linux/arch/x86/xen/enlighten_pv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Core of Xen paravirt_ops implementation.
   4 *
   5 * This file contains the xen_paravirt_ops structure itself, and the
   6 * implementations for:
   7 * - privileged instructions
   8 * - interrupt flags
   9 * - segment operations
  10 * - booting and setup
  11 *
  12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  13 */
  14
  15#include <linux/cpu.h>
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/smp.h>
  19#include <linux/preempt.h>
  20#include <linux/hardirq.h>
  21#include <linux/percpu.h>
  22#include <linux/delay.h>
  23#include <linux/start_kernel.h>
  24#include <linux/sched.h>
  25#include <linux/kprobes.h>
  26#include <linux/memblock.h>
  27#include <linux/export.h>
  28#include <linux/mm.h>
  29#include <linux/page-flags.h>
  30#include <linux/pci.h>
  31#include <linux/gfp.h>
  32#include <linux/edd.h>
  33#include <linux/objtool.h>
  34
  35#include <xen/xen.h>
  36#include <xen/events.h>
  37#include <xen/interface/xen.h>
  38#include <xen/interface/version.h>
  39#include <xen/interface/physdev.h>
  40#include <xen/interface/vcpu.h>
  41#include <xen/interface/memory.h>
  42#include <xen/interface/nmi.h>
  43#include <xen/interface/xen-mca.h>
  44#include <xen/features.h>
  45#include <xen/page.h>
  46#include <xen/hvc-console.h>
  47#include <xen/acpi.h>
  48
  49#include <asm/paravirt.h>
  50#include <asm/apic.h>
  51#include <asm/page.h>
  52#include <asm/xen/pci.h>
  53#include <asm/xen/hypercall.h>
  54#include <asm/xen/hypervisor.h>
  55#include <asm/xen/cpuid.h>
  56#include <asm/fixmap.h>
  57#include <asm/processor.h>
  58#include <asm/proto.h>
  59#include <asm/msr-index.h>
  60#include <asm/traps.h>
  61#include <asm/setup.h>
  62#include <asm/desc.h>
  63#include <asm/pgalloc.h>
  64#include <asm/tlbflush.h>
  65#include <asm/reboot.h>
  66#include <asm/stackprotector.h>
  67#include <asm/hypervisor.h>
  68#include <asm/mach_traps.h>
  69#include <asm/mwait.h>
  70#include <asm/pci_x86.h>
  71#include <asm/cpu.h>
  72#ifdef CONFIG_X86_IOPL_IOPERM
  73#include <asm/io_bitmap.h>
  74#endif
  75
  76#ifdef CONFIG_ACPI
  77#include <linux/acpi.h>
  78#include <asm/acpi.h>
  79#include <acpi/pdc_intel.h>
  80#include <acpi/processor.h>
  81#include <xen/interface/platform.h>
  82#endif
  83
  84#include "xen-ops.h"
  85#include "mmu.h"
  86#include "smp.h"
  87#include "multicalls.h"
  88#include "pmu.h"
  89
  90#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
  91
  92void *xen_initial_gdt;
  93
  94static int xen_cpu_up_prepare_pv(unsigned int cpu);
  95static int xen_cpu_dead_pv(unsigned int cpu);
  96
  97struct tls_descs {
  98        struct desc_struct desc[3];
  99};
 100
 101/*
 102 * Updating the 3 TLS descriptors in the GDT on every task switch is
 103 * surprisingly expensive so we avoid updating them if they haven't
 104 * changed.  Since Xen writes different descriptors than the one
 105 * passed in the update_descriptor hypercall we keep shadow copies to
 106 * compare against.
 107 */
 108static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 109
 110static void __init xen_pv_init_platform(void)
 111{
 112        populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
 113
 114        set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
 115        HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 116
 117        /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
 118        xen_vcpu_info_reset(0);
 119
 120        /* pvclock is in shared info area */
 121        xen_init_time_ops();
 122}
 123
 124static void __init xen_pv_guest_late_init(void)
 125{
 126#ifndef CONFIG_SMP
 127        /* Setup shared vcpu info for non-smp configurations */
 128        xen_setup_vcpu_info_placement();
 129#endif
 130}
 131
 132static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 133static __read_mostly unsigned int cpuid_leaf5_edx_val;
 134
 135static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 136                      unsigned int *cx, unsigned int *dx)
 137{
 138        unsigned maskebx = ~0;
 139
 140        /*
 141         * Mask out inconvenient features, to try and disable as many
 142         * unsupported kernel subsystems as possible.
 143         */
 144        switch (*ax) {
 145        case CPUID_MWAIT_LEAF:
 146                /* Synthesize the values.. */
 147                *ax = 0;
 148                *bx = 0;
 149                *cx = cpuid_leaf5_ecx_val;
 150                *dx = cpuid_leaf5_edx_val;
 151                return;
 152
 153        case 0xb:
 154                /* Suppress extended topology stuff */
 155                maskebx = 0;
 156                break;
 157        }
 158
 159        asm(XEN_EMULATE_PREFIX "cpuid"
 160                : "=a" (*ax),
 161                  "=b" (*bx),
 162                  "=c" (*cx),
 163                  "=d" (*dx)
 164                : "0" (*ax), "2" (*cx));
 165
 166        *bx &= maskebx;
 167}
 168STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
 169
 170static bool __init xen_check_mwait(void)
 171{
 172#ifdef CONFIG_ACPI
 173        struct xen_platform_op op = {
 174                .cmd                    = XENPF_set_processor_pminfo,
 175                .u.set_pminfo.id        = -1,
 176                .u.set_pminfo.type      = XEN_PM_PDC,
 177        };
 178        uint32_t buf[3];
 179        unsigned int ax, bx, cx, dx;
 180        unsigned int mwait_mask;
 181
 182        /* We need to determine whether it is OK to expose the MWAIT
 183         * capability to the kernel to harvest deeper than C3 states from ACPI
 184         * _CST using the processor_harvest_xen.c module. For this to work, we
 185         * need to gather the MWAIT_LEAF values (which the cstate.c code
 186         * checks against). The hypervisor won't expose the MWAIT flag because
 187         * it would break backwards compatibility; so we will find out directly
 188         * from the hardware and hypercall.
 189         */
 190        if (!xen_initial_domain())
 191                return false;
 192
 193        /*
 194         * When running under platform earlier than Xen4.2, do not expose
 195         * mwait, to avoid the risk of loading native acpi pad driver
 196         */
 197        if (!xen_running_on_version_or_later(4, 2))
 198                return false;
 199
 200        ax = 1;
 201        cx = 0;
 202
 203        native_cpuid(&ax, &bx, &cx, &dx);
 204
 205        mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 206                     (1 << (X86_FEATURE_MWAIT % 32));
 207
 208        if ((cx & mwait_mask) != mwait_mask)
 209                return false;
 210
 211        /* We need to emulate the MWAIT_LEAF and for that we need both
 212         * ecx and edx. The hypercall provides only partial information.
 213         */
 214
 215        ax = CPUID_MWAIT_LEAF;
 216        bx = 0;
 217        cx = 0;
 218        dx = 0;
 219
 220        native_cpuid(&ax, &bx, &cx, &dx);
 221
 222        /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 223         * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 224         */
 225        buf[0] = ACPI_PDC_REVISION_ID;
 226        buf[1] = 1;
 227        buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 228
 229        set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 230
 231        if ((HYPERVISOR_platform_op(&op) == 0) &&
 232            (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 233                cpuid_leaf5_ecx_val = cx;
 234                cpuid_leaf5_edx_val = dx;
 235        }
 236        return true;
 237#else
 238        return false;
 239#endif
 240}
 241
 242static bool __init xen_check_xsave(void)
 243{
 244        unsigned int cx, xsave_mask;
 245
 246        cx = cpuid_ecx(1);
 247
 248        xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
 249                     (1 << (X86_FEATURE_OSXSAVE % 32));
 250
 251        /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 252        return (cx & xsave_mask) == xsave_mask;
 253}
 254
 255static void __init xen_init_capabilities(void)
 256{
 257        setup_force_cpu_cap(X86_FEATURE_XENPV);
 258        setup_clear_cpu_cap(X86_FEATURE_DCA);
 259        setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
 260        setup_clear_cpu_cap(X86_FEATURE_MTRR);
 261        setup_clear_cpu_cap(X86_FEATURE_ACC);
 262        setup_clear_cpu_cap(X86_FEATURE_X2APIC);
 263        setup_clear_cpu_cap(X86_FEATURE_SME);
 264
 265        /*
 266         * Xen PV would need some work to support PCID: CR3 handling as well
 267         * as xen_flush_tlb_others() would need updating.
 268         */
 269        setup_clear_cpu_cap(X86_FEATURE_PCID);
 270
 271        if (!xen_initial_domain())
 272                setup_clear_cpu_cap(X86_FEATURE_ACPI);
 273
 274        if (xen_check_mwait())
 275                setup_force_cpu_cap(X86_FEATURE_MWAIT);
 276        else
 277                setup_clear_cpu_cap(X86_FEATURE_MWAIT);
 278
 279        if (!xen_check_xsave()) {
 280                setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 281                setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
 282        }
 283}
 284
 285static noinstr void xen_set_debugreg(int reg, unsigned long val)
 286{
 287        HYPERVISOR_set_debugreg(reg, val);
 288}
 289
 290static noinstr unsigned long xen_get_debugreg(int reg)
 291{
 292        return HYPERVISOR_get_debugreg(reg);
 293}
 294
 295static void xen_end_context_switch(struct task_struct *next)
 296{
 297        xen_mc_flush();
 298        paravirt_end_context_switch(next);
 299}
 300
 301static unsigned long xen_store_tr(void)
 302{
 303        return 0;
 304}
 305
 306/*
 307 * Set the page permissions for a particular virtual address.  If the
 308 * address is a vmalloc mapping (or other non-linear mapping), then
 309 * find the linear mapping of the page and also set its protections to
 310 * match.
 311 */
 312static void set_aliased_prot(void *v, pgprot_t prot)
 313{
 314        int level;
 315        pte_t *ptep;
 316        pte_t pte;
 317        unsigned long pfn;
 318        unsigned char dummy;
 319        void *va;
 320
 321        ptep = lookup_address((unsigned long)v, &level);
 322        BUG_ON(ptep == NULL);
 323
 324        pfn = pte_pfn(*ptep);
 325        pte = pfn_pte(pfn, prot);
 326
 327        /*
 328         * Careful: update_va_mapping() will fail if the virtual address
 329         * we're poking isn't populated in the page tables.  We don't
 330         * need to worry about the direct map (that's always in the page
 331         * tables), but we need to be careful about vmap space.  In
 332         * particular, the top level page table can lazily propagate
 333         * entries between processes, so if we've switched mms since we
 334         * vmapped the target in the first place, we might not have the
 335         * top-level page table entry populated.
 336         *
 337         * We disable preemption because we want the same mm active when
 338         * we probe the target and when we issue the hypercall.  We'll
 339         * have the same nominal mm, but if we're a kernel thread, lazy
 340         * mm dropping could change our pgd.
 341         *
 342         * Out of an abundance of caution, this uses __get_user() to fault
 343         * in the target address just in case there's some obscure case
 344         * in which the target address isn't readable.
 345         */
 346
 347        preempt_disable();
 348
 349        copy_from_kernel_nofault(&dummy, v, 1);
 350
 351        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 352                BUG();
 353
 354        va = __va(PFN_PHYS(pfn));
 355
 356        if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 357                BUG();
 358
 359        preempt_enable();
 360}
 361
 362static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 363{
 364        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 365        int i;
 366
 367        /*
 368         * We need to mark the all aliases of the LDT pages RO.  We
 369         * don't need to call vm_flush_aliases(), though, since that's
 370         * only responsible for flushing aliases out the TLBs, not the
 371         * page tables, and Xen will flush the TLB for us if needed.
 372         *
 373         * To avoid confusing future readers: none of this is necessary
 374         * to load the LDT.  The hypervisor only checks this when the
 375         * LDT is faulted in due to subsequent descriptor access.
 376         */
 377
 378        for (i = 0; i < entries; i += entries_per_page)
 379                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 380}
 381
 382static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 383{
 384        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 385        int i;
 386
 387        for (i = 0; i < entries; i += entries_per_page)
 388                set_aliased_prot(ldt + i, PAGE_KERNEL);
 389}
 390
 391static void xen_set_ldt(const void *addr, unsigned entries)
 392{
 393        struct mmuext_op *op;
 394        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 395
 396        trace_xen_cpu_set_ldt(addr, entries);
 397
 398        op = mcs.args;
 399        op->cmd = MMUEXT_SET_LDT;
 400        op->arg1.linear_addr = (unsigned long)addr;
 401        op->arg2.nr_ents = entries;
 402
 403        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 404
 405        xen_mc_issue(PARAVIRT_LAZY_CPU);
 406}
 407
 408static void xen_load_gdt(const struct desc_ptr *dtr)
 409{
 410        unsigned long va = dtr->address;
 411        unsigned int size = dtr->size + 1;
 412        unsigned long pfn, mfn;
 413        int level;
 414        pte_t *ptep;
 415        void *virt;
 416
 417        /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 418        BUG_ON(size > PAGE_SIZE);
 419        BUG_ON(va & ~PAGE_MASK);
 420
 421        /*
 422         * The GDT is per-cpu and is in the percpu data area.
 423         * That can be virtually mapped, so we need to do a
 424         * page-walk to get the underlying MFN for the
 425         * hypercall.  The page can also be in the kernel's
 426         * linear range, so we need to RO that mapping too.
 427         */
 428        ptep = lookup_address(va, &level);
 429        BUG_ON(ptep == NULL);
 430
 431        pfn = pte_pfn(*ptep);
 432        mfn = pfn_to_mfn(pfn);
 433        virt = __va(PFN_PHYS(pfn));
 434
 435        make_lowmem_page_readonly((void *)va);
 436        make_lowmem_page_readonly(virt);
 437
 438        if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 439                BUG();
 440}
 441
 442/*
 443 * load_gdt for early boot, when the gdt is only mapped once
 444 */
 445static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 446{
 447        unsigned long va = dtr->address;
 448        unsigned int size = dtr->size + 1;
 449        unsigned long pfn, mfn;
 450        pte_t pte;
 451
 452        /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 453        BUG_ON(size > PAGE_SIZE);
 454        BUG_ON(va & ~PAGE_MASK);
 455
 456        pfn = virt_to_pfn(va);
 457        mfn = pfn_to_mfn(pfn);
 458
 459        pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 460
 461        if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 462                BUG();
 463
 464        if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 465                BUG();
 466}
 467
 468static inline bool desc_equal(const struct desc_struct *d1,
 469                              const struct desc_struct *d2)
 470{
 471        return !memcmp(d1, d2, sizeof(*d1));
 472}
 473
 474static void load_TLS_descriptor(struct thread_struct *t,
 475                                unsigned int cpu, unsigned int i)
 476{
 477        struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 478        struct desc_struct *gdt;
 479        xmaddr_t maddr;
 480        struct multicall_space mc;
 481
 482        if (desc_equal(shadow, &t->tls_array[i]))
 483                return;
 484
 485        *shadow = t->tls_array[i];
 486
 487        gdt = get_cpu_gdt_rw(cpu);
 488        maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 489        mc = __xen_mc_entry(0);
 490
 491        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 492}
 493
 494static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 495{
 496        /*
 497         * In lazy mode we need to zero %fs, otherwise we may get an
 498         * exception between the new %fs descriptor being loaded and
 499         * %fs being effectively cleared at __switch_to().
 500         */
 501        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
 502                loadsegment(fs, 0);
 503
 504        xen_mc_batch();
 505
 506        load_TLS_descriptor(t, cpu, 0);
 507        load_TLS_descriptor(t, cpu, 1);
 508        load_TLS_descriptor(t, cpu, 2);
 509
 510        xen_mc_issue(PARAVIRT_LAZY_CPU);
 511}
 512
 513static void xen_load_gs_index(unsigned int idx)
 514{
 515        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 516                BUG();
 517}
 518
 519static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 520                                const void *ptr)
 521{
 522        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 523        u64 entry = *(u64 *)ptr;
 524
 525        trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 526
 527        preempt_disable();
 528
 529        xen_mc_flush();
 530        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 531                BUG();
 532
 533        preempt_enable();
 534}
 535
 536void noist_exc_debug(struct pt_regs *regs);
 537
 538DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
 539{
 540        /* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
 541        exc_nmi(regs);
 542}
 543
 544DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
 545{
 546        /* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
 547        exc_double_fault(regs, error_code);
 548}
 549
 550DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
 551{
 552        /*
 553         * There's no IST on Xen PV, but we still need to dispatch
 554         * to the correct handler.
 555         */
 556        if (user_mode(regs))
 557                noist_exc_debug(regs);
 558        else
 559                exc_debug(regs);
 560}
 561
 562DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
 563{
 564        /* This should never happen and there is no way to handle it. */
 565        instrumentation_begin();
 566        pr_err("Unknown trap in Xen PV mode.");
 567        BUG();
 568        instrumentation_end();
 569}
 570
 571#ifdef CONFIG_X86_MCE
 572DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
 573{
 574        /*
 575         * There's no IST on Xen PV, but we still need to dispatch
 576         * to the correct handler.
 577         */
 578        if (user_mode(regs))
 579                noist_exc_machine_check(regs);
 580        else
 581                exc_machine_check(regs);
 582}
 583#endif
 584
 585struct trap_array_entry {
 586        void (*orig)(void);
 587        void (*xen)(void);
 588        bool ist_okay;
 589};
 590
 591#define TRAP_ENTRY(func, ist_ok) {                      \
 592        .orig           = asm_##func,                   \
 593        .xen            = xen_asm_##func,               \
 594        .ist_okay       = ist_ok }
 595
 596#define TRAP_ENTRY_REDIR(func, ist_ok) {                \
 597        .orig           = asm_##func,                   \
 598        .xen            = xen_asm_xenpv_##func,         \
 599        .ist_okay       = ist_ok }
 600
 601static struct trap_array_entry trap_array[] = {
 602        TRAP_ENTRY_REDIR(exc_debug,                     true  ),
 603        TRAP_ENTRY_REDIR(exc_double_fault,              true  ),
 604#ifdef CONFIG_X86_MCE
 605        TRAP_ENTRY_REDIR(exc_machine_check,             true  ),
 606#endif
 607        TRAP_ENTRY_REDIR(exc_nmi,                       true  ),
 608        TRAP_ENTRY(exc_int3,                            false ),
 609        TRAP_ENTRY(exc_overflow,                        false ),
 610#ifdef CONFIG_IA32_EMULATION
 611        { entry_INT80_compat,          xen_entry_INT80_compat,          false },
 612#endif
 613        TRAP_ENTRY(exc_page_fault,                      false ),
 614        TRAP_ENTRY(exc_divide_error,                    false ),
 615        TRAP_ENTRY(exc_bounds,                          false ),
 616        TRAP_ENTRY(exc_invalid_op,                      false ),
 617        TRAP_ENTRY(exc_device_not_available,            false ),
 618        TRAP_ENTRY(exc_coproc_segment_overrun,          false ),
 619        TRAP_ENTRY(exc_invalid_tss,                     false ),
 620        TRAP_ENTRY(exc_segment_not_present,             false ),
 621        TRAP_ENTRY(exc_stack_segment,                   false ),
 622        TRAP_ENTRY(exc_general_protection,              false ),
 623        TRAP_ENTRY(exc_spurious_interrupt_bug,          false ),
 624        TRAP_ENTRY(exc_coprocessor_error,               false ),
 625        TRAP_ENTRY(exc_alignment_check,                 false ),
 626        TRAP_ENTRY(exc_simd_coprocessor_error,          false ),
 627#ifdef CONFIG_X86_KERNEL_IBT
 628        TRAP_ENTRY(exc_control_protection,              false ),
 629#endif
 630};
 631
 632static bool __ref get_trap_addr(void **addr, unsigned int ist)
 633{
 634        unsigned int nr;
 635        bool ist_okay = false;
 636        bool found = false;
 637
 638        /*
 639         * Replace trap handler addresses by Xen specific ones.
 640         * Check for known traps using IST and whitelist them.
 641         * The debugger ones are the only ones we care about.
 642         * Xen will handle faults like double_fault, so we should never see
 643         * them.  Warn if there's an unexpected IST-using fault handler.
 644         */
 645        for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
 646                struct trap_array_entry *entry = trap_array + nr;
 647
 648                if (*addr == entry->orig) {
 649                        *addr = entry->xen;
 650                        ist_okay = entry->ist_okay;
 651                        found = true;
 652                        break;
 653                }
 654        }
 655
 656        if (nr == ARRAY_SIZE(trap_array) &&
 657            *addr >= (void *)early_idt_handler_array[0] &&
 658            *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
 659                nr = (*addr - (void *)early_idt_handler_array[0]) /
 660                     EARLY_IDT_HANDLER_SIZE;
 661                *addr = (void *)xen_early_idt_handler_array[nr];
 662                found = true;
 663        }
 664
 665        if (!found)
 666                *addr = (void *)xen_asm_exc_xen_unknown_trap;
 667
 668        if (WARN_ON(found && ist != 0 && !ist_okay))
 669                return false;
 670
 671        return true;
 672}
 673
 674static int cvt_gate_to_trap(int vector, const gate_desc *val,
 675                            struct trap_info *info)
 676{
 677        unsigned long addr;
 678
 679        if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
 680                return 0;
 681
 682        info->vector = vector;
 683
 684        addr = gate_offset(val);
 685        if (!get_trap_addr((void **)&addr, val->bits.ist))
 686                return 0;
 687        info->address = addr;
 688
 689        info->cs = gate_segment(val);
 690        info->flags = val->bits.dpl;
 691        /* interrupt gates clear IF */
 692        if (val->bits.type == GATE_INTERRUPT)
 693                info->flags |= 1 << 2;
 694
 695        return 1;
 696}
 697
 698/* Locations of each CPU's IDT */
 699static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 700
 701/* Set an IDT entry.  If the entry is part of the current IDT, then
 702   also update Xen. */
 703static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 704{
 705        unsigned long p = (unsigned long)&dt[entrynum];
 706        unsigned long start, end;
 707
 708        trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 709
 710        preempt_disable();
 711
 712        start = __this_cpu_read(idt_desc.address);
 713        end = start + __this_cpu_read(idt_desc.size) + 1;
 714
 715        xen_mc_flush();
 716
 717        native_write_idt_entry(dt, entrynum, g);
 718
 719        if (p >= start && (p + 8) <= end) {
 720                struct trap_info info[2];
 721
 722                info[1].address = 0;
 723
 724                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 725                        if (HYPERVISOR_set_trap_table(info))
 726                                BUG();
 727        }
 728
 729        preempt_enable();
 730}
 731
 732static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
 733                                      struct trap_info *traps, bool full)
 734{
 735        unsigned in, out, count;
 736
 737        count = (desc->size+1) / sizeof(gate_desc);
 738        BUG_ON(count > 256);
 739
 740        for (in = out = 0; in < count; in++) {
 741                gate_desc *entry = (gate_desc *)(desc->address) + in;
 742
 743                if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
 744                        out++;
 745        }
 746
 747        return out;
 748}
 749
 750void xen_copy_trap_info(struct trap_info *traps)
 751{
 752        const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 753
 754        xen_convert_trap_info(desc, traps, true);
 755}
 756
 757/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 758   hold a spinlock to protect the static traps[] array (static because
 759   it avoids allocation, and saves stack space). */
 760static void xen_load_idt(const struct desc_ptr *desc)
 761{
 762        static DEFINE_SPINLOCK(lock);
 763        static struct trap_info traps[257];
 764        unsigned out;
 765
 766        trace_xen_cpu_load_idt(desc);
 767
 768        spin_lock(&lock);
 769
 770        memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 771
 772        out = xen_convert_trap_info(desc, traps, false);
 773        memset(&traps[out], 0, sizeof(traps[0]));
 774
 775        xen_mc_flush();
 776        if (HYPERVISOR_set_trap_table(traps))
 777                BUG();
 778
 779        spin_unlock(&lock);
 780}
 781
 782/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 783   they're handled differently. */
 784static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 785                                const void *desc, int type)
 786{
 787        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 788
 789        preempt_disable();
 790
 791        switch (type) {
 792        case DESC_LDT:
 793        case DESC_TSS:
 794                /* ignore */
 795                break;
 796
 797        default: {
 798                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 799
 800                xen_mc_flush();
 801                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 802                        BUG();
 803        }
 804
 805        }
 806
 807        preempt_enable();
 808}
 809
 810/*
 811 * Version of write_gdt_entry for use at early boot-time needed to
 812 * update an entry as simply as possible.
 813 */
 814static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 815                                            const void *desc, int type)
 816{
 817        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 818
 819        switch (type) {
 820        case DESC_LDT:
 821        case DESC_TSS:
 822                /* ignore */
 823                break;
 824
 825        default: {
 826                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 827
 828                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 829                        dt[entry] = *(struct desc_struct *)desc;
 830        }
 831
 832        }
 833}
 834
 835static void xen_load_sp0(unsigned long sp0)
 836{
 837        struct multicall_space mcs;
 838
 839        mcs = xen_mc_entry(0);
 840        MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
 841        xen_mc_issue(PARAVIRT_LAZY_CPU);
 842        this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 843}
 844
 845#ifdef CONFIG_X86_IOPL_IOPERM
 846static void xen_invalidate_io_bitmap(void)
 847{
 848        struct physdev_set_iobitmap iobitmap = {
 849                .bitmap = NULL,
 850                .nr_ports = 0,
 851        };
 852
 853        native_tss_invalidate_io_bitmap();
 854        HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 855}
 856
 857static void xen_update_io_bitmap(void)
 858{
 859        struct physdev_set_iobitmap iobitmap;
 860        struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 861
 862        native_tss_update_io_bitmap();
 863
 864        iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
 865                          tss->x86_tss.io_bitmap_base;
 866        if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
 867                iobitmap.nr_ports = 0;
 868        else
 869                iobitmap.nr_ports = IO_BITMAP_BITS;
 870
 871        HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 872}
 873#endif
 874
 875static void xen_io_delay(void)
 876{
 877}
 878
 879static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 880
 881static unsigned long xen_read_cr0(void)
 882{
 883        unsigned long cr0 = this_cpu_read(xen_cr0_value);
 884
 885        if (unlikely(cr0 == 0)) {
 886                cr0 = native_read_cr0();
 887                this_cpu_write(xen_cr0_value, cr0);
 888        }
 889
 890        return cr0;
 891}
 892
 893static void xen_write_cr0(unsigned long cr0)
 894{
 895        struct multicall_space mcs;
 896
 897        this_cpu_write(xen_cr0_value, cr0);
 898
 899        /* Only pay attention to cr0.TS; everything else is
 900           ignored. */
 901        mcs = xen_mc_entry(0);
 902
 903        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 904
 905        xen_mc_issue(PARAVIRT_LAZY_CPU);
 906}
 907
 908static void xen_write_cr4(unsigned long cr4)
 909{
 910        cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
 911
 912        native_write_cr4(cr4);
 913}
 914
 915static u64 xen_read_msr_safe(unsigned int msr, int *err)
 916{
 917        u64 val;
 918
 919        if (pmu_msr_read(msr, &val, err))
 920                return val;
 921
 922        val = native_read_msr_safe(msr, err);
 923        switch (msr) {
 924        case MSR_IA32_APICBASE:
 925                val &= ~X2APIC_ENABLE;
 926                break;
 927        }
 928        return val;
 929}
 930
 931static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
 932{
 933        int ret;
 934        unsigned int which;
 935        u64 base;
 936
 937        ret = 0;
 938
 939        switch (msr) {
 940        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
 941        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
 942        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
 943
 944        set:
 945                base = ((u64)high << 32) | low;
 946                if (HYPERVISOR_set_segment_base(which, base) != 0)
 947                        ret = -EIO;
 948                break;
 949
 950        case MSR_STAR:
 951        case MSR_CSTAR:
 952        case MSR_LSTAR:
 953        case MSR_SYSCALL_MASK:
 954        case MSR_IA32_SYSENTER_CS:
 955        case MSR_IA32_SYSENTER_ESP:
 956        case MSR_IA32_SYSENTER_EIP:
 957                /* Fast syscall setup is all done in hypercalls, so
 958                   these are all ignored.  Stub them out here to stop
 959                   Xen console noise. */
 960                break;
 961
 962        default:
 963                if (!pmu_msr_write(msr, low, high, &ret))
 964                        ret = native_write_msr_safe(msr, low, high);
 965        }
 966
 967        return ret;
 968}
 969
 970static u64 xen_read_msr(unsigned int msr)
 971{
 972        /*
 973         * This will silently swallow a #GP from RDMSR.  It may be worth
 974         * changing that.
 975         */
 976        int err;
 977
 978        return xen_read_msr_safe(msr, &err);
 979}
 980
 981static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
 982{
 983        /*
 984         * This will silently swallow a #GP from WRMSR.  It may be worth
 985         * changing that.
 986         */
 987        xen_write_msr_safe(msr, low, high);
 988}
 989
 990/* This is called once we have the cpu_possible_mask */
 991void __init xen_setup_vcpu_info_placement(void)
 992{
 993        int cpu;
 994
 995        for_each_possible_cpu(cpu) {
 996                /* Set up direct vCPU id mapping for PV guests. */
 997                per_cpu(xen_vcpu_id, cpu) = cpu;
 998                xen_vcpu_setup(cpu);
 999        }
1000
1001        pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1002        pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1003        pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1004        pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1005}
1006
1007static const struct pv_info xen_info __initconst = {
1008        .extra_user_64bit_cs = FLAT_USER_CS64,
1009        .name = "Xen",
1010};
1011
1012static const typeof(pv_ops) xen_cpu_ops __initconst = {
1013        .cpu = {
1014                .cpuid = xen_cpuid,
1015
1016                .set_debugreg = xen_set_debugreg,
1017                .get_debugreg = xen_get_debugreg,
1018
1019                .read_cr0 = xen_read_cr0,
1020                .write_cr0 = xen_write_cr0,
1021
1022                .write_cr4 = xen_write_cr4,
1023
1024                .wbinvd = native_wbinvd,
1025
1026                .read_msr = xen_read_msr,
1027                .write_msr = xen_write_msr,
1028
1029                .read_msr_safe = xen_read_msr_safe,
1030                .write_msr_safe = xen_write_msr_safe,
1031
1032                .read_pmc = xen_read_pmc,
1033
1034                .load_tr_desc = paravirt_nop,
1035                .set_ldt = xen_set_ldt,
1036                .load_gdt = xen_load_gdt,
1037                .load_idt = xen_load_idt,
1038                .load_tls = xen_load_tls,
1039                .load_gs_index = xen_load_gs_index,
1040
1041                .alloc_ldt = xen_alloc_ldt,
1042                .free_ldt = xen_free_ldt,
1043
1044                .store_tr = xen_store_tr,
1045
1046                .write_ldt_entry = xen_write_ldt_entry,
1047                .write_gdt_entry = xen_write_gdt_entry,
1048                .write_idt_entry = xen_write_idt_entry,
1049                .load_sp0 = xen_load_sp0,
1050
1051#ifdef CONFIG_X86_IOPL_IOPERM
1052                .invalidate_io_bitmap = xen_invalidate_io_bitmap,
1053                .update_io_bitmap = xen_update_io_bitmap,
1054#endif
1055                .io_delay = xen_io_delay,
1056
1057                .start_context_switch = paravirt_start_context_switch,
1058                .end_context_switch = xen_end_context_switch,
1059        },
1060};
1061
1062static void xen_restart(char *msg)
1063{
1064        xen_reboot(SHUTDOWN_reboot);
1065}
1066
1067static void xen_machine_halt(void)
1068{
1069        xen_reboot(SHUTDOWN_poweroff);
1070}
1071
1072static void xen_machine_power_off(void)
1073{
1074        if (pm_power_off)
1075                pm_power_off();
1076        xen_reboot(SHUTDOWN_poweroff);
1077}
1078
1079static void xen_crash_shutdown(struct pt_regs *regs)
1080{
1081        xen_reboot(SHUTDOWN_crash);
1082}
1083
1084static const struct machine_ops xen_machine_ops __initconst = {
1085        .restart = xen_restart,
1086        .halt = xen_machine_halt,
1087        .power_off = xen_machine_power_off,
1088        .shutdown = xen_machine_halt,
1089        .crash_shutdown = xen_crash_shutdown,
1090        .emergency_restart = xen_emergency_restart,
1091};
1092
1093static unsigned char xen_get_nmi_reason(void)
1094{
1095        unsigned char reason = 0;
1096
1097        /* Construct a value which looks like it came from port 0x61. */
1098        if (test_bit(_XEN_NMIREASON_io_error,
1099                     &HYPERVISOR_shared_info->arch.nmi_reason))
1100                reason |= NMI_REASON_IOCHK;
1101        if (test_bit(_XEN_NMIREASON_pci_serr,
1102                     &HYPERVISOR_shared_info->arch.nmi_reason))
1103                reason |= NMI_REASON_SERR;
1104
1105        return reason;
1106}
1107
1108static void __init xen_boot_params_init_edd(void)
1109{
1110#if IS_ENABLED(CONFIG_EDD)
1111        struct xen_platform_op op;
1112        struct edd_info *edd_info;
1113        u32 *mbr_signature;
1114        unsigned nr;
1115        int ret;
1116
1117        edd_info = boot_params.eddbuf;
1118        mbr_signature = boot_params.edd_mbr_sig_buffer;
1119
1120        op.cmd = XENPF_firmware_info;
1121
1122        op.u.firmware_info.type = XEN_FW_DISK_INFO;
1123        for (nr = 0; nr < EDDMAXNR; nr++) {
1124                struct edd_info *info = edd_info + nr;
1125
1126                op.u.firmware_info.index = nr;
1127                info->params.length = sizeof(info->params);
1128                set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1129                                     &info->params);
1130                ret = HYPERVISOR_platform_op(&op);
1131                if (ret)
1132                        break;
1133
1134#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1135                C(device);
1136                C(version);
1137                C(interface_support);
1138                C(legacy_max_cylinder);
1139                C(legacy_max_head);
1140                C(legacy_sectors_per_track);
1141#undef C
1142        }
1143        boot_params.eddbuf_entries = nr;
1144
1145        op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1146        for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1147                op.u.firmware_info.index = nr;
1148                ret = HYPERVISOR_platform_op(&op);
1149                if (ret)
1150                        break;
1151                mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1152        }
1153        boot_params.edd_mbr_sig_buf_entries = nr;
1154#endif
1155}
1156
1157/*
1158 * Set up the GDT and segment registers for -fstack-protector.  Until
1159 * we do this, we have to be careful not to call any stack-protected
1160 * function, which is most of the kernel.
1161 */
1162static void __init xen_setup_gdt(int cpu)
1163{
1164        pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1165        pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1166
1167        switch_to_new_gdt(cpu);
1168
1169        pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1170        pv_ops.cpu.load_gdt = xen_load_gdt;
1171}
1172
1173static void __init xen_dom0_set_legacy_features(void)
1174{
1175        x86_platform.legacy.rtc = 1;
1176}
1177
1178static void __init xen_domu_set_legacy_features(void)
1179{
1180        x86_platform.legacy.rtc = 0;
1181}
1182
1183extern void early_xen_iret_patch(void);
1184
1185/* First C function to be called on Xen boot */
1186asmlinkage __visible void __init xen_start_kernel(void)
1187{
1188        struct physdev_set_iopl set_iopl;
1189        unsigned long initrd_start = 0;
1190        int rc;
1191
1192        if (!xen_start_info)
1193                return;
1194
1195        __text_gen_insn(&early_xen_iret_patch,
1196                        JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1197                        JMP32_INSN_SIZE);
1198
1199        xen_domain_type = XEN_PV_DOMAIN;
1200        xen_start_flags = xen_start_info->flags;
1201
1202        xen_setup_features();
1203
1204        /* Install Xen paravirt ops */
1205        pv_info = xen_info;
1206        pv_ops.cpu = xen_cpu_ops.cpu;
1207        xen_init_irq_ops();
1208
1209        /*
1210         * Setup xen_vcpu early because it is needed for
1211         * local_irq_disable(), irqs_disabled(), e.g. in printk().
1212         *
1213         * Don't do the full vcpu_info placement stuff until we have
1214         * the cpu_possible_mask and a non-dummy shared_info.
1215         */
1216        xen_vcpu_info_reset(0);
1217
1218        x86_platform.get_nmi_reason = xen_get_nmi_reason;
1219
1220        x86_init.resources.memory_setup = xen_memory_setup;
1221        x86_init.irqs.intr_mode_select  = x86_init_noop;
1222        x86_init.irqs.intr_mode_init    = x86_init_noop;
1223        x86_init.oem.arch_setup = xen_arch_setup;
1224        x86_init.oem.banner = xen_banner;
1225        x86_init.hyper.init_platform = xen_pv_init_platform;
1226        x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1227
1228        /*
1229         * Set up some pagetable state before starting to set any ptes.
1230         */
1231
1232        xen_setup_machphys_mapping();
1233        xen_init_mmu_ops();
1234
1235        /* Prevent unwanted bits from being set in PTEs. */
1236        __supported_pte_mask &= ~_PAGE_GLOBAL;
1237        __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1238
1239        /* Get mfn list */
1240        xen_build_dynamic_phys_to_machine();
1241
1242        /* Work out if we support NX */
1243        get_cpu_cap(&boot_cpu_data);
1244        x86_configure_nx();
1245
1246        /*
1247         * Set up kernel GDT and segment registers, mainly so that
1248         * -fstack-protector code can be executed.
1249         */
1250        xen_setup_gdt(0);
1251
1252        /* Determine virtual and physical address sizes */
1253        get_cpu_address_sizes(&boot_cpu_data);
1254
1255        /* Let's presume PV guests always boot on vCPU with id 0. */
1256        per_cpu(xen_vcpu_id, 0) = 0;
1257
1258        idt_setup_early_handler();
1259
1260        xen_init_capabilities();
1261
1262#ifdef CONFIG_X86_LOCAL_APIC
1263        /*
1264         * set up the basic apic ops.
1265         */
1266        xen_init_apic();
1267#endif
1268
1269        machine_ops = xen_machine_ops;
1270
1271        /*
1272         * The only reliable way to retain the initial address of the
1273         * percpu gdt_page is to remember it here, so we can go and
1274         * mark it RW later, when the initial percpu area is freed.
1275         */
1276        xen_initial_gdt = &per_cpu(gdt_page, 0);
1277
1278        xen_smp_init();
1279
1280#ifdef CONFIG_ACPI_NUMA
1281        /*
1282         * The pages we from Xen are not related to machine pages, so
1283         * any NUMA information the kernel tries to get from ACPI will
1284         * be meaningless.  Prevent it from trying.
1285         */
1286        disable_srat();
1287#endif
1288        WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1289
1290        local_irq_disable();
1291        early_boot_irqs_disabled = true;
1292
1293        xen_raw_console_write("mapping kernel into physical memory\n");
1294        xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1295                                   xen_start_info->nr_pages);
1296        xen_reserve_special_pages();
1297
1298        /*
1299         * We used to do this in xen_arch_setup, but that is too late
1300         * on AMD were early_cpu_init (run before ->arch_setup()) calls
1301         * early_amd_init which pokes 0xcf8 port.
1302         */
1303        set_iopl.iopl = 1;
1304        rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1305        if (rc != 0)
1306                xen_raw_printk("physdev_op failed %d\n", rc);
1307
1308
1309        if (xen_start_info->mod_start) {
1310            if (xen_start_info->flags & SIF_MOD_START_PFN)
1311                initrd_start = PFN_PHYS(xen_start_info->mod_start);
1312            else
1313                initrd_start = __pa(xen_start_info->mod_start);
1314        }
1315
1316        /* Poke various useful things into boot_params */
1317        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1318        boot_params.hdr.ramdisk_image = initrd_start;
1319        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1320        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1321        boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1322
1323        if (!xen_initial_domain()) {
1324                if (pci_xen)
1325                        x86_init.pci.arch_init = pci_xen_init;
1326                x86_platform.set_legacy_features =
1327                                xen_domu_set_legacy_features;
1328        } else {
1329                const struct dom0_vga_console_info *info =
1330                        (void *)((char *)xen_start_info +
1331                                 xen_start_info->console.dom0.info_off);
1332                struct xen_platform_op op = {
1333                        .cmd = XENPF_firmware_info,
1334                        .interface_version = XENPF_INTERFACE_VERSION,
1335                        .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1336                };
1337
1338                x86_platform.set_legacy_features =
1339                                xen_dom0_set_legacy_features;
1340                xen_init_vga(info, xen_start_info->console.dom0.info_size);
1341                xen_start_info->console.domU.mfn = 0;
1342                xen_start_info->console.domU.evtchn = 0;
1343
1344                if (HYPERVISOR_platform_op(&op) == 0)
1345                        boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1346
1347                /* Make sure ACS will be enabled */
1348                pci_request_acs();
1349
1350                xen_acpi_sleep_register();
1351
1352                xen_boot_params_init_edd();
1353
1354#ifdef CONFIG_ACPI
1355                /*
1356                 * Disable selecting "Firmware First mode" for correctable
1357                 * memory errors, as this is the duty of the hypervisor to
1358                 * decide.
1359                 */
1360                acpi_disable_cmcff = 1;
1361#endif
1362        }
1363
1364        xen_add_preferred_consoles();
1365
1366#ifdef CONFIG_PCI
1367        /* PCI BIOS service won't work from a PV guest. */
1368        pci_probe &= ~PCI_PROBE_BIOS;
1369#endif
1370        xen_raw_console_write("about to get started...\n");
1371
1372        /* We need this for printk timestamps */
1373        xen_setup_runstate_info(0);
1374
1375        xen_efi_init(&boot_params);
1376
1377        /* Start the world */
1378        cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1379        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1380}
1381
1382static int xen_cpu_up_prepare_pv(unsigned int cpu)
1383{
1384        int rc;
1385
1386        if (per_cpu(xen_vcpu, cpu) == NULL)
1387                return -ENODEV;
1388
1389        xen_setup_timer(cpu);
1390
1391        rc = xen_smp_intr_init(cpu);
1392        if (rc) {
1393                WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1394                     cpu, rc);
1395                return rc;
1396        }
1397
1398        rc = xen_smp_intr_init_pv(cpu);
1399        if (rc) {
1400                WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1401                     cpu, rc);
1402                return rc;
1403        }
1404
1405        return 0;
1406}
1407
1408static int xen_cpu_dead_pv(unsigned int cpu)
1409{
1410        xen_smp_intr_free(cpu);
1411        xen_smp_intr_free_pv(cpu);
1412
1413        xen_teardown_timer(cpu);
1414
1415        return 0;
1416}
1417
1418static uint32_t __init xen_platform_pv(void)
1419{
1420        if (xen_pv_domain())
1421                return xen_cpuid_base();
1422
1423        return 0;
1424}
1425
1426const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1427        .name                   = "Xen PV",
1428        .detect                 = xen_platform_pv,
1429        .type                   = X86_HYPER_XEN_PV,
1430        .runtime.pin_vcpu       = xen_pin_vcpu,
1431        .ignore_nopv            = true,
1432};
1433