linux/block/blk.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef BLK_INTERNAL_H
   3#define BLK_INTERNAL_H
   4
   5#include <linux/blk-crypto.h>
   6#include <linux/memblock.h>     /* for max_pfn/max_low_pfn */
   7#include <xen/xen.h>
   8#include "blk-crypto-internal.h"
   9
  10struct elevator_type;
  11
  12/* Max future timer expiry for timeouts */
  13#define BLK_MAX_TIMEOUT         (5 * HZ)
  14
  15extern struct dentry *blk_debugfs_root;
  16
  17struct blk_flush_queue {
  18        unsigned int            flush_pending_idx:1;
  19        unsigned int            flush_running_idx:1;
  20        blk_status_t            rq_status;
  21        unsigned long           flush_pending_since;
  22        struct list_head        flush_queue[2];
  23        struct list_head        flush_data_in_flight;
  24        struct request          *flush_rq;
  25
  26        spinlock_t              mq_flush_lock;
  27};
  28
  29extern struct kmem_cache *blk_requestq_cachep;
  30extern struct kmem_cache *blk_requestq_srcu_cachep;
  31extern struct kobj_type blk_queue_ktype;
  32extern struct ida blk_queue_ida;
  33
  34static inline void __blk_get_queue(struct request_queue *q)
  35{
  36        kobject_get(&q->kobj);
  37}
  38
  39bool is_flush_rq(struct request *req);
  40
  41struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
  42                                              gfp_t flags);
  43void blk_free_flush_queue(struct blk_flush_queue *q);
  44
  45void blk_freeze_queue(struct request_queue *q);
  46void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
  47void blk_queue_start_drain(struct request_queue *q);
  48int __bio_queue_enter(struct request_queue *q, struct bio *bio);
  49void submit_bio_noacct_nocheck(struct bio *bio);
  50
  51static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
  52{
  53        rcu_read_lock();
  54        if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
  55                goto fail;
  56
  57        /*
  58         * The code that increments the pm_only counter must ensure that the
  59         * counter is globally visible before the queue is unfrozen.
  60         */
  61        if (blk_queue_pm_only(q) &&
  62            (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
  63                goto fail_put;
  64
  65        rcu_read_unlock();
  66        return true;
  67
  68fail_put:
  69        blk_queue_exit(q);
  70fail:
  71        rcu_read_unlock();
  72        return false;
  73}
  74
  75static inline int bio_queue_enter(struct bio *bio)
  76{
  77        struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  78
  79        if (blk_try_enter_queue(q, false))
  80                return 0;
  81        return __bio_queue_enter(q, bio);
  82}
  83
  84#define BIO_INLINE_VECS 4
  85struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
  86                gfp_t gfp_mask);
  87void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
  88
  89static inline bool biovec_phys_mergeable(struct request_queue *q,
  90                struct bio_vec *vec1, struct bio_vec *vec2)
  91{
  92        unsigned long mask = queue_segment_boundary(q);
  93        phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
  94        phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
  95
  96        if (addr1 + vec1->bv_len != addr2)
  97                return false;
  98        if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
  99                return false;
 100        if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
 101                return false;
 102        return true;
 103}
 104
 105static inline bool __bvec_gap_to_prev(struct request_queue *q,
 106                struct bio_vec *bprv, unsigned int offset)
 107{
 108        return (offset & queue_virt_boundary(q)) ||
 109                ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
 110}
 111
 112/*
 113 * Check if adding a bio_vec after bprv with offset would create a gap in
 114 * the SG list. Most drivers don't care about this, but some do.
 115 */
 116static inline bool bvec_gap_to_prev(struct request_queue *q,
 117                struct bio_vec *bprv, unsigned int offset)
 118{
 119        if (!queue_virt_boundary(q))
 120                return false;
 121        return __bvec_gap_to_prev(q, bprv, offset);
 122}
 123
 124static inline bool rq_mergeable(struct request *rq)
 125{
 126        if (blk_rq_is_passthrough(rq))
 127                return false;
 128
 129        if (req_op(rq) == REQ_OP_FLUSH)
 130                return false;
 131
 132        if (req_op(rq) == REQ_OP_WRITE_ZEROES)
 133                return false;
 134
 135        if (req_op(rq) == REQ_OP_ZONE_APPEND)
 136                return false;
 137
 138        if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
 139                return false;
 140        if (rq->rq_flags & RQF_NOMERGE_FLAGS)
 141                return false;
 142
 143        return true;
 144}
 145
 146/*
 147 * There are two different ways to handle DISCARD merges:
 148 *  1) If max_discard_segments > 1, the driver treats every bio as a range and
 149 *     send the bios to controller together. The ranges don't need to be
 150 *     contiguous.
 151 *  2) Otherwise, the request will be normal read/write requests.  The ranges
 152 *     need to be contiguous.
 153 */
 154static inline bool blk_discard_mergable(struct request *req)
 155{
 156        if (req_op(req) == REQ_OP_DISCARD &&
 157            queue_max_discard_segments(req->q) > 1)
 158                return true;
 159        return false;
 160}
 161
 162#ifdef CONFIG_BLK_DEV_INTEGRITY
 163void blk_flush_integrity(void);
 164bool __bio_integrity_endio(struct bio *);
 165void bio_integrity_free(struct bio *bio);
 166static inline bool bio_integrity_endio(struct bio *bio)
 167{
 168        if (bio_integrity(bio))
 169                return __bio_integrity_endio(bio);
 170        return true;
 171}
 172
 173bool blk_integrity_merge_rq(struct request_queue *, struct request *,
 174                struct request *);
 175bool blk_integrity_merge_bio(struct request_queue *, struct request *,
 176                struct bio *);
 177
 178static inline bool integrity_req_gap_back_merge(struct request *req,
 179                struct bio *next)
 180{
 181        struct bio_integrity_payload *bip = bio_integrity(req->bio);
 182        struct bio_integrity_payload *bip_next = bio_integrity(next);
 183
 184        return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
 185                                bip_next->bip_vec[0].bv_offset);
 186}
 187
 188static inline bool integrity_req_gap_front_merge(struct request *req,
 189                struct bio *bio)
 190{
 191        struct bio_integrity_payload *bip = bio_integrity(bio);
 192        struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
 193
 194        return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
 195                                bip_next->bip_vec[0].bv_offset);
 196}
 197
 198int blk_integrity_add(struct gendisk *disk);
 199void blk_integrity_del(struct gendisk *);
 200#else /* CONFIG_BLK_DEV_INTEGRITY */
 201static inline bool blk_integrity_merge_rq(struct request_queue *rq,
 202                struct request *r1, struct request *r2)
 203{
 204        return true;
 205}
 206static inline bool blk_integrity_merge_bio(struct request_queue *rq,
 207                struct request *r, struct bio *b)
 208{
 209        return true;
 210}
 211static inline bool integrity_req_gap_back_merge(struct request *req,
 212                struct bio *next)
 213{
 214        return false;
 215}
 216static inline bool integrity_req_gap_front_merge(struct request *req,
 217                struct bio *bio)
 218{
 219        return false;
 220}
 221
 222static inline void blk_flush_integrity(void)
 223{
 224}
 225static inline bool bio_integrity_endio(struct bio *bio)
 226{
 227        return true;
 228}
 229static inline void bio_integrity_free(struct bio *bio)
 230{
 231}
 232static inline int blk_integrity_add(struct gendisk *disk)
 233{
 234        return 0;
 235}
 236static inline void blk_integrity_del(struct gendisk *disk)
 237{
 238}
 239#endif /* CONFIG_BLK_DEV_INTEGRITY */
 240
 241unsigned long blk_rq_timeout(unsigned long timeout);
 242void blk_add_timer(struct request *req);
 243const char *blk_status_to_str(blk_status_t status);
 244
 245bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
 246                unsigned int nr_segs);
 247bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
 248                        struct bio *bio, unsigned int nr_segs);
 249
 250/*
 251 * Plug flush limits
 252 */
 253#define BLK_MAX_REQUEST_COUNT   32
 254#define BLK_PLUG_FLUSH_SIZE     (128 * 1024)
 255
 256/*
 257 * Internal elevator interface
 258 */
 259#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
 260
 261void blk_insert_flush(struct request *rq);
 262
 263int elevator_switch_mq(struct request_queue *q,
 264                              struct elevator_type *new_e);
 265void elevator_exit(struct request_queue *q);
 266int elv_register_queue(struct request_queue *q, bool uevent);
 267void elv_unregister_queue(struct request_queue *q);
 268
 269ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
 270                char *buf);
 271ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
 272                char *buf);
 273ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
 274                char *buf);
 275ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
 276                char *buf);
 277ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
 278                const char *buf, size_t count);
 279ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
 280ssize_t part_timeout_store(struct device *, struct device_attribute *,
 281                                const char *, size_t);
 282
 283static inline bool blk_may_split(struct request_queue *q, struct bio *bio)
 284{
 285        switch (bio_op(bio)) {
 286        case REQ_OP_DISCARD:
 287        case REQ_OP_SECURE_ERASE:
 288        case REQ_OP_WRITE_ZEROES:
 289                return true; /* non-trivial splitting decisions */
 290        default:
 291                break;
 292        }
 293
 294        /*
 295         * All drivers must accept single-segments bios that are <= PAGE_SIZE.
 296         * This is a quick and dirty check that relies on the fact that
 297         * bi_io_vec[0] is always valid if a bio has data.  The check might
 298         * lead to occasional false negatives when bios are cloned, but compared
 299         * to the performance impact of cloned bios themselves the loop below
 300         * doesn't matter anyway.
 301         */
 302        return q->limits.chunk_sectors || bio->bi_vcnt != 1 ||
 303                bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
 304}
 305
 306void __blk_queue_split(struct request_queue *q, struct bio **bio,
 307                        unsigned int *nr_segs);
 308int ll_back_merge_fn(struct request *req, struct bio *bio,
 309                unsigned int nr_segs);
 310bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 311                                struct request *next);
 312unsigned int blk_recalc_rq_segments(struct request *rq);
 313void blk_rq_set_mixed_merge(struct request *rq);
 314bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
 315enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
 316
 317int blk_dev_init(void);
 318
 319/*
 320 * Contribute to IO statistics IFF:
 321 *
 322 *      a) it's attached to a gendisk, and
 323 *      b) the queue had IO stats enabled when this request was started
 324 */
 325static inline bool blk_do_io_stat(struct request *rq)
 326{
 327        return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
 328}
 329
 330void update_io_ticks(struct block_device *part, unsigned long now, bool end);
 331
 332static inline void req_set_nomerge(struct request_queue *q, struct request *req)
 333{
 334        req->cmd_flags |= REQ_NOMERGE;
 335        if (req == q->last_merge)
 336                q->last_merge = NULL;
 337}
 338
 339/*
 340 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
 341 * is defined as 'unsigned int', meantime it has to aligned to with logical
 342 * block size which is the minimum accepted unit by hardware.
 343 */
 344static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
 345{
 346        return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
 347}
 348
 349/*
 350 * The max bio size which is aligned to q->limits.discard_granularity. This
 351 * is a hint to split large discard bio in generic block layer, then if device
 352 * driver needs to split the discard bio into smaller ones, their bi_size can
 353 * be very probably and easily aligned to discard_granularity of the device's
 354 * queue.
 355 */
 356static inline unsigned int bio_aligned_discard_max_sectors(
 357                                        struct request_queue *q)
 358{
 359        return round_down(UINT_MAX, q->limits.discard_granularity) >>
 360                        SECTOR_SHIFT;
 361}
 362
 363/*
 364 * Internal io_context interface
 365 */
 366struct io_cq *ioc_find_get_icq(struct request_queue *q);
 367struct io_cq *ioc_lookup_icq(struct request_queue *q);
 368#ifdef CONFIG_BLK_ICQ
 369void ioc_clear_queue(struct request_queue *q);
 370#else
 371static inline void ioc_clear_queue(struct request_queue *q)
 372{
 373}
 374#endif /* CONFIG_BLK_ICQ */
 375
 376#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
 377extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
 378extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
 379        const char *page, size_t count);
 380extern void blk_throtl_bio_endio(struct bio *bio);
 381extern void blk_throtl_stat_add(struct request *rq, u64 time);
 382#else
 383static inline void blk_throtl_bio_endio(struct bio *bio) { }
 384static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
 385#endif
 386
 387void __blk_queue_bounce(struct request_queue *q, struct bio **bio);
 388
 389static inline bool blk_queue_may_bounce(struct request_queue *q)
 390{
 391        return IS_ENABLED(CONFIG_BOUNCE) &&
 392                q->limits.bounce == BLK_BOUNCE_HIGH &&
 393                max_low_pfn >= max_pfn;
 394}
 395
 396static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
 397{
 398        if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
 399                __blk_queue_bounce(q, bio);     
 400}
 401
 402#ifdef CONFIG_BLK_CGROUP_IOLATENCY
 403extern int blk_iolatency_init(struct request_queue *q);
 404#else
 405static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
 406#endif
 407
 408#ifdef CONFIG_BLK_DEV_ZONED
 409void blk_queue_free_zone_bitmaps(struct request_queue *q);
 410void blk_queue_clear_zone_settings(struct request_queue *q);
 411#else
 412static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
 413static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
 414#endif
 415
 416int blk_alloc_ext_minor(void);
 417void blk_free_ext_minor(unsigned int minor);
 418#define ADDPART_FLAG_NONE       0
 419#define ADDPART_FLAG_RAID       1
 420#define ADDPART_FLAG_WHOLEDISK  2
 421int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
 422                sector_t length);
 423int bdev_del_partition(struct gendisk *disk, int partno);
 424int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
 425                sector_t length);
 426void blk_drop_partitions(struct gendisk *disk);
 427
 428int bio_add_hw_page(struct request_queue *q, struct bio *bio,
 429                struct page *page, unsigned int len, unsigned int offset,
 430                unsigned int max_sectors, bool *same_page);
 431
 432static inline struct kmem_cache *blk_get_queue_kmem_cache(bool srcu)
 433{
 434        if (srcu)
 435                return blk_requestq_srcu_cachep;
 436        return blk_requestq_cachep;
 437}
 438struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu);
 439
 440int disk_scan_partitions(struct gendisk *disk, fmode_t mode);
 441
 442int disk_alloc_events(struct gendisk *disk);
 443void disk_add_events(struct gendisk *disk);
 444void disk_del_events(struct gendisk *disk);
 445void disk_release_events(struct gendisk *disk);
 446void disk_block_events(struct gendisk *disk);
 447void disk_unblock_events(struct gendisk *disk);
 448void disk_flush_events(struct gendisk *disk, unsigned int mask);
 449extern struct device_attribute dev_attr_events;
 450extern struct device_attribute dev_attr_events_async;
 451extern struct device_attribute dev_attr_events_poll_msecs;
 452
 453static inline void bio_clear_polled(struct bio *bio)
 454{
 455        /* can't support alloc cache if we turn off polling */
 456        bio_clear_flag(bio, BIO_PERCPU_CACHE);
 457        bio->bi_opf &= ~REQ_POLLED;
 458}
 459
 460long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
 461long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
 462
 463extern const struct address_space_operations def_blk_aops;
 464
 465int disk_register_independent_access_ranges(struct gendisk *disk,
 466                                struct blk_independent_access_ranges *new_iars);
 467void disk_unregister_independent_access_ranges(struct gendisk *disk);
 468
 469#ifdef CONFIG_FAIL_MAKE_REQUEST
 470bool should_fail_request(struct block_device *part, unsigned int bytes);
 471#else /* CONFIG_FAIL_MAKE_REQUEST */
 472static inline bool should_fail_request(struct block_device *part,
 473                                        unsigned int bytes)
 474{
 475        return false;
 476}
 477#endif /* CONFIG_FAIL_MAKE_REQUEST */
 478
 479/*
 480 * Optimized request reference counting. Ideally we'd make timeouts be more
 481 * clever, as that's the only reason we need references at all... But until
 482 * this happens, this is faster than using refcount_t. Also see:
 483 *
 484 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
 485 */
 486#define req_ref_zero_or_close_to_overflow(req)  \
 487        ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
 488
 489static inline bool req_ref_inc_not_zero(struct request *req)
 490{
 491        return atomic_inc_not_zero(&req->ref);
 492}
 493
 494static inline bool req_ref_put_and_test(struct request *req)
 495{
 496        WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
 497        return atomic_dec_and_test(&req->ref);
 498}
 499
 500static inline void req_ref_set(struct request *req, int value)
 501{
 502        atomic_set(&req->ref, value);
 503}
 504
 505static inline int req_ref_read(struct request *req)
 506{
 507        return atomic_read(&req->ref);
 508}
 509
 510#endif /* BLK_INTERNAL_H */
 511