linux/arch/x86/kernel/machine_kexec_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * handle transition of Linux booting another kernel
   4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt)     "kexec: " fmt
   8
   9#include <linux/mm.h>
  10#include <linux/kexec.h>
  11#include <linux/string.h>
  12#include <linux/gfp.h>
  13#include <linux/reboot.h>
  14#include <linux/numa.h>
  15#include <linux/ftrace.h>
  16#include <linux/io.h>
  17#include <linux/suspend.h>
  18#include <linux/vmalloc.h>
  19#include <linux/efi.h>
  20#include <linux/cc_platform.h>
  21
  22#include <asm/init.h>
  23#include <asm/tlbflush.h>
  24#include <asm/mmu_context.h>
  25#include <asm/io_apic.h>
  26#include <asm/debugreg.h>
  27#include <asm/kexec-bzimage64.h>
  28#include <asm/setup.h>
  29#include <asm/set_memory.h>
  30#include <asm/cpu.h>
  31
  32#ifdef CONFIG_ACPI
  33/*
  34 * Used while adding mapping for ACPI tables.
  35 * Can be reused when other iomem regions need be mapped
  36 */
  37struct init_pgtable_data {
  38        struct x86_mapping_info *info;
  39        pgd_t *level4p;
  40};
  41
  42static int mem_region_callback(struct resource *res, void *arg)
  43{
  44        struct init_pgtable_data *data = arg;
  45        unsigned long mstart, mend;
  46
  47        mstart = res->start;
  48        mend = mstart + resource_size(res) - 1;
  49
  50        return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
  51}
  52
  53static int
  54map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
  55{
  56        struct init_pgtable_data data;
  57        unsigned long flags;
  58        int ret;
  59
  60        data.info = info;
  61        data.level4p = level4p;
  62        flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  63
  64        ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
  65                                  &data, mem_region_callback);
  66        if (ret && ret != -EINVAL)
  67                return ret;
  68
  69        /* ACPI tables could be located in ACPI Non-volatile Storage region */
  70        ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
  71                                  &data, mem_region_callback);
  72        if (ret && ret != -EINVAL)
  73                return ret;
  74
  75        return 0;
  76}
  77#else
  78static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
  79#endif
  80
  81#ifdef CONFIG_KEXEC_FILE
  82const struct kexec_file_ops * const kexec_file_loaders[] = {
  83                &kexec_bzImage64_ops,
  84                NULL
  85};
  86#endif
  87
  88static int
  89map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
  90{
  91#ifdef CONFIG_EFI
  92        unsigned long mstart, mend;
  93
  94        if (!efi_enabled(EFI_BOOT))
  95                return 0;
  96
  97        mstart = (boot_params.efi_info.efi_systab |
  98                        ((u64)boot_params.efi_info.efi_systab_hi<<32));
  99
 100        if (efi_enabled(EFI_64BIT))
 101                mend = mstart + sizeof(efi_system_table_64_t);
 102        else
 103                mend = mstart + sizeof(efi_system_table_32_t);
 104
 105        if (!mstart)
 106                return 0;
 107
 108        return kernel_ident_mapping_init(info, level4p, mstart, mend);
 109#endif
 110        return 0;
 111}
 112
 113static void free_transition_pgtable(struct kimage *image)
 114{
 115        free_page((unsigned long)image->arch.p4d);
 116        image->arch.p4d = NULL;
 117        free_page((unsigned long)image->arch.pud);
 118        image->arch.pud = NULL;
 119        free_page((unsigned long)image->arch.pmd);
 120        image->arch.pmd = NULL;
 121        free_page((unsigned long)image->arch.pte);
 122        image->arch.pte = NULL;
 123}
 124
 125static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
 126{
 127        pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
 128        unsigned long vaddr, paddr;
 129        int result = -ENOMEM;
 130        p4d_t *p4d;
 131        pud_t *pud;
 132        pmd_t *pmd;
 133        pte_t *pte;
 134
 135        vaddr = (unsigned long)relocate_kernel;
 136        paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
 137        pgd += pgd_index(vaddr);
 138        if (!pgd_present(*pgd)) {
 139                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
 140                if (!p4d)
 141                        goto err;
 142                image->arch.p4d = p4d;
 143                set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
 144        }
 145        p4d = p4d_offset(pgd, vaddr);
 146        if (!p4d_present(*p4d)) {
 147                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
 148                if (!pud)
 149                        goto err;
 150                image->arch.pud = pud;
 151                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
 152        }
 153        pud = pud_offset(p4d, vaddr);
 154        if (!pud_present(*pud)) {
 155                pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 156                if (!pmd)
 157                        goto err;
 158                image->arch.pmd = pmd;
 159                set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 160        }
 161        pmd = pmd_offset(pud, vaddr);
 162        if (!pmd_present(*pmd)) {
 163                pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
 164                if (!pte)
 165                        goto err;
 166                image->arch.pte = pte;
 167                set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 168        }
 169        pte = pte_offset_kernel(pmd, vaddr);
 170
 171        if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
 172                prot = PAGE_KERNEL_EXEC;
 173
 174        set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
 175        return 0;
 176err:
 177        return result;
 178}
 179
 180static void *alloc_pgt_page(void *data)
 181{
 182        struct kimage *image = (struct kimage *)data;
 183        struct page *page;
 184        void *p = NULL;
 185
 186        page = kimage_alloc_control_pages(image, 0);
 187        if (page) {
 188                p = page_address(page);
 189                clear_page(p);
 190        }
 191
 192        return p;
 193}
 194
 195static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
 196{
 197        struct x86_mapping_info info = {
 198                .alloc_pgt_page = alloc_pgt_page,
 199                .context        = image,
 200                .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
 201                .kernpg_flag    = _KERNPG_TABLE_NOENC,
 202        };
 203        unsigned long mstart, mend;
 204        pgd_t *level4p;
 205        int result;
 206        int i;
 207
 208        level4p = (pgd_t *)__va(start_pgtable);
 209        clear_page(level4p);
 210
 211        if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
 212                info.page_flag   |= _PAGE_ENC;
 213                info.kernpg_flag |= _PAGE_ENC;
 214        }
 215
 216        if (direct_gbpages)
 217                info.direct_gbpages = true;
 218
 219        for (i = 0; i < nr_pfn_mapped; i++) {
 220                mstart = pfn_mapped[i].start << PAGE_SHIFT;
 221                mend   = pfn_mapped[i].end << PAGE_SHIFT;
 222
 223                result = kernel_ident_mapping_init(&info,
 224                                                 level4p, mstart, mend);
 225                if (result)
 226                        return result;
 227        }
 228
 229        /*
 230         * segments's mem ranges could be outside 0 ~ max_pfn,
 231         * for example when jump back to original kernel from kexeced kernel.
 232         * or first kernel is booted with user mem map, and second kernel
 233         * could be loaded out of that range.
 234         */
 235        for (i = 0; i < image->nr_segments; i++) {
 236                mstart = image->segment[i].mem;
 237                mend   = mstart + image->segment[i].memsz;
 238
 239                result = kernel_ident_mapping_init(&info,
 240                                                 level4p, mstart, mend);
 241
 242                if (result)
 243                        return result;
 244        }
 245
 246        /*
 247         * Prepare EFI systab and ACPI tables for kexec kernel since they are
 248         * not covered by pfn_mapped.
 249         */
 250        result = map_efi_systab(&info, level4p);
 251        if (result)
 252                return result;
 253
 254        result = map_acpi_tables(&info, level4p);
 255        if (result)
 256                return result;
 257
 258        return init_transition_pgtable(image, level4p);
 259}
 260
 261static void load_segments(void)
 262{
 263        __asm__ __volatile__ (
 264                "\tmovl %0,%%ds\n"
 265                "\tmovl %0,%%es\n"
 266                "\tmovl %0,%%ss\n"
 267                "\tmovl %0,%%fs\n"
 268                "\tmovl %0,%%gs\n"
 269                : : "a" (__KERNEL_DS) : "memory"
 270                );
 271}
 272
 273int machine_kexec_prepare(struct kimage *image)
 274{
 275        unsigned long start_pgtable;
 276        int result;
 277
 278        /* Calculate the offsets */
 279        start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
 280
 281        /* Setup the identity mapped 64bit page table */
 282        result = init_pgtable(image, start_pgtable);
 283        if (result)
 284                return result;
 285
 286        return 0;
 287}
 288
 289void machine_kexec_cleanup(struct kimage *image)
 290{
 291        free_transition_pgtable(image);
 292}
 293
 294/*
 295 * Do not allocate memory (or fail in any way) in machine_kexec().
 296 * We are past the point of no return, committed to rebooting now.
 297 */
 298void machine_kexec(struct kimage *image)
 299{
 300        unsigned long page_list[PAGES_NR];
 301        void *control_page;
 302        int save_ftrace_enabled;
 303
 304#ifdef CONFIG_KEXEC_JUMP
 305        if (image->preserve_context)
 306                save_processor_state();
 307#endif
 308
 309        save_ftrace_enabled = __ftrace_enabled_save();
 310
 311        /* Interrupts aren't acceptable while we reboot */
 312        local_irq_disable();
 313        hw_breakpoint_disable();
 314        cet_disable();
 315
 316        if (image->preserve_context) {
 317#ifdef CONFIG_X86_IO_APIC
 318                /*
 319                 * We need to put APICs in legacy mode so that we can
 320                 * get timer interrupts in second kernel. kexec/kdump
 321                 * paths already have calls to restore_boot_irq_mode()
 322                 * in one form or other. kexec jump path also need one.
 323                 */
 324                clear_IO_APIC();
 325                restore_boot_irq_mode();
 326#endif
 327        }
 328
 329        control_page = page_address(image->control_code_page) + PAGE_SIZE;
 330        __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
 331
 332        page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
 333        page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
 334        page_list[PA_TABLE_PAGE] =
 335          (unsigned long)__pa(page_address(image->control_code_page));
 336
 337        if (image->type == KEXEC_TYPE_DEFAULT)
 338                page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
 339                                                << PAGE_SHIFT);
 340
 341        /*
 342         * The segment registers are funny things, they have both a
 343         * visible and an invisible part.  Whenever the visible part is
 344         * set to a specific selector, the invisible part is loaded
 345         * with from a table in memory.  At no other time is the
 346         * descriptor table in memory accessed.
 347         *
 348         * I take advantage of this here by force loading the
 349         * segments, before I zap the gdt with an invalid value.
 350         */
 351        load_segments();
 352        /*
 353         * The gdt & idt are now invalid.
 354         * If you want to load them you must set up your own idt & gdt.
 355         */
 356        native_idt_invalidate();
 357        native_gdt_invalidate();
 358
 359        /* now call it */
 360        image->start = relocate_kernel((unsigned long)image->head,
 361                                       (unsigned long)page_list,
 362                                       image->start,
 363                                       image->preserve_context,
 364                                       cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
 365
 366#ifdef CONFIG_KEXEC_JUMP
 367        if (image->preserve_context)
 368                restore_processor_state();
 369#endif
 370
 371        __ftrace_enabled_restore(save_ftrace_enabled);
 372}
 373
 374/* arch-dependent functionality related to kexec file-based syscall */
 375
 376#ifdef CONFIG_KEXEC_FILE
 377void *arch_kexec_kernel_image_load(struct kimage *image)
 378{
 379        vfree(image->elf_headers);
 380        image->elf_headers = NULL;
 381
 382        if (!image->fops || !image->fops->load)
 383                return ERR_PTR(-ENOEXEC);
 384
 385        return image->fops->load(image, image->kernel_buf,
 386                                 image->kernel_buf_len, image->initrd_buf,
 387                                 image->initrd_buf_len, image->cmdline_buf,
 388                                 image->cmdline_buf_len);
 389}
 390
 391/*
 392 * Apply purgatory relocations.
 393 *
 394 * @pi:         Purgatory to be relocated.
 395 * @section:    Section relocations applying to.
 396 * @relsec:     Section containing RELAs.
 397 * @symtabsec:  Corresponding symtab.
 398 *
 399 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 400 */
 401int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
 402                                     Elf_Shdr *section, const Elf_Shdr *relsec,
 403                                     const Elf_Shdr *symtabsec)
 404{
 405        unsigned int i;
 406        Elf64_Rela *rel;
 407        Elf64_Sym *sym;
 408        void *location;
 409        unsigned long address, sec_base, value;
 410        const char *strtab, *name, *shstrtab;
 411        const Elf_Shdr *sechdrs;
 412
 413        /* String & section header string table */
 414        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 415        strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
 416        shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
 417
 418        rel = (void *)pi->ehdr + relsec->sh_offset;
 419
 420        pr_debug("Applying relocate section %s to %u\n",
 421                 shstrtab + relsec->sh_name, relsec->sh_info);
 422
 423        for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
 424
 425                /*
 426                 * rel[i].r_offset contains byte offset from beginning
 427                 * of section to the storage unit affected.
 428                 *
 429                 * This is location to update. This is temporary buffer
 430                 * where section is currently loaded. This will finally be
 431                 * loaded to a different address later, pointed to by
 432                 * ->sh_addr. kexec takes care of moving it
 433                 *  (kexec_load_segment()).
 434                 */
 435                location = pi->purgatory_buf;
 436                location += section->sh_offset;
 437                location += rel[i].r_offset;
 438
 439                /* Final address of the location */
 440                address = section->sh_addr + rel[i].r_offset;
 441
 442                /*
 443                 * rel[i].r_info contains information about symbol table index
 444                 * w.r.t which relocation must be made and type of relocation
 445                 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
 446                 * these respectively.
 447                 */
 448                sym = (void *)pi->ehdr + symtabsec->sh_offset;
 449                sym += ELF64_R_SYM(rel[i].r_info);
 450
 451                if (sym->st_name)
 452                        name = strtab + sym->st_name;
 453                else
 454                        name = shstrtab + sechdrs[sym->st_shndx].sh_name;
 455
 456                pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
 457                         name, sym->st_info, sym->st_shndx, sym->st_value,
 458                         sym->st_size);
 459
 460                if (sym->st_shndx == SHN_UNDEF) {
 461                        pr_err("Undefined symbol: %s\n", name);
 462                        return -ENOEXEC;
 463                }
 464
 465                if (sym->st_shndx == SHN_COMMON) {
 466                        pr_err("symbol '%s' in common section\n", name);
 467                        return -ENOEXEC;
 468                }
 469
 470                if (sym->st_shndx == SHN_ABS)
 471                        sec_base = 0;
 472                else if (sym->st_shndx >= pi->ehdr->e_shnum) {
 473                        pr_err("Invalid section %d for symbol %s\n",
 474                               sym->st_shndx, name);
 475                        return -ENOEXEC;
 476                } else
 477                        sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
 478
 479                value = sym->st_value;
 480                value += sec_base;
 481                value += rel[i].r_addend;
 482
 483                switch (ELF64_R_TYPE(rel[i].r_info)) {
 484                case R_X86_64_NONE:
 485                        break;
 486                case R_X86_64_64:
 487                        *(u64 *)location = value;
 488                        break;
 489                case R_X86_64_32:
 490                        *(u32 *)location = value;
 491                        if (value != *(u32 *)location)
 492                                goto overflow;
 493                        break;
 494                case R_X86_64_32S:
 495                        *(s32 *)location = value;
 496                        if ((s64)value != *(s32 *)location)
 497                                goto overflow;
 498                        break;
 499                case R_X86_64_PC32:
 500                case R_X86_64_PLT32:
 501                        value -= (u64)address;
 502                        *(u32 *)location = value;
 503                        break;
 504                default:
 505                        pr_err("Unknown rela relocation: %llu\n",
 506                               ELF64_R_TYPE(rel[i].r_info));
 507                        return -ENOEXEC;
 508                }
 509        }
 510        return 0;
 511
 512overflow:
 513        pr_err("Overflow in relocation type %d value 0x%lx\n",
 514               (int)ELF64_R_TYPE(rel[i].r_info), value);
 515        return -ENOEXEC;
 516}
 517#endif /* CONFIG_KEXEC_FILE */
 518
 519static int
 520kexec_mark_range(unsigned long start, unsigned long end, bool protect)
 521{
 522        struct page *page;
 523        unsigned int nr_pages;
 524
 525        /*
 526         * For physical range: [start, end]. We must skip the unassigned
 527         * crashk resource with zero-valued "end" member.
 528         */
 529        if (!end || start > end)
 530                return 0;
 531
 532        page = pfn_to_page(start >> PAGE_SHIFT);
 533        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 534        if (protect)
 535                return set_pages_ro(page, nr_pages);
 536        else
 537                return set_pages_rw(page, nr_pages);
 538}
 539
 540static void kexec_mark_crashkres(bool protect)
 541{
 542        unsigned long control;
 543
 544        kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
 545
 546        /* Don't touch the control code page used in crash_kexec().*/
 547        control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
 548        /* Control code page is located in the 2nd page. */
 549        kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
 550        control += KEXEC_CONTROL_PAGE_SIZE;
 551        kexec_mark_range(control, crashk_res.end, protect);
 552}
 553
 554void arch_kexec_protect_crashkres(void)
 555{
 556        kexec_mark_crashkres(true);
 557}
 558
 559void arch_kexec_unprotect_crashkres(void)
 560{
 561        kexec_mark_crashkres(false);
 562}
 563
 564/*
 565 * During a traditional boot under SME, SME will encrypt the kernel,
 566 * so the SME kexec kernel also needs to be un-encrypted in order to
 567 * replicate a normal SME boot.
 568 *
 569 * During a traditional boot under SEV, the kernel has already been
 570 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
 571 * order to replicate a normal SEV boot.
 572 */
 573int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
 574{
 575        if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
 576                return 0;
 577
 578        /*
 579         * If host memory encryption is active we need to be sure that kexec
 580         * pages are not encrypted because when we boot to the new kernel the
 581         * pages won't be accessed encrypted (initially).
 582         */
 583        return set_memory_decrypted((unsigned long)vaddr, pages);
 584}
 585
 586void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
 587{
 588        if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
 589                return;
 590
 591        /*
 592         * If host memory encryption is active we need to reset the pages back
 593         * to being an encrypted mapping before freeing them.
 594         */
 595        set_memory_encrypted((unsigned long)vaddr, pages);
 596}
 597