linux/drivers/block/null_blk/main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
   4 * Shaohua Li <shli@fb.com>
   5 */
   6#include <linux/module.h>
   7
   8#include <linux/moduleparam.h>
   9#include <linux/sched.h>
  10#include <linux/fs.h>
  11#include <linux/init.h>
  12#include "null_blk.h"
  13
  14#define FREE_BATCH              16
  15
  16#define TICKS_PER_SEC           50ULL
  17#define TIMER_INTERVAL          (NSEC_PER_SEC / TICKS_PER_SEC)
  18
  19#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  20static DECLARE_FAULT_ATTR(null_timeout_attr);
  21static DECLARE_FAULT_ATTR(null_requeue_attr);
  22static DECLARE_FAULT_ATTR(null_init_hctx_attr);
  23#endif
  24
  25static inline u64 mb_per_tick(int mbps)
  26{
  27        return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
  28}
  29
  30/*
  31 * Status flags for nullb_device.
  32 *
  33 * CONFIGURED:  Device has been configured and turned on. Cannot reconfigure.
  34 * UP:          Device is currently on and visible in userspace.
  35 * THROTTLED:   Device is being throttled.
  36 * CACHE:       Device is using a write-back cache.
  37 */
  38enum nullb_device_flags {
  39        NULLB_DEV_FL_CONFIGURED = 0,
  40        NULLB_DEV_FL_UP         = 1,
  41        NULLB_DEV_FL_THROTTLED  = 2,
  42        NULLB_DEV_FL_CACHE      = 3,
  43};
  44
  45#define MAP_SZ          ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
  46/*
  47 * nullb_page is a page in memory for nullb devices.
  48 *
  49 * @page:       The page holding the data.
  50 * @bitmap:     The bitmap represents which sector in the page has data.
  51 *              Each bit represents one block size. For example, sector 8
  52 *              will use the 7th bit
  53 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
  54 * page is being flushing to storage. FREE means the cache page is freed and
  55 * should be skipped from flushing to storage. Please see
  56 * null_make_cache_space
  57 */
  58struct nullb_page {
  59        struct page *page;
  60        DECLARE_BITMAP(bitmap, MAP_SZ);
  61};
  62#define NULLB_PAGE_LOCK (MAP_SZ - 1)
  63#define NULLB_PAGE_FREE (MAP_SZ - 2)
  64
  65static LIST_HEAD(nullb_list);
  66static struct mutex lock;
  67static int null_major;
  68static DEFINE_IDA(nullb_indexes);
  69static struct blk_mq_tag_set tag_set;
  70
  71enum {
  72        NULL_IRQ_NONE           = 0,
  73        NULL_IRQ_SOFTIRQ        = 1,
  74        NULL_IRQ_TIMER          = 2,
  75};
  76
  77enum {
  78        NULL_Q_BIO              = 0,
  79        NULL_Q_RQ               = 1,
  80        NULL_Q_MQ               = 2,
  81};
  82
  83static bool g_virt_boundary = false;
  84module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
  85MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
  86
  87static int g_no_sched;
  88module_param_named(no_sched, g_no_sched, int, 0444);
  89MODULE_PARM_DESC(no_sched, "No io scheduler");
  90
  91static int g_submit_queues = 1;
  92module_param_named(submit_queues, g_submit_queues, int, 0444);
  93MODULE_PARM_DESC(submit_queues, "Number of submission queues");
  94
  95static int g_poll_queues = 1;
  96module_param_named(poll_queues, g_poll_queues, int, 0444);
  97MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
  98
  99static int g_home_node = NUMA_NO_NODE;
 100module_param_named(home_node, g_home_node, int, 0444);
 101MODULE_PARM_DESC(home_node, "Home node for the device");
 102
 103#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
 104/*
 105 * For more details about fault injection, please refer to
 106 * Documentation/fault-injection/fault-injection.rst.
 107 */
 108static char g_timeout_str[80];
 109module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
 110MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
 111
 112static char g_requeue_str[80];
 113module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
 114MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
 115
 116static char g_init_hctx_str[80];
 117module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
 118MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
 119#endif
 120
 121static int g_queue_mode = NULL_Q_MQ;
 122
 123static int null_param_store_val(const char *str, int *val, int min, int max)
 124{
 125        int ret, new_val;
 126
 127        ret = kstrtoint(str, 10, &new_val);
 128        if (ret)
 129                return -EINVAL;
 130
 131        if (new_val < min || new_val > max)
 132                return -EINVAL;
 133
 134        *val = new_val;
 135        return 0;
 136}
 137
 138static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
 139{
 140        return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
 141}
 142
 143static const struct kernel_param_ops null_queue_mode_param_ops = {
 144        .set    = null_set_queue_mode,
 145        .get    = param_get_int,
 146};
 147
 148device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
 149MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
 150
 151static int g_gb = 250;
 152module_param_named(gb, g_gb, int, 0444);
 153MODULE_PARM_DESC(gb, "Size in GB");
 154
 155static int g_bs = 512;
 156module_param_named(bs, g_bs, int, 0444);
 157MODULE_PARM_DESC(bs, "Block size (in bytes)");
 158
 159static int g_max_sectors;
 160module_param_named(max_sectors, g_max_sectors, int, 0444);
 161MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
 162
 163static unsigned int nr_devices = 1;
 164module_param(nr_devices, uint, 0444);
 165MODULE_PARM_DESC(nr_devices, "Number of devices to register");
 166
 167static bool g_blocking;
 168module_param_named(blocking, g_blocking, bool, 0444);
 169MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
 170
 171static bool shared_tags;
 172module_param(shared_tags, bool, 0444);
 173MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
 174
 175static bool g_shared_tag_bitmap;
 176module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
 177MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
 178
 179static int g_irqmode = NULL_IRQ_SOFTIRQ;
 180
 181static int null_set_irqmode(const char *str, const struct kernel_param *kp)
 182{
 183        return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
 184                                        NULL_IRQ_TIMER);
 185}
 186
 187static const struct kernel_param_ops null_irqmode_param_ops = {
 188        .set    = null_set_irqmode,
 189        .get    = param_get_int,
 190};
 191
 192device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
 193MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
 194
 195static unsigned long g_completion_nsec = 10000;
 196module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
 197MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
 198
 199static int g_hw_queue_depth = 64;
 200module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
 201MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
 202
 203static bool g_use_per_node_hctx;
 204module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
 205MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
 206
 207static bool g_zoned;
 208module_param_named(zoned, g_zoned, bool, S_IRUGO);
 209MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
 210
 211static unsigned long g_zone_size = 256;
 212module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
 213MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
 214
 215static unsigned long g_zone_capacity;
 216module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
 217MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
 218
 219static unsigned int g_zone_nr_conv;
 220module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
 221MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
 222
 223static unsigned int g_zone_max_open;
 224module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
 225MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
 226
 227static unsigned int g_zone_max_active;
 228module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
 229MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
 230
 231static struct nullb_device *null_alloc_dev(void);
 232static void null_free_dev(struct nullb_device *dev);
 233static void null_del_dev(struct nullb *nullb);
 234static int null_add_dev(struct nullb_device *dev);
 235static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
 236
 237static inline struct nullb_device *to_nullb_device(struct config_item *item)
 238{
 239        return item ? container_of(item, struct nullb_device, item) : NULL;
 240}
 241
 242static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
 243{
 244        return snprintf(page, PAGE_SIZE, "%u\n", val);
 245}
 246
 247static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
 248        char *page)
 249{
 250        return snprintf(page, PAGE_SIZE, "%lu\n", val);
 251}
 252
 253static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
 254{
 255        return snprintf(page, PAGE_SIZE, "%u\n", val);
 256}
 257
 258static ssize_t nullb_device_uint_attr_store(unsigned int *val,
 259        const char *page, size_t count)
 260{
 261        unsigned int tmp;
 262        int result;
 263
 264        result = kstrtouint(page, 0, &tmp);
 265        if (result < 0)
 266                return result;
 267
 268        *val = tmp;
 269        return count;
 270}
 271
 272static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
 273        const char *page, size_t count)
 274{
 275        int result;
 276        unsigned long tmp;
 277
 278        result = kstrtoul(page, 0, &tmp);
 279        if (result < 0)
 280                return result;
 281
 282        *val = tmp;
 283        return count;
 284}
 285
 286static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
 287        size_t count)
 288{
 289        bool tmp;
 290        int result;
 291
 292        result = kstrtobool(page,  &tmp);
 293        if (result < 0)
 294                return result;
 295
 296        *val = tmp;
 297        return count;
 298}
 299
 300/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
 301#define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)                            \
 302static ssize_t                                                          \
 303nullb_device_##NAME##_show(struct config_item *item, char *page)        \
 304{                                                                       \
 305        return nullb_device_##TYPE##_attr_show(                         \
 306                                to_nullb_device(item)->NAME, page);     \
 307}                                                                       \
 308static ssize_t                                                          \
 309nullb_device_##NAME##_store(struct config_item *item, const char *page, \
 310                            size_t count)                               \
 311{                                                                       \
 312        int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
 313        struct nullb_device *dev = to_nullb_device(item);               \
 314        TYPE new_value = 0;                                             \
 315        int ret;                                                        \
 316                                                                        \
 317        ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
 318        if (ret < 0)                                                    \
 319                return ret;                                             \
 320        if (apply_fn)                                                   \
 321                ret = apply_fn(dev, new_value);                         \
 322        else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags))        \
 323                ret = -EBUSY;                                           \
 324        if (ret < 0)                                                    \
 325                return ret;                                             \
 326        dev->NAME = new_value;                                          \
 327        return count;                                                   \
 328}                                                                       \
 329CONFIGFS_ATTR(nullb_device_, NAME);
 330
 331static int nullb_update_nr_hw_queues(struct nullb_device *dev,
 332                                     unsigned int submit_queues,
 333                                     unsigned int poll_queues)
 334
 335{
 336        struct blk_mq_tag_set *set;
 337        int ret, nr_hw_queues;
 338
 339        if (!dev->nullb)
 340                return 0;
 341
 342        /*
 343         * Make sure at least one submit queue exists.
 344         */
 345        if (!submit_queues)
 346                return -EINVAL;
 347
 348        /*
 349         * Make sure that null_init_hctx() does not access nullb->queues[] past
 350         * the end of that array.
 351         */
 352        if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
 353                return -EINVAL;
 354
 355        /*
 356         * Keep previous and new queue numbers in nullb_device for reference in
 357         * the call back function null_map_queues().
 358         */
 359        dev->prev_submit_queues = dev->submit_queues;
 360        dev->prev_poll_queues = dev->poll_queues;
 361        dev->submit_queues = submit_queues;
 362        dev->poll_queues = poll_queues;
 363
 364        set = dev->nullb->tag_set;
 365        nr_hw_queues = submit_queues + poll_queues;
 366        blk_mq_update_nr_hw_queues(set, nr_hw_queues);
 367        ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
 368
 369        if (ret) {
 370                /* on error, revert the queue numbers */
 371                dev->submit_queues = dev->prev_submit_queues;
 372                dev->poll_queues = dev->prev_poll_queues;
 373        }
 374
 375        return ret;
 376}
 377
 378static int nullb_apply_submit_queues(struct nullb_device *dev,
 379                                     unsigned int submit_queues)
 380{
 381        return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
 382}
 383
 384static int nullb_apply_poll_queues(struct nullb_device *dev,
 385                                   unsigned int poll_queues)
 386{
 387        return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
 388}
 389
 390NULLB_DEVICE_ATTR(size, ulong, NULL);
 391NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
 392NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
 393NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
 394NULLB_DEVICE_ATTR(home_node, uint, NULL);
 395NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
 396NULLB_DEVICE_ATTR(blocksize, uint, NULL);
 397NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
 398NULLB_DEVICE_ATTR(irqmode, uint, NULL);
 399NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
 400NULLB_DEVICE_ATTR(index, uint, NULL);
 401NULLB_DEVICE_ATTR(blocking, bool, NULL);
 402NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
 403NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
 404NULLB_DEVICE_ATTR(discard, bool, NULL);
 405NULLB_DEVICE_ATTR(mbps, uint, NULL);
 406NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
 407NULLB_DEVICE_ATTR(zoned, bool, NULL);
 408NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
 409NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
 410NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
 411NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
 412NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
 413NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
 414
 415static ssize_t nullb_device_power_show(struct config_item *item, char *page)
 416{
 417        return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
 418}
 419
 420static ssize_t nullb_device_power_store(struct config_item *item,
 421                                     const char *page, size_t count)
 422{
 423        struct nullb_device *dev = to_nullb_device(item);
 424        bool newp = false;
 425        ssize_t ret;
 426
 427        ret = nullb_device_bool_attr_store(&newp, page, count);
 428        if (ret < 0)
 429                return ret;
 430
 431        if (!dev->power && newp) {
 432                if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
 433                        return count;
 434                ret = null_add_dev(dev);
 435                if (ret) {
 436                        clear_bit(NULLB_DEV_FL_UP, &dev->flags);
 437                        return ret;
 438                }
 439
 440                set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
 441                dev->power = newp;
 442        } else if (dev->power && !newp) {
 443                if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
 444                        mutex_lock(&lock);
 445                        dev->power = newp;
 446                        null_del_dev(dev->nullb);
 447                        mutex_unlock(&lock);
 448                }
 449                clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
 450        }
 451
 452        return count;
 453}
 454
 455CONFIGFS_ATTR(nullb_device_, power);
 456
 457static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
 458{
 459        struct nullb_device *t_dev = to_nullb_device(item);
 460
 461        return badblocks_show(&t_dev->badblocks, page, 0);
 462}
 463
 464static ssize_t nullb_device_badblocks_store(struct config_item *item,
 465                                     const char *page, size_t count)
 466{
 467        struct nullb_device *t_dev = to_nullb_device(item);
 468        char *orig, *buf, *tmp;
 469        u64 start, end;
 470        int ret;
 471
 472        orig = kstrndup(page, count, GFP_KERNEL);
 473        if (!orig)
 474                return -ENOMEM;
 475
 476        buf = strstrip(orig);
 477
 478        ret = -EINVAL;
 479        if (buf[0] != '+' && buf[0] != '-')
 480                goto out;
 481        tmp = strchr(&buf[1], '-');
 482        if (!tmp)
 483                goto out;
 484        *tmp = '\0';
 485        ret = kstrtoull(buf + 1, 0, &start);
 486        if (ret)
 487                goto out;
 488        ret = kstrtoull(tmp + 1, 0, &end);
 489        if (ret)
 490                goto out;
 491        ret = -EINVAL;
 492        if (start > end)
 493                goto out;
 494        /* enable badblocks */
 495        cmpxchg(&t_dev->badblocks.shift, -1, 0);
 496        if (buf[0] == '+')
 497                ret = badblocks_set(&t_dev->badblocks, start,
 498                        end - start + 1, 1);
 499        else
 500                ret = badblocks_clear(&t_dev->badblocks, start,
 501                        end - start + 1);
 502        if (ret == 0)
 503                ret = count;
 504out:
 505        kfree(orig);
 506        return ret;
 507}
 508CONFIGFS_ATTR(nullb_device_, badblocks);
 509
 510static struct configfs_attribute *nullb_device_attrs[] = {
 511        &nullb_device_attr_size,
 512        &nullb_device_attr_completion_nsec,
 513        &nullb_device_attr_submit_queues,
 514        &nullb_device_attr_poll_queues,
 515        &nullb_device_attr_home_node,
 516        &nullb_device_attr_queue_mode,
 517        &nullb_device_attr_blocksize,
 518        &nullb_device_attr_max_sectors,
 519        &nullb_device_attr_irqmode,
 520        &nullb_device_attr_hw_queue_depth,
 521        &nullb_device_attr_index,
 522        &nullb_device_attr_blocking,
 523        &nullb_device_attr_use_per_node_hctx,
 524        &nullb_device_attr_power,
 525        &nullb_device_attr_memory_backed,
 526        &nullb_device_attr_discard,
 527        &nullb_device_attr_mbps,
 528        &nullb_device_attr_cache_size,
 529        &nullb_device_attr_badblocks,
 530        &nullb_device_attr_zoned,
 531        &nullb_device_attr_zone_size,
 532        &nullb_device_attr_zone_capacity,
 533        &nullb_device_attr_zone_nr_conv,
 534        &nullb_device_attr_zone_max_open,
 535        &nullb_device_attr_zone_max_active,
 536        &nullb_device_attr_virt_boundary,
 537        NULL,
 538};
 539
 540static void nullb_device_release(struct config_item *item)
 541{
 542        struct nullb_device *dev = to_nullb_device(item);
 543
 544        null_free_device_storage(dev, false);
 545        null_free_dev(dev);
 546}
 547
 548static struct configfs_item_operations nullb_device_ops = {
 549        .release        = nullb_device_release,
 550};
 551
 552static const struct config_item_type nullb_device_type = {
 553        .ct_item_ops    = &nullb_device_ops,
 554        .ct_attrs       = nullb_device_attrs,
 555        .ct_owner       = THIS_MODULE,
 556};
 557
 558static struct
 559config_item *nullb_group_make_item(struct config_group *group, const char *name)
 560{
 561        struct nullb_device *dev;
 562
 563        dev = null_alloc_dev();
 564        if (!dev)
 565                return ERR_PTR(-ENOMEM);
 566
 567        config_item_init_type_name(&dev->item, name, &nullb_device_type);
 568
 569        return &dev->item;
 570}
 571
 572static void
 573nullb_group_drop_item(struct config_group *group, struct config_item *item)
 574{
 575        struct nullb_device *dev = to_nullb_device(item);
 576
 577        if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
 578                mutex_lock(&lock);
 579                dev->power = false;
 580                null_del_dev(dev->nullb);
 581                mutex_unlock(&lock);
 582        }
 583
 584        config_item_put(item);
 585}
 586
 587static ssize_t memb_group_features_show(struct config_item *item, char *page)
 588{
 589        return snprintf(page, PAGE_SIZE,
 590                        "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active,blocksize,max_sectors,virt_boundary\n");
 591}
 592
 593CONFIGFS_ATTR_RO(memb_group_, features);
 594
 595static struct configfs_attribute *nullb_group_attrs[] = {
 596        &memb_group_attr_features,
 597        NULL,
 598};
 599
 600static struct configfs_group_operations nullb_group_ops = {
 601        .make_item      = nullb_group_make_item,
 602        .drop_item      = nullb_group_drop_item,
 603};
 604
 605static const struct config_item_type nullb_group_type = {
 606        .ct_group_ops   = &nullb_group_ops,
 607        .ct_attrs       = nullb_group_attrs,
 608        .ct_owner       = THIS_MODULE,
 609};
 610
 611static struct configfs_subsystem nullb_subsys = {
 612        .su_group = {
 613                .cg_item = {
 614                        .ci_namebuf = "nullb",
 615                        .ci_type = &nullb_group_type,
 616                },
 617        },
 618};
 619
 620static inline int null_cache_active(struct nullb *nullb)
 621{
 622        return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
 623}
 624
 625static struct nullb_device *null_alloc_dev(void)
 626{
 627        struct nullb_device *dev;
 628
 629        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 630        if (!dev)
 631                return NULL;
 632        INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
 633        INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
 634        if (badblocks_init(&dev->badblocks, 0)) {
 635                kfree(dev);
 636                return NULL;
 637        }
 638
 639        dev->size = g_gb * 1024;
 640        dev->completion_nsec = g_completion_nsec;
 641        dev->submit_queues = g_submit_queues;
 642        dev->prev_submit_queues = g_submit_queues;
 643        dev->poll_queues = g_poll_queues;
 644        dev->prev_poll_queues = g_poll_queues;
 645        dev->home_node = g_home_node;
 646        dev->queue_mode = g_queue_mode;
 647        dev->blocksize = g_bs;
 648        dev->max_sectors = g_max_sectors;
 649        dev->irqmode = g_irqmode;
 650        dev->hw_queue_depth = g_hw_queue_depth;
 651        dev->blocking = g_blocking;
 652        dev->use_per_node_hctx = g_use_per_node_hctx;
 653        dev->zoned = g_zoned;
 654        dev->zone_size = g_zone_size;
 655        dev->zone_capacity = g_zone_capacity;
 656        dev->zone_nr_conv = g_zone_nr_conv;
 657        dev->zone_max_open = g_zone_max_open;
 658        dev->zone_max_active = g_zone_max_active;
 659        dev->virt_boundary = g_virt_boundary;
 660        return dev;
 661}
 662
 663static void null_free_dev(struct nullb_device *dev)
 664{
 665        if (!dev)
 666                return;
 667
 668        null_free_zoned_dev(dev);
 669        badblocks_exit(&dev->badblocks);
 670        kfree(dev);
 671}
 672
 673static void put_tag(struct nullb_queue *nq, unsigned int tag)
 674{
 675        clear_bit_unlock(tag, nq->tag_map);
 676
 677        if (waitqueue_active(&nq->wait))
 678                wake_up(&nq->wait);
 679}
 680
 681static unsigned int get_tag(struct nullb_queue *nq)
 682{
 683        unsigned int tag;
 684
 685        do {
 686                tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
 687                if (tag >= nq->queue_depth)
 688                        return -1U;
 689        } while (test_and_set_bit_lock(tag, nq->tag_map));
 690
 691        return tag;
 692}
 693
 694static void free_cmd(struct nullb_cmd *cmd)
 695{
 696        put_tag(cmd->nq, cmd->tag);
 697}
 698
 699static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
 700
 701static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
 702{
 703        struct nullb_cmd *cmd;
 704        unsigned int tag;
 705
 706        tag = get_tag(nq);
 707        if (tag != -1U) {
 708                cmd = &nq->cmds[tag];
 709                cmd->tag = tag;
 710                cmd->error = BLK_STS_OK;
 711                cmd->nq = nq;
 712                if (nq->dev->irqmode == NULL_IRQ_TIMER) {
 713                        hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
 714                                     HRTIMER_MODE_REL);
 715                        cmd->timer.function = null_cmd_timer_expired;
 716                }
 717                return cmd;
 718        }
 719
 720        return NULL;
 721}
 722
 723static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
 724{
 725        struct nullb_cmd *cmd;
 726        DEFINE_WAIT(wait);
 727
 728        do {
 729                /*
 730                 * This avoids multiple return statements, multiple calls to
 731                 * __alloc_cmd() and a fast path call to prepare_to_wait().
 732                 */
 733                cmd = __alloc_cmd(nq);
 734                if (cmd) {
 735                        cmd->bio = bio;
 736                        return cmd;
 737                }
 738                prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
 739                io_schedule();
 740                finish_wait(&nq->wait, &wait);
 741        } while (1);
 742}
 743
 744static void end_cmd(struct nullb_cmd *cmd)
 745{
 746        int queue_mode = cmd->nq->dev->queue_mode;
 747
 748        switch (queue_mode)  {
 749        case NULL_Q_MQ:
 750                blk_mq_end_request(cmd->rq, cmd->error);
 751                return;
 752        case NULL_Q_BIO:
 753                cmd->bio->bi_status = cmd->error;
 754                bio_endio(cmd->bio);
 755                break;
 756        }
 757
 758        free_cmd(cmd);
 759}
 760
 761static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
 762{
 763        end_cmd(container_of(timer, struct nullb_cmd, timer));
 764
 765        return HRTIMER_NORESTART;
 766}
 767
 768static void null_cmd_end_timer(struct nullb_cmd *cmd)
 769{
 770        ktime_t kt = cmd->nq->dev->completion_nsec;
 771
 772        hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
 773}
 774
 775static void null_complete_rq(struct request *rq)
 776{
 777        end_cmd(blk_mq_rq_to_pdu(rq));
 778}
 779
 780static struct nullb_page *null_alloc_page(void)
 781{
 782        struct nullb_page *t_page;
 783
 784        t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
 785        if (!t_page)
 786                return NULL;
 787
 788        t_page->page = alloc_pages(GFP_NOIO, 0);
 789        if (!t_page->page) {
 790                kfree(t_page);
 791                return NULL;
 792        }
 793
 794        memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
 795        return t_page;
 796}
 797
 798static void null_free_page(struct nullb_page *t_page)
 799{
 800        __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
 801        if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
 802                return;
 803        __free_page(t_page->page);
 804        kfree(t_page);
 805}
 806
 807static bool null_page_empty(struct nullb_page *page)
 808{
 809        int size = MAP_SZ - 2;
 810
 811        return find_first_bit(page->bitmap, size) == size;
 812}
 813
 814static void null_free_sector(struct nullb *nullb, sector_t sector,
 815        bool is_cache)
 816{
 817        unsigned int sector_bit;
 818        u64 idx;
 819        struct nullb_page *t_page, *ret;
 820        struct radix_tree_root *root;
 821
 822        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 823        idx = sector >> PAGE_SECTORS_SHIFT;
 824        sector_bit = (sector & SECTOR_MASK);
 825
 826        t_page = radix_tree_lookup(root, idx);
 827        if (t_page) {
 828                __clear_bit(sector_bit, t_page->bitmap);
 829
 830                if (null_page_empty(t_page)) {
 831                        ret = radix_tree_delete_item(root, idx, t_page);
 832                        WARN_ON(ret != t_page);
 833                        null_free_page(ret);
 834                        if (is_cache)
 835                                nullb->dev->curr_cache -= PAGE_SIZE;
 836                }
 837        }
 838}
 839
 840static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
 841        struct nullb_page *t_page, bool is_cache)
 842{
 843        struct radix_tree_root *root;
 844
 845        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 846
 847        if (radix_tree_insert(root, idx, t_page)) {
 848                null_free_page(t_page);
 849                t_page = radix_tree_lookup(root, idx);
 850                WARN_ON(!t_page || t_page->page->index != idx);
 851        } else if (is_cache)
 852                nullb->dev->curr_cache += PAGE_SIZE;
 853
 854        return t_page;
 855}
 856
 857static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
 858{
 859        unsigned long pos = 0;
 860        int nr_pages;
 861        struct nullb_page *ret, *t_pages[FREE_BATCH];
 862        struct radix_tree_root *root;
 863
 864        root = is_cache ? &dev->cache : &dev->data;
 865
 866        do {
 867                int i;
 868
 869                nr_pages = radix_tree_gang_lookup(root,
 870                                (void **)t_pages, pos, FREE_BATCH);
 871
 872                for (i = 0; i < nr_pages; i++) {
 873                        pos = t_pages[i]->page->index;
 874                        ret = radix_tree_delete_item(root, pos, t_pages[i]);
 875                        WARN_ON(ret != t_pages[i]);
 876                        null_free_page(ret);
 877                }
 878
 879                pos++;
 880        } while (nr_pages == FREE_BATCH);
 881
 882        if (is_cache)
 883                dev->curr_cache = 0;
 884}
 885
 886static struct nullb_page *__null_lookup_page(struct nullb *nullb,
 887        sector_t sector, bool for_write, bool is_cache)
 888{
 889        unsigned int sector_bit;
 890        u64 idx;
 891        struct nullb_page *t_page;
 892        struct radix_tree_root *root;
 893
 894        idx = sector >> PAGE_SECTORS_SHIFT;
 895        sector_bit = (sector & SECTOR_MASK);
 896
 897        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 898        t_page = radix_tree_lookup(root, idx);
 899        WARN_ON(t_page && t_page->page->index != idx);
 900
 901        if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
 902                return t_page;
 903
 904        return NULL;
 905}
 906
 907static struct nullb_page *null_lookup_page(struct nullb *nullb,
 908        sector_t sector, bool for_write, bool ignore_cache)
 909{
 910        struct nullb_page *page = NULL;
 911
 912        if (!ignore_cache)
 913                page = __null_lookup_page(nullb, sector, for_write, true);
 914        if (page)
 915                return page;
 916        return __null_lookup_page(nullb, sector, for_write, false);
 917}
 918
 919static struct nullb_page *null_insert_page(struct nullb *nullb,
 920                                           sector_t sector, bool ignore_cache)
 921        __releases(&nullb->lock)
 922        __acquires(&nullb->lock)
 923{
 924        u64 idx;
 925        struct nullb_page *t_page;
 926
 927        t_page = null_lookup_page(nullb, sector, true, ignore_cache);
 928        if (t_page)
 929                return t_page;
 930
 931        spin_unlock_irq(&nullb->lock);
 932
 933        t_page = null_alloc_page();
 934        if (!t_page)
 935                goto out_lock;
 936
 937        if (radix_tree_preload(GFP_NOIO))
 938                goto out_freepage;
 939
 940        spin_lock_irq(&nullb->lock);
 941        idx = sector >> PAGE_SECTORS_SHIFT;
 942        t_page->page->index = idx;
 943        t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
 944        radix_tree_preload_end();
 945
 946        return t_page;
 947out_freepage:
 948        null_free_page(t_page);
 949out_lock:
 950        spin_lock_irq(&nullb->lock);
 951        return null_lookup_page(nullb, sector, true, ignore_cache);
 952}
 953
 954static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
 955{
 956        int i;
 957        unsigned int offset;
 958        u64 idx;
 959        struct nullb_page *t_page, *ret;
 960        void *dst, *src;
 961
 962        idx = c_page->page->index;
 963
 964        t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
 965
 966        __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
 967        if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
 968                null_free_page(c_page);
 969                if (t_page && null_page_empty(t_page)) {
 970                        ret = radix_tree_delete_item(&nullb->dev->data,
 971                                idx, t_page);
 972                        null_free_page(t_page);
 973                }
 974                return 0;
 975        }
 976
 977        if (!t_page)
 978                return -ENOMEM;
 979
 980        src = kmap_atomic(c_page->page);
 981        dst = kmap_atomic(t_page->page);
 982
 983        for (i = 0; i < PAGE_SECTORS;
 984                        i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
 985                if (test_bit(i, c_page->bitmap)) {
 986                        offset = (i << SECTOR_SHIFT);
 987                        memcpy(dst + offset, src + offset,
 988                                nullb->dev->blocksize);
 989                        __set_bit(i, t_page->bitmap);
 990                }
 991        }
 992
 993        kunmap_atomic(dst);
 994        kunmap_atomic(src);
 995
 996        ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
 997        null_free_page(ret);
 998        nullb->dev->curr_cache -= PAGE_SIZE;
 999
1000        return 0;
1001}
1002
1003static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1004{
1005        int i, err, nr_pages;
1006        struct nullb_page *c_pages[FREE_BATCH];
1007        unsigned long flushed = 0, one_round;
1008
1009again:
1010        if ((nullb->dev->cache_size * 1024 * 1024) >
1011             nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1012                return 0;
1013
1014        nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1015                        (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1016        /*
1017         * nullb_flush_cache_page could unlock before using the c_pages. To
1018         * avoid race, we don't allow page free
1019         */
1020        for (i = 0; i < nr_pages; i++) {
1021                nullb->cache_flush_pos = c_pages[i]->page->index;
1022                /*
1023                 * We found the page which is being flushed to disk by other
1024                 * threads
1025                 */
1026                if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1027                        c_pages[i] = NULL;
1028                else
1029                        __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1030        }
1031
1032        one_round = 0;
1033        for (i = 0; i < nr_pages; i++) {
1034                if (c_pages[i] == NULL)
1035                        continue;
1036                err = null_flush_cache_page(nullb, c_pages[i]);
1037                if (err)
1038                        return err;
1039                one_round++;
1040        }
1041        flushed += one_round << PAGE_SHIFT;
1042
1043        if (n > flushed) {
1044                if (nr_pages == 0)
1045                        nullb->cache_flush_pos = 0;
1046                if (one_round == 0) {
1047                        /* give other threads a chance */
1048                        spin_unlock_irq(&nullb->lock);
1049                        spin_lock_irq(&nullb->lock);
1050                }
1051                goto again;
1052        }
1053        return 0;
1054}
1055
1056static int copy_to_nullb(struct nullb *nullb, struct page *source,
1057        unsigned int off, sector_t sector, size_t n, bool is_fua)
1058{
1059        size_t temp, count = 0;
1060        unsigned int offset;
1061        struct nullb_page *t_page;
1062        void *dst, *src;
1063
1064        while (count < n) {
1065                temp = min_t(size_t, nullb->dev->blocksize, n - count);
1066
1067                if (null_cache_active(nullb) && !is_fua)
1068                        null_make_cache_space(nullb, PAGE_SIZE);
1069
1070                offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1071                t_page = null_insert_page(nullb, sector,
1072                        !null_cache_active(nullb) || is_fua);
1073                if (!t_page)
1074                        return -ENOSPC;
1075
1076                src = kmap_atomic(source);
1077                dst = kmap_atomic(t_page->page);
1078                memcpy(dst + offset, src + off + count, temp);
1079                kunmap_atomic(dst);
1080                kunmap_atomic(src);
1081
1082                __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1083
1084                if (is_fua)
1085                        null_free_sector(nullb, sector, true);
1086
1087                count += temp;
1088                sector += temp >> SECTOR_SHIFT;
1089        }
1090        return 0;
1091}
1092
1093static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1094        unsigned int off, sector_t sector, size_t n)
1095{
1096        size_t temp, count = 0;
1097        unsigned int offset;
1098        struct nullb_page *t_page;
1099        void *dst, *src;
1100
1101        while (count < n) {
1102                temp = min_t(size_t, nullb->dev->blocksize, n - count);
1103
1104                offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1105                t_page = null_lookup_page(nullb, sector, false,
1106                        !null_cache_active(nullb));
1107
1108                dst = kmap_atomic(dest);
1109                if (!t_page) {
1110                        memset(dst + off + count, 0, temp);
1111                        goto next;
1112                }
1113                src = kmap_atomic(t_page->page);
1114                memcpy(dst + off + count, src + offset, temp);
1115                kunmap_atomic(src);
1116next:
1117                kunmap_atomic(dst);
1118
1119                count += temp;
1120                sector += temp >> SECTOR_SHIFT;
1121        }
1122        return 0;
1123}
1124
1125static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1126                               unsigned int len, unsigned int off)
1127{
1128        void *dst;
1129
1130        dst = kmap_atomic(page);
1131        memset(dst + off, 0xFF, len);
1132        kunmap_atomic(dst);
1133}
1134
1135blk_status_t null_handle_discard(struct nullb_device *dev,
1136                                 sector_t sector, sector_t nr_sectors)
1137{
1138        struct nullb *nullb = dev->nullb;
1139        size_t n = nr_sectors << SECTOR_SHIFT;
1140        size_t temp;
1141
1142        spin_lock_irq(&nullb->lock);
1143        while (n > 0) {
1144                temp = min_t(size_t, n, dev->blocksize);
1145                null_free_sector(nullb, sector, false);
1146                if (null_cache_active(nullb))
1147                        null_free_sector(nullb, sector, true);
1148                sector += temp >> SECTOR_SHIFT;
1149                n -= temp;
1150        }
1151        spin_unlock_irq(&nullb->lock);
1152
1153        return BLK_STS_OK;
1154}
1155
1156static int null_handle_flush(struct nullb *nullb)
1157{
1158        int err;
1159
1160        if (!null_cache_active(nullb))
1161                return 0;
1162
1163        spin_lock_irq(&nullb->lock);
1164        while (true) {
1165                err = null_make_cache_space(nullb,
1166                        nullb->dev->cache_size * 1024 * 1024);
1167                if (err || nullb->dev->curr_cache == 0)
1168                        break;
1169        }
1170
1171        WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1172        spin_unlock_irq(&nullb->lock);
1173        return err;
1174}
1175
1176static int null_transfer(struct nullb *nullb, struct page *page,
1177        unsigned int len, unsigned int off, bool is_write, sector_t sector,
1178        bool is_fua)
1179{
1180        struct nullb_device *dev = nullb->dev;
1181        unsigned int valid_len = len;
1182        int err = 0;
1183
1184        if (!is_write) {
1185                if (dev->zoned)
1186                        valid_len = null_zone_valid_read_len(nullb,
1187                                sector, len);
1188
1189                if (valid_len) {
1190                        err = copy_from_nullb(nullb, page, off,
1191                                sector, valid_len);
1192                        off += valid_len;
1193                        len -= valid_len;
1194                }
1195
1196                if (len)
1197                        nullb_fill_pattern(nullb, page, len, off);
1198                flush_dcache_page(page);
1199        } else {
1200                flush_dcache_page(page);
1201                err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1202        }
1203
1204        return err;
1205}
1206
1207static int null_handle_rq(struct nullb_cmd *cmd)
1208{
1209        struct request *rq = cmd->rq;
1210        struct nullb *nullb = cmd->nq->dev->nullb;
1211        int err;
1212        unsigned int len;
1213        sector_t sector = blk_rq_pos(rq);
1214        struct req_iterator iter;
1215        struct bio_vec bvec;
1216
1217        spin_lock_irq(&nullb->lock);
1218        rq_for_each_segment(bvec, rq, iter) {
1219                len = bvec.bv_len;
1220                err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1221                                     op_is_write(req_op(rq)), sector,
1222                                     rq->cmd_flags & REQ_FUA);
1223                if (err) {
1224                        spin_unlock_irq(&nullb->lock);
1225                        return err;
1226                }
1227                sector += len >> SECTOR_SHIFT;
1228        }
1229        spin_unlock_irq(&nullb->lock);
1230
1231        return 0;
1232}
1233
1234static int null_handle_bio(struct nullb_cmd *cmd)
1235{
1236        struct bio *bio = cmd->bio;
1237        struct nullb *nullb = cmd->nq->dev->nullb;
1238        int err;
1239        unsigned int len;
1240        sector_t sector = bio->bi_iter.bi_sector;
1241        struct bio_vec bvec;
1242        struct bvec_iter iter;
1243
1244        spin_lock_irq(&nullb->lock);
1245        bio_for_each_segment(bvec, bio, iter) {
1246                len = bvec.bv_len;
1247                err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1248                                     op_is_write(bio_op(bio)), sector,
1249                                     bio->bi_opf & REQ_FUA);
1250                if (err) {
1251                        spin_unlock_irq(&nullb->lock);
1252                        return err;
1253                }
1254                sector += len >> SECTOR_SHIFT;
1255        }
1256        spin_unlock_irq(&nullb->lock);
1257        return 0;
1258}
1259
1260static void null_stop_queue(struct nullb *nullb)
1261{
1262        struct request_queue *q = nullb->q;
1263
1264        if (nullb->dev->queue_mode == NULL_Q_MQ)
1265                blk_mq_stop_hw_queues(q);
1266}
1267
1268static void null_restart_queue_async(struct nullb *nullb)
1269{
1270        struct request_queue *q = nullb->q;
1271
1272        if (nullb->dev->queue_mode == NULL_Q_MQ)
1273                blk_mq_start_stopped_hw_queues(q, true);
1274}
1275
1276static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1277{
1278        struct nullb_device *dev = cmd->nq->dev;
1279        struct nullb *nullb = dev->nullb;
1280        blk_status_t sts = BLK_STS_OK;
1281        struct request *rq = cmd->rq;
1282
1283        if (!hrtimer_active(&nullb->bw_timer))
1284                hrtimer_restart(&nullb->bw_timer);
1285
1286        if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1287                null_stop_queue(nullb);
1288                /* race with timer */
1289                if (atomic_long_read(&nullb->cur_bytes) > 0)
1290                        null_restart_queue_async(nullb);
1291                /* requeue request */
1292                sts = BLK_STS_DEV_RESOURCE;
1293        }
1294        return sts;
1295}
1296
1297static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1298                                                 sector_t sector,
1299                                                 sector_t nr_sectors)
1300{
1301        struct badblocks *bb = &cmd->nq->dev->badblocks;
1302        sector_t first_bad;
1303        int bad_sectors;
1304
1305        if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1306                return BLK_STS_IOERR;
1307
1308        return BLK_STS_OK;
1309}
1310
1311static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1312                                                     enum req_opf op,
1313                                                     sector_t sector,
1314                                                     sector_t nr_sectors)
1315{
1316        struct nullb_device *dev = cmd->nq->dev;
1317        int err;
1318
1319        if (op == REQ_OP_DISCARD)
1320                return null_handle_discard(dev, sector, nr_sectors);
1321
1322        if (dev->queue_mode == NULL_Q_BIO)
1323                err = null_handle_bio(cmd);
1324        else
1325                err = null_handle_rq(cmd);
1326
1327        return errno_to_blk_status(err);
1328}
1329
1330static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1331{
1332        struct nullb_device *dev = cmd->nq->dev;
1333        struct bio *bio;
1334
1335        if (dev->memory_backed)
1336                return;
1337
1338        if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1339                zero_fill_bio(cmd->bio);
1340        } else if (req_op(cmd->rq) == REQ_OP_READ) {
1341                __rq_for_each_bio(bio, cmd->rq)
1342                        zero_fill_bio(bio);
1343        }
1344}
1345
1346static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1347{
1348        /*
1349         * Since root privileges are required to configure the null_blk
1350         * driver, it is fine that this driver does not initialize the
1351         * data buffers of read commands. Zero-initialize these buffers
1352         * anyway if KMSAN is enabled to prevent that KMSAN complains
1353         * about null_blk not initializing read data buffers.
1354         */
1355        if (IS_ENABLED(CONFIG_KMSAN))
1356                nullb_zero_read_cmd_buffer(cmd);
1357
1358        /* Complete IO by inline, softirq or timer */
1359        switch (cmd->nq->dev->irqmode) {
1360        case NULL_IRQ_SOFTIRQ:
1361                switch (cmd->nq->dev->queue_mode) {
1362                case NULL_Q_MQ:
1363                        if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1364                                blk_mq_complete_request(cmd->rq);
1365                        break;
1366                case NULL_Q_BIO:
1367                        /*
1368                         * XXX: no proper submitting cpu information available.
1369                         */
1370                        end_cmd(cmd);
1371                        break;
1372                }
1373                break;
1374        case NULL_IRQ_NONE:
1375                end_cmd(cmd);
1376                break;
1377        case NULL_IRQ_TIMER:
1378                null_cmd_end_timer(cmd);
1379                break;
1380        }
1381}
1382
1383blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1384                              enum req_opf op, sector_t sector,
1385                              unsigned int nr_sectors)
1386{
1387        struct nullb_device *dev = cmd->nq->dev;
1388        blk_status_t ret;
1389
1390        if (dev->badblocks.shift != -1) {
1391                ret = null_handle_badblocks(cmd, sector, nr_sectors);
1392                if (ret != BLK_STS_OK)
1393                        return ret;
1394        }
1395
1396        if (dev->memory_backed)
1397                return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1398
1399        return BLK_STS_OK;
1400}
1401
1402static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1403                                    sector_t nr_sectors, enum req_opf op)
1404{
1405        struct nullb_device *dev = cmd->nq->dev;
1406        struct nullb *nullb = dev->nullb;
1407        blk_status_t sts;
1408
1409        if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1410                sts = null_handle_throttled(cmd);
1411                if (sts != BLK_STS_OK)
1412                        return sts;
1413        }
1414
1415        if (op == REQ_OP_FLUSH) {
1416                cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1417                goto out;
1418        }
1419
1420        if (dev->zoned)
1421                sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1422        else
1423                sts = null_process_cmd(cmd, op, sector, nr_sectors);
1424
1425        /* Do not overwrite errors (e.g. timeout errors) */
1426        if (cmd->error == BLK_STS_OK)
1427                cmd->error = sts;
1428
1429out:
1430        nullb_complete_cmd(cmd);
1431        return BLK_STS_OK;
1432}
1433
1434static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1435{
1436        struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1437        ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1438        unsigned int mbps = nullb->dev->mbps;
1439
1440        if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1441                return HRTIMER_NORESTART;
1442
1443        atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1444        null_restart_queue_async(nullb);
1445
1446        hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1447
1448        return HRTIMER_RESTART;
1449}
1450
1451static void nullb_setup_bwtimer(struct nullb *nullb)
1452{
1453        ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1454
1455        hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1456        nullb->bw_timer.function = nullb_bwtimer_fn;
1457        atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1458        hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1459}
1460
1461static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1462{
1463        int index = 0;
1464
1465        if (nullb->nr_queues != 1)
1466                index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1467
1468        return &nullb->queues[index];
1469}
1470
1471static void null_submit_bio(struct bio *bio)
1472{
1473        sector_t sector = bio->bi_iter.bi_sector;
1474        sector_t nr_sectors = bio_sectors(bio);
1475        struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1476        struct nullb_queue *nq = nullb_to_queue(nullb);
1477
1478        null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
1479}
1480
1481static bool should_timeout_request(struct request *rq)
1482{
1483#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1484        if (g_timeout_str[0])
1485                return should_fail(&null_timeout_attr, 1);
1486#endif
1487        return false;
1488}
1489
1490static bool should_requeue_request(struct request *rq)
1491{
1492#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1493        if (g_requeue_str[0])
1494                return should_fail(&null_requeue_attr, 1);
1495#endif
1496        return false;
1497}
1498
1499static int null_map_queues(struct blk_mq_tag_set *set)
1500{
1501        struct nullb *nullb = set->driver_data;
1502        int i, qoff;
1503        unsigned int submit_queues = g_submit_queues;
1504        unsigned int poll_queues = g_poll_queues;
1505
1506        if (nullb) {
1507                struct nullb_device *dev = nullb->dev;
1508
1509                /*
1510                 * Refer nr_hw_queues of the tag set to check if the expected
1511                 * number of hardware queues are prepared. If block layer failed
1512                 * to prepare them, use previous numbers of submit queues and
1513                 * poll queues to map queues.
1514                 */
1515                if (set->nr_hw_queues ==
1516                    dev->submit_queues + dev->poll_queues) {
1517                        submit_queues = dev->submit_queues;
1518                        poll_queues = dev->poll_queues;
1519                } else if (set->nr_hw_queues ==
1520                           dev->prev_submit_queues + dev->prev_poll_queues) {
1521                        submit_queues = dev->prev_submit_queues;
1522                        poll_queues = dev->prev_poll_queues;
1523                } else {
1524                        pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1525                                set->nr_hw_queues);
1526                        return -EINVAL;
1527                }
1528        }
1529
1530        for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1531                struct blk_mq_queue_map *map = &set->map[i];
1532
1533                switch (i) {
1534                case HCTX_TYPE_DEFAULT:
1535                        map->nr_queues = submit_queues;
1536                        break;
1537                case HCTX_TYPE_READ:
1538                        map->nr_queues = 0;
1539                        continue;
1540                case HCTX_TYPE_POLL:
1541                        map->nr_queues = poll_queues;
1542                        break;
1543                }
1544                map->queue_offset = qoff;
1545                qoff += map->nr_queues;
1546                blk_mq_map_queues(map);
1547        }
1548
1549        return 0;
1550}
1551
1552static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1553{
1554        struct nullb_queue *nq = hctx->driver_data;
1555        LIST_HEAD(list);
1556        int nr = 0;
1557
1558        spin_lock(&nq->poll_lock);
1559        list_splice_init(&nq->poll_list, &list);
1560        spin_unlock(&nq->poll_lock);
1561
1562        while (!list_empty(&list)) {
1563                struct nullb_cmd *cmd;
1564                struct request *req;
1565
1566                req = list_first_entry(&list, struct request, queuelist);
1567                list_del_init(&req->queuelist);
1568                cmd = blk_mq_rq_to_pdu(req);
1569                cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1570                                                blk_rq_sectors(req));
1571                if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1572                                        blk_mq_end_request_batch))
1573                        end_cmd(cmd);
1574                nr++;
1575        }
1576
1577        return nr;
1578}
1579
1580static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1581{
1582        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1583        struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1584
1585        pr_info("rq %p timed out\n", rq);
1586
1587        if (hctx->type == HCTX_TYPE_POLL) {
1588                struct nullb_queue *nq = hctx->driver_data;
1589
1590                spin_lock(&nq->poll_lock);
1591                list_del_init(&rq->queuelist);
1592                spin_unlock(&nq->poll_lock);
1593        }
1594
1595        /*
1596         * If the device is marked as blocking (i.e. memory backed or zoned
1597         * device), the submission path may be blocked waiting for resources
1598         * and cause real timeouts. For these real timeouts, the submission
1599         * path will complete the request using blk_mq_complete_request().
1600         * Only fake timeouts need to execute blk_mq_complete_request() here.
1601         */
1602        cmd->error = BLK_STS_TIMEOUT;
1603        if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1604                blk_mq_complete_request(rq);
1605        return BLK_EH_DONE;
1606}
1607
1608static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1609                         const struct blk_mq_queue_data *bd)
1610{
1611        struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1612        struct nullb_queue *nq = hctx->driver_data;
1613        sector_t nr_sectors = blk_rq_sectors(bd->rq);
1614        sector_t sector = blk_rq_pos(bd->rq);
1615        const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1616
1617        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1618
1619        if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1620                hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1621                cmd->timer.function = null_cmd_timer_expired;
1622        }
1623        cmd->rq = bd->rq;
1624        cmd->error = BLK_STS_OK;
1625        cmd->nq = nq;
1626        cmd->fake_timeout = should_timeout_request(bd->rq);
1627
1628        blk_mq_start_request(bd->rq);
1629
1630        if (should_requeue_request(bd->rq)) {
1631                /*
1632                 * Alternate between hitting the core BUSY path, and the
1633                 * driver driven requeue path
1634                 */
1635                nq->requeue_selection++;
1636                if (nq->requeue_selection & 1)
1637                        return BLK_STS_RESOURCE;
1638                else {
1639                        blk_mq_requeue_request(bd->rq, true);
1640                        return BLK_STS_OK;
1641                }
1642        }
1643
1644        if (is_poll) {
1645                spin_lock(&nq->poll_lock);
1646                list_add_tail(&bd->rq->queuelist, &nq->poll_list);
1647                spin_unlock(&nq->poll_lock);
1648                return BLK_STS_OK;
1649        }
1650        if (cmd->fake_timeout)
1651                return BLK_STS_OK;
1652
1653        return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1654}
1655
1656static void cleanup_queue(struct nullb_queue *nq)
1657{
1658        kfree(nq->tag_map);
1659        kfree(nq->cmds);
1660}
1661
1662static void cleanup_queues(struct nullb *nullb)
1663{
1664        int i;
1665
1666        for (i = 0; i < nullb->nr_queues; i++)
1667                cleanup_queue(&nullb->queues[i]);
1668
1669        kfree(nullb->queues);
1670}
1671
1672static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1673{
1674        struct nullb_queue *nq = hctx->driver_data;
1675        struct nullb *nullb = nq->dev->nullb;
1676
1677        nullb->nr_queues--;
1678}
1679
1680static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1681{
1682        init_waitqueue_head(&nq->wait);
1683        nq->queue_depth = nullb->queue_depth;
1684        nq->dev = nullb->dev;
1685        INIT_LIST_HEAD(&nq->poll_list);
1686        spin_lock_init(&nq->poll_lock);
1687}
1688
1689static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1690                          unsigned int hctx_idx)
1691{
1692        struct nullb *nullb = hctx->queue->queuedata;
1693        struct nullb_queue *nq;
1694
1695#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1696        if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1697                return -EFAULT;
1698#endif
1699
1700        nq = &nullb->queues[hctx_idx];
1701        hctx->driver_data = nq;
1702        null_init_queue(nullb, nq);
1703        nullb->nr_queues++;
1704
1705        return 0;
1706}
1707
1708static const struct blk_mq_ops null_mq_ops = {
1709        .queue_rq       = null_queue_rq,
1710        .complete       = null_complete_rq,
1711        .timeout        = null_timeout_rq,
1712        .poll           = null_poll,
1713        .map_queues     = null_map_queues,
1714        .init_hctx      = null_init_hctx,
1715        .exit_hctx      = null_exit_hctx,
1716};
1717
1718static void null_del_dev(struct nullb *nullb)
1719{
1720        struct nullb_device *dev;
1721
1722        if (!nullb)
1723                return;
1724
1725        dev = nullb->dev;
1726
1727        ida_simple_remove(&nullb_indexes, nullb->index);
1728
1729        list_del_init(&nullb->list);
1730
1731        del_gendisk(nullb->disk);
1732
1733        if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1734                hrtimer_cancel(&nullb->bw_timer);
1735                atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1736                null_restart_queue_async(nullb);
1737        }
1738
1739        blk_cleanup_disk(nullb->disk);
1740        if (dev->queue_mode == NULL_Q_MQ &&
1741            nullb->tag_set == &nullb->__tag_set)
1742                blk_mq_free_tag_set(nullb->tag_set);
1743        cleanup_queues(nullb);
1744        if (null_cache_active(nullb))
1745                null_free_device_storage(nullb->dev, true);
1746        kfree(nullb);
1747        dev->nullb = NULL;
1748}
1749
1750static void null_config_discard(struct nullb *nullb)
1751{
1752        if (nullb->dev->discard == false)
1753                return;
1754
1755        if (!nullb->dev->memory_backed) {
1756                nullb->dev->discard = false;
1757                pr_info("discard option is ignored without memory backing\n");
1758                return;
1759        }
1760
1761        if (nullb->dev->zoned) {
1762                nullb->dev->discard = false;
1763                pr_info("discard option is ignored in zoned mode\n");
1764                return;
1765        }
1766
1767        nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1768        nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1769        blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1770        blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1771}
1772
1773static const struct block_device_operations null_bio_ops = {
1774        .owner          = THIS_MODULE,
1775        .submit_bio     = null_submit_bio,
1776        .report_zones   = null_report_zones,
1777};
1778
1779static const struct block_device_operations null_rq_ops = {
1780        .owner          = THIS_MODULE,
1781        .report_zones   = null_report_zones,
1782};
1783
1784static int setup_commands(struct nullb_queue *nq)
1785{
1786        struct nullb_cmd *cmd;
1787        int i, tag_size;
1788
1789        nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1790        if (!nq->cmds)
1791                return -ENOMEM;
1792
1793        tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1794        nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1795        if (!nq->tag_map) {
1796                kfree(nq->cmds);
1797                return -ENOMEM;
1798        }
1799
1800        for (i = 0; i < nq->queue_depth; i++) {
1801                cmd = &nq->cmds[i];
1802                cmd->tag = -1U;
1803        }
1804
1805        return 0;
1806}
1807
1808static int setup_queues(struct nullb *nullb)
1809{
1810        int nqueues = nr_cpu_ids;
1811
1812        if (g_poll_queues)
1813                nqueues += g_poll_queues;
1814
1815        nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1816                                GFP_KERNEL);
1817        if (!nullb->queues)
1818                return -ENOMEM;
1819
1820        nullb->queue_depth = nullb->dev->hw_queue_depth;
1821        return 0;
1822}
1823
1824static int init_driver_queues(struct nullb *nullb)
1825{
1826        struct nullb_queue *nq;
1827        int i, ret = 0;
1828
1829        for (i = 0; i < nullb->dev->submit_queues; i++) {
1830                nq = &nullb->queues[i];
1831
1832                null_init_queue(nullb, nq);
1833
1834                ret = setup_commands(nq);
1835                if (ret)
1836                        return ret;
1837                nullb->nr_queues++;
1838        }
1839        return 0;
1840}
1841
1842static int null_gendisk_register(struct nullb *nullb)
1843{
1844        sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1845        struct gendisk *disk = nullb->disk;
1846
1847        set_capacity(disk, size);
1848
1849        disk->major             = null_major;
1850        disk->first_minor       = nullb->index;
1851        disk->minors            = 1;
1852        if (queue_is_mq(nullb->q))
1853                disk->fops              = &null_rq_ops;
1854        else
1855                disk->fops              = &null_bio_ops;
1856        disk->private_data      = nullb;
1857        strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1858
1859        if (nullb->dev->zoned) {
1860                int ret = null_register_zoned_dev(nullb);
1861
1862                if (ret)
1863                        return ret;
1864        }
1865
1866        return add_disk(disk);
1867}
1868
1869static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1870{
1871        int poll_queues;
1872
1873        set->ops = &null_mq_ops;
1874        set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1875                                                g_submit_queues;
1876        poll_queues = nullb ? nullb->dev->poll_queues : g_poll_queues;
1877        if (poll_queues)
1878                set->nr_hw_queues += poll_queues;
1879        set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1880                                                g_hw_queue_depth;
1881        set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1882        set->cmd_size   = sizeof(struct nullb_cmd);
1883        set->flags = BLK_MQ_F_SHOULD_MERGE;
1884        if (g_no_sched)
1885                set->flags |= BLK_MQ_F_NO_SCHED;
1886        if (g_shared_tag_bitmap)
1887                set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1888        set->driver_data = nullb;
1889        if (poll_queues)
1890                set->nr_maps = 3;
1891        else
1892                set->nr_maps = 1;
1893
1894        if ((nullb && nullb->dev->blocking) || g_blocking)
1895                set->flags |= BLK_MQ_F_BLOCKING;
1896
1897        return blk_mq_alloc_tag_set(set);
1898}
1899
1900static int null_validate_conf(struct nullb_device *dev)
1901{
1902        dev->blocksize = round_down(dev->blocksize, 512);
1903        dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1904
1905        if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1906                if (dev->submit_queues != nr_online_nodes)
1907                        dev->submit_queues = nr_online_nodes;
1908        } else if (dev->submit_queues > nr_cpu_ids)
1909                dev->submit_queues = nr_cpu_ids;
1910        else if (dev->submit_queues == 0)
1911                dev->submit_queues = 1;
1912        dev->prev_submit_queues = dev->submit_queues;
1913
1914        if (dev->poll_queues > g_poll_queues)
1915                dev->poll_queues = g_poll_queues;
1916        dev->prev_poll_queues = dev->poll_queues;
1917
1918        dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1919        dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1920
1921        /* Do memory allocation, so set blocking */
1922        if (dev->memory_backed)
1923                dev->blocking = true;
1924        else /* cache is meaningless */
1925                dev->cache_size = 0;
1926        dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1927                                                dev->cache_size);
1928        dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1929        /* can not stop a queue */
1930        if (dev->queue_mode == NULL_Q_BIO)
1931                dev->mbps = 0;
1932
1933        if (dev->zoned &&
1934            (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1935                pr_err("zone_size must be power-of-two\n");
1936                return -EINVAL;
1937        }
1938
1939        return 0;
1940}
1941
1942#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1943static bool __null_setup_fault(struct fault_attr *attr, char *str)
1944{
1945        if (!str[0])
1946                return true;
1947
1948        if (!setup_fault_attr(attr, str))
1949                return false;
1950
1951        attr->verbose = 0;
1952        return true;
1953}
1954#endif
1955
1956static bool null_setup_fault(void)
1957{
1958#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1959        if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1960                return false;
1961        if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1962                return false;
1963        if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1964                return false;
1965#endif
1966        return true;
1967}
1968
1969static int null_add_dev(struct nullb_device *dev)
1970{
1971        struct nullb *nullb;
1972        int rv;
1973
1974        rv = null_validate_conf(dev);
1975        if (rv)
1976                return rv;
1977
1978        nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1979        if (!nullb) {
1980                rv = -ENOMEM;
1981                goto out;
1982        }
1983        nullb->dev = dev;
1984        dev->nullb = nullb;
1985
1986        spin_lock_init(&nullb->lock);
1987
1988        rv = setup_queues(nullb);
1989        if (rv)
1990                goto out_free_nullb;
1991
1992        if (dev->queue_mode == NULL_Q_MQ) {
1993                if (shared_tags) {
1994                        nullb->tag_set = &tag_set;
1995                        rv = 0;
1996                } else {
1997                        nullb->tag_set = &nullb->__tag_set;
1998                        rv = null_init_tag_set(nullb, nullb->tag_set);
1999                }
2000
2001                if (rv)
2002                        goto out_cleanup_queues;
2003
2004                if (!null_setup_fault())
2005                        goto out_cleanup_tags;
2006
2007                nullb->tag_set->timeout = 5 * HZ;
2008                nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
2009                if (IS_ERR(nullb->disk)) {
2010                        rv = PTR_ERR(nullb->disk);
2011                        goto out_cleanup_tags;
2012                }
2013                nullb->q = nullb->disk->queue;
2014        } else if (dev->queue_mode == NULL_Q_BIO) {
2015                rv = -ENOMEM;
2016                nullb->disk = blk_alloc_disk(nullb->dev->home_node);
2017                if (!nullb->disk)
2018                        goto out_cleanup_queues;
2019
2020                nullb->q = nullb->disk->queue;
2021                rv = init_driver_queues(nullb);
2022                if (rv)
2023                        goto out_cleanup_disk;
2024        }
2025
2026        if (dev->mbps) {
2027                set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2028                nullb_setup_bwtimer(nullb);
2029        }
2030
2031        if (dev->cache_size > 0) {
2032                set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2033                blk_queue_write_cache(nullb->q, true, true);
2034        }
2035
2036        if (dev->zoned) {
2037                rv = null_init_zoned_dev(dev, nullb->q);
2038                if (rv)
2039                        goto out_cleanup_disk;
2040        }
2041
2042        nullb->q->queuedata = nullb;
2043        blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
2044        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
2045
2046        mutex_lock(&lock);
2047        nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
2048        dev->index = nullb->index;
2049        mutex_unlock(&lock);
2050
2051        blk_queue_logical_block_size(nullb->q, dev->blocksize);
2052        blk_queue_physical_block_size(nullb->q, dev->blocksize);
2053        if (!dev->max_sectors)
2054                dev->max_sectors = queue_max_hw_sectors(nullb->q);
2055        dev->max_sectors = min_t(unsigned int, dev->max_sectors,
2056                                 BLK_DEF_MAX_SECTORS);
2057        blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
2058
2059        if (dev->virt_boundary)
2060                blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
2061
2062        null_config_discard(nullb);
2063
2064        sprintf(nullb->disk_name, "nullb%d", nullb->index);
2065
2066        rv = null_gendisk_register(nullb);
2067        if (rv)
2068                goto out_cleanup_zone;
2069
2070        mutex_lock(&lock);
2071        list_add_tail(&nullb->list, &nullb_list);
2072        mutex_unlock(&lock);
2073
2074        return 0;
2075out_cleanup_zone:
2076        null_free_zoned_dev(dev);
2077out_cleanup_disk:
2078        blk_cleanup_disk(nullb->disk);
2079out_cleanup_tags:
2080        if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
2081                blk_mq_free_tag_set(nullb->tag_set);
2082out_cleanup_queues:
2083        cleanup_queues(nullb);
2084out_free_nullb:
2085        kfree(nullb);
2086        dev->nullb = NULL;
2087out:
2088        return rv;
2089}
2090
2091static int __init null_init(void)
2092{
2093        int ret = 0;
2094        unsigned int i;
2095        struct nullb *nullb;
2096        struct nullb_device *dev;
2097
2098        if (g_bs > PAGE_SIZE) {
2099                pr_warn("invalid block size\n");
2100                pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2101                g_bs = PAGE_SIZE;
2102        }
2103
2104        if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
2105                pr_warn("invalid max sectors\n");
2106                pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
2107                g_max_sectors = BLK_DEF_MAX_SECTORS;
2108        }
2109
2110        if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2111                pr_err("invalid home_node value\n");
2112                g_home_node = NUMA_NO_NODE;
2113        }
2114
2115        if (g_queue_mode == NULL_Q_RQ) {
2116                pr_err("legacy IO path no longer available\n");
2117                return -EINVAL;
2118        }
2119        if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
2120                if (g_submit_queues != nr_online_nodes) {
2121                        pr_warn("submit_queues param is set to %u.\n",
2122                                                        nr_online_nodes);
2123                        g_submit_queues = nr_online_nodes;
2124                }
2125        } else if (g_submit_queues > nr_cpu_ids)
2126                g_submit_queues = nr_cpu_ids;
2127        else if (g_submit_queues <= 0)
2128                g_submit_queues = 1;
2129
2130        if (g_queue_mode == NULL_Q_MQ && shared_tags) {
2131                ret = null_init_tag_set(NULL, &tag_set);
2132                if (ret)
2133                        return ret;
2134        }
2135
2136        config_group_init(&nullb_subsys.su_group);
2137        mutex_init(&nullb_subsys.su_mutex);
2138
2139        ret = configfs_register_subsystem(&nullb_subsys);
2140        if (ret)
2141                goto err_tagset;
2142
2143        mutex_init(&lock);
2144
2145        null_major = register_blkdev(0, "nullb");
2146        if (null_major < 0) {
2147                ret = null_major;
2148                goto err_conf;
2149        }
2150
2151        for (i = 0; i < nr_devices; i++) {
2152                dev = null_alloc_dev();
2153                if (!dev) {
2154                        ret = -ENOMEM;
2155                        goto err_dev;
2156                }
2157                ret = null_add_dev(dev);
2158                if (ret) {
2159                        null_free_dev(dev);
2160                        goto err_dev;
2161                }
2162        }
2163
2164        pr_info("module loaded\n");
2165        return 0;
2166
2167err_dev:
2168        while (!list_empty(&nullb_list)) {
2169                nullb = list_entry(nullb_list.next, struct nullb, list);
2170                dev = nullb->dev;
2171                null_del_dev(nullb);
2172                null_free_dev(dev);
2173        }
2174        unregister_blkdev(null_major, "nullb");
2175err_conf:
2176        configfs_unregister_subsystem(&nullb_subsys);
2177err_tagset:
2178        if (g_queue_mode == NULL_Q_MQ && shared_tags)
2179                blk_mq_free_tag_set(&tag_set);
2180        return ret;
2181}
2182
2183static void __exit null_exit(void)
2184{
2185        struct nullb *nullb;
2186
2187        configfs_unregister_subsystem(&nullb_subsys);
2188
2189        unregister_blkdev(null_major, "nullb");
2190
2191        mutex_lock(&lock);
2192        while (!list_empty(&nullb_list)) {
2193                struct nullb_device *dev;
2194
2195                nullb = list_entry(nullb_list.next, struct nullb, list);
2196                dev = nullb->dev;
2197                null_del_dev(nullb);
2198                null_free_dev(dev);
2199        }
2200        mutex_unlock(&lock);
2201
2202        if (g_queue_mode == NULL_Q_MQ && shared_tags)
2203                blk_mq_free_tag_set(&tag_set);
2204}
2205
2206module_init(null_init);
2207module_exit(null_exit);
2208
2209MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2210MODULE_LICENSE("GPL");
2211