linux/arch/x86/include/asm/segment.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_SEGMENT_H
   3#define _ASM_X86_SEGMENT_H
   4
   5#include <linux/const.h>
   6#include <asm/alternative.h>
   7#include <asm/ibt.h>
   8
   9/*
  10 * Constructor for a conventional segment GDT (or LDT) entry.
  11 * This is a macro so it can be used in initializers.
  12 */
  13#define GDT_ENTRY(flags, base, limit)                   \
  14        ((((base)  & _AC(0xff000000,ULL)) << (56-24)) | \
  15         (((flags) & _AC(0x0000f0ff,ULL)) << 40) |      \
  16         (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \
  17         (((base)  & _AC(0x00ffffff,ULL)) << 16) |      \
  18         (((limit) & _AC(0x0000ffff,ULL))))
  19
  20/* Simple and small GDT entries for booting only: */
  21
  22#define GDT_ENTRY_BOOT_CS       2
  23#define GDT_ENTRY_BOOT_DS       3
  24#define GDT_ENTRY_BOOT_TSS      4
  25#define __BOOT_CS               (GDT_ENTRY_BOOT_CS*8)
  26#define __BOOT_DS               (GDT_ENTRY_BOOT_DS*8)
  27#define __BOOT_TSS              (GDT_ENTRY_BOOT_TSS*8)
  28
  29/*
  30 * Bottom two bits of selector give the ring
  31 * privilege level
  32 */
  33#define SEGMENT_RPL_MASK        0x3
  34
  35/*
  36 * When running on Xen PV, the actual privilege level of the kernel is 1,
  37 * not 0. Testing the Requested Privilege Level in a segment selector to
  38 * determine whether the context is user mode or kernel mode with
  39 * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level
  40 * matches the 0x3 mask.
  41 *
  42 * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV
  43 * kernels because privilege level 2 is never used.
  44 */
  45#define USER_SEGMENT_RPL_MASK   0x2
  46
  47/* User mode is privilege level 3: */
  48#define USER_RPL                0x3
  49
  50/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
  51#define SEGMENT_TI_MASK         0x4
  52/* LDT segment has TI set ... */
  53#define SEGMENT_LDT             0x4
  54/* ... GDT has it cleared */
  55#define SEGMENT_GDT             0x0
  56
  57#define GDT_ENTRY_INVALID_SEG   0
  58
  59#ifdef CONFIG_X86_32
  60/*
  61 * The layout of the per-CPU GDT under Linux:
  62 *
  63 *   0 - null                                                           <=== cacheline #1
  64 *   1 - reserved
  65 *   2 - reserved
  66 *   3 - reserved
  67 *
  68 *   4 - unused                                                         <=== cacheline #2
  69 *   5 - unused
  70 *
  71 *  ------- start of TLS (Thread-Local Storage) segments:
  72 *
  73 *   6 - TLS segment #1                 [ glibc's TLS segment ]
  74 *   7 - TLS segment #2                 [ Wine's %fs Win32 segment ]
  75 *   8 - TLS segment #3                                                 <=== cacheline #3
  76 *   9 - reserved
  77 *  10 - reserved
  78 *  11 - reserved
  79 *
  80 *  ------- start of kernel segments:
  81 *
  82 *  12 - kernel code segment                                            <=== cacheline #4
  83 *  13 - kernel data segment
  84 *  14 - default user CS
  85 *  15 - default user DS
  86 *  16 - TSS                                                            <=== cacheline #5
  87 *  17 - LDT
  88 *  18 - PNPBIOS support (16->32 gate)
  89 *  19 - PNPBIOS support
  90 *  20 - PNPBIOS support                                                <=== cacheline #6
  91 *  21 - PNPBIOS support
  92 *  22 - PNPBIOS support
  93 *  23 - APM BIOS support
  94 *  24 - APM BIOS support                                               <=== cacheline #7
  95 *  25 - APM BIOS support
  96 *
  97 *  26 - ESPFIX small SS
  98 *  27 - per-cpu                        [ offset to per-cpu data area ]
  99 *  28 - unused
 100 *  29 - unused
 101 *  30 - unused
 102 *  31 - TSS for double fault handler
 103 */
 104#define GDT_ENTRY_TLS_MIN               6
 105#define GDT_ENTRY_TLS_MAX               (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
 106
 107#define GDT_ENTRY_KERNEL_CS             12
 108#define GDT_ENTRY_KERNEL_DS             13
 109#define GDT_ENTRY_DEFAULT_USER_CS       14
 110#define GDT_ENTRY_DEFAULT_USER_DS       15
 111#define GDT_ENTRY_TSS                   16
 112#define GDT_ENTRY_LDT                   17
 113#define GDT_ENTRY_PNPBIOS_CS32          18
 114#define GDT_ENTRY_PNPBIOS_CS16          19
 115#define GDT_ENTRY_PNPBIOS_DS            20
 116#define GDT_ENTRY_PNPBIOS_TS1           21
 117#define GDT_ENTRY_PNPBIOS_TS2           22
 118#define GDT_ENTRY_APMBIOS_BASE          23
 119
 120#define GDT_ENTRY_ESPFIX_SS             26
 121#define GDT_ENTRY_PERCPU                27
 122
 123#define GDT_ENTRY_DOUBLEFAULT_TSS       31
 124
 125/*
 126 * Number of entries in the GDT table:
 127 */
 128#define GDT_ENTRIES                     32
 129
 130/*
 131 * Segment selector values corresponding to the above entries:
 132 */
 133
 134#define __KERNEL_CS                     (GDT_ENTRY_KERNEL_CS*8)
 135#define __KERNEL_DS                     (GDT_ENTRY_KERNEL_DS*8)
 136#define __USER_DS                       (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
 137#define __USER_CS                       (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
 138#define __ESPFIX_SS                     (GDT_ENTRY_ESPFIX_SS*8)
 139
 140/* segment for calling fn: */
 141#define PNP_CS32                        (GDT_ENTRY_PNPBIOS_CS32*8)
 142/* code segment for BIOS: */
 143#define PNP_CS16                        (GDT_ENTRY_PNPBIOS_CS16*8)
 144
 145/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
 146#define SEGMENT_IS_PNP_CODE(x)          (((x) & 0xf4) == PNP_CS32)
 147
 148/* data segment for BIOS: */
 149#define PNP_DS                          (GDT_ENTRY_PNPBIOS_DS*8)
 150/* transfer data segment: */
 151#define PNP_TS1                         (GDT_ENTRY_PNPBIOS_TS1*8)
 152/* another data segment: */
 153#define PNP_TS2                         (GDT_ENTRY_PNPBIOS_TS2*8)
 154
 155#ifdef CONFIG_SMP
 156# define __KERNEL_PERCPU                (GDT_ENTRY_PERCPU*8)
 157#else
 158# define __KERNEL_PERCPU                0
 159#endif
 160
 161#else /* 64-bit: */
 162
 163#include <asm/cache.h>
 164
 165#define GDT_ENTRY_KERNEL32_CS           1
 166#define GDT_ENTRY_KERNEL_CS             2
 167#define GDT_ENTRY_KERNEL_DS             3
 168
 169/*
 170 * We cannot use the same code segment descriptor for user and kernel mode,
 171 * not even in long flat mode, because of different DPL.
 172 *
 173 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
 174 * selectors:
 175 *
 176 *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
 177 *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
 178 *
 179 * ss = STAR.SYSRET_CS+8 (in either case)
 180 *
 181 * thus USER_DS should be between 32-bit and 64-bit code selectors:
 182 */
 183#define GDT_ENTRY_DEFAULT_USER32_CS     4
 184#define GDT_ENTRY_DEFAULT_USER_DS       5
 185#define GDT_ENTRY_DEFAULT_USER_CS       6
 186
 187/* Needs two entries */
 188#define GDT_ENTRY_TSS                   8
 189/* Needs two entries */
 190#define GDT_ENTRY_LDT                   10
 191
 192#define GDT_ENTRY_TLS_MIN               12
 193#define GDT_ENTRY_TLS_MAX               14
 194
 195#define GDT_ENTRY_CPUNODE               15
 196
 197/*
 198 * Number of entries in the GDT table:
 199 */
 200#define GDT_ENTRIES                     16
 201
 202/*
 203 * Segment selector values corresponding to the above entries:
 204 *
 205 * Note, selectors also need to have a correct RPL,
 206 * expressed with the +3 value for user-space selectors:
 207 */
 208#define __KERNEL32_CS                   (GDT_ENTRY_KERNEL32_CS*8)
 209#define __KERNEL_CS                     (GDT_ENTRY_KERNEL_CS*8)
 210#define __KERNEL_DS                     (GDT_ENTRY_KERNEL_DS*8)
 211#define __USER32_CS                     (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
 212#define __USER_DS                       (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
 213#define __USER32_DS                     __USER_DS
 214#define __USER_CS                       (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
 215#define __CPUNODE_SEG                   (GDT_ENTRY_CPUNODE*8 + 3)
 216
 217#endif
 218
 219#define IDT_ENTRIES                     256
 220#define NUM_EXCEPTION_VECTORS           32
 221
 222/* Bitmask of exception vectors which push an error code on the stack: */
 223#define EXCEPTION_ERRCODE_MASK          0x20027d00
 224
 225#define GDT_SIZE                        (GDT_ENTRIES*8)
 226#define GDT_ENTRY_TLS_ENTRIES           3
 227#define TLS_SIZE                        (GDT_ENTRY_TLS_ENTRIES* 8)
 228
 229#ifdef CONFIG_X86_64
 230
 231/* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
 232#define VDSO_CPUNODE_BITS               12
 233#define VDSO_CPUNODE_MASK               0xfff
 234
 235#ifndef __ASSEMBLY__
 236
 237/* Helper functions to store/load CPU and node numbers */
 238
 239static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
 240{
 241        return (node << VDSO_CPUNODE_BITS) | cpu;
 242}
 243
 244static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
 245{
 246        unsigned int p;
 247
 248        /*
 249         * Load CPU and node number from the GDT.  LSL is faster than RDTSCP
 250         * and works on all CPUs.  This is volatile so that it orders
 251         * correctly with respect to barrier() and to keep GCC from cleverly
 252         * hoisting it out of the calling function.
 253         *
 254         * If RDPID is available, use it.
 255         */
 256        alternative_io ("lsl %[seg],%[p]",
 257                        ".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
 258                        X86_FEATURE_RDPID,
 259                        [p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
 260
 261        if (cpu)
 262                *cpu = (p & VDSO_CPUNODE_MASK);
 263        if (node)
 264                *node = (p >> VDSO_CPUNODE_BITS);
 265}
 266
 267#endif /* !__ASSEMBLY__ */
 268#endif /* CONFIG_X86_64 */
 269
 270#ifdef __KERNEL__
 271
 272/*
 273 * early_idt_handler_array is an array of entry points referenced in the
 274 * early IDT.  For simplicity, it's a real array with one entry point
 275 * every nine bytes.  That leaves room for an optional 'push $0' if the
 276 * vector has no error code (two bytes), a 'push $vector_number' (two
 277 * bytes), and a jump to the common entry code (up to five bytes).
 278 */
 279#define EARLY_IDT_HANDLER_SIZE (9 + ENDBR_INSN_SIZE)
 280
 281/*
 282 * xen_early_idt_handler_array is for Xen pv guests: for each entry in
 283 * early_idt_handler_array it contains a prequel in the form of
 284 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
 285 * max 8 bytes.
 286 */
 287#define XEN_EARLY_IDT_HANDLER_SIZE (8 + ENDBR_INSN_SIZE)
 288
 289#ifndef __ASSEMBLY__
 290
 291extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
 292extern void early_ignore_irq(void);
 293
 294#ifdef CONFIG_XEN_PV
 295extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
 296#endif
 297
 298/*
 299 * Load a segment. Fall back on loading the zero segment if something goes
 300 * wrong.  This variant assumes that loading zero fully clears the segment.
 301 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
 302 * failure to fully clear the cached descriptor is only observable for
 303 * FS and GS.
 304 */
 305#define __loadsegment_simple(seg, value)                                \
 306do {                                                                    \
 307        unsigned short __val = (value);                                 \
 308                                                                        \
 309        asm volatile("                                          \n"     \
 310                     "1:        movl %k0,%%" #seg "             \n"     \
 311                     _ASM_EXTABLE_TYPE_REG(1b, 1b, EX_TYPE_ZERO_REG, %k0)\
 312                     : "+r" (__val) : : "memory");                      \
 313} while (0)
 314
 315#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
 316#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
 317#define __loadsegment_es(value) __loadsegment_simple(es, (value))
 318
 319#ifdef CONFIG_X86_32
 320
 321/*
 322 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
 323 * the selector is NULL, so there's no funny business here.
 324 */
 325#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
 326#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
 327
 328#else
 329
 330static inline void __loadsegment_fs(unsigned short value)
 331{
 332        asm volatile("                                          \n"
 333                     "1:        movw %0, %%fs                   \n"
 334                     "2:                                        \n"
 335
 336                     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_CLEAR_FS)
 337
 338                     : : "rm" (value) : "memory");
 339}
 340
 341/* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
 342
 343#endif
 344
 345#define loadsegment(seg, value) __loadsegment_ ## seg (value)
 346
 347/*
 348 * Save a segment register away:
 349 */
 350#define savesegment(seg, value)                         \
 351        asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
 352
 353/*
 354 * x86-32 user GS accessors.  This is ugly and could do with some cleaning up.
 355 */
 356#ifdef CONFIG_X86_32
 357# define get_user_gs(regs)              (u16)({ unsigned long v; savesegment(gs, v); v; })
 358# define set_user_gs(regs, v)           loadsegment(gs, (unsigned long)(v))
 359# define task_user_gs(tsk)              ((tsk)->thread.gs)
 360# define lazy_save_gs(v)                savesegment(gs, (v))
 361# define lazy_load_gs(v)                loadsegment(gs, (v))
 362# define load_gs_index(v)               loadsegment(gs, (v))
 363#endif  /* X86_32 */
 364
 365#endif /* !__ASSEMBLY__ */
 366#endif /* __KERNEL__ */
 367
 368#endif /* _ASM_X86_SEGMENT_H */
 369