *))sp;
 179                p->thread.request.u.thread.arg = (void *)arg;
 180                handler = new_thread_handler;
 181        }
 182
 183        new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
 184
 185        if (!kthread) {
 186                clear_flushed_tls(p);
 187
 188                /*
 189                 * Set a new TLS for the child thread?
 190                 */
 191                if (clone_flags & CLONE_SETTLS)
 192                        ret = arch_set_tls(p, tls);
 193        }
 194
 195        return ret;
 196}
 197
 198void initial_thread_cb(void (*proc)(void *), void *arg)
 199{
 200        int save_kmalloc_ok = kmalloc_ok;
 201
 202        kmalloc_ok = 0;
 203        initial_thread_cb_skas(proc, arg);
 204        kmalloc_ok = save_kmalloc_ok;
 205}
 206
 207void um_idle_sleep(void)
 208{
 209        if (time_travel_mode != TT_MODE_OFF)
 210                time_travel_sleep();
 211        else
 212                os_idle_sleep();
 213}
 214
 215void arch_cpu_idle(void)
 216{
 217        cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
 218        um_idle_sleep();
 219        raw_local_irq_enable();
 220}
 221
 222int __cant_sleep(void) {
 223        return in_atomic() || irqs_disabled() || in_interrupt();
 224        /* Is in_interrupt() really needed? */
 225}
 226
 227int user_context(unsigned long sp)
 228{
 229        unsigned long stack;
 230
 231        stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
 232        return stack != (unsigned long) current_thread_info();
 233}
 234
 235extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
 236
 237void do_uml_exitcalls(void)
 238{
 239        exitcall_t *call;
 240
 241        call = &__uml_exitcall_end;
 242        while (--call >= &__uml_exitcall_begin)
 243                (*call)();
 244}
 245
 246char *uml_strdup(const char *string)
 247{
 248        return kstrdup(string, GFP_KERNEL);
 249}
 250EXPORT_SYMBOL(uml_strdup);
 251
 252int copy_to_user_proc(void __user *to, void *from, int size)
 253{
 254        return copy_to_user(to, from, size);
 255}
 256
 257int copy_from_user_proc(void *to, void __user *from, int size)
 258{
 259        return copy_from_user(to, from, size);
 260}
 261
 262int clear_user_proc(void __user *buf, int size)
 263{
 264        return clear_user(buf, size);
 265}
 266
 267static atomic_t using_sysemu = ATOMIC_INIT(0);
 268int sysemu_supported;
 269
 270void set_using_sysemu(int value)
 271{
 272        if (value > sysemu_supported)
 273                return;
 274        atomic_set(&using_sysemu, value);
 275}
 276
 277int get_using_sysemu(void)
 278{
 279        return atomic_read(&using_sysemu);
 280}
 281
 282static int sysemu_proc_show(struct seq_file *m, void *v)
 283{
 284        seq_printf(m, "%d\n", get_using_sysemu());
 285        return 0;
 286}
 287
 288static int sysemu_proc_open(struct inode *inode, struct file *file)
 289{
 290        return single_open(file, sysemu_proc_show, NULL);
 291}
 292
 293static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
 294                                 size_t count, loff_t *pos)
 295{
 296        char tmp[2];
 297
 298        if (copy_from_user(tmp, buf, 1))
 299                return -EFAULT;
 300
 301        if (tmp[0] >= '0' && tmp[0] <= '2')
 302                set_using_sysemu(tmp[0] - '0');
 303        /* We use the first char, but pretend to write everything */
 304        return count;
 305}
 306
 307static const struct proc_ops sysemu_proc_ops = {
 308        .proc_open      = sysemu_proc_open,
 309        .proc_read      = seq_read,
 310        .proc_lseek     = seq_lseek,
 311        .proc_release   = single_release,
 312        .proc_write     = sysemu_proc_write,
 313};
 314
 315int __init make_proc_sysemu(void)
 316{
 317        struct proc_dir_entry *ent;
 318        if (!sysemu_supported)
 319                return 0;
 320
 321        ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
 322
 323        if (ent == NULL)
 324        {
 325                printk(KERN_WARNING "Failed to register /proc/sysemu\n");
 326                return 0;
 327        }
 328
 329        return 0;
 330}
 331
 332late_initcall(make_proc_sysemu);
 333
 334int singlestepping(void * t)
 335{
 336        struct task_struct *task = t ? t : current;
 337
 338        if (!(task->ptrace & PT_DTRACE))
 339                return 0;
 340
 341        if (task->thread.singlestep_syscall)
 342                return 1;
 343
 344        return 2;
 345}
 346
 347/*
 348 * Only x86 and x86_64 have an arch_align_stack().
 349 * All other arches have "#define arch_align_stack(x) (x)"
 350 * in their asm/exec.h
 351 * As this is included in UML from asm-um/system-generic.h,
 352 * we can use it to behave as the subarch does.
 353 */
 354#ifndef arch_align_stack
 355unsigned long arch_align_stack(unsigned long sp)
 356{
 357        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 358                sp -= get_random_int() % 8192;
 359        return sp & ~0xf;
 360}
 361#endif
 362
 363unsigned long __get_wchan(struct task_struct *p)
 364{
 365        unsigned long stack_page, sp, ip;
 366        bool seen_sched = 0;
 367
 368        stack_page = (unsigned long) task_stack_page(p);
 369        /* Bail if the process has no kernel stack for some reason */
 370        if (stack_page == 0)
 371                return 0;
 372
 373        sp = p->thread.switch_buf->JB_SP;
 374        /*
 375         * Bail if the stack pointer is below the bottom of the kernel
 376         * stack for some reason
 377         */
 378        if (sp < stack_page)
 379                return 0;
 380
 381        while (sp < stack_page + THREAD_SIZE) {
 382                ip = *((unsigned long *) sp);
 383                if (in_sched_functions(ip))
 384                        /* Ignore everything until we're above the scheduler */
 385                        seen_sched = 1;
 386                else if (kernel_text_address(ip) && seen_sched)
 387                        return ip;
 388
 389                sp += sizeof(unsigned long);
 390        }
 391
 392        return 0;
 393}
 394
 395int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
 396{
 397        int cpu = current_thread_info()->cpu;
 398
 399        return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
 400}
 401
 402