linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
   7 */
   8#include <linux/acpi.h>
   9#include <linux/console.h>
  10#include <linux/crash_dump.h>
  11#include <linux/dma-map-ops.h>
  12#include <linux/dmi.h>
  13#include <linux/efi.h>
  14#include <linux/init_ohci1394_dma.h>
  15#include <linux/initrd.h>
  16#include <linux/iscsi_ibft.h>
  17#include <linux/memblock.h>
  18#include <linux/panic_notifier.h>
  19#include <linux/pci.h>
  20#include <linux/root_dev.h>
  21#include <linux/hugetlb.h>
  22#include <linux/tboot.h>
  23#include <linux/usb/xhci-dbgp.h>
  24#include <linux/static_call.h>
  25#include <linux/swiotlb.h>
  26
  27#include <uapi/linux/mount.h>
  28
  29#include <xen/xen.h>
  30
  31#include <asm/apic.h>
  32#include <asm/numa.h>
  33#include <asm/bios_ebda.h>
  34#include <asm/bugs.h>
  35#include <asm/cpu.h>
  36#include <asm/efi.h>
  37#include <asm/gart.h>
  38#include <asm/hypervisor.h>
  39#include <asm/io_apic.h>
  40#include <asm/kasan.h>
  41#include <asm/kaslr.h>
  42#include <asm/mce.h>
  43#include <asm/memtype.h>
  44#include <asm/mtrr.h>
  45#include <asm/realmode.h>
  46#include <asm/olpc_ofw.h>
  47#include <asm/pci-direct.h>
  48#include <asm/prom.h>
  49#include <asm/proto.h>
  50#include <asm/thermal.h>
  51#include <asm/unwind.h>
  52#include <asm/vsyscall.h>
  53#include <linux/vmalloc.h>
  54
  55/*
  56 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  57 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  58 *
  59 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  60 * represented by pfn_mapped[].
  61 */
  62unsigned long max_low_pfn_mapped;
  63unsigned long max_pfn_mapped;
  64
  65#ifdef CONFIG_DMI
  66RESERVE_BRK(dmi_alloc, 65536);
  67#endif
  68
  69
  70/*
  71 * Range of the BSS area. The size of the BSS area is determined
  72 * at link time, with RESERVE_BRK() facility reserving additional
  73 * chunks.
  74 */
  75unsigned long _brk_start = (unsigned long)__brk_base;
  76unsigned long _brk_end   = (unsigned long)__brk_base;
  77
  78struct boot_params boot_params;
  79
  80/*
  81 * These are the four main kernel memory regions, we put them into
  82 * the resource tree so that kdump tools and other debugging tools
  83 * recover it:
  84 */
  85
  86static struct resource rodata_resource = {
  87        .name   = "Kernel rodata",
  88        .start  = 0,
  89        .end    = 0,
  90        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  91};
  92
  93static struct resource data_resource = {
  94        .name   = "Kernel data",
  95        .start  = 0,
  96        .end    = 0,
  97        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  98};
  99
 100static struct resource code_resource = {
 101        .name   = "Kernel code",
 102        .start  = 0,
 103        .end    = 0,
 104        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 105};
 106
 107static struct resource bss_resource = {
 108        .name   = "Kernel bss",
 109        .start  = 0,
 110        .end    = 0,
 111        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 112};
 113
 114
 115#ifdef CONFIG_X86_32
 116/* CPU data as detected by the assembly code in head_32.S */
 117struct cpuinfo_x86 new_cpu_data;
 118
 119/* Common CPU data for all CPUs */
 120struct cpuinfo_x86 boot_cpu_data __read_mostly;
 121EXPORT_SYMBOL(boot_cpu_data);
 122
 123unsigned int def_to_bigsmp;
 124
 125struct apm_info apm_info;
 126EXPORT_SYMBOL(apm_info);
 127
 128#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 129        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 130struct ist_info ist_info;
 131EXPORT_SYMBOL(ist_info);
 132#else
 133struct ist_info ist_info;
 134#endif
 135
 136#else
 137struct cpuinfo_x86 boot_cpu_data __read_mostly;
 138EXPORT_SYMBOL(boot_cpu_data);
 139#endif
 140
 141
 142#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 143__visible unsigned long mmu_cr4_features __ro_after_init;
 144#else
 145__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 146#endif
 147
 148/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 149int bootloader_type, bootloader_version;
 150
 151/*
 152 * Setup options
 153 */
 154struct screen_info screen_info;
 155EXPORT_SYMBOL(screen_info);
 156struct edid_info edid_info;
 157EXPORT_SYMBOL_GPL(edid_info);
 158
 159extern int root_mountflags;
 160
 161unsigned long saved_video_mode;
 162
 163#define RAMDISK_IMAGE_START_MASK        0x07FF
 164#define RAMDISK_PROMPT_FLAG             0x8000
 165#define RAMDISK_LOAD_FLAG               0x4000
 166
 167static char __initdata command_line[COMMAND_LINE_SIZE];
 168#ifdef CONFIG_CMDLINE_BOOL
 169static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 170#endif
 171
 172#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 173struct edd edd;
 174#ifdef CONFIG_EDD_MODULE
 175EXPORT_SYMBOL(edd);
 176#endif
 177/**
 178 * copy_edd() - Copy the BIOS EDD information
 179 *              from boot_params into a safe place.
 180 *
 181 */
 182static inline void __init copy_edd(void)
 183{
 184     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 185            sizeof(edd.mbr_signature));
 186     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 187     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 188     edd.edd_info_nr = boot_params.eddbuf_entries;
 189}
 190#else
 191static inline void __init copy_edd(void)
 192{
 193}
 194#endif
 195
 196void * __init extend_brk(size_t size, size_t align)
 197{
 198        size_t mask = align - 1;
 199        void *ret;
 200
 201        BUG_ON(_brk_start == 0);
 202        BUG_ON(align & mask);
 203
 204        _brk_end = (_brk_end + mask) & ~mask;
 205        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 206
 207        ret = (void *)_brk_end;
 208        _brk_end += size;
 209
 210        memset(ret, 0, size);
 211
 212        return ret;
 213}
 214
 215#ifdef CONFIG_X86_32
 216static void __init cleanup_highmap(void)
 217{
 218}
 219#endif
 220
 221static void __init reserve_brk(void)
 222{
 223        if (_brk_end > _brk_start)
 224                memblock_reserve(__pa_symbol(_brk_start),
 225                                 _brk_end - _brk_start);
 226
 227        /* Mark brk area as locked down and no longer taking any
 228           new allocations */
 229        _brk_start = 0;
 230}
 231
 232u64 relocated_ramdisk;
 233
 234#ifdef CONFIG_BLK_DEV_INITRD
 235
 236static u64 __init get_ramdisk_image(void)
 237{
 238        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 239
 240        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 241
 242        if (ramdisk_image == 0)
 243                ramdisk_image = phys_initrd_start;
 244
 245        return ramdisk_image;
 246}
 247static u64 __init get_ramdisk_size(void)
 248{
 249        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 250
 251        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 252
 253        if (ramdisk_size == 0)
 254                ramdisk_size = phys_initrd_size;
 255
 256        return ramdisk_size;
 257}
 258
 259static void __init relocate_initrd(void)
 260{
 261        /* Assume only end is not page aligned */
 262        u64 ramdisk_image = get_ramdisk_image();
 263        u64 ramdisk_size  = get_ramdisk_size();
 264        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 265
 266        /* We need to move the initrd down into directly mapped mem */
 267        relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 268                                                      PFN_PHYS(max_pfn_mapped));
 269        if (!relocated_ramdisk)
 270                panic("Cannot find place for new RAMDISK of size %lld\n",
 271                      ramdisk_size);
 272
 273        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 274        initrd_end   = initrd_start + ramdisk_size;
 275        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 276               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 277
 278        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 279
 280        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 281                " [mem %#010llx-%#010llx]\n",
 282                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 283                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 284}
 285
 286static void __init early_reserve_initrd(void)
 287{
 288        /* Assume only end is not page aligned */
 289        u64 ramdisk_image = get_ramdisk_image();
 290        u64 ramdisk_size  = get_ramdisk_size();
 291        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 292
 293        if (!boot_params.hdr.type_of_loader ||
 294            !ramdisk_image || !ramdisk_size)
 295                return;         /* No initrd provided by bootloader */
 296
 297        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 298}
 299
 300static void __init reserve_initrd(void)
 301{
 302        /* Assume only end is not page aligned */
 303        u64 ramdisk_image = get_ramdisk_image();
 304        u64 ramdisk_size  = get_ramdisk_size();
 305        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 306
 307        if (!boot_params.hdr.type_of_loader ||
 308            !ramdisk_image || !ramdisk_size)
 309                return;         /* No initrd provided by bootloader */
 310
 311        initrd_start = 0;
 312
 313        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 314                        ramdisk_end - 1);
 315
 316        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 317                                PFN_DOWN(ramdisk_end))) {
 318                /* All are mapped, easy case */
 319                initrd_start = ramdisk_image + PAGE_OFFSET;
 320                initrd_end = initrd_start + ramdisk_size;
 321                return;
 322        }
 323
 324        relocate_initrd();
 325
 326        memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
 327}
 328
 329#else
 330static void __init early_reserve_initrd(void)
 331{
 332}
 333static void __init reserve_initrd(void)
 334{
 335}
 336#endif /* CONFIG_BLK_DEV_INITRD */
 337
 338static void __init parse_setup_data(void)
 339{
 340        struct setup_data *data;
 341        u64 pa_data, pa_next;
 342
 343        pa_data = boot_params.hdr.setup_data;
 344        while (pa_data) {
 345                u32 data_len, data_type;
 346
 347                data = early_memremap(pa_data, sizeof(*data));
 348                data_len = data->len + sizeof(struct setup_data);
 349                data_type = data->type;
 350                pa_next = data->next;
 351                early_memunmap(data, sizeof(*data));
 352
 353                switch (data_type) {
 354                case SETUP_E820_EXT:
 355                        e820__memory_setup_extended(pa_data, data_len);
 356                        break;
 357                case SETUP_DTB:
 358                        add_dtb(pa_data);
 359                        break;
 360                case SETUP_EFI:
 361                        parse_efi_setup(pa_data, data_len);
 362                        break;
 363                default:
 364                        break;
 365                }
 366                pa_data = pa_next;
 367        }
 368}
 369
 370static void __init memblock_x86_reserve_range_setup_data(void)
 371{
 372        struct setup_indirect *indirect;
 373        struct setup_data *data;
 374        u64 pa_data, pa_next;
 375        u32 len;
 376
 377        pa_data = boot_params.hdr.setup_data;
 378        while (pa_data) {
 379                data = early_memremap(pa_data, sizeof(*data));
 380                if (!data) {
 381                        pr_warn("setup: failed to memremap setup_data entry\n");
 382                        return;
 383                }
 384
 385                len = sizeof(*data);
 386                pa_next = data->next;
 387
 388                memblock_reserve(pa_data, sizeof(*data) + data->len);
 389
 390                if (data->type == SETUP_INDIRECT) {
 391                        len += data->len;
 392                        early_memunmap(data, sizeof(*data));
 393                        data = early_memremap(pa_data, len);
 394                        if (!data) {
 395                                pr_warn("setup: failed to memremap indirect setup_data\n");
 396                                return;
 397                        }
 398
 399                        indirect = (struct setup_indirect *)data->data;
 400
 401                        if (indirect->type != SETUP_INDIRECT)
 402                                memblock_reserve(indirect->addr, indirect->len);
 403                }
 404
 405                pa_data = pa_next;
 406                early_memunmap(data, len);
 407        }
 408}
 409
 410/*
 411 * --------- Crashkernel reservation ------------------------------
 412 */
 413
 414/* 16M alignment for crash kernel regions */
 415#define CRASH_ALIGN             SZ_16M
 416
 417/*
 418 * Keep the crash kernel below this limit.
 419 *
 420 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 421 * due to mapping restrictions.
 422 *
 423 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 424 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 425 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 426 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 427 * no good way to detect the paging mode of the target kernel which will be
 428 * loaded for dumping.
 429 */
 430#ifdef CONFIG_X86_32
 431# define CRASH_ADDR_LOW_MAX     SZ_512M
 432# define CRASH_ADDR_HIGH_MAX    SZ_512M
 433#else
 434# define CRASH_ADDR_LOW_MAX     SZ_4G
 435# define CRASH_ADDR_HIGH_MAX    SZ_64T
 436#endif
 437
 438static int __init reserve_crashkernel_low(void)
 439{
 440#ifdef CONFIG_X86_64
 441        unsigned long long base, low_base = 0, low_size = 0;
 442        unsigned long low_mem_limit;
 443        int ret;
 444
 445        low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 446
 447        /* crashkernel=Y,low */
 448        ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 449        if (ret) {
 450                /*
 451                 * two parts from kernel/dma/swiotlb.c:
 452                 * -swiotlb size: user-specified with swiotlb= or default.
 453                 *
 454                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 455                 * to 8M for other buffers that may need to stay low too. Also
 456                 * make sure we allocate enough extra low memory so that we
 457                 * don't run out of DMA buffers for 32-bit devices.
 458                 */
 459                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 460        } else {
 461                /* passed with crashkernel=0,low ? */
 462                if (!low_size)
 463                        return 0;
 464        }
 465
 466        low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 467        if (!low_base) {
 468                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 469                       (unsigned long)(low_size >> 20));
 470                return -ENOMEM;
 471        }
 472
 473        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 474                (unsigned long)(low_size >> 20),
 475                (unsigned long)(low_base >> 20),
 476                (unsigned long)(low_mem_limit >> 20));
 477
 478        crashk_low_res.start = low_base;
 479        crashk_low_res.end   = low_base + low_size - 1;
 480        insert_resource(&iomem_resource, &crashk_low_res);
 481#endif
 482        return 0;
 483}
 484
 485static void __init reserve_crashkernel(void)
 486{
 487        unsigned long long crash_size, crash_base, total_mem;
 488        bool high = false;
 489        int ret;
 490
 491        if (!IS_ENABLED(CONFIG_KEXEC_CORE))
 492                return;
 493
 494        total_mem = memblock_phys_mem_size();
 495
 496        /* crashkernel=XM */
 497        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 498        if (ret != 0 || crash_size <= 0) {
 499                /* crashkernel=X,high */
 500                ret = parse_crashkernel_high(boot_command_line, total_mem,
 501                                             &crash_size, &crash_base);
 502                if (ret != 0 || crash_size <= 0)
 503                        return;
 504                high = true;
 505        }
 506
 507        if (xen_pv_domain()) {
 508                pr_info("Ignoring crashkernel for a Xen PV domain\n");
 509                return;
 510        }
 511
 512        /* 0 means: find the address automatically */
 513        if (!crash_base) {
 514                /*
 515                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 516                 * crashkernel=x,high reserves memory over 4G, also allocates
 517                 * 256M extra low memory for DMA buffers and swiotlb.
 518                 * But the extra memory is not required for all machines.
 519                 * So try low memory first and fall back to high memory
 520                 * unless "crashkernel=size[KMG],high" is specified.
 521                 */
 522                if (!high)
 523                        crash_base = memblock_phys_alloc_range(crash_size,
 524                                                CRASH_ALIGN, CRASH_ALIGN,
 525                                                CRASH_ADDR_LOW_MAX);
 526                if (!crash_base)
 527                        crash_base = memblock_phys_alloc_range(crash_size,
 528                                                CRASH_ALIGN, CRASH_ALIGN,
 529                                                CRASH_ADDR_HIGH_MAX);
 530                if (!crash_base) {
 531                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 532                        return;
 533                }
 534        } else {
 535                unsigned long long start;
 536
 537                start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 538                                                  crash_base + crash_size);
 539                if (start != crash_base) {
 540                        pr_info("crashkernel reservation failed - memory is in use.\n");
 541                        return;
 542                }
 543        }
 544
 545        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 546                memblock_phys_free(crash_base, crash_size);
 547                return;
 548        }
 549
 550        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 551                (unsigned long)(crash_size >> 20),
 552                (unsigned long)(crash_base >> 20),
 553                (unsigned long)(total_mem >> 20));
 554
 555        crashk_res.start = crash_base;
 556        crashk_res.end   = crash_base + crash_size - 1;
 557        insert_resource(&iomem_resource, &crashk_res);
 558}
 559
 560static struct resource standard_io_resources[] = {
 561        { .name = "dma1", .start = 0x00, .end = 0x1f,
 562                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 563        { .name = "pic1", .start = 0x20, .end = 0x21,
 564                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 565        { .name = "timer0", .start = 0x40, .end = 0x43,
 566                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 567        { .name = "timer1", .start = 0x50, .end = 0x53,
 568                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 569        { .name = "keyboard", .start = 0x60, .end = 0x60,
 570                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 571        { .name = "keyboard", .start = 0x64, .end = 0x64,
 572                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 573        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 574                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 575        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 576                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 577        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 578                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 579        { .name = "fpu", .start = 0xf0, .end = 0xff,
 580                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 581};
 582
 583void __init reserve_standard_io_resources(void)
 584{
 585        int i;
 586
 587        /* request I/O space for devices used on all i[345]86 PCs */
 588        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 589                request_resource(&ioport_resource, &standard_io_resources[i]);
 590
 591}
 592
 593static bool __init snb_gfx_workaround_needed(void)
 594{
 595#ifdef CONFIG_PCI
 596        int i;
 597        u16 vendor, devid;
 598        static const __initconst u16 snb_ids[] = {
 599                0x0102,
 600                0x0112,
 601                0x0122,
 602                0x0106,
 603                0x0116,
 604                0x0126,
 605                0x010a,
 606        };
 607
 608        /* Assume no if something weird is going on with PCI */
 609        if (!early_pci_allowed())
 610                return false;
 611
 612        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 613        if (vendor != 0x8086)
 614                return false;
 615
 616        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 617        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 618                if (devid == snb_ids[i])
 619                        return true;
 620#endif
 621
 622        return false;
 623}
 624
 625/*
 626 * Sandy Bridge graphics has trouble with certain ranges, exclude
 627 * them from allocation.
 628 */
 629static void __init trim_snb_memory(void)
 630{
 631        static const __initconst unsigned long bad_pages[] = {
 632                0x20050000,
 633                0x20110000,
 634                0x20130000,
 635                0x20138000,
 636                0x40004000,
 637        };
 638        int i;
 639
 640        if (!snb_gfx_workaround_needed())
 641                return;
 642
 643        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 644
 645        /*
 646         * SandyBridge integrated graphics devices have a bug that prevents
 647         * them from accessing certain memory ranges, namely anything below
 648         * 1M and in the pages listed in bad_pages[] above.
 649         *
 650         * To avoid these pages being ever accessed by SNB gfx devices reserve
 651         * bad_pages that have not already been reserved at boot time.
 652         * All memory below the 1 MB mark is anyway reserved later during
 653         * setup_arch(), so there is no need to reserve it here.
 654         */
 655
 656        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 657                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 658                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 659                               bad_pages[i]);
 660        }
 661}
 662
 663static void __init trim_bios_range(void)
 664{
 665        /*
 666         * A special case is the first 4Kb of memory;
 667         * This is a BIOS owned area, not kernel ram, but generally
 668         * not listed as such in the E820 table.
 669         *
 670         * This typically reserves additional memory (64KiB by default)
 671         * since some BIOSes are known to corrupt low memory.  See the
 672         * Kconfig help text for X86_RESERVE_LOW.
 673         */
 674        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 675
 676        /*
 677         * special case: Some BIOSes report the PC BIOS
 678         * area (640Kb -> 1Mb) as RAM even though it is not.
 679         * take them out.
 680         */
 681        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 682
 683        e820__update_table(e820_table);
 684}
 685
 686/* called before trim_bios_range() to spare extra sanitize */
 687static void __init e820_add_kernel_range(void)
 688{
 689        u64 start = __pa_symbol(_text);
 690        u64 size = __pa_symbol(_end) - start;
 691
 692        /*
 693         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 694         * attempt to fix it by adding the range. We may have a confused BIOS,
 695         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 696         * exclude kernel range. If we really are running on top non-RAM,
 697         * we will crash later anyways.
 698         */
 699        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 700                return;
 701
 702        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 703        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 704        e820__range_add(start, size, E820_TYPE_RAM);
 705}
 706
 707static void __init early_reserve_memory(void)
 708{
 709        /*
 710         * Reserve the memory occupied by the kernel between _text and
 711         * __end_of_kernel_reserve symbols. Any kernel sections after the
 712         * __end_of_kernel_reserve symbol must be explicitly reserved with a
 713         * separate memblock_reserve() or they will be discarded.
 714         */
 715        memblock_reserve(__pa_symbol(_text),
 716                         (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 717
 718        /*
 719         * The first 4Kb of memory is a BIOS owned area, but generally it is
 720         * not listed as such in the E820 table.
 721         *
 722         * Reserve the first 64K of memory since some BIOSes are known to
 723         * corrupt low memory. After the real mode trampoline is allocated the
 724         * rest of the memory below 640k is reserved.
 725         *
 726         * In addition, make sure page 0 is always reserved because on
 727         * systems with L1TF its contents can be leaked to user processes.
 728         */
 729        memblock_reserve(0, SZ_64K);
 730
 731        early_reserve_initrd();
 732
 733        memblock_x86_reserve_range_setup_data();
 734
 735        reserve_ibft_region();
 736        reserve_bios_regions();
 737        trim_snb_memory();
 738}
 739
 740/*
 741 * Dump out kernel offset information on panic.
 742 */
 743static int
 744dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 745{
 746        if (kaslr_enabled()) {
 747                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 748                         kaslr_offset(),
 749                         __START_KERNEL,
 750                         __START_KERNEL_map,
 751                         MODULES_VADDR-1);
 752        } else {
 753                pr_emerg("Kernel Offset: disabled\n");
 754        }
 755
 756        return 0;
 757}
 758
 759/*
 760 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 761 * passed the efi memmap, systab, etc., so we should use these data structures
 762 * for initialization.  Note, the efi init code path is determined by the
 763 * global efi_enabled. This allows the same kernel image to be used on existing
 764 * systems (with a traditional BIOS) as well as on EFI systems.
 765 */
 766/*
 767 * setup_arch - architecture-specific boot-time initializations
 768 *
 769 * Note: On x86_64, fixmaps are ready for use even before this is called.
 770 */
 771
 772void __init setup_arch(char **cmdline_p)
 773{
 774#ifdef CONFIG_X86_32
 775        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 776
 777        /*
 778         * copy kernel address range established so far and switch
 779         * to the proper swapper page table
 780         */
 781        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 782                        initial_page_table + KERNEL_PGD_BOUNDARY,
 783                        KERNEL_PGD_PTRS);
 784
 785        load_cr3(swapper_pg_dir);
 786        /*
 787         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 788         * a cr3 based tlb flush, so the following __flush_tlb_all()
 789         * will not flush anything because the CPU quirk which clears
 790         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 791         * load_cr3() above the TLB has been flushed already. The
 792         * quirk is invoked before subsequent calls to __flush_tlb_all()
 793         * so proper operation is guaranteed.
 794         */
 795        __flush_tlb_all();
 796#else
 797        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 798        boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 799#endif
 800
 801        /*
 802         * If we have OLPC OFW, we might end up relocating the fixmap due to
 803         * reserve_top(), so do this before touching the ioremap area.
 804         */
 805        olpc_ofw_detect();
 806
 807        idt_setup_early_traps();
 808        early_cpu_init();
 809        jump_label_init();
 810        static_call_init();
 811        early_ioremap_init();
 812
 813        setup_olpc_ofw_pgd();
 814
 815        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 816        screen_info = boot_params.screen_info;
 817        edid_info = boot_params.edid_info;
 818#ifdef CONFIG_X86_32
 819        apm_info.bios = boot_params.apm_bios_info;
 820        ist_info = boot_params.ist_info;
 821#endif
 822        saved_video_mode = boot_params.hdr.vid_mode;
 823        bootloader_type = boot_params.hdr.type_of_loader;
 824        if ((bootloader_type >> 4) == 0xe) {
 825                bootloader_type &= 0xf;
 826                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 827        }
 828        bootloader_version  = bootloader_type & 0xf;
 829        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 830
 831#ifdef CONFIG_BLK_DEV_RAM
 832        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 833#endif
 834#ifdef CONFIG_EFI
 835        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 836                     EFI32_LOADER_SIGNATURE, 4)) {
 837                set_bit(EFI_BOOT, &efi.flags);
 838        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 839                     EFI64_LOADER_SIGNATURE, 4)) {
 840                set_bit(EFI_BOOT, &efi.flags);
 841                set_bit(EFI_64BIT, &efi.flags);
 842        }
 843#endif
 844
 845        x86_init.oem.arch_setup();
 846
 847        /*
 848         * Do some memory reservations *before* memory is added to memblock, so
 849         * memblock allocations won't overwrite it.
 850         *
 851         * After this point, everything still needed from the boot loader or
 852         * firmware or kernel text should be early reserved or marked not RAM in
 853         * e820. All other memory is free game.
 854         *
 855         * This call needs to happen before e820__memory_setup() which calls the
 856         * xen_memory_setup() on Xen dom0 which relies on the fact that those
 857         * early reservations have happened already.
 858         */
 859        early_reserve_memory();
 860
 861        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 862        e820__memory_setup();
 863        parse_setup_data();
 864
 865        copy_edd();
 866
 867        if (!boot_params.hdr.root_flags)
 868                root_mountflags &= ~MS_RDONLY;
 869        setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 870
 871        code_resource.start = __pa_symbol(_text);
 872        code_resource.end = __pa_symbol(_etext)-1;
 873        rodata_resource.start = __pa_symbol(__start_rodata);
 874        rodata_resource.end = __pa_symbol(__end_rodata)-1;
 875        data_resource.start = __pa_symbol(_sdata);
 876        data_resource.end = __pa_symbol(_edata)-1;
 877        bss_resource.start = __pa_symbol(__bss_start);
 878        bss_resource.end = __pa_symbol(__bss_stop)-1;
 879
 880#ifdef CONFIG_CMDLINE_BOOL
 881#ifdef CONFIG_CMDLINE_OVERRIDE
 882        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 883#else
 884        if (builtin_cmdline[0]) {
 885                /* append boot loader cmdline to builtin */
 886                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 887                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 888                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 889        }
 890#endif
 891#endif
 892
 893        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 894        *cmdline_p = command_line;
 895
 896        /*
 897         * x86_configure_nx() is called before parse_early_param() to detect
 898         * whether hardware doesn't support NX (so that the early EHCI debug
 899         * console setup can safely call set_fixmap()). It may then be called
 900         * again from within noexec_setup() during parsing early parameters
 901         * to honor the respective command line option.
 902         */
 903        x86_configure_nx();
 904
 905        parse_early_param();
 906
 907        if (efi_enabled(EFI_BOOT))
 908                efi_memblock_x86_reserve_range();
 909
 910#ifdef CONFIG_MEMORY_HOTPLUG
 911        /*
 912         * Memory used by the kernel cannot be hot-removed because Linux
 913         * cannot migrate the kernel pages. When memory hotplug is
 914         * enabled, we should prevent memblock from allocating memory
 915         * for the kernel.
 916         *
 917         * ACPI SRAT records all hotpluggable memory ranges. But before
 918         * SRAT is parsed, we don't know about it.
 919         *
 920         * The kernel image is loaded into memory at very early time. We
 921         * cannot prevent this anyway. So on NUMA system, we set any
 922         * node the kernel resides in as un-hotpluggable.
 923         *
 924         * Since on modern servers, one node could have double-digit
 925         * gigabytes memory, we can assume the memory around the kernel
 926         * image is also un-hotpluggable. So before SRAT is parsed, just
 927         * allocate memory near the kernel image to try the best to keep
 928         * the kernel away from hotpluggable memory.
 929         */
 930        if (movable_node_is_enabled())
 931                memblock_set_bottom_up(true);
 932#endif
 933
 934        x86_report_nx();
 935
 936        if (acpi_mps_check()) {
 937#ifdef CONFIG_X86_LOCAL_APIC
 938                disable_apic = 1;
 939#endif
 940                setup_clear_cpu_cap(X86_FEATURE_APIC);
 941        }
 942
 943        e820__reserve_setup_data();
 944        e820__finish_early_params();
 945
 946        if (efi_enabled(EFI_BOOT))
 947                efi_init();
 948
 949        dmi_setup();
 950
 951        /*
 952         * VMware detection requires dmi to be available, so this
 953         * needs to be done after dmi_setup(), for the boot CPU.
 954         */
 955        init_hypervisor_platform();
 956
 957        tsc_early_init();
 958        x86_init.resources.probe_roms();
 959
 960        /* after parse_early_param, so could debug it */
 961        insert_resource(&iomem_resource, &code_resource);
 962        insert_resource(&iomem_resource, &rodata_resource);
 963        insert_resource(&iomem_resource, &data_resource);
 964        insert_resource(&iomem_resource, &bss_resource);
 965
 966        e820_add_kernel_range();
 967        trim_bios_range();
 968#ifdef CONFIG_X86_32
 969        if (ppro_with_ram_bug()) {
 970                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 971                                  E820_TYPE_RESERVED);
 972                e820__update_table(e820_table);
 973                printk(KERN_INFO "fixed physical RAM map:\n");
 974                e820__print_table("bad_ppro");
 975        }
 976#else
 977        early_gart_iommu_check();
 978#endif
 979
 980        /*
 981         * partially used pages are not usable - thus
 982         * we are rounding upwards:
 983         */
 984        max_pfn = e820__end_of_ram_pfn();
 985
 986        /* update e820 for memory not covered by WB MTRRs */
 987        if (IS_ENABLED(CONFIG_MTRR))
 988                mtrr_bp_init();
 989        else
 990                pat_disable("PAT support disabled because CONFIG_MTRR is disabled in the kernel.");
 991
 992        if (mtrr_trim_uncached_memory(max_pfn))
 993                max_pfn = e820__end_of_ram_pfn();
 994
 995        max_possible_pfn = max_pfn;
 996
 997        /*
 998         * This call is required when the CPU does not support PAT. If
 999         * mtrr_bp_init() invoked it already via pat_init() the call has no
1000         * effect.
1001         */
1002        init_cache_modes();
1003
1004        /*
1005         * Define random base addresses for memory sections after max_pfn is
1006         * defined and before each memory section base is used.
1007         */
1008        kernel_randomize_memory();
1009
1010#ifdef CONFIG_X86_32
1011        /* max_low_pfn get updated here */
1012        find_low_pfn_range();
1013#else
1014        check_x2apic();
1015
1016        /* How many end-of-memory variables you have, grandma! */
1017        /* need this before calling reserve_initrd */
1018        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1019                max_low_pfn = e820__end_of_low_ram_pfn();
1020        else
1021                max_low_pfn = max_pfn;
1022
1023        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1024#endif
1025
1026        /*
1027         * Find and reserve possible boot-time SMP configuration:
1028         */
1029        find_smp_config();
1030
1031        early_alloc_pgt_buf();
1032
1033        /*
1034         * Need to conclude brk, before e820__memblock_setup()
1035         * it could use memblock_find_in_range, could overlap with
1036         * brk area.
1037         */
1038        reserve_brk();
1039
1040        cleanup_highmap();
1041
1042        memblock_set_current_limit(ISA_END_ADDRESS);
1043        e820__memblock_setup();
1044
1045        /*
1046         * Needs to run after memblock setup because it needs the physical
1047         * memory size.
1048         */
1049        sev_setup_arch();
1050
1051        efi_fake_memmap();
1052        efi_find_mirror();
1053        efi_esrt_init();
1054        efi_mokvar_table_init();
1055
1056        /*
1057         * The EFI specification says that boot service code won't be
1058         * called after ExitBootServices(). This is, in fact, a lie.
1059         */
1060        efi_reserve_boot_services();
1061
1062        /* preallocate 4k for mptable mpc */
1063        e820__memblock_alloc_reserved_mpc_new();
1064
1065#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1066        setup_bios_corruption_check();
1067#endif
1068
1069#ifdef CONFIG_X86_32
1070        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1071                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1072#endif
1073
1074        /*
1075         * Find free memory for the real mode trampoline and place it there. If
1076         * there is not enough free memory under 1M, on EFI-enabled systems
1077         * there will be additional attempt to reclaim the memory for the real
1078         * mode trampoline at efi_free_boot_services().
1079         *
1080         * Unconditionally reserve the entire first 1M of RAM because BIOSes
1081         * are known to corrupt low memory and several hundred kilobytes are not
1082         * worth complex detection what memory gets clobbered. Windows does the
1083         * same thing for very similar reasons.
1084         *
1085         * Moreover, on machines with SandyBridge graphics or in setups that use
1086         * crashkernel the entire 1M is reserved anyway.
1087         */
1088        reserve_real_mode();
1089
1090        init_mem_mapping();
1091
1092        idt_setup_early_pf();
1093
1094        /*
1095         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1096         * with the current CR4 value.  This may not be necessary, but
1097         * auditing all the early-boot CR4 manipulation would be needed to
1098         * rule it out.
1099         *
1100         * Mask off features that don't work outside long mode (just
1101         * PCIDE for now).
1102         */
1103        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1104
1105        memblock_set_current_limit(get_max_mapped());
1106
1107        /*
1108         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1109         */
1110
1111#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1112        if (init_ohci1394_dma_early)
1113                init_ohci1394_dma_on_all_controllers();
1114#endif
1115        /* Allocate bigger log buffer */
1116        setup_log_buf(1);
1117
1118        if (efi_enabled(EFI_BOOT)) {
1119                switch (boot_params.secure_boot) {
1120                case efi_secureboot_mode_disabled:
1121                        pr_info("Secure boot disabled\n");
1122                        break;
1123                case efi_secureboot_mode_enabled:
1124                        pr_info("Secure boot enabled\n");
1125                        break;
1126                default:
1127                        pr_info("Secure boot could not be determined\n");
1128                        break;
1129                }
1130        }
1131
1132        reserve_initrd();
1133
1134        acpi_table_upgrade();
1135        /* Look for ACPI tables and reserve memory occupied by them. */
1136        acpi_boot_table_init();
1137
1138        vsmp_init();
1139
1140        io_delay_init();
1141
1142        early_platform_quirks();
1143
1144        early_acpi_boot_init();
1145
1146        initmem_init();
1147        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1148
1149        if (boot_cpu_has(X86_FEATURE_GBPAGES))
1150                hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1151
1152        /*
1153         * Reserve memory for crash kernel after SRAT is parsed so that it
1154         * won't consume hotpluggable memory.
1155         */
1156        reserve_crashkernel();
1157
1158        memblock_find_dma_reserve();
1159
1160        if (!early_xdbc_setup_hardware())
1161                early_xdbc_register_console();
1162
1163        x86_init.paging.pagetable_init();
1164
1165        kasan_init();
1166
1167        /*
1168         * Sync back kernel address range.
1169         *
1170         * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1171         * this call?
1172         */
1173        sync_initial_page_table();
1174
1175        tboot_probe();
1176
1177        map_vsyscall();
1178
1179        generic_apic_probe();
1180
1181        early_quirks();
1182
1183        /*
1184         * Read APIC and some other early information from ACPI tables.
1185         */
1186        acpi_boot_init();
1187        x86_dtb_init();
1188
1189        /*
1190         * get boot-time SMP configuration:
1191         */
1192        get_smp_config();
1193
1194        /*
1195         * Systems w/o ACPI and mptables might not have it mapped the local
1196         * APIC yet, but prefill_possible_map() might need to access it.
1197         */
1198        init_apic_mappings();
1199
1200        prefill_possible_map();
1201
1202        init_cpu_to_node();
1203        init_gi_nodes();
1204
1205        io_apic_init_mappings();
1206
1207        x86_init.hyper.guest_late_init();
1208
1209        e820__reserve_resources();
1210        e820__register_nosave_regions(max_pfn);
1211
1212        x86_init.resources.reserve_resources();
1213
1214        e820__setup_pci_gap();
1215
1216#ifdef CONFIG_VT
1217#if defined(CONFIG_VGA_CONSOLE)
1218        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1219                conswitchp = &vga_con;
1220#endif
1221#endif
1222        x86_init.oem.banner();
1223
1224        x86_init.timers.wallclock_init();
1225
1226        /*
1227         * This needs to run before setup_local_APIC() which soft-disables the
1228         * local APIC temporarily and that masks the thermal LVT interrupt,
1229         * leading to softlockups on machines which have configured SMI
1230         * interrupt delivery.
1231         */
1232        therm_lvt_init();
1233
1234        mcheck_init();
1235
1236        register_refined_jiffies(CLOCK_TICK_RATE);
1237
1238#ifdef CONFIG_EFI
1239        if (efi_enabled(EFI_BOOT))
1240                efi_apply_memmap_quirks();
1241#endif
1242
1243        unwind_init();
1244}
1245
1246#ifdef CONFIG_X86_32
1247
1248static struct resource video_ram_resource = {
1249        .name   = "Video RAM area",
1250        .start  = 0xa0000,
1251        .end    = 0xbffff,
1252        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1253};
1254
1255void __init i386_reserve_resources(void)
1256{
1257        request_resource(&iomem_resource, &video_ram_resource);
1258        reserve_standard_io_resources();
1259}
1260
1261#endif /* CONFIG_X86_32 */
1262
1263static struct notifier_block kernel_offset_notifier = {
1264        .notifier_call = dump_kernel_offset
1265};
1266
1267static int __init register_kernel_offset_dumper(void)
1268{
1269        atomic_notifier_chain_register(&panic_notifier_list,
1270                                        &kernel_offset_notifier);
1271        return 0;
1272}
1273__initcall(register_kernel_offset_dumper);
1274