linux/drivers/clk/clk-cdce925.c
<<
>>
Prefs
   1/*
   2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
   3 *
   4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
   5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
   6 * basis. Clients can directly request any frequency that the chip can
   7 * deliver using the standard clk framework. In addition, the device can
   8 * be configured and activated via the devicetree.
   9 *
  10 * Copyright (C) 2014, Topic Embedded Products
  11 * Licenced under GPL
  12 */
  13#include <linux/clk.h>
  14#include <linux/clk-provider.h>
  15#include <linux/delay.h>
  16#include <linux/module.h>
  17#include <linux/i2c.h>
  18#include <linux/regmap.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/gcd.h>
  22
  23/* Each chip has different number of PLLs and outputs, for example:
  24 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
  25 * Model this as 2 PLL clocks which are parents to the outputs.
  26 */
  27
  28enum {
  29        CDCE913,
  30        CDCE925,
  31        CDCE937,
  32        CDCE949,
  33};
  34
  35struct clk_cdce925_chip_info {
  36        int num_plls;
  37        int num_outputs;
  38};
  39
  40static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
  41        [CDCE913] = { .num_plls = 1, .num_outputs = 3 },
  42        [CDCE925] = { .num_plls = 2, .num_outputs = 5 },
  43        [CDCE937] = { .num_plls = 3, .num_outputs = 7 },
  44        [CDCE949] = { .num_plls = 4, .num_outputs = 9 },
  45};
  46
  47#define MAX_NUMBER_OF_PLLS      4
  48#define MAX_NUMBER_OF_OUTPUTS   9
  49
  50#define CDCE925_REG_GLOBAL1     0x01
  51#define CDCE925_REG_Y1SPIPDIVH  0x02
  52#define CDCE925_REG_PDIVL       0x03
  53#define CDCE925_REG_XCSEL       0x05
  54/* PLL parameters start at 0x10, steps of 0x10 */
  55#define CDCE925_OFFSET_PLL      0x10
  56/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
  57#define CDCE925_PLL_MUX_OUTPUTS 0x14
  58#define CDCE925_PLL_MULDIV      0x18
  59
  60#define CDCE925_PLL_FREQUENCY_MIN        80000000ul
  61#define CDCE925_PLL_FREQUENCY_MAX       230000000ul
  62struct clk_cdce925_chip;
  63
  64struct clk_cdce925_output {
  65        struct clk_hw hw;
  66        struct clk_cdce925_chip *chip;
  67        u8 index;
  68        u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
  69};
  70#define to_clk_cdce925_output(_hw) \
  71        container_of(_hw, struct clk_cdce925_output, hw)
  72
  73struct clk_cdce925_pll {
  74        struct clk_hw hw;
  75        struct clk_cdce925_chip *chip;
  76        u8 index;
  77        u16 m;   /* 1..511 */
  78        u16 n;   /* 1..4095 */
  79};
  80#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
  81
  82struct clk_cdce925_chip {
  83        struct regmap *regmap;
  84        struct i2c_client *i2c_client;
  85        const struct clk_cdce925_chip_info *chip_info;
  86        struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
  87        struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
  88};
  89
  90/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
  91
  92static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
  93        u16 n, u16 m)
  94{
  95        if ((!m || !n) || (m == n))
  96                return parent_rate; /* In bypass mode runs at same frequency */
  97        return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
  98}
  99
 100static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
 101                unsigned long parent_rate)
 102{
 103        /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
 104        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 105
 106        return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
 107}
 108
 109static void cdce925_pll_find_rate(unsigned long rate,
 110                unsigned long parent_rate, u16 *n, u16 *m)
 111{
 112        unsigned long un;
 113        unsigned long um;
 114        unsigned long g;
 115
 116        if (rate <= parent_rate) {
 117                /* Can always deliver parent_rate in bypass mode */
 118                rate = parent_rate;
 119                *n = 0;
 120                *m = 0;
 121        } else {
 122                /* In PLL mode, need to apply min/max range */
 123                if (rate < CDCE925_PLL_FREQUENCY_MIN)
 124                        rate = CDCE925_PLL_FREQUENCY_MIN;
 125                else if (rate > CDCE925_PLL_FREQUENCY_MAX)
 126                        rate = CDCE925_PLL_FREQUENCY_MAX;
 127
 128                g = gcd(rate, parent_rate);
 129                um = parent_rate / g;
 130                un = rate / g;
 131                /* When outside hw range, reduce to fit (rounding errors) */
 132                while ((un > 4095) || (um > 511)) {
 133                        un >>= 1;
 134                        um >>= 1;
 135                }
 136                if (un == 0)
 137                        un = 1;
 138                if (um == 0)
 139                        um = 1;
 140
 141                *n = un;
 142                *m = um;
 143        }
 144}
 145
 146static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 147                unsigned long *parent_rate)
 148{
 149        u16 n, m;
 150
 151        cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
 152        return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
 153}
 154
 155static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
 156                unsigned long parent_rate)
 157{
 158        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 159
 160        if (!rate || (rate == parent_rate)) {
 161                data->m = 0; /* Bypass mode */
 162                data->n = 0;
 163                return 0;
 164        }
 165
 166        if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
 167                (rate > CDCE925_PLL_FREQUENCY_MAX)) {
 168                pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
 169                return -EINVAL;
 170        }
 171
 172        if (rate < parent_rate) {
 173                pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
 174                        rate, parent_rate);
 175                return -EINVAL;
 176        }
 177
 178        cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
 179        return 0;
 180}
 181
 182
 183/* calculate p = max(0, 4 - int(log2 (n/m))) */
 184static u8 cdce925_pll_calc_p(u16 n, u16 m)
 185{
 186        u8 p;
 187        u16 r = n / m;
 188
 189        if (r >= 16)
 190                return 0;
 191        p = 4;
 192        while (r > 1) {
 193                r >>= 1;
 194                --p;
 195        }
 196        return p;
 197}
 198
 199/* Returns VCO range bits for VCO1_0_RANGE */
 200static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
 201{
 202        struct clk *parent = clk_get_parent(hw->clk);
 203        unsigned long rate = clk_get_rate(parent);
 204
 205        rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
 206        if (rate >= 175000000)
 207                return 0x3;
 208        if (rate >= 150000000)
 209                return 0x02;
 210        if (rate >= 125000000)
 211                return 0x01;
 212        return 0x00;
 213}
 214
 215/* I2C clock, hence everything must happen in (un)prepare because this
 216 * may sleep */
 217static int cdce925_pll_prepare(struct clk_hw *hw)
 218{
 219        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 220        u16 n = data->n;
 221        u16 m = data->m;
 222        u16 r;
 223        u8 q;
 224        u8 p;
 225        u16 nn;
 226        u8 pll[4]; /* Bits are spread out over 4 byte registers */
 227        u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
 228        unsigned i;
 229
 230        if ((!m || !n) || (m == n)) {
 231                /* Set PLL mux to bypass mode, leave the rest as is */
 232                regmap_update_bits(data->chip->regmap,
 233                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
 234        } else {
 235                /* According to data sheet: */
 236                /* p = max(0, 4 - int(log2 (n/m))) */
 237                p = cdce925_pll_calc_p(n, m);
 238                /* nn = n * 2^p */
 239                nn = n * BIT(p);
 240                /* q = int(nn/m) */
 241                q = nn / m;
 242                if ((q < 16) || (q > 63)) {
 243                        pr_debug("%s invalid q=%d\n", __func__, q);
 244                        return -EINVAL;
 245                }
 246                r = nn - (m*q);
 247                if (r > 511) {
 248                        pr_debug("%s invalid r=%d\n", __func__, r);
 249                        return -EINVAL;
 250                }
 251                pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
 252                        n, m, p, q, r);
 253                /* encode into register bits */
 254                pll[0] = n >> 4;
 255                pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
 256                pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
 257                pll[3] = ((q & 0x07) << 5) | (p << 2) |
 258                                cdce925_pll_calc_range_bits(hw, n, m);
 259                /* Write to registers */
 260                for (i = 0; i < ARRAY_SIZE(pll); ++i)
 261                        regmap_write(data->chip->regmap,
 262                                reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
 263                /* Enable PLL */
 264                regmap_update_bits(data->chip->regmap,
 265                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
 266        }
 267
 268        return 0;
 269}
 270
 271static void cdce925_pll_unprepare(struct clk_hw *hw)
 272{
 273        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 274        u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
 275
 276        regmap_update_bits(data->chip->regmap,
 277                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
 278}
 279
 280static const struct clk_ops cdce925_pll_ops = {
 281        .prepare = cdce925_pll_prepare,
 282        .unprepare = cdce925_pll_unprepare,
 283        .recalc_rate = cdce925_pll_recalc_rate,
 284        .round_rate = cdce925_pll_round_rate,
 285        .set_rate = cdce925_pll_set_rate,
 286};
 287
 288
 289static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
 290{
 291        switch (data->index) {
 292        case 0:
 293                regmap_update_bits(data->chip->regmap,
 294                        CDCE925_REG_Y1SPIPDIVH,
 295                        0x03, (pdiv >> 8) & 0x03);
 296                regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
 297                break;
 298        case 1:
 299                regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
 300                break;
 301        case 2:
 302                regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
 303                break;
 304        case 3:
 305                regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
 306                break;
 307        case 4:
 308                regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
 309                break;
 310        case 5:
 311                regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
 312                break;
 313        case 6:
 314                regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
 315                break;
 316        case 7:
 317                regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
 318                break;
 319        case 8:
 320                regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
 321                break;
 322        }
 323}
 324
 325static void cdce925_clk_activate(struct clk_cdce925_output *data)
 326{
 327        switch (data->index) {
 328        case 0:
 329                regmap_update_bits(data->chip->regmap,
 330                        CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
 331                break;
 332        case 1:
 333        case 2:
 334                regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
 335                break;
 336        case 3:
 337        case 4:
 338                regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
 339                break;
 340        case 5:
 341        case 6:
 342                regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
 343                break;
 344        case 7:
 345        case 8:
 346                regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
 347                break;
 348        }
 349}
 350
 351static int cdce925_clk_prepare(struct clk_hw *hw)
 352{
 353        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 354
 355        cdce925_clk_set_pdiv(data, data->pdiv);
 356        cdce925_clk_activate(data);
 357        return 0;
 358}
 359
 360static void cdce925_clk_unprepare(struct clk_hw *hw)
 361{
 362        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 363
 364        /* Disable clock by setting divider to "0" */
 365        cdce925_clk_set_pdiv(data, 0);
 366}
 367
 368static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
 369                unsigned long parent_rate)
 370{
 371        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 372
 373        if (data->pdiv)
 374                return parent_rate / data->pdiv;
 375        return 0;
 376}
 377
 378static u16 cdce925_calc_divider(unsigned long rate,
 379                unsigned long parent_rate)
 380{
 381        unsigned long divider;
 382
 383        if (!rate)
 384                return 0;
 385        if (rate >= parent_rate)
 386                return 1;
 387
 388        divider = DIV_ROUND_CLOSEST(parent_rate, rate);
 389        if (divider > 0x7F)
 390                divider = 0x7F;
 391
 392        return (u16)divider;
 393}
 394
 395static unsigned long cdce925_clk_best_parent_rate(
 396        struct clk_hw *hw, unsigned long rate)
 397{
 398        struct clk *pll = clk_get_parent(hw->clk);
 399        struct clk *root = clk_get_parent(pll);
 400        unsigned long root_rate = clk_get_rate(root);
 401        unsigned long best_rate_error = rate;
 402        u16 pdiv_min;
 403        u16 pdiv_max;
 404        u16 pdiv_best;
 405        u16 pdiv_now;
 406
 407        if (root_rate % rate == 0)
 408                return root_rate; /* Don't need the PLL, use bypass */
 409
 410        pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
 411        pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
 412
 413        if (pdiv_min > pdiv_max)
 414                return 0; /* No can do? */
 415
 416        pdiv_best = pdiv_min;
 417        for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
 418                unsigned long target_rate = rate * pdiv_now;
 419                long pll_rate = clk_round_rate(pll, target_rate);
 420                unsigned long actual_rate;
 421                unsigned long rate_error;
 422
 423                if (pll_rate <= 0)
 424                        continue;
 425                actual_rate = pll_rate / pdiv_now;
 426                rate_error = abs((long)actual_rate - (long)rate);
 427                if (rate_error < best_rate_error) {
 428                        pdiv_best = pdiv_now;
 429                        best_rate_error = rate_error;
 430                }
 431                /* TODO: Consider PLL frequency based on smaller n/m values
 432                 * and pick the better one if the error is equal */
 433        }
 434
 435        return rate * pdiv_best;
 436}
 437
 438static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 439                unsigned long *parent_rate)
 440{
 441        unsigned long l_parent_rate = *parent_rate;
 442        u16 divider = cdce925_calc_divider(rate, l_parent_rate);
 443
 444        if (l_parent_rate / divider != rate) {
 445                l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
 446                divider = cdce925_calc_divider(rate, l_parent_rate);
 447                *parent_rate = l_parent_rate;
 448        }
 449
 450        if (divider)
 451                return (long)(l_parent_rate / divider);
 452        return 0;
 453}
 454
 455static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 456                unsigned long parent_rate)
 457{
 458        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 459
 460        data->pdiv = cdce925_calc_divider(rate, parent_rate);
 461
 462        return 0;
 463}
 464
 465static const struct clk_ops cdce925_clk_ops = {
 466        .prepare = cdce925_clk_prepare,
 467        .unprepare = cdce925_clk_unprepare,
 468        .recalc_rate = cdce925_clk_recalc_rate,
 469        .round_rate = cdce925_clk_round_rate,
 470        .set_rate = cdce925_clk_set_rate,
 471};
 472
 473
 474static u16 cdce925_y1_calc_divider(unsigned long rate,
 475                unsigned long parent_rate)
 476{
 477        unsigned long divider;
 478
 479        if (!rate)
 480                return 0;
 481        if (rate >= parent_rate)
 482                return 1;
 483
 484        divider = DIV_ROUND_CLOSEST(parent_rate, rate);
 485        if (divider > 0x3FF) /* Y1 has 10-bit divider */
 486                divider = 0x3FF;
 487
 488        return (u16)divider;
 489}
 490
 491static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
 492                unsigned long *parent_rate)
 493{
 494        unsigned long l_parent_rate = *parent_rate;
 495        u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
 496
 497        if (divider)
 498                return (long)(l_parent_rate / divider);
 499        return 0;
 500}
 501
 502static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
 503                unsigned long parent_rate)
 504{
 505        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 506
 507        data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
 508
 509        return 0;
 510}
 511
 512static const struct clk_ops cdce925_clk_y1_ops = {
 513        .prepare = cdce925_clk_prepare,
 514        .unprepare = cdce925_clk_unprepare,
 515        .recalc_rate = cdce925_clk_recalc_rate,
 516        .round_rate = cdce925_clk_y1_round_rate,
 517        .set_rate = cdce925_clk_y1_set_rate,
 518};
 519
 520#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER      0x00
 521#define CDCE925_I2C_COMMAND_BYTE_TRANSFER       0x80
 522
 523static int cdce925_regmap_i2c_write(
 524        void *context, const void *data, size_t count)
 525{
 526        struct device *dev = context;
 527        struct i2c_client *i2c = to_i2c_client(dev);
 528        int ret;
 529        u8 reg_data[2];
 530
 531        if (count != 2)
 532                return -ENOTSUPP;
 533
 534        /* First byte is command code */
 535        reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
 536        reg_data[1] = ((u8 *)data)[1];
 537
 538        dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
 539                        reg_data[0], reg_data[1]);
 540
 541        ret = i2c_master_send(i2c, reg_data, count);
 542        if (likely(ret == count))
 543                return 0;
 544        else if (ret < 0)
 545                return ret;
 546        else
 547                return -EIO;
 548}
 549
 550static int cdce925_regmap_i2c_read(void *context,
 551           const void *reg, size_t reg_size, void *val, size_t val_size)
 552{
 553        struct device *dev = context;
 554        struct i2c_client *i2c = to_i2c_client(dev);
 555        struct i2c_msg xfer[2];
 556        int ret;
 557        u8 reg_data[2];
 558
 559        if (reg_size != 1)
 560                return -ENOTSUPP;
 561
 562        xfer[0].addr = i2c->addr;
 563        xfer[0].flags = 0;
 564        xfer[0].buf = reg_data;
 565        if (val_size == 1) {
 566                reg_data[0] =
 567                        CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
 568                xfer[0].len = 1;
 569        } else {
 570                reg_data[0] =
 571                        CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
 572                reg_data[1] = val_size;
 573                xfer[0].len = 2;
 574        }
 575
 576        xfer[1].addr = i2c->addr;
 577        xfer[1].flags = I2C_M_RD;
 578        xfer[1].len = val_size;
 579        xfer[1].buf = val;
 580
 581        ret = i2c_transfer(i2c->adapter, xfer, 2);
 582        if (likely(ret == 2)) {
 583                dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
 584                                reg_size, val_size, reg_data[0], *((u8 *)val));
 585                return 0;
 586        } else if (ret < 0)
 587                return ret;
 588        else
 589                return -EIO;
 590}
 591
 592static struct clk_hw *
 593of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
 594{
 595        struct clk_cdce925_chip *data = _data;
 596        unsigned int idx = clkspec->args[0];
 597
 598        if (idx >= ARRAY_SIZE(data->clk)) {
 599                pr_err("%s: invalid index %u\n", __func__, idx);
 600                return ERR_PTR(-EINVAL);
 601        }
 602
 603        return &data->clk[idx].hw;
 604}
 605
 606static void cdce925_regulator_disable(void *regulator)
 607{
 608        regulator_disable(regulator);
 609}
 610
 611static int cdce925_regulator_enable(struct device *dev, const char *name)
 612{
 613        struct regulator *regulator;
 614        int err;
 615
 616        regulator = devm_regulator_get(dev, name);
 617        if (IS_ERR(regulator))
 618                return PTR_ERR(regulator);
 619
 620        err = regulator_enable(regulator);
 621        if (err) {
 622                dev_err(dev, "Failed to enable %s: %d\n", name, err);
 623                return err;
 624        }
 625
 626        return devm_add_action_or_reset(dev, cdce925_regulator_disable,
 627                                        regulator);
 628}
 629
 630/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
 631 * just weird, so just use the single byte mode exclusively. */
 632static struct regmap_bus regmap_cdce925_bus = {
 633        .write = cdce925_regmap_i2c_write,
 634        .read = cdce925_regmap_i2c_read,
 635};
 636
 637static int cdce925_probe(struct i2c_client *client,
 638                const struct i2c_device_id *id)
 639{
 640        struct clk_cdce925_chip *data;
 641        struct device_node *node = client->dev.of_node;
 642        const char *parent_name;
 643        const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
 644        struct clk_init_data init;
 645        u32 value;
 646        int i;
 647        int err;
 648        struct device_node *np_output;
 649        char child_name[6];
 650        struct regmap_config config = {
 651                .name = "configuration0",
 652                .reg_bits = 8,
 653                .val_bits = 8,
 654                .cache_type = REGCACHE_RBTREE,
 655        };
 656
 657        dev_dbg(&client->dev, "%s\n", __func__);
 658
 659        err = cdce925_regulator_enable(&client->dev, "vdd");
 660        if (err)
 661                return err;
 662
 663        err = cdce925_regulator_enable(&client->dev, "vddout");
 664        if (err)
 665                return err;
 666
 667        data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
 668        if (!data)
 669                return -ENOMEM;
 670
 671        data->i2c_client = client;
 672        data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
 673        config.max_register = CDCE925_OFFSET_PLL +
 674                data->chip_info->num_plls * 0x10 - 1;
 675        data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
 676                        &client->dev, &config);
 677        if (IS_ERR(data->regmap)) {
 678                dev_err(&client->dev, "failed to allocate register map\n");
 679                return PTR_ERR(data->regmap);
 680        }
 681        i2c_set_clientdata(client, data);
 682
 683        parent_name = of_clk_get_parent_name(node, 0);
 684        if (!parent_name) {
 685                dev_err(&client->dev, "missing parent clock\n");
 686                return -ENODEV;
 687        }
 688        dev_dbg(&client->dev, "parent is: %s\n", parent_name);
 689
 690        if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
 691                regmap_write(data->regmap,
 692                        CDCE925_REG_XCSEL, (value << 3) & 0xF8);
 693        /* PWDN bit */
 694        regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
 695
 696        /* Set input source for Y1 to be the XTAL */
 697        regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
 698
 699        init.ops = &cdce925_pll_ops;
 700        init.flags = 0;
 701        init.parent_names = &parent_name;
 702        init.num_parents = 1;
 703
 704        /* Register PLL clocks */
 705        for (i = 0; i < data->chip_info->num_plls; ++i) {
 706                pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
 707                        client->dev.of_node, i);
 708                init.name = pll_clk_name[i];
 709                data->pll[i].chip = data;
 710                data->pll[i].hw.init = &init;
 711                data->pll[i].index = i;
 712                err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
 713                if (err) {
 714                        dev_err(&client->dev, "Failed register PLL %d\n", i);
 715                        goto error;
 716                }
 717                sprintf(child_name, "PLL%d", i+1);
 718                np_output = of_get_child_by_name(node, child_name);
 719                if (!np_output)
 720                        continue;
 721                if (!of_property_read_u32(np_output,
 722                        "clock-frequency", &value)) {
 723                        err = clk_set_rate(data->pll[i].hw.clk, value);
 724                        if (err)
 725                                dev_err(&client->dev,
 726                                        "unable to set PLL frequency %ud\n",
 727                                        value);
 728                }
 729                if (!of_property_read_u32(np_output,
 730                        "spread-spectrum", &value)) {
 731                        u8 flag = of_property_read_bool(np_output,
 732                                "spread-spectrum-center") ? 0x80 : 0x00;
 733                        regmap_update_bits(data->regmap,
 734                                0x16 + (i*CDCE925_OFFSET_PLL),
 735                                0x80, flag);
 736                        regmap_update_bits(data->regmap,
 737                                0x12 + (i*CDCE925_OFFSET_PLL),
 738                                0x07, value & 0x07);
 739                }
 740                of_node_put(np_output);
 741        }
 742
 743        /* Register output clock Y1 */
 744        init.ops = &cdce925_clk_y1_ops;
 745        init.flags = 0;
 746        init.num_parents = 1;
 747        init.parent_names = &parent_name; /* Mux Y1 to input */
 748        init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
 749        data->clk[0].chip = data;
 750        data->clk[0].hw.init = &init;
 751        data->clk[0].index = 0;
 752        data->clk[0].pdiv = 1;
 753        err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
 754        kfree(init.name); /* clock framework made a copy of the name */
 755        if (err) {
 756                dev_err(&client->dev, "clock registration Y1 failed\n");
 757                goto error;
 758        }
 759
 760        /* Register output clocks Y2 .. Y5*/
 761        init.ops = &cdce925_clk_ops;
 762        init.flags = CLK_SET_RATE_PARENT;
 763        init.num_parents = 1;
 764        for (i = 1; i < data->chip_info->num_outputs; ++i) {
 765                init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
 766                        client->dev.of_node, i+1);
 767                data->clk[i].chip = data;
 768                data->clk[i].hw.init = &init;
 769                data->clk[i].index = i;
 770                data->clk[i].pdiv = 1;
 771                switch (i) {
 772                case 1:
 773                case 2:
 774                        /* Mux Y2/3 to PLL1 */
 775                        init.parent_names = &pll_clk_name[0];
 776                        break;
 777                case 3:
 778                case 4:
 779                        /* Mux Y4/5 to PLL2 */
 780                        init.parent_names = &pll_clk_name[1];
 781                        break;
 782                case 5:
 783                case 6:
 784                        /* Mux Y6/7 to PLL3 */
 785                        init.parent_names = &pll_clk_name[2];
 786                        break;
 787                case 7:
 788                case 8:
 789                        /* Mux Y8/9 to PLL4 */
 790                        init.parent_names = &pll_clk_name[3];
 791                        break;
 792                }
 793                err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
 794                kfree(init.name); /* clock framework made a copy of the name */
 795                if (err) {
 796                        dev_err(&client->dev, "clock registration failed\n");
 797                        goto error;
 798                }
 799        }
 800
 801        /* Register the output clocks */
 802        err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
 803                                  data);
 804        if (err)
 805                dev_err(&client->dev, "unable to add OF clock provider\n");
 806
 807        err = 0;
 808
 809error:
 810        for (i = 0; i < data->chip_info->num_plls; ++i)
 811                /* clock framework made a copy of the name */
 812                kfree(pll_clk_name[i]);
 813
 814        return err;
 815}
 816
 817static const struct i2c_device_id cdce925_id[] = {
 818        { "cdce913", CDCE913 },
 819        { "cdce925", CDCE925 },
 820        { "cdce937", CDCE937 },
 821        { "cdce949", CDCE949 },
 822        { }
 823};
 824MODULE_DEVICE_TABLE(i2c, cdce925_id);
 825
 826static const struct of_device_id clk_cdce925_of_match[] = {
 827        { .compatible = "ti,cdce913" },
 828        { .compatible = "ti,cdce925" },
 829        { .compatible = "ti,cdce937" },
 830        { .compatible = "ti,cdce949" },
 831        { },
 832};
 833MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
 834
 835static struct i2c_driver cdce925_driver = {
 836        .driver = {
 837                .name = "cdce925",
 838                .of_match_table = of_match_ptr(clk_cdce925_of_match),
 839        },
 840        .probe          = cdce925_probe,
 841        .id_table       = cdce925_id,
 842};
 843module_i2c_driver(cdce925_driver);
 844
 845MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
 846MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
 847MODULE_LICENSE("GPL");
 848