linux/arch/x86/kernel/smpboot.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *      x86 SMP booting functions
   4 *
   5 *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *      Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *      Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *      whom a great many thanks are extended.
  11 *
  12 *      Thanks to Intel for making available several different Pentium,
  13 *      Pentium Pro and Pentium-II/Xeon MP machines.
  14 *      Original development of Linux SMP code supported by Caldera.
  15 *
  16 *      Fixes
  17 *              Felix Koop      :       NR_CPUS used properly
  18 *              Jose Renau      :       Handle single CPU case.
  19 *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
  20 *              Greg Wright     :       Fix for kernel stacks panic.
  21 *              Erich Boleyn    :       MP v1.4 and additional changes.
  22 *      Matthias Sattler        :       Changes for 2.1 kernel map.
  23 *      Michel Lespinasse       :       Changes for 2.1 kernel map.
  24 *      Michael Chastain        :       Change trampoline.S to gnu as.
  25 *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
  26 *              Ingo Molnar     :       Added APIC timers, based on code
  27 *                                      from Jose Renau
  28 *              Ingo Molnar     :       various cleanups and rewrites
  29 *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
  30 *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
  31 *      Andi Kleen              :       Changed for SMP boot into long mode.
  32 *              Martin J. Bligh :       Added support for multi-quad systems
  33 *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
  34 *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *      Ashok Raj               :       CPU hotplug support
  37 *      Glauber Costa           :       i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/numa.h>
  57#include <linux/pgtable.h>
  58#include <linux/overflow.h>
  59#include <linux/syscore_ops.h>
  60
  61#include <asm/acpi.h>
  62#include <asm/desc.h>
  63#include <asm/nmi.h>
  64#include <asm/irq.h>
  65#include <asm/realmode.h>
  66#include <asm/cpu.h>
  67#include <asm/numa.h>
  68#include <asm/tlbflush.h>
  69#include <asm/mtrr.h>
  70#include <asm/mwait.h>
  71#include <asm/apic.h>
  72#include <asm/io_apic.h>
  73#include <asm/fpu/api.h>
  74#include <asm/setup.h>
  75#include <asm/uv/uv.h>
  76#include <linux/mc146818rtc.h>
  77#include <asm/i8259.h>
  78#include <asm/misc.h>
  79#include <asm/qspinlock.h>
  80#include <asm/intel-family.h>
  81#include <asm/cpu_device_id.h>
  82#include <asm/spec-ctrl.h>
  83#include <asm/hw_irq.h>
  84#include <asm/stackprotector.h>
  85
  86/* representing HT siblings of each logical CPU */
  87DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  88EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  89
  90/* representing HT and core siblings of each logical CPU */
  91DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  92EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  93
  94/* representing HT, core, and die siblings of each logical CPU */
  95DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
  96EXPORT_PER_CPU_SYMBOL(cpu_die_map);
  97
  98DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
  99
 100DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
 101
 102/* Per CPU bogomips and other parameters */
 103DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 104EXPORT_PER_CPU_SYMBOL(cpu_info);
 105
 106/* Logical package management. We might want to allocate that dynamically */
 107unsigned int __max_logical_packages __read_mostly;
 108EXPORT_SYMBOL(__max_logical_packages);
 109static unsigned int logical_packages __read_mostly;
 110static unsigned int logical_die __read_mostly;
 111
 112/* Maximum number of SMT threads on any online core */
 113int __read_mostly __max_smt_threads = 1;
 114
 115/* Flag to indicate if a complete sched domain rebuild is required */
 116bool x86_topology_update;
 117
 118int arch_update_cpu_topology(void)
 119{
 120        int retval = x86_topology_update;
 121
 122        x86_topology_update = false;
 123        return retval;
 124}
 125
 126static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 127{
 128        unsigned long flags;
 129
 130        spin_lock_irqsave(&rtc_lock, flags);
 131        CMOS_WRITE(0xa, 0xf);
 132        spin_unlock_irqrestore(&rtc_lock, flags);
 133        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
 134                                                        start_eip >> 4;
 135        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
 136                                                        start_eip & 0xf;
 137}
 138
 139static inline void smpboot_restore_warm_reset_vector(void)
 140{
 141        unsigned long flags;
 142
 143        /*
 144         * Paranoid:  Set warm reset code and vector here back
 145         * to default values.
 146         */
 147        spin_lock_irqsave(&rtc_lock, flags);
 148        CMOS_WRITE(0, 0xf);
 149        spin_unlock_irqrestore(&rtc_lock, flags);
 150
 151        *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 152}
 153
 154/*
 155 * Report back to the Boot Processor during boot time or to the caller processor
 156 * during CPU online.
 157 */
 158static void smp_callin(void)
 159{
 160        int cpuid;
 161
 162        /*
 163         * If waken up by an INIT in an 82489DX configuration
 164         * cpu_callout_mask guarantees we don't get here before
 165         * an INIT_deassert IPI reaches our local APIC, so it is
 166         * now safe to touch our local APIC.
 167         */
 168        cpuid = smp_processor_id();
 169
 170        /*
 171         * the boot CPU has finished the init stage and is spinning
 172         * on callin_map until we finish. We are free to set up this
 173         * CPU, first the APIC. (this is probably redundant on most
 174         * boards)
 175         */
 176        apic_ap_setup();
 177
 178        /*
 179         * Save our processor parameters. Note: this information
 180         * is needed for clock calibration.
 181         */
 182        smp_store_cpu_info(cpuid);
 183
 184        /*
 185         * The topology information must be up to date before
 186         * calibrate_delay() and notify_cpu_starting().
 187         */
 188        set_cpu_sibling_map(raw_smp_processor_id());
 189
 190        init_freq_invariance(true, false);
 191
 192        /*
 193         * Get our bogomips.
 194         * Update loops_per_jiffy in cpu_data. Previous call to
 195         * smp_store_cpu_info() stored a value that is close but not as
 196         * accurate as the value just calculated.
 197         */
 198        calibrate_delay();
 199        cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
 200        pr_debug("Stack at about %p\n", &cpuid);
 201
 202        wmb();
 203
 204        notify_cpu_starting(cpuid);
 205
 206        /*
 207         * Allow the master to continue.
 208         */
 209        cpumask_set_cpu(cpuid, cpu_callin_mask);
 210}
 211
 212static int cpu0_logical_apicid;
 213static int enable_start_cpu0;
 214/*
 215 * Activate a secondary processor.
 216 */
 217static void notrace start_secondary(void *unused)
 218{
 219        /*
 220         * Don't put *anything* except direct CPU state initialization
 221         * before cpu_init(), SMP booting is too fragile that we want to
 222         * limit the things done here to the most necessary things.
 223         */
 224        cr4_init();
 225
 226#ifdef CONFIG_X86_32
 227        /* switch away from the initial page table */
 228        load_cr3(swapper_pg_dir);
 229        __flush_tlb_all();
 230#endif
 231        cpu_init_secondary();
 232        rcu_cpu_starting(raw_smp_processor_id());
 233        x86_cpuinit.early_percpu_clock_init();
 234        smp_callin();
 235
 236        enable_start_cpu0 = 0;
 237
 238        /* otherwise gcc will move up smp_processor_id before the cpu_init */
 239        barrier();
 240        /*
 241         * Check TSC synchronization with the boot CPU:
 242         */
 243        check_tsc_sync_target();
 244
 245        speculative_store_bypass_ht_init();
 246
 247        /*
 248         * Lock vector_lock, set CPU online and bring the vector
 249         * allocator online. Online must be set with vector_lock held
 250         * to prevent a concurrent irq setup/teardown from seeing a
 251         * half valid vector space.
 252         */
 253        lock_vector_lock();
 254        set_cpu_online(smp_processor_id(), true);
 255        lapic_online();
 256        unlock_vector_lock();
 257        cpu_set_state_online(smp_processor_id());
 258        x86_platform.nmi_init();
 259
 260        /* enable local interrupts */
 261        local_irq_enable();
 262
 263        x86_cpuinit.setup_percpu_clockev();
 264
 265        wmb();
 266        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 267}
 268
 269/**
 270 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
 271 * @cpu:        CPU to check
 272 */
 273bool topology_is_primary_thread(unsigned int cpu)
 274{
 275        return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
 276}
 277
 278/**
 279 * topology_smt_supported - Check whether SMT is supported by the CPUs
 280 */
 281bool topology_smt_supported(void)
 282{
 283        return smp_num_siblings > 1;
 284}
 285
 286/**
 287 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 288 *
 289 * Returns logical package id or -1 if not found
 290 */
 291int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 292{
 293        int cpu;
 294
 295        for_each_possible_cpu(cpu) {
 296                struct cpuinfo_x86 *c = &cpu_data(cpu);
 297
 298                if (c->initialized && c->phys_proc_id == phys_pkg)
 299                        return c->logical_proc_id;
 300        }
 301        return -1;
 302}
 303EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 304/**
 305 * topology_phys_to_logical_die - Map a physical die id to logical
 306 *
 307 * Returns logical die id or -1 if not found
 308 */
 309int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
 310{
 311        int cpu;
 312        int proc_id = cpu_data(cur_cpu).phys_proc_id;
 313
 314        for_each_possible_cpu(cpu) {
 315                struct cpuinfo_x86 *c = &cpu_data(cpu);
 316
 317                if (c->initialized && c->cpu_die_id == die_id &&
 318                    c->phys_proc_id == proc_id)
 319                        return c->logical_die_id;
 320        }
 321        return -1;
 322}
 323EXPORT_SYMBOL(topology_phys_to_logical_die);
 324
 325/**
 326 * topology_update_package_map - Update the physical to logical package map
 327 * @pkg:        The physical package id as retrieved via CPUID
 328 * @cpu:        The cpu for which this is updated
 329 */
 330int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 331{
 332        int new;
 333
 334        /* Already available somewhere? */
 335        new = topology_phys_to_logical_pkg(pkg);
 336        if (new >= 0)
 337                goto found;
 338
 339        new = logical_packages++;
 340        if (new != pkg) {
 341                pr_info("CPU %u Converting physical %u to logical package %u\n",
 342                        cpu, pkg, new);
 343        }
 344found:
 345        cpu_data(cpu).logical_proc_id = new;
 346        return 0;
 347}
 348/**
 349 * topology_update_die_map - Update the physical to logical die map
 350 * @die:        The die id as retrieved via CPUID
 351 * @cpu:        The cpu for which this is updated
 352 */
 353int topology_update_die_map(unsigned int die, unsigned int cpu)
 354{
 355        int new;
 356
 357        /* Already available somewhere? */
 358        new = topology_phys_to_logical_die(die, cpu);
 359        if (new >= 0)
 360                goto found;
 361
 362        new = logical_die++;
 363        if (new != die) {
 364                pr_info("CPU %u Converting physical %u to logical die %u\n",
 365                        cpu, die, new);
 366        }
 367found:
 368        cpu_data(cpu).logical_die_id = new;
 369        return 0;
 370}
 371
 372void __init smp_store_boot_cpu_info(void)
 373{
 374        int id = 0; /* CPU 0 */
 375        struct cpuinfo_x86 *c = &cpu_data(id);
 376
 377        *c = boot_cpu_data;
 378        c->cpu_index = id;
 379        topology_update_package_map(c->phys_proc_id, id);
 380        topology_update_die_map(c->cpu_die_id, id);
 381        c->initialized = true;
 382}
 383
 384/*
 385 * The bootstrap kernel entry code has set these up. Save them for
 386 * a given CPU
 387 */
 388void smp_store_cpu_info(int id)
 389{
 390        struct cpuinfo_x86 *c = &cpu_data(id);
 391
 392        /* Copy boot_cpu_data only on the first bringup */
 393        if (!c->initialized)
 394                *c = boot_cpu_data;
 395        c->cpu_index = id;
 396        /*
 397         * During boot time, CPU0 has this setup already. Save the info when
 398         * bringing up AP or offlined CPU0.
 399         */
 400        identify_secondary_cpu(c);
 401        c->initialized = true;
 402}
 403
 404static bool
 405topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 406{
 407        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 408
 409        return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 410}
 411
 412static bool
 413topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 414{
 415        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 416
 417        return !WARN_ONCE(!topology_same_node(c, o),
 418                "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 419                "[node: %d != %d]. Ignoring dependency.\n",
 420                cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 421}
 422
 423#define link_mask(mfunc, c1, c2)                                        \
 424do {                                                                    \
 425        cpumask_set_cpu((c1), mfunc(c2));                               \
 426        cpumask_set_cpu((c2), mfunc(c1));                               \
 427} while (0)
 428
 429static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 430{
 431        if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 432                int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 433
 434                if (c->phys_proc_id == o->phys_proc_id &&
 435                    c->cpu_die_id == o->cpu_die_id &&
 436                    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
 437                        if (c->cpu_core_id == o->cpu_core_id)
 438                                return topology_sane(c, o, "smt");
 439
 440                        if ((c->cu_id != 0xff) &&
 441                            (o->cu_id != 0xff) &&
 442                            (c->cu_id == o->cu_id))
 443                                return topology_sane(c, o, "smt");
 444                }
 445
 446        } else if (c->phys_proc_id == o->phys_proc_id &&
 447                   c->cpu_die_id == o->cpu_die_id &&
 448                   c->cpu_core_id == o->cpu_core_id) {
 449                return topology_sane(c, o, "smt");
 450        }
 451
 452        return false;
 453}
 454
 455static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 456{
 457        if (c->phys_proc_id == o->phys_proc_id &&
 458            c->cpu_die_id == o->cpu_die_id)
 459                return true;
 460        return false;
 461}
 462
 463static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 464{
 465        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 466
 467        /* If the arch didn't set up l2c_id, fall back to SMT */
 468        if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
 469                return match_smt(c, o);
 470
 471        /* Do not match if L2 cache id does not match: */
 472        if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
 473                return false;
 474
 475        return topology_sane(c, o, "l2c");
 476}
 477
 478/*
 479 * Unlike the other levels, we do not enforce keeping a
 480 * multicore group inside a NUMA node.  If this happens, we will
 481 * discard the MC level of the topology later.
 482 */
 483static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 484{
 485        if (c->phys_proc_id == o->phys_proc_id)
 486                return true;
 487        return false;
 488}
 489
 490/*
 491 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 492 *
 493 * Any Intel CPU that has multiple nodes per package and does not
 494 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 495 *
 496 * When in SNC mode, these CPUs enumerate an LLC that is shared
 497 * by multiple NUMA nodes. The LLC is shared for off-package data
 498 * access but private to the NUMA node (half of the package) for
 499 * on-package access. CPUID (the source of the information about
 500 * the LLC) can only enumerate the cache as shared or unshared,
 501 * but not this particular configuration.
 502 */
 503
 504static const struct x86_cpu_id intel_cod_cpu[] = {
 505        X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),       /* COD */
 506        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),     /* COD */
 507        X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),             /* SNC */
 508        {}
 509};
 510
 511static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 512{
 513        const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 514        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 515        bool intel_snc = id && id->driver_data;
 516
 517        /* Do not match if we do not have a valid APICID for cpu: */
 518        if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
 519                return false;
 520
 521        /* Do not match if LLC id does not match: */
 522        if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
 523                return false;
 524
 525        /*
 526         * Allow the SNC topology without warning. Return of false
 527         * means 'c' does not share the LLC of 'o'. This will be
 528         * reflected to userspace.
 529         */
 530        if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 531                return false;
 532
 533        return topology_sane(c, o, "llc");
 534}
 535
 536
 537#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
 538static inline int x86_sched_itmt_flags(void)
 539{
 540        return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 541}
 542
 543#ifdef CONFIG_SCHED_MC
 544static int x86_core_flags(void)
 545{
 546        return cpu_core_flags() | x86_sched_itmt_flags();
 547}
 548#endif
 549#ifdef CONFIG_SCHED_SMT
 550static int x86_smt_flags(void)
 551{
 552        return cpu_smt_flags() | x86_sched_itmt_flags();
 553}
 554#endif
 555#ifdef CONFIG_SCHED_CLUSTER
 556static int x86_cluster_flags(void)
 557{
 558        return cpu_cluster_flags() | x86_sched_itmt_flags();
 559}
 560#endif
 561#endif
 562
 563static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
 564#ifdef CONFIG_SCHED_SMT
 565        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 566#endif
 567#ifdef CONFIG_SCHED_CLUSTER
 568        { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
 569#endif
 570#ifdef CONFIG_SCHED_MC
 571        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 572#endif
 573        { NULL, },
 574};
 575
 576static struct sched_domain_topology_level x86_hybrid_topology[] = {
 577#ifdef CONFIG_SCHED_SMT
 578        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 579#endif
 580#ifdef CONFIG_SCHED_MC
 581        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 582#endif
 583        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
 584        { NULL, },
 585};
 586
 587static struct sched_domain_topology_level x86_topology[] = {
 588#ifdef CONFIG_SCHED_SMT
 589        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 590#endif
 591#ifdef CONFIG_SCHED_CLUSTER
 592        { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
 593#endif
 594#ifdef CONFIG_SCHED_MC
 595        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 596#endif
 597        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
 598        { NULL, },
 599};
 600
 601/*
 602 * Set if a package/die has multiple NUMA nodes inside.
 603 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 604 * Sub-NUMA Clustering have this.
 605 */
 606static bool x86_has_numa_in_package;
 607
 608void set_cpu_sibling_map(int cpu)
 609{
 610        bool has_smt = smp_num_siblings > 1;
 611        bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 612        struct cpuinfo_x86 *c = &cpu_data(cpu);
 613        struct cpuinfo_x86 *o;
 614        int i, threads;
 615
 616        cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 617
 618        if (!has_mp) {
 619                cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 620                cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 621                cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 622                cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 623                cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 624                c->booted_cores = 1;
 625                return;
 626        }
 627
 628        for_each_cpu(i, cpu_sibling_setup_mask) {
 629                o = &cpu_data(i);
 630
 631                if (match_pkg(c, o) && !topology_same_node(c, o))
 632                        x86_has_numa_in_package = true;
 633
 634                if ((i == cpu) || (has_smt && match_smt(c, o)))
 635                        link_mask(topology_sibling_cpumask, cpu, i);
 636
 637                if ((i == cpu) || (has_mp && match_llc(c, o)))
 638                        link_mask(cpu_llc_shared_mask, cpu, i);
 639
 640                if ((i == cpu) || (has_mp && match_l2c(c, o)))
 641                        link_mask(cpu_l2c_shared_mask, cpu, i);
 642
 643                if ((i == cpu) || (has_mp && match_die(c, o)))
 644                        link_mask(topology_die_cpumask, cpu, i);
 645        }
 646
 647        threads = cpumask_weight(topology_sibling_cpumask(cpu));
 648        if (threads > __max_smt_threads)
 649                __max_smt_threads = threads;
 650
 651        for_each_cpu(i, topology_sibling_cpumask(cpu))
 652                cpu_data(i).smt_active = threads > 1;
 653
 654        /*
 655         * This needs a separate iteration over the cpus because we rely on all
 656         * topology_sibling_cpumask links to be set-up.
 657         */
 658        for_each_cpu(i, cpu_sibling_setup_mask) {
 659                o = &cpu_data(i);
 660
 661                if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 662                        link_mask(topology_core_cpumask, cpu, i);
 663
 664                        /*
 665                         *  Does this new cpu bringup a new core?
 666                         */
 667                        if (threads == 1) {
 668                                /*
 669                                 * for each core in package, increment
 670                                 * the booted_cores for this new cpu
 671                                 */
 672                                if (cpumask_first(
 673                                    topology_sibling_cpumask(i)) == i)
 674                                        c->booted_cores++;
 675                                /*
 676                                 * increment the core count for all
 677                                 * the other cpus in this package
 678                                 */
 679                                if (i != cpu)
 680                                        cpu_data(i).booted_cores++;
 681                        } else if (i != cpu && !c->booted_cores)
 682                                c->booted_cores = cpu_data(i).booted_cores;
 683                }
 684        }
 685}
 686
 687/* maps the cpu to the sched domain representing multi-core */
 688const struct cpumask *cpu_coregroup_mask(int cpu)
 689{
 690        return cpu_llc_shared_mask(cpu);
 691}
 692
 693const struct cpumask *cpu_clustergroup_mask(int cpu)
 694{
 695        return cpu_l2c_shared_mask(cpu);
 696}
 697
 698static void impress_friends(void)
 699{
 700        int cpu;
 701        unsigned long bogosum = 0;
 702        /*
 703         * Allow the user to impress friends.
 704         */
 705        pr_debug("Before bogomips\n");
 706        for_each_possible_cpu(cpu)
 707                if (cpumask_test_cpu(cpu, cpu_callout_mask))
 708                        bogosum += cpu_data(cpu).loops_per_jiffy;
 709        pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 710                num_online_cpus(),
 711                bogosum/(500000/HZ),
 712                (bogosum/(5000/HZ))%100);
 713
 714        pr_debug("Before bogocount - setting activated=1\n");
 715}
 716
 717void __inquire_remote_apic(int apicid)
 718{
 719        unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 720        const char * const names[] = { "ID", "VERSION", "SPIV" };
 721        int timeout;
 722        u32 status;
 723
 724        pr_info("Inquiring remote APIC 0x%x...\n", apicid);
 725
 726        for (i = 0; i < ARRAY_SIZE(regs); i++) {
 727                pr_info("... APIC 0x%x %s: ", apicid, names[i]);
 728
 729                /*
 730                 * Wait for idle.
 731                 */
 732                status = safe_apic_wait_icr_idle();
 733                if (status)
 734                        pr_cont("a previous APIC delivery may have failed\n");
 735
 736                apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 737
 738                timeout = 0;
 739                do {
 740                        udelay(100);
 741                        status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 742                } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 743
 744                switch (status) {
 745                case APIC_ICR_RR_VALID:
 746                        status = apic_read(APIC_RRR);
 747                        pr_cont("%08x\n", status);
 748                        break;
 749                default:
 750                        pr_cont("failed\n");
 751                }
 752        }
 753}
 754
 755/*
 756 * The Multiprocessor Specification 1.4 (1997) example code suggests
 757 * that there should be a 10ms delay between the BSP asserting INIT
 758 * and de-asserting INIT, when starting a remote processor.
 759 * But that slows boot and resume on modern processors, which include
 760 * many cores and don't require that delay.
 761 *
 762 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 763 * Modern processor families are quirked to remove the delay entirely.
 764 */
 765#define UDELAY_10MS_DEFAULT 10000
 766
 767static unsigned int init_udelay = UINT_MAX;
 768
 769static int __init cpu_init_udelay(char *str)
 770{
 771        get_option(&str, &init_udelay);
 772
 773        return 0;
 774}
 775early_param("cpu_init_udelay", cpu_init_udelay);
 776
 777static void __init smp_quirk_init_udelay(void)
 778{
 779        /* if cmdline changed it from default, leave it alone */
 780        if (init_udelay != UINT_MAX)
 781                return;
 782
 783        /* if modern processor, use no delay */
 784        if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 785            ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 786            ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 787                init_udelay = 0;
 788                return;
 789        }
 790        /* else, use legacy delay */
 791        init_udelay = UDELAY_10MS_DEFAULT;
 792}
 793
 794/*
 795 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 796 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 797 * won't ... remember to clear down the APIC, etc later.
 798 */
 799int
 800wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
 801{
 802        u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
 803        unsigned long send_status, accept_status = 0;
 804        int maxlvt;
 805
 806        /* Target chip */
 807        /* Boot on the stack */
 808        /* Kick the second */
 809        apic_icr_write(APIC_DM_NMI | dm, apicid);
 810
 811        pr_debug("Waiting for send to finish...\n");
 812        send_status = safe_apic_wait_icr_idle();
 813
 814        /*
 815         * Give the other CPU some time to accept the IPI.
 816         */
 817        udelay(200);
 818        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 819                maxlvt = lapic_get_maxlvt();
 820                if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
 821                        apic_write(APIC_ESR, 0);
 822                accept_status = (apic_read(APIC_ESR) & 0xEF);
 823        }
 824        pr_debug("NMI sent\n");
 825
 826        if (send_status)
 827                pr_err("APIC never delivered???\n");
 828        if (accept_status)
 829                pr_err("APIC delivery error (%lx)\n", accept_status);
 830
 831        return (send_status | accept_status);
 832}
 833
 834static int
 835wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 836{
 837        unsigned long send_status = 0, accept_status = 0;
 838        int maxlvt, num_starts, j;
 839
 840        maxlvt = lapic_get_maxlvt();
 841
 842        /*
 843         * Be paranoid about clearing APIC errors.
 844         */
 845        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 846                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 847                        apic_write(APIC_ESR, 0);
 848                apic_read(APIC_ESR);
 849        }
 850
 851        pr_debug("Asserting INIT\n");
 852
 853        /*
 854         * Turn INIT on target chip
 855         */
 856        /*
 857         * Send IPI
 858         */
 859        apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 860                       phys_apicid);
 861
 862        pr_debug("Waiting for send to finish...\n");
 863        send_status = safe_apic_wait_icr_idle();
 864
 865        udelay(init_udelay);
 866
 867        pr_debug("Deasserting INIT\n");
 868
 869        /* Target chip */
 870        /* Send IPI */
 871        apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 872
 873        pr_debug("Waiting for send to finish...\n");
 874        send_status = safe_apic_wait_icr_idle();
 875
 876        mb();
 877
 878        /*
 879         * Should we send STARTUP IPIs ?
 880         *
 881         * Determine this based on the APIC version.
 882         * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 883         */
 884        if (APIC_INTEGRATED(boot_cpu_apic_version))
 885                num_starts = 2;
 886        else
 887                num_starts = 0;
 888
 889        /*
 890         * Run STARTUP IPI loop.
 891         */
 892        pr_debug("#startup loops: %d\n", num_starts);
 893
 894        for (j = 1; j <= num_starts; j++) {
 895                pr_debug("Sending STARTUP #%d\n", j);
 896                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 897                        apic_write(APIC_ESR, 0);
 898                apic_read(APIC_ESR);
 899                pr_debug("After apic_write\n");
 900
 901                /*
 902                 * STARTUP IPI
 903                 */
 904
 905                /* Target chip */
 906                /* Boot on the stack */
 907                /* Kick the second */
 908                apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 909                               phys_apicid);
 910
 911                /*
 912                 * Give the other CPU some time to accept the IPI.
 913                 */
 914                if (init_udelay == 0)
 915                        udelay(10);
 916                else
 917                        udelay(300);
 918
 919                pr_debug("Startup point 1\n");
 920
 921                pr_debug("Waiting for send to finish...\n");
 922                send_status = safe_apic_wait_icr_idle();
 923
 924                /*
 925                 * Give the other CPU some time to accept the IPI.
 926                 */
 927                if (init_udelay == 0)
 928                        udelay(10);
 929                else
 930                        udelay(200);
 931
 932                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 933                        apic_write(APIC_ESR, 0);
 934                accept_status = (apic_read(APIC_ESR) & 0xEF);
 935                if (send_status || accept_status)
 936                        break;
 937        }
 938        pr_debug("After Startup\n");
 939
 940        if (send_status)
 941                pr_err("APIC never delivered???\n");
 942        if (accept_status)
 943                pr_err("APIC delivery error (%lx)\n", accept_status);
 944
 945        return (send_status | accept_status);
 946}
 947
 948/* reduce the number of lines printed when booting a large cpu count system */
 949static void announce_cpu(int cpu, int apicid)
 950{
 951        static int current_node = NUMA_NO_NODE;
 952        int node = early_cpu_to_node(cpu);
 953        static int width, node_width;
 954
 955        if (!width)
 956                width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 957
 958        if (!node_width)
 959                node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 960
 961        if (cpu == 1)
 962                printk(KERN_INFO "x86: Booting SMP configuration:\n");
 963
 964        if (system_state < SYSTEM_RUNNING) {
 965                if (node != current_node) {
 966                        if (current_node > (-1))
 967                                pr_cont("\n");
 968                        current_node = node;
 969
 970                        printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 971                               node_width - num_digits(node), " ", node);
 972                }
 973
 974                /* Add padding for the BSP */
 975                if (cpu == 1)
 976                        pr_cont("%*s", width + 1, " ");
 977
 978                pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 979
 980        } else
 981                pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 982                        node, cpu, apicid);
 983}
 984
 985static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
 986{
 987        int cpu;
 988
 989        cpu = smp_processor_id();
 990        if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
 991                return NMI_HANDLED;
 992
 993        return NMI_DONE;
 994}
 995
 996/*
 997 * Wake up AP by INIT, INIT, STARTUP sequence.
 998 *
 999 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
1000 * boot-strap code which is not a desired behavior for waking up BSP. To
1001 * void the boot-strap code, wake up CPU0 by NMI instead.
1002 *
1003 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
1004 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
1005 * We'll change this code in the future to wake up hard offlined CPU0 if
1006 * real platform and request are available.
1007 */
1008static int
1009wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
1010               int *cpu0_nmi_registered)
1011{
1012        int id;
1013        int boot_error;
1014
1015        preempt_disable();
1016
1017        /*
1018         * Wake up AP by INIT, INIT, STARTUP sequence.
1019         */
1020        if (cpu) {
1021                boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
1022                goto out;
1023        }
1024
1025        /*
1026         * Wake up BSP by nmi.
1027         *
1028         * Register a NMI handler to help wake up CPU0.
1029         */
1030        boot_error = register_nmi_handler(NMI_LOCAL,
1031                                          wakeup_cpu0_nmi, 0, "wake_cpu0");
1032
1033        if (!boot_error) {
1034                enable_start_cpu0 = 1;
1035                *cpu0_nmi_registered = 1;
1036                id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
1037                boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1038        }
1039
1040out:
1041        preempt_enable();
1042
1043        return boot_error;
1044}
1045
1046int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1047{
1048        int ret;
1049
1050        /* Just in case we booted with a single CPU. */
1051        alternatives_enable_smp();
1052
1053        per_cpu(current_task, cpu) = idle;
1054        cpu_init_stack_canary(cpu, idle);
1055
1056        /* Initialize the interrupt stack(s) */
1057        ret = irq_init_percpu_irqstack(cpu);
1058        if (ret)
1059                return ret;
1060
1061#ifdef CONFIG_X86_32
1062        /* Stack for startup_32 can be just as for start_secondary onwards */
1063        per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1064#else
1065        initial_gs = per_cpu_offset(cpu);
1066#endif
1067        return 0;
1068}
1069
1070/*
1071 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1072 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1073 * Returns zero if CPU booted OK, else error code from
1074 * ->wakeup_secondary_cpu.
1075 */
1076static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1077                       int *cpu0_nmi_registered)
1078{
1079        /* start_ip had better be page-aligned! */
1080        unsigned long start_ip = real_mode_header->trampoline_start;
1081
1082        unsigned long boot_error = 0;
1083        unsigned long timeout;
1084
1085        idle->thread.sp = (unsigned long)task_pt_regs(idle);
1086        early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1087        initial_code = (unsigned long)start_secondary;
1088        initial_stack  = idle->thread.sp;
1089
1090        /* Enable the espfix hack for this CPU */
1091        init_espfix_ap(cpu);
1092
1093        /* So we see what's up */
1094        announce_cpu(cpu, apicid);
1095
1096        /*
1097         * This grunge runs the startup process for
1098         * the targeted processor.
1099         */
1100
1101        if (x86_platform.legacy.warm_reset) {
1102
1103                pr_debug("Setting warm reset code and vector.\n");
1104
1105                smpboot_setup_warm_reset_vector(start_ip);
1106                /*
1107                 * Be paranoid about clearing APIC errors.
1108                */
1109                if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1110                        apic_write(APIC_ESR, 0);
1111                        apic_read(APIC_ESR);
1112                }
1113        }
1114
1115        /*
1116         * AP might wait on cpu_callout_mask in cpu_init() with
1117         * cpu_initialized_mask set if previous attempt to online
1118         * it timed-out. Clear cpu_initialized_mask so that after
1119         * INIT/SIPI it could start with a clean state.
1120         */
1121        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1122        smp_mb();
1123
1124        /*
1125         * Wake up a CPU in difference cases:
1126         * - Use the method in the APIC driver if it's defined
1127         * Otherwise,
1128         * - Use an INIT boot APIC message for APs or NMI for BSP.
1129         */
1130        if (apic->wakeup_secondary_cpu)
1131                boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1132        else
1133                boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1134                                                     cpu0_nmi_registered);
1135
1136        if (!boot_error) {
1137                /*
1138                 * Wait 10s total for first sign of life from AP
1139                 */
1140                boot_error = -1;
1141                timeout = jiffies + 10*HZ;
1142                while (time_before(jiffies, timeout)) {
1143                        if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1144                                /*
1145                                 * Tell AP to proceed with initialization
1146                                 */
1147                                cpumask_set_cpu(cpu, cpu_callout_mask);
1148                                boot_error = 0;
1149                                break;
1150                        }
1151                        schedule();
1152                }
1153        }
1154
1155        if (!boot_error) {
1156                /*
1157                 * Wait till AP completes initial initialization
1158                 */
1159                while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1160                        /*
1161                         * Allow other tasks to run while we wait for the
1162                         * AP to come online. This also gives a chance
1163                         * for the MTRR work(triggered by the AP coming online)
1164                         * to be completed in the stop machine context.
1165                         */
1166                        schedule();
1167                }
1168        }
1169
1170        if (x86_platform.legacy.warm_reset) {
1171                /*
1172                 * Cleanup possible dangling ends...
1173                 */
1174                smpboot_restore_warm_reset_vector();
1175        }
1176
1177        return boot_error;
1178}
1179
1180int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1181{
1182        int apicid = apic->cpu_present_to_apicid(cpu);
1183        int cpu0_nmi_registered = 0;
1184        unsigned long flags;
1185        int err, ret = 0;
1186
1187        lockdep_assert_irqs_enabled();
1188
1189        pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1190
1191        if (apicid == BAD_APICID ||
1192            !physid_isset(apicid, phys_cpu_present_map) ||
1193            !apic->apic_id_valid(apicid)) {
1194                pr_err("%s: bad cpu %d\n", __func__, cpu);
1195                return -EINVAL;
1196        }
1197
1198        /*
1199         * Already booted CPU?
1200         */
1201        if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1202                pr_debug("do_boot_cpu %d Already started\n", cpu);
1203                return -ENOSYS;
1204        }
1205
1206        /*
1207         * Save current MTRR state in case it was changed since early boot
1208         * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1209         */
1210        mtrr_save_state();
1211
1212        /* x86 CPUs take themselves offline, so delayed offline is OK. */
1213        err = cpu_check_up_prepare(cpu);
1214        if (err && err != -EBUSY)
1215                return err;
1216
1217        /* the FPU context is blank, nobody can own it */
1218        per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1219
1220        err = common_cpu_up(cpu, tidle);
1221        if (err)
1222                return err;
1223
1224        err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1225        if (err) {
1226                pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1227                ret = -EIO;
1228                goto unreg_nmi;
1229        }
1230
1231        /*
1232         * Check TSC synchronization with the AP (keep irqs disabled
1233         * while doing so):
1234         */
1235        local_irq_save(flags);
1236        check_tsc_sync_source(cpu);
1237        local_irq_restore(flags);
1238
1239        while (!cpu_online(cpu)) {
1240                cpu_relax();
1241                touch_nmi_watchdog();
1242        }
1243
1244unreg_nmi:
1245        /*
1246         * Clean up the nmi handler. Do this after the callin and callout sync
1247         * to avoid impact of possible long unregister time.
1248         */
1249        if (cpu0_nmi_registered)
1250                unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1251
1252        return ret;
1253}
1254
1255/**
1256 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1257 */
1258void arch_disable_smp_support(void)
1259{
1260        disable_ioapic_support();
1261}
1262
1263/*
1264 * Fall back to non SMP mode after errors.
1265 *
1266 * RED-PEN audit/test this more. I bet there is more state messed up here.
1267 */
1268static __init void disable_smp(void)
1269{
1270        pr_info("SMP disabled\n");
1271
1272        disable_ioapic_support();
1273
1274        init_cpu_present(cpumask_of(0));
1275        init_cpu_possible(cpumask_of(0));
1276
1277        if (smp_found_config)
1278                physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1279        else
1280                physid_set_mask_of_physid(0, &phys_cpu_present_map);
1281        cpumask_set_cpu(0, topology_sibling_cpumask(0));
1282        cpumask_set_cpu(0, topology_core_cpumask(0));
1283        cpumask_set_cpu(0, topology_die_cpumask(0));
1284}
1285
1286/*
1287 * Various sanity checks.
1288 */
1289static void __init smp_sanity_check(void)
1290{
1291        preempt_disable();
1292
1293#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1294        if (def_to_bigsmp && nr_cpu_ids > 8) {
1295                unsigned int cpu;
1296                unsigned nr;
1297
1298                pr_warn("More than 8 CPUs detected - skipping them\n"
1299                        "Use CONFIG_X86_BIGSMP\n");
1300
1301                nr = 0;
1302                for_each_present_cpu(cpu) {
1303                        if (nr >= 8)
1304                                set_cpu_present(cpu, false);
1305                        nr++;
1306                }
1307
1308                nr = 0;
1309                for_each_possible_cpu(cpu) {
1310                        if (nr >= 8)
1311                                set_cpu_possible(cpu, false);
1312                        nr++;
1313                }
1314
1315                nr_cpu_ids = 8;
1316        }
1317#endif
1318
1319        if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1320                pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1321                        hard_smp_processor_id());
1322
1323                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1324        }
1325
1326        /*
1327         * Should not be necessary because the MP table should list the boot
1328         * CPU too, but we do it for the sake of robustness anyway.
1329         */
1330        if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1331                pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1332                          boot_cpu_physical_apicid);
1333                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1334        }
1335        preempt_enable();
1336}
1337
1338static void __init smp_cpu_index_default(void)
1339{
1340        int i;
1341        struct cpuinfo_x86 *c;
1342
1343        for_each_possible_cpu(i) {
1344                c = &cpu_data(i);
1345                /* mark all to hotplug */
1346                c->cpu_index = nr_cpu_ids;
1347        }
1348}
1349
1350static void __init smp_get_logical_apicid(void)
1351{
1352        if (x2apic_mode)
1353                cpu0_logical_apicid = apic_read(APIC_LDR);
1354        else
1355                cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1356}
1357
1358void __init smp_prepare_cpus_common(void)
1359{
1360        unsigned int i;
1361
1362        smp_cpu_index_default();
1363
1364        /*
1365         * Setup boot CPU information
1366         */
1367        smp_store_boot_cpu_info(); /* Final full version of the data */
1368        cpumask_copy(cpu_callin_mask, cpumask_of(0));
1369        mb();
1370
1371        for_each_possible_cpu(i) {
1372                zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1373                zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1374                zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1375                zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1376                zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1377        }
1378
1379        /*
1380         * Set 'default' x86 topology, this matches default_topology() in that
1381         * it has NUMA nodes as a topology level. See also
1382         * native_smp_cpus_done().
1383         *
1384         * Must be done before set_cpus_sibling_map() is ran.
1385         */
1386        set_sched_topology(x86_topology);
1387
1388        set_cpu_sibling_map(0);
1389}
1390
1391/*
1392 * Prepare for SMP bootup.
1393 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1394 *            for common interface support.
1395 */
1396void __init native_smp_prepare_cpus(unsigned int max_cpus)
1397{
1398        smp_prepare_cpus_common();
1399
1400        init_freq_invariance(false, false);
1401        smp_sanity_check();
1402
1403        switch (apic_intr_mode) {
1404        case APIC_PIC:
1405        case APIC_VIRTUAL_WIRE_NO_CONFIG:
1406                disable_smp();
1407                return;
1408        case APIC_SYMMETRIC_IO_NO_ROUTING:
1409                disable_smp();
1410                /* Setup local timer */
1411                x86_init.timers.setup_percpu_clockev();
1412                return;
1413        case APIC_VIRTUAL_WIRE:
1414        case APIC_SYMMETRIC_IO:
1415                break;
1416        }
1417
1418        /* Setup local timer */
1419        x86_init.timers.setup_percpu_clockev();
1420
1421        smp_get_logical_apicid();
1422
1423        pr_info("CPU0: ");
1424        print_cpu_info(&cpu_data(0));
1425
1426        uv_system_init();
1427
1428        set_mtrr_aps_delayed_init();
1429
1430        smp_quirk_init_udelay();
1431
1432        speculative_store_bypass_ht_init();
1433}
1434
1435void arch_thaw_secondary_cpus_begin(void)
1436{
1437        set_mtrr_aps_delayed_init();
1438}
1439
1440void arch_thaw_secondary_cpus_end(void)
1441{
1442        mtrr_aps_init();
1443}
1444
1445/*
1446 * Early setup to make printk work.
1447 */
1448void __init native_smp_prepare_boot_cpu(void)
1449{
1450        int me = smp_processor_id();
1451        switch_to_new_gdt(me);
1452        /* already set me in cpu_online_mask in boot_cpu_init() */
1453        cpumask_set_cpu(me, cpu_callout_mask);
1454        cpu_set_state_online(me);
1455        native_pv_lock_init();
1456}
1457
1458void __init calculate_max_logical_packages(void)
1459{
1460        int ncpus;
1461
1462        /*
1463         * Today neither Intel nor AMD support heterogeneous systems so
1464         * extrapolate the boot cpu's data to all packages.
1465         */
1466        ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1467        __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1468        pr_info("Max logical packages: %u\n", __max_logical_packages);
1469}
1470
1471void __init native_smp_cpus_done(unsigned int max_cpus)
1472{
1473        pr_debug("Boot done\n");
1474
1475        calculate_max_logical_packages();
1476
1477        /* XXX for now assume numa-in-package and hybrid don't overlap */
1478        if (x86_has_numa_in_package)
1479                set_sched_topology(x86_numa_in_package_topology);
1480        if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1481                set_sched_topology(x86_hybrid_topology);
1482
1483        nmi_selftest();
1484        impress_friends();
1485        mtrr_aps_init();
1486}
1487
1488static int __initdata setup_possible_cpus = -1;
1489static int __init _setup_possible_cpus(char *str)
1490{
1491        get_option(&str, &setup_possible_cpus);
1492        return 0;
1493}
1494early_param("possible_cpus", _setup_possible_cpus);
1495
1496
1497/*
1498 * cpu_possible_mask should be static, it cannot change as cpu's
1499 * are onlined, or offlined. The reason is per-cpu data-structures
1500 * are allocated by some modules at init time, and don't expect to
1501 * do this dynamically on cpu arrival/departure.
1502 * cpu_present_mask on the other hand can change dynamically.
1503 * In case when cpu_hotplug is not compiled, then we resort to current
1504 * behaviour, which is cpu_possible == cpu_present.
1505 * - Ashok Raj
1506 *
1507 * Three ways to find out the number of additional hotplug CPUs:
1508 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1509 * - The user can overwrite it with possible_cpus=NUM
1510 * - Otherwise don't reserve additional CPUs.
1511 * We do this because additional CPUs waste a lot of memory.
1512 * -AK
1513 */
1514__init void prefill_possible_map(void)
1515{
1516        int i, possible;
1517
1518        /* No boot processor was found in mptable or ACPI MADT */
1519        if (!num_processors) {
1520                if (boot_cpu_has(X86_FEATURE_APIC)) {
1521                        int apicid = boot_cpu_physical_apicid;
1522                        int cpu = hard_smp_processor_id();
1523
1524                        pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1525
1526                        /* Make sure boot cpu is enumerated */
1527                        if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1528                            apic->apic_id_valid(apicid))
1529                                generic_processor_info(apicid, boot_cpu_apic_version);
1530                }
1531
1532                if (!num_processors)
1533                        num_processors = 1;
1534        }
1535
1536        i = setup_max_cpus ?: 1;
1537        if (setup_possible_cpus == -1) {
1538                possible = num_processors;
1539#ifdef CONFIG_HOTPLUG_CPU
1540                if (setup_max_cpus)
1541                        possible += disabled_cpus;
1542#else
1543                if (possible > i)
1544                        possible = i;
1545#endif
1546        } else
1547                possible = setup_possible_cpus;
1548
1549        total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1550
1551        /* nr_cpu_ids could be reduced via nr_cpus= */
1552        if (possible > nr_cpu_ids) {
1553                pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1554                        possible, nr_cpu_ids);
1555                possible = nr_cpu_ids;
1556        }
1557
1558#ifdef CONFIG_HOTPLUG_CPU
1559        if (!setup_max_cpus)
1560#endif
1561        if (possible > i) {
1562                pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1563                        possible, setup_max_cpus);
1564                possible = i;
1565        }
1566
1567        nr_cpu_ids = possible;
1568
1569        pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1570                possible, max_t(int, possible - num_processors, 0));
1571
1572        reset_cpu_possible_mask();
1573
1574        for (i = 0; i < possible; i++)
1575                set_cpu_possible(i, true);
1576}
1577
1578#ifdef CONFIG_HOTPLUG_CPU
1579
1580/* Recompute SMT state for all CPUs on offline */
1581static void recompute_smt_state(void)
1582{
1583        int max_threads, cpu;
1584
1585        max_threads = 0;
1586        for_each_online_cpu (cpu) {
1587                int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1588
1589                if (threads > max_threads)
1590                        max_threads = threads;
1591        }
1592        __max_smt_threads = max_threads;
1593}
1594
1595static void remove_siblinginfo(int cpu)
1596{
1597        int sibling;
1598        struct cpuinfo_x86 *c = &cpu_data(cpu);
1599
1600        for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1601                cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1602                /*/
1603                 * last thread sibling in this cpu core going down
1604                 */
1605                if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1606                        cpu_data(sibling).booted_cores--;
1607        }
1608
1609        for_each_cpu(sibling, topology_die_cpumask(cpu))
1610                cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1611
1612        for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1613                cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1614                if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1615                        cpu_data(sibling).smt_active = false;
1616        }
1617
1618        for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1619                cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1620        for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1621                cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1622        cpumask_clear(cpu_llc_shared_mask(cpu));
1623        cpumask_clear(cpu_l2c_shared_mask(cpu));
1624        cpumask_clear(topology_sibling_cpumask(cpu));
1625        cpumask_clear(topology_core_cpumask(cpu));
1626        cpumask_clear(topology_die_cpumask(cpu));
1627        c->cpu_core_id = 0;
1628        c->booted_cores = 0;
1629        cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1630        recompute_smt_state();
1631}
1632
1633static void remove_cpu_from_maps(int cpu)
1634{
1635        set_cpu_online(cpu, false);
1636        cpumask_clear_cpu(cpu, cpu_callout_mask);
1637        cpumask_clear_cpu(cpu, cpu_callin_mask);
1638        /* was set by cpu_init() */
1639        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1640        numa_remove_cpu(cpu);
1641}
1642
1643void cpu_disable_common(void)
1644{
1645        int cpu = smp_processor_id();
1646
1647        remove_siblinginfo(cpu);
1648
1649        /* It's now safe to remove this processor from the online map */
1650        lock_vector_lock();
1651        remove_cpu_from_maps(cpu);
1652        unlock_vector_lock();
1653        fixup_irqs();
1654        lapic_offline();
1655}
1656
1657int native_cpu_disable(void)
1658{
1659        int ret;
1660
1661        ret = lapic_can_unplug_cpu();
1662        if (ret)
1663                return ret;
1664
1665        cpu_disable_common();
1666
1667        /*
1668         * Disable the local APIC. Otherwise IPI broadcasts will reach
1669         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1670         * messages.
1671         *
1672         * Disabling the APIC must happen after cpu_disable_common()
1673         * which invokes fixup_irqs().
1674         *
1675         * Disabling the APIC preserves already set bits in IRR, but
1676         * an interrupt arriving after disabling the local APIC does not
1677         * set the corresponding IRR bit.
1678         *
1679         * fixup_irqs() scans IRR for set bits so it can raise a not
1680         * yet handled interrupt on the new destination CPU via an IPI
1681         * but obviously it can't do so for IRR bits which are not set.
1682         * IOW, interrupts arriving after disabling the local APIC will
1683         * be lost.
1684         */
1685        apic_soft_disable();
1686
1687        return 0;
1688}
1689
1690int common_cpu_die(unsigned int cpu)
1691{
1692        int ret = 0;
1693
1694        /* We don't do anything here: idle task is faking death itself. */
1695
1696        /* They ack this in play_dead() by setting CPU_DEAD */
1697        if (cpu_wait_death(cpu, 5)) {
1698                if (system_state == SYSTEM_RUNNING)
1699                        pr_info("CPU %u is now offline\n", cpu);
1700        } else {
1701                pr_err("CPU %u didn't die...\n", cpu);
1702                ret = -1;
1703        }
1704
1705        return ret;
1706}
1707
1708void native_cpu_die(unsigned int cpu)
1709{
1710        common_cpu_die(cpu);
1711}
1712
1713void play_dead_common(void)
1714{
1715        idle_task_exit();
1716
1717        /* Ack it */
1718        (void)cpu_report_death();
1719
1720        /*
1721         * With physical CPU hotplug, we should halt the cpu
1722         */
1723        local_irq_disable();
1724}
1725
1726/**
1727 * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1728 *
1729 * If NMI wants to wake up CPU0, start CPU0.
1730 */
1731void cond_wakeup_cpu0(void)
1732{
1733        if (smp_processor_id() == 0 && enable_start_cpu0)
1734                start_cpu0();
1735}
1736EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1737
1738/*
1739 * We need to flush the caches before going to sleep, lest we have
1740 * dirty data in our caches when we come back up.
1741 */
1742static inline void mwait_play_dead(void)
1743{
1744        unsigned int eax, ebx, ecx, edx;
1745        unsigned int highest_cstate = 0;
1746        unsigned int highest_subcstate = 0;
1747        void *mwait_ptr;
1748        int i;
1749
1750        if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1751            boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1752                return;
1753        if (!this_cpu_has(X86_FEATURE_MWAIT))
1754                return;
1755        if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1756                return;
1757        if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1758                return;
1759
1760        eax = CPUID_MWAIT_LEAF;
1761        ecx = 0;
1762        native_cpuid(&eax, &ebx, &ecx, &edx);
1763
1764        /*
1765         * eax will be 0 if EDX enumeration is not valid.
1766         * Initialized below to cstate, sub_cstate value when EDX is valid.
1767         */
1768        if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1769                eax = 0;
1770        } else {
1771                edx >>= MWAIT_SUBSTATE_SIZE;
1772                for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1773                        if (edx & MWAIT_SUBSTATE_MASK) {
1774                                highest_cstate = i;
1775                                highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1776                        }
1777                }
1778                eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1779                        (highest_subcstate - 1);
1780        }
1781
1782        /*
1783         * This should be a memory location in a cache line which is
1784         * unlikely to be touched by other processors.  The actual
1785         * content is immaterial as it is not actually modified in any way.
1786         */
1787        mwait_ptr = &current_thread_info()->flags;
1788
1789        wbinvd();
1790
1791        while (1) {
1792                /*
1793                 * The CLFLUSH is a workaround for erratum AAI65 for
1794                 * the Xeon 7400 series.  It's not clear it is actually
1795                 * needed, but it should be harmless in either case.
1796                 * The WBINVD is insufficient due to the spurious-wakeup
1797                 * case where we return around the loop.
1798                 */
1799                mb();
1800                clflush(mwait_ptr);
1801                mb();
1802                __monitor(mwait_ptr, 0, 0);
1803                mb();
1804                __mwait(eax, 0);
1805
1806                cond_wakeup_cpu0();
1807        }
1808}
1809
1810void hlt_play_dead(void)
1811{
1812        if (__this_cpu_read(cpu_info.x86) >= 4)
1813                wbinvd();
1814
1815        while (1) {
1816                native_halt();
1817
1818                cond_wakeup_cpu0();
1819        }
1820}
1821
1822void native_play_dead(void)
1823{
1824        play_dead_common();
1825        tboot_shutdown(TB_SHUTDOWN_WFS);
1826
1827        mwait_play_dead();      /* Only returns on failure */
1828        if (cpuidle_play_dead())
1829                hlt_play_dead();
1830}
1831
1832#else /* ... !CONFIG_HOTPLUG_CPU */
1833int native_cpu_disable(void)
1834{
1835        return -ENOSYS;
1836}
1837
1838void native_cpu_die(unsigned int cpu)
1839{
1840        /* We said "no" in __cpu_disable */
1841        BUG();
1842}
1843
1844void native_play_dead(void)
1845{
1846        BUG();
1847}
1848
1849#endif
1850
1851#ifdef CONFIG_X86_64
1852/*
1853 * APERF/MPERF frequency ratio computation.
1854 *
1855 * The scheduler wants to do frequency invariant accounting and needs a <1
1856 * ratio to account for the 'current' frequency, corresponding to
1857 * freq_curr / freq_max.
1858 *
1859 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1860 * our P-state setting is little more than a request/hint, we need to observe
1861 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1862 * interval after discarding idle time. This is given by:
1863 *
1864 *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1865 *
1866 * where freq_base is the max non-turbo P-state.
1867 *
1868 * The freq_max term has to be set to a somewhat arbitrary value, because we
1869 * can't know which turbo states will be available at a given point in time:
1870 * it all depends on the thermal headroom of the entire package. We set it to
1871 * the turbo level with 4 cores active.
1872 *
1873 * Benchmarks show that's a good compromise between the 1C turbo ratio
1874 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1875 * which would ignore the entire turbo range (a conspicuous part, making
1876 * freq_curr/freq_max always maxed out).
1877 *
1878 * An exception to the heuristic above is the Atom uarch, where we choose the
1879 * highest turbo level for freq_max since Atom's are generally oriented towards
1880 * power efficiency.
1881 *
1882 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1883 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1884 */
1885
1886DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1887
1888static DEFINE_PER_CPU(u64, arch_prev_aperf);
1889static DEFINE_PER_CPU(u64, arch_prev_mperf);
1890static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1891static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1892
1893void arch_set_max_freq_ratio(bool turbo_disabled)
1894{
1895        arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1896                                        arch_turbo_freq_ratio;
1897}
1898EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1899
1900static bool turbo_disabled(void)
1901{
1902        u64 misc_en;
1903        int err;
1904
1905        err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1906        if (err)
1907                return false;
1908
1909        return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1910}
1911
1912static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1913{
1914        int err;
1915
1916        err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1917        if (err)
1918                return false;
1919
1920        err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1921        if (err)
1922                return false;
1923
1924        *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1925        *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1926
1927        return true;
1928}
1929
1930#define X86_MATCH(model)                                        \
1931        X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,            \
1932                INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1933
1934static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1935        X86_MATCH(XEON_PHI_KNL),
1936        X86_MATCH(XEON_PHI_KNM),
1937        {}
1938};
1939
1940static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1941        X86_MATCH(SKYLAKE_X),
1942        {}
1943};
1944
1945static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1946        X86_MATCH(ATOM_GOLDMONT),
1947        X86_MATCH(ATOM_GOLDMONT_D),
1948        X86_MATCH(ATOM_GOLDMONT_PLUS),
1949        {}
1950};
1951
1952static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1953                                int num_delta_fratio)
1954{
1955        int fratio, delta_fratio, found;
1956        int err, i;
1957        u64 msr;
1958
1959        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1960        if (err)
1961                return false;
1962
1963        *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1964
1965        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1966        if (err)
1967                return false;
1968
1969        fratio = (msr >> 8) & 0xFF;
1970        i = 16;
1971        found = 0;
1972        do {
1973                if (found >= num_delta_fratio) {
1974                        *turbo_freq = fratio;
1975                        return true;
1976                }
1977
1978                delta_fratio = (msr >> (i + 5)) & 0x7;
1979
1980                if (delta_fratio) {
1981                        found += 1;
1982                        fratio -= delta_fratio;
1983                }
1984
1985                i += 8;
1986        } while (i < 64);
1987
1988        return true;
1989}
1990
1991static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1992{
1993        u64 ratios, counts;
1994        u32 group_size;
1995        int err, i;
1996
1997        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1998        if (err)
1999                return false;
2000
2001        *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
2002
2003        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
2004        if (err)
2005                return false;
2006
2007        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
2008        if (err)
2009                return false;
2010
2011        for (i = 0; i < 64; i += 8) {
2012                group_size = (counts >> i) & 0xFF;
2013                if (group_size >= size) {
2014                        *turbo_freq = (ratios >> i) & 0xFF;
2015                        return true;
2016                }
2017        }
2018
2019        return false;
2020}
2021
2022static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
2023{
2024        u64 msr;
2025        int err;
2026
2027        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
2028        if (err)
2029                return false;
2030
2031        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
2032        if (err)
2033                return false;
2034
2035        *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
2036        *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
2037
2038        /* The CPU may have less than 4 cores */
2039        if (!*turbo_freq)
2040                *turbo_freq = msr & 0xFF;         /* 1C turbo    */
2041
2042        return true;
2043}
2044
2045static bool intel_set_max_freq_ratio(void)
2046{
2047        u64 base_freq, turbo_freq;
2048        u64 turbo_ratio;
2049
2050        if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
2051                goto out;
2052
2053        if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
2054            skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2055                goto out;
2056
2057        if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
2058            knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2059                goto out;
2060
2061        if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2062            skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2063                goto out;
2064
2065        if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2066                goto out;
2067
2068        return false;
2069
2070out:
2071        /*
2072         * Some hypervisors advertise X86_FEATURE_APERFMPERF
2073         * but then fill all MSR's with zeroes.
2074         * Some CPUs have turbo boost but don't declare any turbo ratio
2075         * in MSR_TURBO_RATIO_LIMIT.
2076         */
2077        if (!base_freq || !turbo_freq) {
2078                pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2079                return false;
2080        }
2081
2082        turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2083        if (!turbo_ratio) {
2084                pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2085                return false;
2086        }
2087
2088        arch_turbo_freq_ratio = turbo_ratio;
2089        arch_set_max_freq_ratio(turbo_disabled());
2090
2091        return true;
2092}
2093
2094static void init_counter_refs(void)
2095{
2096        u64 aperf, mperf;
2097
2098        rdmsrl(MSR_IA32_APERF, aperf);
2099        rdmsrl(MSR_IA32_MPERF, mperf);
2100
2101        this_cpu_write(arch_prev_aperf, aperf);
2102        this_cpu_write(arch_prev_mperf, mperf);
2103}
2104
2105#ifdef CONFIG_PM_SLEEP
2106static struct syscore_ops freq_invariance_syscore_ops = {
2107        .resume = init_counter_refs,
2108};
2109
2110static void register_freq_invariance_syscore_ops(void)
2111{
2112        /* Bail out if registered already. */
2113        if (freq_invariance_syscore_ops.node.prev)
2114                return;
2115
2116        register_syscore_ops(&freq_invariance_syscore_ops);
2117}
2118#else
2119static inline void register_freq_invariance_syscore_ops(void) {}
2120#endif
2121
2122void init_freq_invariance(bool secondary, bool cppc_ready)
2123{
2124        bool ret = false;
2125
2126        if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2127                return;
2128
2129        if (secondary) {
2130                if (static_branch_likely(&arch_scale_freq_key)) {
2131                        init_counter_refs();
2132                }
2133                return;
2134        }
2135
2136        if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2137                ret = intel_set_max_freq_ratio();
2138        else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2139                if (!cppc_ready) {
2140                        return;
2141                }
2142                ret = amd_set_max_freq_ratio(&arch_turbo_freq_ratio);
2143        }
2144
2145        if (ret) {
2146                init_counter_refs();
2147                static_branch_enable(&arch_scale_freq_key);
2148                register_freq_invariance_syscore_ops();
2149                pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2150        } else {
2151                pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2152        }
2153}
2154
2155static void disable_freq_invariance_workfn(struct work_struct *work)
2156{
2157        static_branch_disable(&arch_scale_freq_key);
2158}
2159
2160static DECLARE_WORK(disable_freq_invariance_work,
2161                    disable_freq_invariance_workfn);
2162
2163DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2164
2165void arch_scale_freq_tick(void)
2166{
2167        u64 freq_scale;
2168        u64 aperf, mperf;
2169        u64 acnt, mcnt;
2170
2171        if (!arch_scale_freq_invariant())
2172                return;
2173
2174        rdmsrl(MSR_IA32_APERF, aperf);
2175        rdmsrl(MSR_IA32_MPERF, mperf);
2176
2177        acnt = aperf - this_cpu_read(arch_prev_aperf);
2178        mcnt = mperf - this_cpu_read(arch_prev_mperf);
2179
2180        this_cpu_write(arch_prev_aperf, aperf);
2181        this_cpu_write(arch_prev_mperf, mperf);
2182
2183        if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2184                goto error;
2185
2186        if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2187                goto error;
2188
2189        freq_scale = div64_u64(acnt, mcnt);
2190        if (!freq_scale)
2191                goto error;
2192
2193        if (freq_scale > SCHED_CAPACITY_SCALE)
2194                freq_scale = SCHED_CAPACITY_SCALE;
2195
2196        this_cpu_write(arch_freq_scale, freq_scale);
2197        return;
2198
2199error:
2200        pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2201        schedule_work(&disable_freq_invariance_work);
2202}
2203#endif /* CONFIG_X86_64 */
2204