linux/block/blk-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *      -  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-pm.h>
  20#include <linux/blk-integrity.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/t10-pi.h>
  38#include <linux/debugfs.h>
  39#include <linux/bpf.h>
  40#include <linux/psi.h>
  41#include <linux/part_stat.h>
  42#include <linux/sched/sysctl.h>
  43#include <linux/blk-crypto.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/block.h>
  47
  48#include "blk.h"
  49#include "blk-mq-sched.h"
  50#include "blk-pm.h"
  51#include "blk-cgroup.h"
  52#include "blk-throttle.h"
  53
  54struct dentry *blk_debugfs_root;
  55
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
  62
  63DEFINE_IDA(blk_queue_ida);
  64
  65/*
  66 * For queue allocation
  67 */
  68struct kmem_cache *blk_requestq_cachep;
  69struct kmem_cache *blk_requestq_srcu_cachep;
  70
  71/*
  72 * Controlling structure to kblockd
  73 */
  74static struct workqueue_struct *kblockd_workqueue;
  75
  76/**
  77 * blk_queue_flag_set - atomically set a queue flag
  78 * @flag: flag to be set
  79 * @q: request queue
  80 */
  81void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  82{
  83        set_bit(flag, &q->queue_flags);
  84}
  85EXPORT_SYMBOL(blk_queue_flag_set);
  86
  87/**
  88 * blk_queue_flag_clear - atomically clear a queue flag
  89 * @flag: flag to be cleared
  90 * @q: request queue
  91 */
  92void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  93{
  94        clear_bit(flag, &q->queue_flags);
  95}
  96EXPORT_SYMBOL(blk_queue_flag_clear);
  97
  98/**
  99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
 100 * @flag: flag to be set
 101 * @q: request queue
 102 *
 103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 104 * the flag was already set.
 105 */
 106bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 107{
 108        return test_and_set_bit(flag, &q->queue_flags);
 109}
 110EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 111
 112#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 113static const char *const blk_op_name[] = {
 114        REQ_OP_NAME(READ),
 115        REQ_OP_NAME(WRITE),
 116        REQ_OP_NAME(FLUSH),
 117        REQ_OP_NAME(DISCARD),
 118        REQ_OP_NAME(SECURE_ERASE),
 119        REQ_OP_NAME(ZONE_RESET),
 120        REQ_OP_NAME(ZONE_RESET_ALL),
 121        REQ_OP_NAME(ZONE_OPEN),
 122        REQ_OP_NAME(ZONE_CLOSE),
 123        REQ_OP_NAME(ZONE_FINISH),
 124        REQ_OP_NAME(ZONE_APPEND),
 125        REQ_OP_NAME(WRITE_ZEROES),
 126        REQ_OP_NAME(DRV_IN),
 127        REQ_OP_NAME(DRV_OUT),
 128};
 129#undef REQ_OP_NAME
 130
 131/**
 132 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 133 * @op: REQ_OP_XXX.
 134 *
 135 * Description: Centralize block layer function to convert REQ_OP_XXX into
 136 * string format. Useful in the debugging and tracing bio or request. For
 137 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 138 */
 139inline const char *blk_op_str(unsigned int op)
 140{
 141        const char *op_str = "UNKNOWN";
 142
 143        if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 144                op_str = blk_op_name[op];
 145
 146        return op_str;
 147}
 148EXPORT_SYMBOL_GPL(blk_op_str);
 149
 150static const struct {
 151        int             errno;
 152        const char      *name;
 153} blk_errors[] = {
 154        [BLK_STS_OK]            = { 0,          "" },
 155        [BLK_STS_NOTSUPP]       = { -EOPNOTSUPP, "operation not supported" },
 156        [BLK_STS_TIMEOUT]       = { -ETIMEDOUT, "timeout" },
 157        [BLK_STS_NOSPC]         = { -ENOSPC,    "critical space allocation" },
 158        [BLK_STS_TRANSPORT]     = { -ENOLINK,   "recoverable transport" },
 159        [BLK_STS_TARGET]        = { -EREMOTEIO, "critical target" },
 160        [BLK_STS_NEXUS]         = { -EBADE,     "critical nexus" },
 161        [BLK_STS_MEDIUM]        = { -ENODATA,   "critical medium" },
 162        [BLK_STS_PROTECTION]    = { -EILSEQ,    "protection" },
 163        [BLK_STS_RESOURCE]      = { -ENOMEM,    "kernel resource" },
 164        [BLK_STS_DEV_RESOURCE]  = { -EBUSY,     "device resource" },
 165        [BLK_STS_AGAIN]         = { -EAGAIN,    "nonblocking retry" },
 166        [BLK_STS_OFFLINE]       = { -ENODEV,    "device offline" },
 167
 168        /* device mapper special case, should not leak out: */
 169        [BLK_STS_DM_REQUEUE]    = { -EREMCHG, "dm internal retry" },
 170
 171        /* zone device specific errors */
 172        [BLK_STS_ZONE_OPEN_RESOURCE]    = { -ETOOMANYREFS, "open zones exceeded" },
 173        [BLK_STS_ZONE_ACTIVE_RESOURCE]  = { -EOVERFLOW, "active zones exceeded" },
 174
 175        /* everything else not covered above: */
 176        [BLK_STS_IOERR]         = { -EIO,       "I/O" },
 177};
 178
 179blk_status_t errno_to_blk_status(int errno)
 180{
 181        int i;
 182
 183        for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 184                if (blk_errors[i].errno == errno)
 185                        return (__force blk_status_t)i;
 186        }
 187
 188        return BLK_STS_IOERR;
 189}
 190EXPORT_SYMBOL_GPL(errno_to_blk_status);
 191
 192int blk_status_to_errno(blk_status_t status)
 193{
 194        int idx = (__force int)status;
 195
 196        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 197                return -EIO;
 198        return blk_errors[idx].errno;
 199}
 200EXPORT_SYMBOL_GPL(blk_status_to_errno);
 201
 202const char *blk_status_to_str(blk_status_t status)
 203{
 204        int idx = (__force int)status;
 205
 206        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 207                return "<null>";
 208        return blk_errors[idx].name;
 209}
 210
 211/**
 212 * blk_sync_queue - cancel any pending callbacks on a queue
 213 * @q: the queue
 214 *
 215 * Description:
 216 *     The block layer may perform asynchronous callback activity
 217 *     on a queue, such as calling the unplug function after a timeout.
 218 *     A block device may call blk_sync_queue to ensure that any
 219 *     such activity is cancelled, thus allowing it to release resources
 220 *     that the callbacks might use. The caller must already have made sure
 221 *     that its ->submit_bio will not re-add plugging prior to calling
 222 *     this function.
 223 *
 224 *     This function does not cancel any asynchronous activity arising
 225 *     out of elevator or throttling code. That would require elevator_exit()
 226 *     and blkcg_exit_queue() to be called with queue lock initialized.
 227 *
 228 */
 229void blk_sync_queue(struct request_queue *q)
 230{
 231        del_timer_sync(&q->timeout);
 232        cancel_work_sync(&q->timeout_work);
 233}
 234EXPORT_SYMBOL(blk_sync_queue);
 235
 236/**
 237 * blk_set_pm_only - increment pm_only counter
 238 * @q: request queue pointer
 239 */
 240void blk_set_pm_only(struct request_queue *q)
 241{
 242        atomic_inc(&q->pm_only);
 243}
 244EXPORT_SYMBOL_GPL(blk_set_pm_only);
 245
 246void blk_clear_pm_only(struct request_queue *q)
 247{
 248        int pm_only;
 249
 250        pm_only = atomic_dec_return(&q->pm_only);
 251        WARN_ON_ONCE(pm_only < 0);
 252        if (pm_only == 0)
 253                wake_up_all(&q->mq_freeze_wq);
 254}
 255EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 256
 257/**
 258 * blk_put_queue - decrement the request_queue refcount
 259 * @q: the request_queue structure to decrement the refcount for
 260 *
 261 * Decrements the refcount of the request_queue kobject. When this reaches 0
 262 * we'll have blk_release_queue() called.
 263 *
 264 * Context: Any context, but the last reference must not be dropped from
 265 *          atomic context.
 266 */
 267void blk_put_queue(struct request_queue *q)
 268{
 269        kobject_put(&q->kobj);
 270}
 271EXPORT_SYMBOL(blk_put_queue);
 272
 273void blk_queue_start_drain(struct request_queue *q)
 274{
 275        /*
 276         * When queue DYING flag is set, we need to block new req
 277         * entering queue, so we call blk_freeze_queue_start() to
 278         * prevent I/O from crossing blk_queue_enter().
 279         */
 280        blk_freeze_queue_start(q);
 281        if (queue_is_mq(q))
 282                blk_mq_wake_waiters(q);
 283        /* Make blk_queue_enter() reexamine the DYING flag. */
 284        wake_up_all(&q->mq_freeze_wq);
 285}
 286
 287/**
 288 * blk_cleanup_queue - shutdown a request queue
 289 * @q: request queue to shutdown
 290 *
 291 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 292 * put it.  All future requests will be failed immediately with -ENODEV.
 293 *
 294 * Context: can sleep
 295 */
 296void blk_cleanup_queue(struct request_queue *q)
 297{
 298        /* cannot be called from atomic context */
 299        might_sleep();
 300
 301        WARN_ON_ONCE(blk_queue_registered(q));
 302
 303        /* mark @q DYING, no new request or merges will be allowed afterwards */
 304        blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 305        blk_queue_start_drain(q);
 306
 307        blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 308        blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 309
 310        /*
 311         * Drain all requests queued before DYING marking. Set DEAD flag to
 312         * prevent that blk_mq_run_hw_queues() accesses the hardware queues
 313         * after draining finished.
 314         */
 315        blk_freeze_queue(q);
 316
 317        blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
 318
 319        blk_sync_queue(q);
 320        if (queue_is_mq(q)) {
 321                blk_mq_cancel_work_sync(q);
 322                blk_mq_exit_queue(q);
 323        }
 324
 325        /*
 326         * In theory, request pool of sched_tags belongs to request queue.
 327         * However, the current implementation requires tag_set for freeing
 328         * requests, so free the pool now.
 329         *
 330         * Queue has become frozen, there can't be any in-queue requests, so
 331         * it is safe to free requests now.
 332         */
 333        mutex_lock(&q->sysfs_lock);
 334        if (q->elevator)
 335                blk_mq_sched_free_rqs(q);
 336        mutex_unlock(&q->sysfs_lock);
 337
 338        /* @q is and will stay empty, shutdown and put */
 339        blk_put_queue(q);
 340}
 341EXPORT_SYMBOL(blk_cleanup_queue);
 342
 343/**
 344 * blk_queue_enter() - try to increase q->q_usage_counter
 345 * @q: request queue pointer
 346 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 347 */
 348int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 349{
 350        const bool pm = flags & BLK_MQ_REQ_PM;
 351
 352        while (!blk_try_enter_queue(q, pm)) {
 353                if (flags & BLK_MQ_REQ_NOWAIT)
 354                        return -EBUSY;
 355
 356                /*
 357                 * read pair of barrier in blk_freeze_queue_start(), we need to
 358                 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 359                 * reading .mq_freeze_depth or queue dying flag, otherwise the
 360                 * following wait may never return if the two reads are
 361                 * reordered.
 362                 */
 363                smp_rmb();
 364                wait_event(q->mq_freeze_wq,
 365                           (!q->mq_freeze_depth &&
 366                            blk_pm_resume_queue(pm, q)) ||
 367                           blk_queue_dying(q));
 368                if (blk_queue_dying(q))
 369                        return -ENODEV;
 370        }
 371
 372        return 0;
 373}
 374
 375int __bio_queue_enter(struct request_queue *q, struct bio *bio)
 376{
 377        while (!blk_try_enter_queue(q, false)) {
 378                struct gendisk *disk = bio->bi_bdev->bd_disk;
 379
 380                if (bio->bi_opf & REQ_NOWAIT) {
 381                        if (test_bit(GD_DEAD, &disk->state))
 382                                goto dead;
 383                        bio_wouldblock_error(bio);
 384                        return -EBUSY;
 385                }
 386
 387                /*
 388                 * read pair of barrier in blk_freeze_queue_start(), we need to
 389                 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 390                 * reading .mq_freeze_depth or queue dying flag, otherwise the
 391                 * following wait may never return if the two reads are
 392                 * reordered.
 393                 */
 394                smp_rmb();
 395                wait_event(q->mq_freeze_wq,
 396                           (!q->mq_freeze_depth &&
 397                            blk_pm_resume_queue(false, q)) ||
 398                           test_bit(GD_DEAD, &disk->state));
 399                if (test_bit(GD_DEAD, &disk->state))
 400                        goto dead;
 401        }
 402
 403        return 0;
 404dead:
 405        bio_io_error(bio);
 406        return -ENODEV;
 407}
 408
 409void blk_queue_exit(struct request_queue *q)
 410{
 411        percpu_ref_put(&q->q_usage_counter);
 412}
 413
 414static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 415{
 416        struct request_queue *q =
 417                container_of(ref, struct request_queue, q_usage_counter);
 418
 419        wake_up_all(&q->mq_freeze_wq);
 420}
 421
 422static void blk_rq_timed_out_timer(struct timer_list *t)
 423{
 424        struct request_queue *q = from_timer(q, t, timeout);
 425
 426        kblockd_schedule_work(&q->timeout_work);
 427}
 428
 429static void blk_timeout_work(struct work_struct *work)
 430{
 431}
 432
 433struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
 434{
 435        struct request_queue *q;
 436        int ret;
 437
 438        q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
 439                        GFP_KERNEL | __GFP_ZERO, node_id);
 440        if (!q)
 441                return NULL;
 442
 443        if (alloc_srcu) {
 444                blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
 445                if (init_srcu_struct(q->srcu) != 0)
 446                        goto fail_q;
 447        }
 448
 449        q->last_merge = NULL;
 450
 451        q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
 452        if (q->id < 0)
 453                goto fail_srcu;
 454
 455        ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
 456        if (ret)
 457                goto fail_id;
 458
 459        q->stats = blk_alloc_queue_stats();
 460        if (!q->stats)
 461                goto fail_split;
 462
 463        q->node = node_id;
 464
 465        atomic_set(&q->nr_active_requests_shared_tags, 0);
 466
 467        timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 468        INIT_WORK(&q->timeout_work, blk_timeout_work);
 469        INIT_LIST_HEAD(&q->icq_list);
 470
 471        kobject_init(&q->kobj, &blk_queue_ktype);
 472
 473        mutex_init(&q->debugfs_mutex);
 474        mutex_init(&q->sysfs_lock);
 475        mutex_init(&q->sysfs_dir_lock);
 476        spin_lock_init(&q->queue_lock);
 477
 478        init_waitqueue_head(&q->mq_freeze_wq);
 479        mutex_init(&q->mq_freeze_lock);
 480
 481        /*
 482         * Init percpu_ref in atomic mode so that it's faster to shutdown.
 483         * See blk_register_queue() for details.
 484         */
 485        if (percpu_ref_init(&q->q_usage_counter,
 486                                blk_queue_usage_counter_release,
 487                                PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 488                goto fail_stats;
 489
 490        blk_queue_dma_alignment(q, 511);
 491        blk_set_default_limits(&q->limits);
 492        q->nr_requests = BLKDEV_DEFAULT_RQ;
 493
 494        return q;
 495
 496fail_stats:
 497        blk_free_queue_stats(q->stats);
 498fail_split:
 499        bioset_exit(&q->bio_split);
 500fail_id:
 501        ida_simple_remove(&blk_queue_ida, q->id);
 502fail_srcu:
 503        if (alloc_srcu)
 504                cleanup_srcu_struct(q->srcu);
 505fail_q:
 506        kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
 507        return NULL;
 508}
 509
 510/**
 511 * blk_get_queue - increment the request_queue refcount
 512 * @q: the request_queue structure to increment the refcount for
 513 *
 514 * Increment the refcount of the request_queue kobject.
 515 *
 516 * Context: Any context.
 517 */
 518bool blk_get_queue(struct request_queue *q)
 519{
 520        if (likely(!blk_queue_dying(q))) {
 521                __blk_get_queue(q);
 522                return true;
 523        }
 524
 525        return false;
 526}
 527EXPORT_SYMBOL(blk_get_queue);
 528
 529#ifdef CONFIG_FAIL_MAKE_REQUEST
 530
 531static DECLARE_FAULT_ATTR(fail_make_request);
 532
 533static int __init setup_fail_make_request(char *str)
 534{
 535        return setup_fault_attr(&fail_make_request, str);
 536}
 537__setup("fail_make_request=", setup_fail_make_request);
 538
 539bool should_fail_request(struct block_device *part, unsigned int bytes)
 540{
 541        return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
 542}
 543
 544static int __init fail_make_request_debugfs(void)
 545{
 546        struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 547                                                NULL, &fail_make_request);
 548
 549        return PTR_ERR_OR_ZERO(dir);
 550}
 551
 552late_initcall(fail_make_request_debugfs);
 553#endif /* CONFIG_FAIL_MAKE_REQUEST */
 554
 555static inline bool bio_check_ro(struct bio *bio)
 556{
 557        if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
 558                if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 559                        return false;
 560                pr_warn("Trying to write to read-only block-device %pg\n",
 561                        bio->bi_bdev);
 562                /* Older lvm-tools actually trigger this */
 563                return false;
 564        }
 565
 566        return false;
 567}
 568
 569static noinline int should_fail_bio(struct bio *bio)
 570{
 571        if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
 572                return -EIO;
 573        return 0;
 574}
 575ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 576
 577/*
 578 * Check whether this bio extends beyond the end of the device or partition.
 579 * This may well happen - the kernel calls bread() without checking the size of
 580 * the device, e.g., when mounting a file system.
 581 */
 582static inline int bio_check_eod(struct bio *bio)
 583{
 584        sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 585        unsigned int nr_sectors = bio_sectors(bio);
 586
 587        if (nr_sectors && maxsector &&
 588            (nr_sectors > maxsector ||
 589             bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 590                pr_info_ratelimited("%s: attempt to access beyond end of device\n"
 591                                    "%pg: rw=%d, want=%llu, limit=%llu\n",
 592                                    current->comm,
 593                                    bio->bi_bdev, bio->bi_opf,
 594                                    bio_end_sector(bio), maxsector);
 595                return -EIO;
 596        }
 597        return 0;
 598}
 599
 600/*
 601 * Remap block n of partition p to block n+start(p) of the disk.
 602 */
 603static int blk_partition_remap(struct bio *bio)
 604{
 605        struct block_device *p = bio->bi_bdev;
 606
 607        if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 608                return -EIO;
 609        if (bio_sectors(bio)) {
 610                bio->bi_iter.bi_sector += p->bd_start_sect;
 611                trace_block_bio_remap(bio, p->bd_dev,
 612                                      bio->bi_iter.bi_sector -
 613                                      p->bd_start_sect);
 614        }
 615        bio_set_flag(bio, BIO_REMAPPED);
 616        return 0;
 617}
 618
 619/*
 620 * Check write append to a zoned block device.
 621 */
 622static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 623                                                 struct bio *bio)
 624{
 625        sector_t pos = bio->bi_iter.bi_sector;
 626        int nr_sectors = bio_sectors(bio);
 627
 628        /* Only applicable to zoned block devices */
 629        if (!blk_queue_is_zoned(q))
 630                return BLK_STS_NOTSUPP;
 631
 632        /* The bio sector must point to the start of a sequential zone */
 633        if (pos & (blk_queue_zone_sectors(q) - 1) ||
 634            !blk_queue_zone_is_seq(q, pos))
 635                return BLK_STS_IOERR;
 636
 637        /*
 638         * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 639         * split and could result in non-contiguous sectors being written in
 640         * different zones.
 641         */
 642        if (nr_sectors > q->limits.chunk_sectors)
 643                return BLK_STS_IOERR;
 644
 645        /* Make sure the BIO is small enough and will not get split */
 646        if (nr_sectors > q->limits.max_zone_append_sectors)
 647                return BLK_STS_IOERR;
 648
 649        bio->bi_opf |= REQ_NOMERGE;
 650
 651        return BLK_STS_OK;
 652}
 653
 654static void __submit_bio(struct bio *bio)
 655{
 656        struct gendisk *disk = bio->bi_bdev->bd_disk;
 657
 658        if (unlikely(!blk_crypto_bio_prep(&bio)))
 659                return;
 660
 661        if (!disk->fops->submit_bio) {
 662                blk_mq_submit_bio(bio);
 663        } else if (likely(bio_queue_enter(bio) == 0)) {
 664                disk->fops->submit_bio(bio);
 665                blk_queue_exit(disk->queue);
 666        }
 667}
 668
 669/*
 670 * The loop in this function may be a bit non-obvious, and so deserves some
 671 * explanation:
 672 *
 673 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 674 *    that), so we have a list with a single bio.
 675 *  - We pretend that we have just taken it off a longer list, so we assign
 676 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 677 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 678 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 679 *    non-NULL value in bio_list and re-enter the loop from the top.
 680 *  - In this case we really did just take the bio of the top of the list (no
 681 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 682 *    again.
 683 *
 684 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 685 * bio_list_on_stack[1] contains bios that were submitted before the current
 686 *      ->submit_bio, but that haven't been processed yet.
 687 */
 688static void __submit_bio_noacct(struct bio *bio)
 689{
 690        struct bio_list bio_list_on_stack[2];
 691
 692        BUG_ON(bio->bi_next);
 693
 694        bio_list_init(&bio_list_on_stack[0]);
 695        current->bio_list = bio_list_on_stack;
 696
 697        do {
 698                struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 699                struct bio_list lower, same;
 700
 701                /*
 702                 * Create a fresh bio_list for all subordinate requests.
 703                 */
 704                bio_list_on_stack[1] = bio_list_on_stack[0];
 705                bio_list_init(&bio_list_on_stack[0]);
 706
 707                __submit_bio(bio);
 708
 709                /*
 710                 * Sort new bios into those for a lower level and those for the
 711                 * same level.
 712                 */
 713                bio_list_init(&lower);
 714                bio_list_init(&same);
 715                while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
 716                        if (q == bdev_get_queue(bio->bi_bdev))
 717                                bio_list_add(&same, bio);
 718                        else
 719                                bio_list_add(&lower, bio);
 720
 721                /*
 722                 * Now assemble so we handle the lowest level first.
 723                 */
 724                bio_list_merge(&bio_list_on_stack[0], &lower);
 725                bio_list_merge(&bio_list_on_stack[0], &same);
 726                bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
 727        } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
 728
 729        current->bio_list = NULL;
 730}
 731
 732static void __submit_bio_noacct_mq(struct bio *bio)
 733{
 734        struct bio_list bio_list[2] = { };
 735
 736        current->bio_list = bio_list;
 737
 738        do {
 739                __submit_bio(bio);
 740        } while ((bio = bio_list_pop(&bio_list[0])));
 741
 742        current->bio_list = NULL;
 743}
 744
 745void submit_bio_noacct_nocheck(struct bio *bio)
 746{
 747        /*
 748         * We only want one ->submit_bio to be active at a time, else stack
 749         * usage with stacked devices could be a problem.  Use current->bio_list
 750         * to collect a list of requests submited by a ->submit_bio method while
 751         * it is active, and then process them after it returned.
 752         */
 753        if (current->bio_list)
 754                bio_list_add(&current->bio_list[0], bio);
 755        else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
 756                __submit_bio_noacct_mq(bio);
 757        else
 758                __submit_bio_noacct(bio);
 759}
 760
 761/**
 762 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
 763 * @bio:  The bio describing the location in memory and on the device.
 764 *
 765 * This is a version of submit_bio() that shall only be used for I/O that is
 766 * resubmitted to lower level drivers by stacking block drivers.  All file
 767 * systems and other upper level users of the block layer should use
 768 * submit_bio() instead.
 769 */
 770void submit_bio_noacct(struct bio *bio)
 771{
 772        struct block_device *bdev = bio->bi_bdev;
 773        struct request_queue *q = bdev_get_queue(bdev);
 774        blk_status_t status = BLK_STS_IOERR;
 775        struct blk_plug *plug;
 776
 777        might_sleep();
 778
 779        plug = blk_mq_plug(q, bio);
 780        if (plug && plug->nowait)
 781                bio->bi_opf |= REQ_NOWAIT;
 782
 783        /*
 784         * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 785         * if queue does not support NOWAIT.
 786         */
 787        if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
 788                goto not_supported;
 789
 790        if (should_fail_bio(bio))
 791                goto end_io;
 792        if (unlikely(bio_check_ro(bio)))
 793                goto end_io;
 794        if (!bio_flagged(bio, BIO_REMAPPED)) {
 795                if (unlikely(bio_check_eod(bio)))
 796                        goto end_io;
 797                if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
 798                        goto end_io;
 799        }
 800
 801        /*
 802         * Filter flush bio's early so that bio based drivers without flush
 803         * support don't have to worry about them.
 804         */
 805        if (op_is_flush(bio->bi_opf) &&
 806            !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 807                bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 808                if (!bio_sectors(bio)) {
 809                        status = BLK_STS_OK;
 810                        goto end_io;
 811                }
 812        }
 813
 814        if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 815                bio_clear_polled(bio);
 816
 817        switch (bio_op(bio)) {
 818        case REQ_OP_DISCARD:
 819                if (!blk_queue_discard(q))
 820                        goto not_supported;
 821                break;
 822        case REQ_OP_SECURE_ERASE:
 823                if (!blk_queue_secure_erase(q))
 824                        goto not_supported;
 825                break;
 826        case REQ_OP_ZONE_APPEND:
 827                status = blk_check_zone_append(q, bio);
 828                if (status != BLK_STS_OK)
 829                        goto end_io;
 830                break;
 831        case REQ_OP_ZONE_RESET:
 832        case REQ_OP_ZONE_OPEN:
 833        case REQ_OP_ZONE_CLOSE:
 834        case REQ_OP_ZONE_FINISH:
 835                if (!blk_queue_is_zoned(q))
 836                        goto not_supported;
 837                break;
 838        case REQ_OP_ZONE_RESET_ALL:
 839                if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
 840                        goto not_supported;
 841                break;
 842        case REQ_OP_WRITE_ZEROES:
 843                if (!q->limits.max_write_zeroes_sectors)
 844                        goto not_supported;
 845                break;
 846        default:
 847                break;
 848        }
 849
 850        if (blk_throtl_bio(bio))
 851                return;
 852
 853        blk_cgroup_bio_start(bio);
 854        blkcg_bio_issue_init(bio);
 855
 856        if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 857                trace_block_bio_queue(bio);
 858                /* Now that enqueuing has been traced, we need to trace
 859                 * completion as well.
 860                 */
 861                bio_set_flag(bio, BIO_TRACE_COMPLETION);
 862        }
 863        submit_bio_noacct_nocheck(bio);
 864        return;
 865
 866not_supported:
 867        status = BLK_STS_NOTSUPP;
 868end_io:
 869        bio->bi_status = status;
 870        bio_endio(bio);
 871}
 872EXPORT_SYMBOL(submit_bio_noacct);
 873
 874/**
 875 * submit_bio - submit a bio to the block device layer for I/O
 876 * @bio: The &struct bio which describes the I/O
 877 *
 878 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 879 * fully set up &struct bio that describes the I/O that needs to be done.  The
 880 * bio will be send to the device described by the bi_bdev field.
 881 *
 882 * The success/failure status of the request, along with notification of
 883 * completion, is delivered asynchronously through the ->bi_end_io() callback
 884 * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
 885 * been called.
 886 */
 887void submit_bio(struct bio *bio)
 888{
 889        if (blkcg_punt_bio_submit(bio))
 890                return;
 891
 892        /*
 893         * If it's a regular read/write or a barrier with data attached,
 894         * go through the normal accounting stuff before submission.
 895         */
 896        if (bio_has_data(bio)) {
 897                unsigned int count = bio_sectors(bio);
 898
 899                if (op_is_write(bio_op(bio))) {
 900                        count_vm_events(PGPGOUT, count);
 901                } else {
 902                        task_io_account_read(bio->bi_iter.bi_size);
 903                        count_vm_events(PGPGIN, count);
 904                }
 905        }
 906
 907        /*
 908         * If we're reading data that is part of the userspace workingset, count
 909         * submission time as memory stall.  When the device is congested, or
 910         * the submitting cgroup IO-throttled, submission can be a significant
 911         * part of overall IO time.
 912         */
 913        if (unlikely(bio_op(bio) == REQ_OP_READ &&
 914            bio_flagged(bio, BIO_WORKINGSET))) {
 915                unsigned long pflags;
 916
 917                psi_memstall_enter(&pflags);
 918                submit_bio_noacct(bio);
 919                psi_memstall_leave(&pflags);
 920                return;
 921        }
 922
 923        submit_bio_noacct(bio);
 924}
 925EXPORT_SYMBOL(submit_bio);
 926
 927/**
 928 * bio_poll - poll for BIO completions
 929 * @bio: bio to poll for
 930 * @iob: batches of IO
 931 * @flags: BLK_POLL_* flags that control the behavior
 932 *
 933 * Poll for completions on queue associated with the bio. Returns number of
 934 * completed entries found.
 935 *
 936 * Note: the caller must either be the context that submitted @bio, or
 937 * be in a RCU critical section to prevent freeing of @bio.
 938 */
 939int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
 940{
 941        struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 942        blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
 943        int ret = 0;
 944
 945        if (cookie == BLK_QC_T_NONE ||
 946            !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 947                return 0;
 948
 949        blk_flush_plug(current->plug, false);
 950
 951        if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
 952                return 0;
 953        if (queue_is_mq(q)) {
 954                ret = blk_mq_poll(q, cookie, iob, flags);
 955        } else {
 956                struct gendisk *disk = q->disk;
 957
 958                if (disk && disk->fops->poll_bio)
 959                        ret = disk->fops->poll_bio(bio, iob, flags);
 960        }
 961        blk_queue_exit(q);
 962        return ret;
 963}
 964EXPORT_SYMBOL_GPL(bio_poll);
 965
 966/*
 967 * Helper to implement file_operations.iopoll.  Requires the bio to be stored
 968 * in iocb->private, and cleared before freeing the bio.
 969 */
 970int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
 971                    unsigned int flags)
 972{
 973        struct bio *bio;
 974        int ret = 0;
 975
 976        /*
 977         * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
 978         * point to a freshly allocated bio at this point.  If that happens
 979         * we have a few cases to consider:
 980         *
 981         *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
 982         *     simply nothing in this case
 983         *  2) the bio points to a not poll enabled device.  bio_poll will catch
 984         *     this and return 0
 985         *  3) the bio points to a poll capable device, including but not
 986         *     limited to the one that the original bio pointed to.  In this
 987         *     case we will call into the actual poll method and poll for I/O,
 988         *     even if we don't need to, but it won't cause harm either.
 989         *
 990         * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
 991         * is still allocated. Because partitions hold a reference to the whole
 992         * device bdev and thus disk, the disk is also still valid.  Grabbing
 993         * a reference to the queue in bio_poll() ensures the hctxs and requests
 994         * are still valid as well.
 995         */
 996        rcu_read_lock();
 997        bio = READ_ONCE(kiocb->private);
 998        if (bio && bio->bi_bdev)
 999                ret = bio_poll(bio, iob, flags);
1000        rcu_read_unlock();
1001
1002        return ret;
1003}
1004EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1005
1006void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1007{
1008        unsigned long stamp;
1009again:
1010        stamp = READ_ONCE(part->bd_stamp);
1011        if (unlikely(time_after(now, stamp))) {
1012                if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1013                        __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1014        }
1015        if (part->bd_partno) {
1016                part = bdev_whole(part);
1017                goto again;
1018        }
1019}
1020
1021static unsigned long __part_start_io_acct(struct block_device *part,
1022                                          unsigned int sectors, unsigned int op,
1023                                          unsigned long start_time)
1024{
1025        const int sgrp = op_stat_group(op);
1026
1027        part_stat_lock();
1028        update_io_ticks(part, start_time, false);
1029        part_stat_inc(part, ios[sgrp]);
1030        part_stat_add(part, sectors[sgrp], sectors);
1031        part_stat_local_inc(part, in_flight[op_is_write(op)]);
1032        part_stat_unlock();
1033
1034        return start_time;
1035}
1036
1037/**
1038 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1039 * @bio:        bio to start account for
1040 * @start_time: start time that should be passed back to bio_end_io_acct().
1041 */
1042void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1043{
1044        __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1045                             bio_op(bio), start_time);
1046}
1047EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1048
1049/**
1050 * bio_start_io_acct - start I/O accounting for bio based drivers
1051 * @bio:        bio to start account for
1052 *
1053 * Returns the start time that should be passed back to bio_end_io_acct().
1054 */
1055unsigned long bio_start_io_acct(struct bio *bio)
1056{
1057        return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1058                                    bio_op(bio), jiffies);
1059}
1060EXPORT_SYMBOL_GPL(bio_start_io_acct);
1061
1062unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1063                                 unsigned int op)
1064{
1065        return __part_start_io_acct(disk->part0, sectors, op, jiffies);
1066}
1067EXPORT_SYMBOL(disk_start_io_acct);
1068
1069static void __part_end_io_acct(struct block_device *part, unsigned int op,
1070                               unsigned long start_time)
1071{
1072        const int sgrp = op_stat_group(op);
1073        unsigned long now = READ_ONCE(jiffies);
1074        unsigned long duration = now - start_time;
1075
1076        part_stat_lock();
1077        update_io_ticks(part, now, true);
1078        part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1079        part_stat_local_dec(part, in_flight[op_is_write(op)]);
1080        part_stat_unlock();
1081}
1082
1083void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1084                struct block_device *orig_bdev)
1085{
1086        __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1087}
1088EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1089
1090void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1091                      unsigned long start_time)
1092{
1093        __part_end_io_acct(disk->part0, op, start_time);
1094}
1095EXPORT_SYMBOL(disk_end_io_acct);
1096
1097/**
1098 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1099 * @q : the queue of the device being checked
1100 *
1101 * Description:
1102 *    Check if underlying low-level drivers of a device are busy.
1103 *    If the drivers want to export their busy state, they must set own
1104 *    exporting function using blk_queue_lld_busy() first.
1105 *
1106 *    Basically, this function is used only by request stacking drivers
1107 *    to stop dispatching requests to underlying devices when underlying
1108 *    devices are busy.  This behavior helps more I/O merging on the queue
1109 *    of the request stacking driver and prevents I/O throughput regression
1110 *    on burst I/O load.
1111 *
1112 * Return:
1113 *    0 - Not busy (The request stacking driver should dispatch request)
1114 *    1 - Busy (The request stacking driver should stop dispatching request)
1115 */
1116int blk_lld_busy(struct request_queue *q)
1117{
1118        if (queue_is_mq(q) && q->mq_ops->busy)
1119                return q->mq_ops->busy(q);
1120
1121        return 0;
1122}
1123EXPORT_SYMBOL_GPL(blk_lld_busy);
1124
1125int kblockd_schedule_work(struct work_struct *work)
1126{
1127        return queue_work(kblockd_workqueue, work);
1128}
1129EXPORT_SYMBOL(kblockd_schedule_work);
1130
1131int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1132                                unsigned long delay)
1133{
1134        return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1135}
1136EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1137
1138void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1139{
1140        struct task_struct *tsk = current;
1141
1142        /*
1143         * If this is a nested plug, don't actually assign it.
1144         */
1145        if (tsk->plug)
1146                return;
1147
1148        plug->mq_list = NULL;
1149        plug->cached_rq = NULL;
1150        plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1151        plug->rq_count = 0;
1152        plug->multiple_queues = false;
1153        plug->has_elevator = false;
1154        plug->nowait = false;
1155        INIT_LIST_HEAD(&plug->cb_list);
1156
1157        /*
1158         * Store ordering should not be needed here, since a potential
1159         * preempt will imply a full memory barrier
1160         */
1161        tsk->plug = plug;
1162}
1163
1164/**
1165 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1166 * @plug:       The &struct blk_plug that needs to be initialized
1167 *
1168 * Description:
1169 *   blk_start_plug() indicates to the block layer an intent by the caller
1170 *   to submit multiple I/O requests in a batch.  The block layer may use
1171 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1172 *   is called.  However, the block layer may choose to submit requests
1173 *   before a call to blk_finish_plug() if the number of queued I/Os
1174 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1175 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1176 *   the task schedules (see below).
1177 *
1178 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1179 *   pending I/O should the task end up blocking between blk_start_plug() and
1180 *   blk_finish_plug(). This is important from a performance perspective, but
1181 *   also ensures that we don't deadlock. For instance, if the task is blocking
1182 *   for a memory allocation, memory reclaim could end up wanting to free a
1183 *   page belonging to that request that is currently residing in our private
1184 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1185 *   this kind of deadlock.
1186 */
1187void blk_start_plug(struct blk_plug *plug)
1188{
1189        blk_start_plug_nr_ios(plug, 1);
1190}
1191EXPORT_SYMBOL(blk_start_plug);
1192
1193static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1194{
1195        LIST_HEAD(callbacks);
1196
1197        while (!list_empty(&plug->cb_list)) {
1198                list_splice_init(&plug->cb_list, &callbacks);
1199
1200                while (!list_empty(&callbacks)) {
1201                        struct blk_plug_cb *cb = list_first_entry(&callbacks,
1202                                                          struct blk_plug_cb,
1203                                                          list);
1204                        list_del(&cb->list);
1205                        cb->callback(cb, from_schedule);
1206                }
1207        }
1208}
1209
1210struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1211                                      int size)
1212{
1213        struct blk_plug *plug = current->plug;
1214        struct blk_plug_cb *cb;
1215
1216        if (!plug)
1217                return NULL;
1218
1219        list_for_each_entry(cb, &plug->cb_list, list)
1220                if (cb->callback == unplug && cb->data == data)
1221                        return cb;
1222
1223        /* Not currently on the callback list */
1224        BUG_ON(size < sizeof(*cb));
1225        cb = kzalloc(size, GFP_ATOMIC);
1226        if (cb) {
1227                cb->data = data;
1228                cb->callback = unplug;
1229                list_add(&cb->list, &plug->cb_list);
1230        }
1231        return cb;
1232}
1233EXPORT_SYMBOL(blk_check_plugged);
1234
1235void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1236{
1237        if (!list_empty(&plug->cb_list))
1238                flush_plug_callbacks(plug, from_schedule);
1239        if (!rq_list_empty(plug->mq_list))
1240                blk_mq_flush_plug_list(plug, from_schedule);
1241        /*
1242         * Unconditionally flush out cached requests, even if the unplug
1243         * event came from schedule. Since we know hold references to the
1244         * queue for cached requests, we don't want a blocked task holding
1245         * up a queue freeze/quiesce event.
1246         */
1247        if (unlikely(!rq_list_empty(plug->cached_rq)))
1248                blk_mq_free_plug_rqs(plug);
1249}
1250
1251/**
1252 * blk_finish_plug - mark the end of a batch of submitted I/O
1253 * @plug:       The &struct blk_plug passed to blk_start_plug()
1254 *
1255 * Description:
1256 * Indicate that a batch of I/O submissions is complete.  This function
1257 * must be paired with an initial call to blk_start_plug().  The intent
1258 * is to allow the block layer to optimize I/O submission.  See the
1259 * documentation for blk_start_plug() for more information.
1260 */
1261void blk_finish_plug(struct blk_plug *plug)
1262{
1263        if (plug == current->plug) {
1264                __blk_flush_plug(plug, false);
1265                current->plug = NULL;
1266        }
1267}
1268EXPORT_SYMBOL(blk_finish_plug);
1269
1270void blk_io_schedule(void)
1271{
1272        /* Prevent hang_check timer from firing at us during very long I/O */
1273        unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1274
1275        if (timeout)
1276                io_schedule_timeout(timeout);
1277        else
1278                io_schedule();
1279}
1280EXPORT_SYMBOL_GPL(blk_io_schedule);
1281
1282int __init blk_dev_init(void)
1283{
1284        BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1285        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1286                        sizeof_field(struct request, cmd_flags));
1287        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1288                        sizeof_field(struct bio, bi_opf));
1289        BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1290                           __alignof__(struct request_queue)) !=
1291                     sizeof(struct request_queue));
1292
1293        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1294        kblockd_workqueue = alloc_workqueue("kblockd",
1295                                            WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1296        if (!kblockd_workqueue)
1297                panic("Failed to create kblockd\n");
1298
1299        blk_requestq_cachep = kmem_cache_create("request_queue",
1300                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1301
1302        blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1303                        sizeof(struct request_queue) +
1304                        sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1305
1306        blk_debugfs_root = debugfs_create_dir("block", NULL);
1307
1308        return 0;
1309}
1310