linux/drivers/crypto/stm32/stm32-cryp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/delay.h>
   9#include <linux/interrupt.h>
  10#include <linux/iopoll.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <crypto/aes.h>
  18#include <crypto/internal/des.h>
  19#include <crypto/engine.h>
  20#include <crypto/scatterwalk.h>
  21#include <crypto/internal/aead.h>
  22#include <crypto/internal/skcipher.h>
  23
  24#define DRIVER_NAME             "stm32-cryp"
  25
  26/* Bit [0] encrypt / decrypt */
  27#define FLG_ENCRYPT             BIT(0)
  28/* Bit [8..1] algo & operation mode */
  29#define FLG_AES                 BIT(1)
  30#define FLG_DES                 BIT(2)
  31#define FLG_TDES                BIT(3)
  32#define FLG_ECB                 BIT(4)
  33#define FLG_CBC                 BIT(5)
  34#define FLG_CTR                 BIT(6)
  35#define FLG_GCM                 BIT(7)
  36#define FLG_CCM                 BIT(8)
  37/* Mode mask = bits [15..0] */
  38#define FLG_MODE_MASK           GENMASK(15, 0)
  39/* Bit [31..16] status  */
  40
  41/* Registers */
  42#define CRYP_CR                 0x00000000
  43#define CRYP_SR                 0x00000004
  44#define CRYP_DIN                0x00000008
  45#define CRYP_DOUT               0x0000000C
  46#define CRYP_DMACR              0x00000010
  47#define CRYP_IMSCR              0x00000014
  48#define CRYP_RISR               0x00000018
  49#define CRYP_MISR               0x0000001C
  50#define CRYP_K0LR               0x00000020
  51#define CRYP_K0RR               0x00000024
  52#define CRYP_K1LR               0x00000028
  53#define CRYP_K1RR               0x0000002C
  54#define CRYP_K2LR               0x00000030
  55#define CRYP_K2RR               0x00000034
  56#define CRYP_K3LR               0x00000038
  57#define CRYP_K3RR               0x0000003C
  58#define CRYP_IV0LR              0x00000040
  59#define CRYP_IV0RR              0x00000044
  60#define CRYP_IV1LR              0x00000048
  61#define CRYP_IV1RR              0x0000004C
  62#define CRYP_CSGCMCCM0R         0x00000050
  63#define CRYP_CSGCM0R            0x00000070
  64
  65/* Registers values */
  66#define CR_DEC_NOT_ENC          0x00000004
  67#define CR_TDES_ECB             0x00000000
  68#define CR_TDES_CBC             0x00000008
  69#define CR_DES_ECB              0x00000010
  70#define CR_DES_CBC              0x00000018
  71#define CR_AES_ECB              0x00000020
  72#define CR_AES_CBC              0x00000028
  73#define CR_AES_CTR              0x00000030
  74#define CR_AES_KP               0x00000038
  75#define CR_AES_GCM              0x00080000
  76#define CR_AES_CCM              0x00080008
  77#define CR_AES_UNKNOWN          0xFFFFFFFF
  78#define CR_ALGO_MASK            0x00080038
  79#define CR_DATA32               0x00000000
  80#define CR_DATA16               0x00000040
  81#define CR_DATA8                0x00000080
  82#define CR_DATA1                0x000000C0
  83#define CR_KEY128               0x00000000
  84#define CR_KEY192               0x00000100
  85#define CR_KEY256               0x00000200
  86#define CR_FFLUSH               0x00004000
  87#define CR_CRYPEN               0x00008000
  88#define CR_PH_INIT              0x00000000
  89#define CR_PH_HEADER            0x00010000
  90#define CR_PH_PAYLOAD           0x00020000
  91#define CR_PH_FINAL             0x00030000
  92#define CR_PH_MASK              0x00030000
  93#define CR_NBPBL_SHIFT          20
  94
  95#define SR_BUSY                 0x00000010
  96#define SR_OFNE                 0x00000004
  97
  98#define IMSCR_IN                BIT(0)
  99#define IMSCR_OUT               BIT(1)
 100
 101#define MISR_IN                 BIT(0)
 102#define MISR_OUT                BIT(1)
 103
 104/* Misc */
 105#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 106#define GCM_CTR_INIT            2
 107#define CRYP_AUTOSUSPEND_DELAY  50
 108
 109struct stm32_cryp_caps {
 110        bool                    swap_final;
 111        bool                    padding_wa;
 112};
 113
 114struct stm32_cryp_ctx {
 115        struct crypto_engine_ctx enginectx;
 116        struct stm32_cryp       *cryp;
 117        int                     keylen;
 118        __be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 119        unsigned long           flags;
 120};
 121
 122struct stm32_cryp_reqctx {
 123        unsigned long mode;
 124};
 125
 126struct stm32_cryp {
 127        struct list_head        list;
 128        struct device           *dev;
 129        void __iomem            *regs;
 130        struct clk              *clk;
 131        unsigned long           flags;
 132        u32                     irq_status;
 133        const struct stm32_cryp_caps *caps;
 134        struct stm32_cryp_ctx   *ctx;
 135
 136        struct crypto_engine    *engine;
 137
 138        struct skcipher_request *req;
 139        struct aead_request     *areq;
 140
 141        size_t                  authsize;
 142        size_t                  hw_blocksize;
 143
 144        size_t                  payload_in;
 145        size_t                  header_in;
 146        size_t                  payload_out;
 147
 148        struct scatterlist      *out_sg;
 149
 150        struct scatter_walk     in_walk;
 151        struct scatter_walk     out_walk;
 152
 153        __be32                  last_ctr[4];
 154        u32                     gcm_ctr;
 155};
 156
 157struct stm32_cryp_list {
 158        struct list_head        dev_list;
 159        spinlock_t              lock; /* protect dev_list */
 160};
 161
 162static struct stm32_cryp_list cryp_list = {
 163        .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 164        .lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 165};
 166
 167static inline bool is_aes(struct stm32_cryp *cryp)
 168{
 169        return cryp->flags & FLG_AES;
 170}
 171
 172static inline bool is_des(struct stm32_cryp *cryp)
 173{
 174        return cryp->flags & FLG_DES;
 175}
 176
 177static inline bool is_tdes(struct stm32_cryp *cryp)
 178{
 179        return cryp->flags & FLG_TDES;
 180}
 181
 182static inline bool is_ecb(struct stm32_cryp *cryp)
 183{
 184        return cryp->flags & FLG_ECB;
 185}
 186
 187static inline bool is_cbc(struct stm32_cryp *cryp)
 188{
 189        return cryp->flags & FLG_CBC;
 190}
 191
 192static inline bool is_ctr(struct stm32_cryp *cryp)
 193{
 194        return cryp->flags & FLG_CTR;
 195}
 196
 197static inline bool is_gcm(struct stm32_cryp *cryp)
 198{
 199        return cryp->flags & FLG_GCM;
 200}
 201
 202static inline bool is_ccm(struct stm32_cryp *cryp)
 203{
 204        return cryp->flags & FLG_CCM;
 205}
 206
 207static inline bool is_encrypt(struct stm32_cryp *cryp)
 208{
 209        return cryp->flags & FLG_ENCRYPT;
 210}
 211
 212static inline bool is_decrypt(struct stm32_cryp *cryp)
 213{
 214        return !is_encrypt(cryp);
 215}
 216
 217static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 218{
 219        return readl_relaxed(cryp->regs + ofst);
 220}
 221
 222static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 223{
 224        writel_relaxed(val, cryp->regs + ofst);
 225}
 226
 227static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 228{
 229        u32 status;
 230
 231        return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 232                        !(status & SR_BUSY), 10, 100000);
 233}
 234
 235static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
 236{
 237        writel_relaxed(readl_relaxed(cryp->regs + CRYP_CR) | CR_CRYPEN, cryp->regs + CRYP_CR);
 238}
 239
 240static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 241{
 242        u32 status;
 243
 244        return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 245                        !(status & CR_CRYPEN), 10, 100000);
 246}
 247
 248static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 249{
 250        u32 status;
 251
 252        return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 253                        status & SR_OFNE, 10, 100000);
 254}
 255
 256static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 257static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
 258
 259static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 260{
 261        struct stm32_cryp *tmp, *cryp = NULL;
 262
 263        spin_lock_bh(&cryp_list.lock);
 264        if (!ctx->cryp) {
 265                list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 266                        cryp = tmp;
 267                        break;
 268                }
 269                ctx->cryp = cryp;
 270        } else {
 271                cryp = ctx->cryp;
 272        }
 273
 274        spin_unlock_bh(&cryp_list.lock);
 275
 276        return cryp;
 277}
 278
 279static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 280{
 281        if (!iv)
 282                return;
 283
 284        stm32_cryp_write(cryp, CRYP_IV0LR, be32_to_cpu(*iv++));
 285        stm32_cryp_write(cryp, CRYP_IV0RR, be32_to_cpu(*iv++));
 286
 287        if (is_aes(cryp)) {
 288                stm32_cryp_write(cryp, CRYP_IV1LR, be32_to_cpu(*iv++));
 289                stm32_cryp_write(cryp, CRYP_IV1RR, be32_to_cpu(*iv++));
 290        }
 291}
 292
 293static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 294{
 295        struct skcipher_request *req = cryp->req;
 296        __be32 *tmp = (void *)req->iv;
 297
 298        if (!tmp)
 299                return;
 300
 301        *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
 302        *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
 303
 304        if (is_aes(cryp)) {
 305                *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
 306                *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
 307        }
 308}
 309
 310static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 311{
 312        unsigned int i;
 313        int r_id;
 314
 315        if (is_des(c)) {
 316                stm32_cryp_write(c, CRYP_K1LR, be32_to_cpu(c->ctx->key[0]));
 317                stm32_cryp_write(c, CRYP_K1RR, be32_to_cpu(c->ctx->key[1]));
 318        } else {
 319                r_id = CRYP_K3RR;
 320                for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 321                        stm32_cryp_write(c, r_id,
 322                                         be32_to_cpu(c->ctx->key[i - 1]));
 323        }
 324}
 325
 326static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 327{
 328        if (is_aes(cryp) && is_ecb(cryp))
 329                return CR_AES_ECB;
 330
 331        if (is_aes(cryp) && is_cbc(cryp))
 332                return CR_AES_CBC;
 333
 334        if (is_aes(cryp) && is_ctr(cryp))
 335                return CR_AES_CTR;
 336
 337        if (is_aes(cryp) && is_gcm(cryp))
 338                return CR_AES_GCM;
 339
 340        if (is_aes(cryp) && is_ccm(cryp))
 341                return CR_AES_CCM;
 342
 343        if (is_des(cryp) && is_ecb(cryp))
 344                return CR_DES_ECB;
 345
 346        if (is_des(cryp) && is_cbc(cryp))
 347                return CR_DES_CBC;
 348
 349        if (is_tdes(cryp) && is_ecb(cryp))
 350                return CR_TDES_ECB;
 351
 352        if (is_tdes(cryp) && is_cbc(cryp))
 353                return CR_TDES_CBC;
 354
 355        dev_err(cryp->dev, "Unknown mode\n");
 356        return CR_AES_UNKNOWN;
 357}
 358
 359static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 360{
 361        return is_encrypt(cryp) ? cryp->areq->cryptlen :
 362                                  cryp->areq->cryptlen - cryp->authsize;
 363}
 364
 365static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 366{
 367        int ret;
 368        __be32 iv[4];
 369
 370        /* Phase 1 : init */
 371        memcpy(iv, cryp->areq->iv, 12);
 372        iv[3] = cpu_to_be32(GCM_CTR_INIT);
 373        cryp->gcm_ctr = GCM_CTR_INIT;
 374        stm32_cryp_hw_write_iv(cryp, iv);
 375
 376        stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 377
 378        /* Wait for end of processing */
 379        ret = stm32_cryp_wait_enable(cryp);
 380        if (ret) {
 381                dev_err(cryp->dev, "Timeout (gcm init)\n");
 382                return ret;
 383        }
 384
 385        /* Prepare next phase */
 386        if (cryp->areq->assoclen) {
 387                cfg |= CR_PH_HEADER;
 388                stm32_cryp_write(cryp, CRYP_CR, cfg);
 389        } else if (stm32_cryp_get_input_text_len(cryp)) {
 390                cfg |= CR_PH_PAYLOAD;
 391                stm32_cryp_write(cryp, CRYP_CR, cfg);
 392        }
 393
 394        return 0;
 395}
 396
 397static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
 398{
 399        u32 cfg;
 400        int err;
 401
 402        /* Check if whole header written */
 403        if (!cryp->header_in) {
 404                /* Wait for completion */
 405                err = stm32_cryp_wait_busy(cryp);
 406                if (err) {
 407                        dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
 408                        stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 409                        stm32_cryp_finish_req(cryp, err);
 410                        return;
 411                }
 412
 413                if (stm32_cryp_get_input_text_len(cryp)) {
 414                        /* Phase 3 : payload */
 415                        cfg = stm32_cryp_read(cryp, CRYP_CR);
 416                        cfg &= ~CR_CRYPEN;
 417                        stm32_cryp_write(cryp, CRYP_CR, cfg);
 418
 419                        cfg &= ~CR_PH_MASK;
 420                        cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
 421                        stm32_cryp_write(cryp, CRYP_CR, cfg);
 422                } else {
 423                        /*
 424                         * Phase 4 : tag.
 425                         * Nothing to read, nothing to write, caller have to
 426                         * end request
 427                         */
 428                }
 429        }
 430}
 431
 432static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
 433{
 434        unsigned int i;
 435        size_t written;
 436        size_t len;
 437        u32 alen = cryp->areq->assoclen;
 438        u32 block[AES_BLOCK_32] = {0};
 439        u8 *b8 = (u8 *)block;
 440
 441        if (alen <= 65280) {
 442                /* Write first u32 of B1 */
 443                b8[0] = (alen >> 8) & 0xFF;
 444                b8[1] = alen & 0xFF;
 445                len = 2;
 446        } else {
 447                /* Build the two first u32 of B1 */
 448                b8[0] = 0xFF;
 449                b8[1] = 0xFE;
 450                b8[2] = (alen & 0xFF000000) >> 24;
 451                b8[3] = (alen & 0x00FF0000) >> 16;
 452                b8[4] = (alen & 0x0000FF00) >> 8;
 453                b8[5] = alen & 0x000000FF;
 454                len = 6;
 455        }
 456
 457        written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
 458
 459        scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
 460        for (i = 0; i < AES_BLOCK_32; i++)
 461                stm32_cryp_write(cryp, CRYP_DIN, block[i]);
 462
 463        cryp->header_in -= written;
 464
 465        stm32_crypt_gcmccm_end_header(cryp);
 466}
 467
 468static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 469{
 470        int ret;
 471        u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
 472        u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
 473        __be32 *bd;
 474        u32 *d;
 475        unsigned int i, textlen;
 476
 477        /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 478        memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 479        memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 480        iv[AES_BLOCK_SIZE - 1] = 1;
 481        stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 482
 483        /* Build B0 */
 484        memcpy(b0, iv, AES_BLOCK_SIZE);
 485
 486        b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 487
 488        if (cryp->areq->assoclen)
 489                b0[0] |= 0x40;
 490
 491        textlen = stm32_cryp_get_input_text_len(cryp);
 492
 493        b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 494        b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 495
 496        /* Enable HW */
 497        stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 498
 499        /* Write B0 */
 500        d = (u32 *)b0;
 501        bd = (__be32 *)b0;
 502
 503        for (i = 0; i < AES_BLOCK_32; i++) {
 504                u32 xd = d[i];
 505
 506                if (!cryp->caps->padding_wa)
 507                        xd = be32_to_cpu(bd[i]);
 508                stm32_cryp_write(cryp, CRYP_DIN, xd);
 509        }
 510
 511        /* Wait for end of processing */
 512        ret = stm32_cryp_wait_enable(cryp);
 513        if (ret) {
 514                dev_err(cryp->dev, "Timeout (ccm init)\n");
 515                return ret;
 516        }
 517
 518        /* Prepare next phase */
 519        if (cryp->areq->assoclen) {
 520                cfg |= CR_PH_HEADER | CR_CRYPEN;
 521                stm32_cryp_write(cryp, CRYP_CR, cfg);
 522
 523                /* Write first (special) block (may move to next phase [payload]) */
 524                stm32_cryp_write_ccm_first_header(cryp);
 525        } else if (stm32_cryp_get_input_text_len(cryp)) {
 526                cfg |= CR_PH_PAYLOAD;
 527                stm32_cryp_write(cryp, CRYP_CR, cfg);
 528        }
 529
 530        return 0;
 531}
 532
 533static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 534{
 535        int ret;
 536        u32 cfg, hw_mode;
 537
 538        pm_runtime_get_sync(cryp->dev);
 539
 540        /* Disable interrupt */
 541        stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 542
 543        /* Set configuration */
 544        cfg = CR_DATA8 | CR_FFLUSH;
 545
 546        switch (cryp->ctx->keylen) {
 547        case AES_KEYSIZE_128:
 548                cfg |= CR_KEY128;
 549                break;
 550
 551        case AES_KEYSIZE_192:
 552                cfg |= CR_KEY192;
 553                break;
 554
 555        default:
 556        case AES_KEYSIZE_256:
 557                cfg |= CR_KEY256;
 558                break;
 559        }
 560
 561        hw_mode = stm32_cryp_get_hw_mode(cryp);
 562        if (hw_mode == CR_AES_UNKNOWN)
 563                return -EINVAL;
 564
 565        /* AES ECB/CBC decrypt: run key preparation first */
 566        if (is_decrypt(cryp) &&
 567            ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 568                /* Configure in key preparation mode */
 569                stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP);
 570
 571                /* Set key only after full configuration done */
 572                stm32_cryp_hw_write_key(cryp);
 573
 574                /* Start prepare key */
 575                stm32_cryp_enable(cryp);
 576                /* Wait for end of processing */
 577                ret = stm32_cryp_wait_busy(cryp);
 578                if (ret) {
 579                        dev_err(cryp->dev, "Timeout (key preparation)\n");
 580                        return ret;
 581                }
 582
 583                cfg |= hw_mode | CR_DEC_NOT_ENC;
 584
 585                /* Apply updated config (Decrypt + algo) and flush */
 586                stm32_cryp_write(cryp, CRYP_CR, cfg);
 587        } else {
 588                cfg |= hw_mode;
 589                if (is_decrypt(cryp))
 590                        cfg |= CR_DEC_NOT_ENC;
 591
 592                /* Apply config and flush */
 593                stm32_cryp_write(cryp, CRYP_CR, cfg);
 594
 595                /* Set key only after configuration done */
 596                stm32_cryp_hw_write_key(cryp);
 597        }
 598
 599        switch (hw_mode) {
 600        case CR_AES_GCM:
 601        case CR_AES_CCM:
 602                /* Phase 1 : init */
 603                if (hw_mode == CR_AES_CCM)
 604                        ret = stm32_cryp_ccm_init(cryp, cfg);
 605                else
 606                        ret = stm32_cryp_gcm_init(cryp, cfg);
 607
 608                if (ret)
 609                        return ret;
 610
 611                break;
 612
 613        case CR_DES_CBC:
 614        case CR_TDES_CBC:
 615        case CR_AES_CBC:
 616        case CR_AES_CTR:
 617                stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 618                break;
 619
 620        default:
 621                break;
 622        }
 623
 624        /* Enable now */
 625        stm32_cryp_enable(cryp);
 626
 627        return 0;
 628}
 629
 630static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 631{
 632        if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 633                /* Phase 4 : output tag */
 634                err = stm32_cryp_read_auth_tag(cryp);
 635
 636        if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
 637                stm32_cryp_get_iv(cryp);
 638
 639        pm_runtime_mark_last_busy(cryp->dev);
 640        pm_runtime_put_autosuspend(cryp->dev);
 641
 642        if (is_gcm(cryp) || is_ccm(cryp))
 643                crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 644        else
 645                crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 646                                                   err);
 647}
 648
 649static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 650{
 651        /* Enable interrupt and let the IRQ handler do everything */
 652        stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 653
 654        return 0;
 655}
 656
 657static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 658static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 659                                         void *areq);
 660
 661static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 662{
 663        struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 664
 665        crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 666
 667        ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 668        ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 669        ctx->enginectx.op.unprepare_request = NULL;
 670        return 0;
 671}
 672
 673static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 674static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 675                                       void *areq);
 676
 677static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 678{
 679        struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 680
 681        tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 682
 683        ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 684        ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 685        ctx->enginectx.op.unprepare_request = NULL;
 686
 687        return 0;
 688}
 689
 690static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 691{
 692        struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 693                        crypto_skcipher_reqtfm(req));
 694        struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 695        struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 696
 697        if (!cryp)
 698                return -ENODEV;
 699
 700        rctx->mode = mode;
 701
 702        return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 703}
 704
 705static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 706{
 707        struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 708        struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 709        struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 710
 711        if (!cryp)
 712                return -ENODEV;
 713
 714        rctx->mode = mode;
 715
 716        return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 717}
 718
 719static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 720                             unsigned int keylen)
 721{
 722        struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 723
 724        memcpy(ctx->key, key, keylen);
 725        ctx->keylen = keylen;
 726
 727        return 0;
 728}
 729
 730static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 731                                 unsigned int keylen)
 732{
 733        if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 734            keylen != AES_KEYSIZE_256)
 735                return -EINVAL;
 736        else
 737                return stm32_cryp_setkey(tfm, key, keylen);
 738}
 739
 740static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 741                                 unsigned int keylen)
 742{
 743        return verify_skcipher_des_key(tfm, key) ?:
 744               stm32_cryp_setkey(tfm, key, keylen);
 745}
 746
 747static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 748                                  unsigned int keylen)
 749{
 750        return verify_skcipher_des3_key(tfm, key) ?:
 751               stm32_cryp_setkey(tfm, key, keylen);
 752}
 753
 754static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 755                                      unsigned int keylen)
 756{
 757        struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 758
 759        if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 760            keylen != AES_KEYSIZE_256)
 761                return -EINVAL;
 762
 763        memcpy(ctx->key, key, keylen);
 764        ctx->keylen = keylen;
 765
 766        return 0;
 767}
 768
 769static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 770                                          unsigned int authsize)
 771{
 772        switch (authsize) {
 773        case 4:
 774        case 8:
 775        case 12:
 776        case 13:
 777        case 14:
 778        case 15:
 779        case 16:
 780                break;
 781        default:
 782                return -EINVAL;
 783        }
 784
 785        return 0;
 786}
 787
 788static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 789                                          unsigned int authsize)
 790{
 791        switch (authsize) {
 792        case 4:
 793        case 6:
 794        case 8:
 795        case 10:
 796        case 12:
 797        case 14:
 798        case 16:
 799                break;
 800        default:
 801                return -EINVAL;
 802        }
 803
 804        return 0;
 805}
 806
 807static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 808{
 809        if (req->cryptlen % AES_BLOCK_SIZE)
 810                return -EINVAL;
 811
 812        if (req->cryptlen == 0)
 813                return 0;
 814
 815        return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 816}
 817
 818static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 819{
 820        if (req->cryptlen % AES_BLOCK_SIZE)
 821                return -EINVAL;
 822
 823        if (req->cryptlen == 0)
 824                return 0;
 825
 826        return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 827}
 828
 829static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
 830{
 831        if (req->cryptlen % AES_BLOCK_SIZE)
 832                return -EINVAL;
 833
 834        if (req->cryptlen == 0)
 835                return 0;
 836
 837        return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 838}
 839
 840static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
 841{
 842        if (req->cryptlen % AES_BLOCK_SIZE)
 843                return -EINVAL;
 844
 845        if (req->cryptlen == 0)
 846                return 0;
 847
 848        return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 849}
 850
 851static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
 852{
 853        if (req->cryptlen == 0)
 854                return 0;
 855
 856        return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 857}
 858
 859static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
 860{
 861        if (req->cryptlen == 0)
 862                return 0;
 863
 864        return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 865}
 866
 867static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 868{
 869        return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 870}
 871
 872static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 873{
 874        return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 875}
 876
 877static inline int crypto_ccm_check_iv(const u8 *iv)
 878{
 879        /* 2 <= L <= 8, so 1 <= L' <= 7. */
 880        if (iv[0] < 1 || iv[0] > 7)
 881                return -EINVAL;
 882
 883        return 0;
 884}
 885
 886static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 887{
 888        int err;
 889
 890        err = crypto_ccm_check_iv(req->iv);
 891        if (err)
 892                return err;
 893
 894        return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 895}
 896
 897static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 898{
 899        int err;
 900
 901        err = crypto_ccm_check_iv(req->iv);
 902        if (err)
 903                return err;
 904
 905        return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 906}
 907
 908static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
 909{
 910        if (req->cryptlen % DES_BLOCK_SIZE)
 911                return -EINVAL;
 912
 913        if (req->cryptlen == 0)
 914                return 0;
 915
 916        return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 917}
 918
 919static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
 920{
 921        if (req->cryptlen % DES_BLOCK_SIZE)
 922                return -EINVAL;
 923
 924        if (req->cryptlen == 0)
 925                return 0;
 926
 927        return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 928}
 929
 930static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
 931{
 932        if (req->cryptlen % DES_BLOCK_SIZE)
 933                return -EINVAL;
 934
 935        if (req->cryptlen == 0)
 936                return 0;
 937
 938        return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 939}
 940
 941static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
 942{
 943        if (req->cryptlen % DES_BLOCK_SIZE)
 944                return -EINVAL;
 945
 946        if (req->cryptlen == 0)
 947                return 0;
 948
 949        return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 950}
 951
 952static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
 953{
 954        if (req->cryptlen % DES_BLOCK_SIZE)
 955                return -EINVAL;
 956
 957        if (req->cryptlen == 0)
 958                return 0;
 959
 960        return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 961}
 962
 963static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
 964{
 965        if (req->cryptlen % DES_BLOCK_SIZE)
 966                return -EINVAL;
 967
 968        if (req->cryptlen == 0)
 969                return 0;
 970
 971        return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 972}
 973
 974static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
 975{
 976        if (req->cryptlen % DES_BLOCK_SIZE)
 977                return -EINVAL;
 978
 979        if (req->cryptlen == 0)
 980                return 0;
 981
 982        return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 983}
 984
 985static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
 986{
 987        if (req->cryptlen % DES_BLOCK_SIZE)
 988                return -EINVAL;
 989
 990        if (req->cryptlen == 0)
 991                return 0;
 992
 993        return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 994}
 995
 996static int stm32_cryp_prepare_req(struct skcipher_request *req,
 997                                  struct aead_request *areq)
 998{
 999        struct stm32_cryp_ctx *ctx;
1000        struct stm32_cryp *cryp;
1001        struct stm32_cryp_reqctx *rctx;
1002        struct scatterlist *in_sg;
1003        int ret;
1004
1005        if (!req && !areq)
1006                return -EINVAL;
1007
1008        ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1009                    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1010
1011        cryp = ctx->cryp;
1012
1013        if (!cryp)
1014                return -ENODEV;
1015
1016        rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1017        rctx->mode &= FLG_MODE_MASK;
1018
1019        ctx->cryp = cryp;
1020
1021        cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1022        cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1023        cryp->ctx = ctx;
1024
1025        if (req) {
1026                cryp->req = req;
1027                cryp->areq = NULL;
1028                cryp->header_in = 0;
1029                cryp->payload_in = req->cryptlen;
1030                cryp->payload_out = req->cryptlen;
1031                cryp->authsize = 0;
1032        } else {
1033                /*
1034                 * Length of input and output data:
1035                 * Encryption case:
1036                 *  INPUT  = AssocData   ||     PlainText
1037                 *          <- assoclen ->  <- cryptlen ->
1038                 *
1039                 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1040                 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1041                 *
1042                 * Decryption case:
1043                 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1044                 *          <- assoclen --->  <---------- cryptlen ---------->
1045                 *
1046                 *  OUTPUT = AssocData    ||               PlainText
1047                 *          <- assoclen ->  <- cryptlen - authsize ->
1048                 */
1049                cryp->areq = areq;
1050                cryp->req = NULL;
1051                cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1052                if (is_encrypt(cryp)) {
1053                        cryp->payload_in = areq->cryptlen;
1054                        cryp->header_in = areq->assoclen;
1055                        cryp->payload_out = areq->cryptlen;
1056                } else {
1057                        cryp->payload_in = areq->cryptlen - cryp->authsize;
1058                        cryp->header_in = areq->assoclen;
1059                        cryp->payload_out = cryp->payload_in;
1060                }
1061        }
1062
1063        in_sg = req ? req->src : areq->src;
1064        scatterwalk_start(&cryp->in_walk, in_sg);
1065
1066        cryp->out_sg = req ? req->dst : areq->dst;
1067        scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1068
1069        if (is_gcm(cryp) || is_ccm(cryp)) {
1070                /* In output, jump after assoc data */
1071                scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1072        }
1073
1074        if (is_ctr(cryp))
1075                memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1076
1077        ret = stm32_cryp_hw_init(cryp);
1078        return ret;
1079}
1080
1081static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1082                                         void *areq)
1083{
1084        struct skcipher_request *req = container_of(areq,
1085                                                      struct skcipher_request,
1086                                                      base);
1087
1088        return stm32_cryp_prepare_req(req, NULL);
1089}
1090
1091static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1092{
1093        struct skcipher_request *req = container_of(areq,
1094                                                      struct skcipher_request,
1095                                                      base);
1096        struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1097                        crypto_skcipher_reqtfm(req));
1098        struct stm32_cryp *cryp = ctx->cryp;
1099
1100        if (!cryp)
1101                return -ENODEV;
1102
1103        return stm32_cryp_cpu_start(cryp);
1104}
1105
1106static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1107{
1108        struct aead_request *req = container_of(areq, struct aead_request,
1109                                                base);
1110
1111        return stm32_cryp_prepare_req(NULL, req);
1112}
1113
1114static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1115{
1116        struct aead_request *req = container_of(areq, struct aead_request,
1117                                                base);
1118        struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1119        struct stm32_cryp *cryp = ctx->cryp;
1120
1121        if (!cryp)
1122                return -ENODEV;
1123
1124        if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1125                /* No input data to process: get tag and finish */
1126                stm32_cryp_finish_req(cryp, 0);
1127                return 0;
1128        }
1129
1130        return stm32_cryp_cpu_start(cryp);
1131}
1132
1133static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1134{
1135        u32 cfg, size_bit;
1136        unsigned int i;
1137        int ret = 0;
1138
1139        /* Update Config */
1140        cfg = stm32_cryp_read(cryp, CRYP_CR);
1141
1142        cfg &= ~CR_PH_MASK;
1143        cfg |= CR_PH_FINAL;
1144        cfg &= ~CR_DEC_NOT_ENC;
1145        cfg |= CR_CRYPEN;
1146
1147        stm32_cryp_write(cryp, CRYP_CR, cfg);
1148
1149        if (is_gcm(cryp)) {
1150                /* GCM: write aad and payload size (in bits) */
1151                size_bit = cryp->areq->assoclen * 8;
1152                if (cryp->caps->swap_final)
1153                        size_bit = (__force u32)cpu_to_be32(size_bit);
1154
1155                stm32_cryp_write(cryp, CRYP_DIN, 0);
1156                stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1157
1158                size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1159                                cryp->areq->cryptlen - cryp->authsize;
1160                size_bit *= 8;
1161                if (cryp->caps->swap_final)
1162                        size_bit = (__force u32)cpu_to_be32(size_bit);
1163
1164                stm32_cryp_write(cryp, CRYP_DIN, 0);
1165                stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1166        } else {
1167                /* CCM: write CTR0 */
1168                u32 iv32[AES_BLOCK_32];
1169                u8 *iv = (u8 *)iv32;
1170                __be32 *biv = (__be32 *)iv32;
1171
1172                memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1173                memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1174
1175                for (i = 0; i < AES_BLOCK_32; i++) {
1176                        u32 xiv = iv32[i];
1177
1178                        if (!cryp->caps->padding_wa)
1179                                xiv = be32_to_cpu(biv[i]);
1180                        stm32_cryp_write(cryp, CRYP_DIN, xiv);
1181                }
1182        }
1183
1184        /* Wait for output data */
1185        ret = stm32_cryp_wait_output(cryp);
1186        if (ret) {
1187                dev_err(cryp->dev, "Timeout (read tag)\n");
1188                return ret;
1189        }
1190
1191        if (is_encrypt(cryp)) {
1192                u32 out_tag[AES_BLOCK_32];
1193
1194                /* Get and write tag */
1195                for (i = 0; i < AES_BLOCK_32; i++)
1196                        out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1197
1198                scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1199        } else {
1200                /* Get and check tag */
1201                u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1202
1203                scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1204
1205                for (i = 0; i < AES_BLOCK_32; i++)
1206                        out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1207
1208                if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1209                        ret = -EBADMSG;
1210        }
1211
1212        /* Disable cryp */
1213        cfg &= ~CR_CRYPEN;
1214        stm32_cryp_write(cryp, CRYP_CR, cfg);
1215
1216        return ret;
1217}
1218
1219static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1220{
1221        u32 cr;
1222
1223        if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1224                /*
1225                 * In this case, we need to increment manually the ctr counter,
1226                 * as HW doesn't handle the U32 carry.
1227                 */
1228                crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1229
1230                cr = stm32_cryp_read(cryp, CRYP_CR);
1231                stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1232
1233                stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1234
1235                stm32_cryp_write(cryp, CRYP_CR, cr);
1236        }
1237
1238        /* The IV registers are BE  */
1239        cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
1240        cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
1241        cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
1242        cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
1243}
1244
1245static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1246{
1247        unsigned int i;
1248        u32 block[AES_BLOCK_32];
1249
1250        for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1251                block[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1252
1253        scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1254                                                             cryp->payload_out), 1);
1255        cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1256                                   cryp->payload_out);
1257}
1258
1259static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1260{
1261        unsigned int i;
1262        u32 block[AES_BLOCK_32] = {0};
1263
1264        scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1265                                                            cryp->payload_in), 0);
1266        for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1267                stm32_cryp_write(cryp, CRYP_DIN, block[i]);
1268
1269        cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1270}
1271
1272static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1273{
1274        int err;
1275        u32 cfg, block[AES_BLOCK_32] = {0};
1276        unsigned int i;
1277
1278        /* 'Special workaround' procedure described in the datasheet */
1279
1280        /* a) disable ip */
1281        stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1282        cfg = stm32_cryp_read(cryp, CRYP_CR);
1283        cfg &= ~CR_CRYPEN;
1284        stm32_cryp_write(cryp, CRYP_CR, cfg);
1285
1286        /* b) Update IV1R */
1287        stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1288
1289        /* c) change mode to CTR */
1290        cfg &= ~CR_ALGO_MASK;
1291        cfg |= CR_AES_CTR;
1292        stm32_cryp_write(cryp, CRYP_CR, cfg);
1293
1294        /* a) enable IP */
1295        cfg |= CR_CRYPEN;
1296        stm32_cryp_write(cryp, CRYP_CR, cfg);
1297
1298        /* b) pad and write the last block */
1299        stm32_cryp_irq_write_block(cryp);
1300        /* wait end of process */
1301        err = stm32_cryp_wait_output(cryp);
1302        if (err) {
1303                dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1304                return stm32_cryp_finish_req(cryp, err);
1305        }
1306
1307        /* c) get and store encrypted data */
1308        /*
1309         * Same code as stm32_cryp_irq_read_data(), but we want to store
1310         * block value
1311         */
1312        for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1313                block[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1314
1315        scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1316                                                             cryp->payload_out), 1);
1317        cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1318                                   cryp->payload_out);
1319
1320        /* d) change mode back to AES GCM */
1321        cfg &= ~CR_ALGO_MASK;
1322        cfg |= CR_AES_GCM;
1323        stm32_cryp_write(cryp, CRYP_CR, cfg);
1324
1325        /* e) change phase to Final */
1326        cfg &= ~CR_PH_MASK;
1327        cfg |= CR_PH_FINAL;
1328        stm32_cryp_write(cryp, CRYP_CR, cfg);
1329
1330        /* f) write padded data */
1331        for (i = 0; i < AES_BLOCK_32; i++)
1332                stm32_cryp_write(cryp, CRYP_DIN, block[i]);
1333
1334        /* g) Empty fifo out */
1335        err = stm32_cryp_wait_output(cryp);
1336        if (err) {
1337                dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1338                return stm32_cryp_finish_req(cryp, err);
1339        }
1340
1341        for (i = 0; i < AES_BLOCK_32; i++)
1342                stm32_cryp_read(cryp, CRYP_DOUT);
1343
1344        /* h) run the he normal Final phase */
1345        stm32_cryp_finish_req(cryp, 0);
1346}
1347
1348static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1349{
1350        u32 cfg;
1351
1352        /* disable ip, set NPBLB and reneable ip */
1353        cfg = stm32_cryp_read(cryp, CRYP_CR);
1354        cfg &= ~CR_CRYPEN;
1355        stm32_cryp_write(cryp, CRYP_CR, cfg);
1356
1357        cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1358        cfg |= CR_CRYPEN;
1359        stm32_cryp_write(cryp, CRYP_CR, cfg);
1360}
1361
1362static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1363{
1364        int err = 0;
1365        u32 cfg, iv1tmp;
1366        u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1367        u32 block[AES_BLOCK_32] = {0};
1368        unsigned int i;
1369
1370        /* 'Special workaround' procedure described in the datasheet */
1371
1372        /* a) disable ip */
1373        stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1374
1375        cfg = stm32_cryp_read(cryp, CRYP_CR);
1376        cfg &= ~CR_CRYPEN;
1377        stm32_cryp_write(cryp, CRYP_CR, cfg);
1378
1379        /* b) get IV1 from CRYP_CSGCMCCM7 */
1380        iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1381
1382        /* c) Load CRYP_CSGCMCCMxR */
1383        for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1384                cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1385
1386        /* d) Write IV1R */
1387        stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1388
1389        /* e) change mode to CTR */
1390        cfg &= ~CR_ALGO_MASK;
1391        cfg |= CR_AES_CTR;
1392        stm32_cryp_write(cryp, CRYP_CR, cfg);
1393
1394        /* a) enable IP */
1395        cfg |= CR_CRYPEN;
1396        stm32_cryp_write(cryp, CRYP_CR, cfg);
1397
1398        /* b) pad and write the last block */
1399        stm32_cryp_irq_write_block(cryp);
1400        /* wait end of process */
1401        err = stm32_cryp_wait_output(cryp);
1402        if (err) {
1403                dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1404                return stm32_cryp_finish_req(cryp, err);
1405        }
1406
1407        /* c) get and store decrypted data */
1408        /*
1409         * Same code as stm32_cryp_irq_read_data(), but we want to store
1410         * block value
1411         */
1412        for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1413                block[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1414
1415        scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1416                                                             cryp->payload_out), 1);
1417        cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1418
1419        /* d) Load again CRYP_CSGCMCCMxR */
1420        for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1421                cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1422
1423        /* e) change mode back to AES CCM */
1424        cfg &= ~CR_ALGO_MASK;
1425        cfg |= CR_AES_CCM;
1426        stm32_cryp_write(cryp, CRYP_CR, cfg);
1427
1428        /* f) change phase to header */
1429        cfg &= ~CR_PH_MASK;
1430        cfg |= CR_PH_HEADER;
1431        stm32_cryp_write(cryp, CRYP_CR, cfg);
1432
1433        /* g) XOR and write padded data */
1434        for (i = 0; i < ARRAY_SIZE(block); i++) {
1435                block[i] ^= cstmp1[i];
1436                block[i] ^= cstmp2[i];
1437                stm32_cryp_write(cryp, CRYP_DIN, block[i]);
1438        }
1439
1440        /* h) wait for completion */
1441        err = stm32_cryp_wait_busy(cryp);
1442        if (err)
1443                dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1444
1445        /* i) run the he normal Final phase */
1446        stm32_cryp_finish_req(cryp, err);
1447}
1448
1449static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1450{
1451        if (unlikely(!cryp->payload_in)) {
1452                dev_warn(cryp->dev, "No more data to process\n");
1453                return;
1454        }
1455
1456        if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1457                     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1458                     is_encrypt(cryp))) {
1459                /* Padding for AES GCM encryption */
1460                if (cryp->caps->padding_wa) {
1461                        /* Special case 1 */
1462                        stm32_cryp_irq_write_gcm_padded_data(cryp);
1463                        return;
1464                }
1465
1466                /* Setting padding bytes (NBBLB) */
1467                stm32_cryp_irq_set_npblb(cryp);
1468        }
1469
1470        if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1471                     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1472                     is_decrypt(cryp))) {
1473                /* Padding for AES CCM decryption */
1474                if (cryp->caps->padding_wa) {
1475                        /* Special case 2 */
1476                        stm32_cryp_irq_write_ccm_padded_data(cryp);
1477                        return;
1478                }
1479
1480                /* Setting padding bytes (NBBLB) */
1481                stm32_cryp_irq_set_npblb(cryp);
1482        }
1483
1484        if (is_aes(cryp) && is_ctr(cryp))
1485                stm32_cryp_check_ctr_counter(cryp);
1486
1487        stm32_cryp_irq_write_block(cryp);
1488}
1489
1490static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1491{
1492        unsigned int i;
1493        u32 block[AES_BLOCK_32] = {0};
1494        size_t written;
1495
1496        written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1497
1498        scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1499        for (i = 0; i < AES_BLOCK_32; i++)
1500                stm32_cryp_write(cryp, CRYP_DIN, block[i]);
1501
1502        cryp->header_in -= written;
1503
1504        stm32_crypt_gcmccm_end_header(cryp);
1505}
1506
1507static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1508{
1509        struct stm32_cryp *cryp = arg;
1510        u32 ph;
1511        u32 it_mask = stm32_cryp_read(cryp, CRYP_IMSCR);
1512
1513        if (cryp->irq_status & MISR_OUT)
1514                /* Output FIFO IRQ: read data */
1515                stm32_cryp_irq_read_data(cryp);
1516
1517        if (cryp->irq_status & MISR_IN) {
1518                if (is_gcm(cryp) || is_ccm(cryp)) {
1519                        ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1520                        if (unlikely(ph == CR_PH_HEADER))
1521                                /* Write Header */
1522                                stm32_cryp_irq_write_gcmccm_header(cryp);
1523                        else
1524                                /* Input FIFO IRQ: write data */
1525                                stm32_cryp_irq_write_data(cryp);
1526                        if (is_gcm(cryp))
1527                                cryp->gcm_ctr++;
1528                } else {
1529                        /* Input FIFO IRQ: write data */
1530                        stm32_cryp_irq_write_data(cryp);
1531                }
1532        }
1533
1534        /* Mask useless interrupts */
1535        if (!cryp->payload_in && !cryp->header_in)
1536                it_mask &= ~IMSCR_IN;
1537        if (!cryp->payload_out)
1538                it_mask &= ~IMSCR_OUT;
1539        stm32_cryp_write(cryp, CRYP_IMSCR, it_mask);
1540
1541        if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1542                stm32_cryp_finish_req(cryp, 0);
1543
1544        return IRQ_HANDLED;
1545}
1546
1547static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1548{
1549        struct stm32_cryp *cryp = arg;
1550
1551        cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1552
1553        return IRQ_WAKE_THREAD;
1554}
1555
1556static struct skcipher_alg crypto_algs[] = {
1557{
1558        .base.cra_name          = "ecb(aes)",
1559        .base.cra_driver_name   = "stm32-ecb-aes",
1560        .base.cra_priority      = 200,
1561        .base.cra_flags         = CRYPTO_ALG_ASYNC,
1562        .base.cra_blocksize     = AES_BLOCK_SIZE,
1563        .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1564        .base.cra_alignmask     = 0,
1565        .base.cra_module        = THIS_MODULE,
1566
1567        .init                   = stm32_cryp_init_tfm,
1568        .min_keysize            = AES_MIN_KEY_SIZE,
1569        .max_keysize            = AES_MAX_KEY_SIZE,
1570        .setkey                 = stm32_cryp_aes_setkey,
1571        .encrypt                = stm32_cryp_aes_ecb_encrypt,
1572        .decrypt                = stm32_cryp_aes_ecb_decrypt,
1573},
1574{
1575        .base.cra_name          = "cbc(aes)",
1576        .base.cra_driver_name   = "stm32-cbc-aes",
1577        .base.cra_priority      = 200,
1578        .base.cra_flags         = CRYPTO_ALG_ASYNC,
1579        .base.cra_blocksize     = AES_BLOCK_SIZE,
1580        .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1581        .base.cra_alignmask     = 0,
1582        .base.cra_module        = THIS_MODULE,
1583
1584        .init                   = stm32_cryp_init_tfm,
1585        .min_keysize            = AES_MIN_KEY_SIZE,
1586        .max_keysize            = AES_MAX_KEY_SIZE,
1587        .ivsize                 = AES_BLOCK_SIZE,
1588        .setkey                 = stm32_cryp_aes_setkey,
1589        .encrypt                = stm32_cryp_aes_cbc_encrypt,
1590        .decrypt                = stm32_cryp_aes_cbc_decrypt,
1591},
1592{
1593        .base.cra_name          = "ctr(aes)",
1594        .base.cra_driver_name   = "stm32-ctr-aes",
1595        .base.cra_priority      = 200,
1596        .base.cra_flags         = CRYPTO_ALG_ASYNC,
1597        .base.cra_blocksize     = 1,
1598        .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1599        .base.cra_alignmask     = 0,
1600        .base.cra_module        = THIS_MODULE,
1601
1602        .init                   = stm32_cryp_init_tfm,
1603        .min_keysize            = AES_MIN_KEY_SIZE,
1604        .max_keysize            = AES_MAX_KEY_SIZE,
1605        .ivsize                 = AES_BLOCK_SIZE,
1606        .setkey                 = stm32_cryp_aes_setkey,
1607        .encrypt                = stm32_cryp_aes_ctr_encrypt,
1608        .decrypt                = stm32_cryp_aes_ctr_decrypt,
1609},
1610{
1611        .base.cra_name          = "ecb(des)",
1612        .base.cra_driver_name   = "stm32-ecb-des",
1613        .base.cra_priority      = 200,
1614        .base.cra_flags         = CRYPTO_ALG_ASYNC,
1615        .base.cra_blocksize     = DES_BLOCK_SIZE,
1616        .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1617        .base.cra_alignmask     = 0,
1618        .base.cra_module        = THIS_MODULE,
1619
1620        .init                   = stm32_cryp_init_tfm,
1621        .min_keysize            = DES_BLOCK_SIZE,
1622        .max_keysize            = DES_BLOCK_SIZE,
1623        .setkey                 = stm32_cryp_des_setkey,
1624        .encrypt                = stm32_cryp_des_ecb_encrypt,
1625        .decrypt                = stm32_cryp_des_ecb_decrypt,
1626},
1627{
1628        .base.cra_name          = "cbc(des)",
1629        .base.cra_driver_name   = "stm32-cbc-des",
1630        .base.cra_priority      = 200,
1631        .base.cra_flags         = CRYPTO_ALG_ASYNC,
1632        .base.cra_blocksize     = DES_BLOCK_SIZE,
1633        .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1634        .base.cra_alignmask     = 0,
1635        .base.cra_module        = THIS_MODULE,
1636
1637        .init                   = stm32_cryp_init_tfm,
1638        .min_keysize            = DES_BLOCK_SIZE,
1639        .max_keysize            = DES_BLOCK_SIZE,
1640        .ivsize                 = DES_BLOCK_SIZE,
1641        .setkey                 = stm32_cryp_des_setkey,
1642        .encrypt                = stm32_cryp_des_cbc_encrypt,
1643        .decrypt                = stm32_cryp_des_cbc_decrypt,
1644},
1645{
1646        .base.cra_name          = "ecb(des3_ede)",
1647        .base.cra_driver_name   = "stm32-ecb-des3",
1648        .base.cra_priority      = 200,
1649        .base.cra_flags         = CRYPTO_ALG_ASYNC,
1650        .base.cra_blocksize     = DES_BLOCK_SIZE,
1651        .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1652        .base.cra_alignmask     = 0,
1653        .base.cra_module        = THIS_MODULE,
1654
1655        .init                   = stm32_cryp_init_tfm,
1656        .min_keysize            = 3 * DES_BLOCK_SIZE,
1657        .max_keysize            = 3 * DES_BLOCK_SIZE,
1658        .setkey                 = stm32_cryp_tdes_setkey,
1659        .encrypt                = stm32_cryp_tdes_ecb_encrypt,
1660        .decrypt                = stm32_cryp_tdes_ecb_decrypt,
1661},
1662{
1663        .base.cra_name          = "cbc(des3_ede)",
1664        .base.cra_driver_name   = "stm32-cbc-des3",
1665        .base.cra_priority      = 200,
1666        .base.cra_flags         = CRYPTO_ALG_ASYNC,
1667        .base.cra_blocksize     = DES_BLOCK_SIZE,
1668        .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1669        .base.cra_alignmask     = 0,
1670        .base.cra_module        = THIS_MODULE,
1671
1672        .init                   = stm32_cryp_init_tfm,
1673        .min_keysize            = 3 * DES_BLOCK_SIZE,
1674        .max_keysize            = 3 * DES_BLOCK_SIZE,
1675        .ivsize                 = DES_BLOCK_SIZE,
1676        .setkey                 = stm32_cryp_tdes_setkey,
1677        .encrypt                = stm32_cryp_tdes_cbc_encrypt,
1678        .decrypt                = stm32_cryp_tdes_cbc_decrypt,
1679},
1680};
1681
1682static struct aead_alg aead_algs[] = {
1683{
1684        .setkey         = stm32_cryp_aes_aead_setkey,
1685        .setauthsize    = stm32_cryp_aes_gcm_setauthsize,
1686        .encrypt        = stm32_cryp_aes_gcm_encrypt,
1687        .decrypt        = stm32_cryp_aes_gcm_decrypt,
1688        .init           = stm32_cryp_aes_aead_init,
1689        .ivsize         = 12,
1690        .maxauthsize    = AES_BLOCK_SIZE,
1691
1692        .base = {
1693                .cra_name               = "gcm(aes)",
1694                .cra_driver_name        = "stm32-gcm-aes",
1695                .cra_priority           = 200,
1696                .cra_flags              = CRYPTO_ALG_ASYNC,
1697                .cra_blocksize          = 1,
1698                .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1699                .cra_alignmask          = 0,
1700                .cra_module             = THIS_MODULE,
1701        },
1702},
1703{
1704        .setkey         = stm32_cryp_aes_aead_setkey,
1705        .setauthsize    = stm32_cryp_aes_ccm_setauthsize,
1706        .encrypt        = stm32_cryp_aes_ccm_encrypt,
1707        .decrypt        = stm32_cryp_aes_ccm_decrypt,
1708        .init           = stm32_cryp_aes_aead_init,
1709        .ivsize         = AES_BLOCK_SIZE,
1710        .maxauthsize    = AES_BLOCK_SIZE,
1711
1712        .base = {
1713                .cra_name               = "ccm(aes)",
1714                .cra_driver_name        = "stm32-ccm-aes",
1715                .cra_priority           = 200,
1716                .cra_flags              = CRYPTO_ALG_ASYNC,
1717                .cra_blocksize          = 1,
1718                .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1719                .cra_alignmask          = 0,
1720                .cra_module             = THIS_MODULE,
1721        },
1722},
1723};
1724
1725static const struct stm32_cryp_caps f7_data = {
1726        .swap_final = true,
1727        .padding_wa = true,
1728};
1729
1730static const struct stm32_cryp_caps mp1_data = {
1731        .swap_final = false,
1732        .padding_wa = false,
1733};
1734
1735static const struct of_device_id stm32_dt_ids[] = {
1736        { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1737        { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1738        {},
1739};
1740MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1741
1742static int stm32_cryp_probe(struct platform_device *pdev)
1743{
1744        struct device *dev = &pdev->dev;
1745        struct stm32_cryp *cryp;
1746        struct reset_control *rst;
1747        int irq, ret;
1748
1749        cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1750        if (!cryp)
1751                return -ENOMEM;
1752
1753        cryp->caps = of_device_get_match_data(dev);
1754        if (!cryp->caps)
1755                return -ENODEV;
1756
1757        cryp->dev = dev;
1758
1759        cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1760        if (IS_ERR(cryp->regs))
1761                return PTR_ERR(cryp->regs);
1762
1763        irq = platform_get_irq(pdev, 0);
1764        if (irq < 0)
1765                return irq;
1766
1767        ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1768                                        stm32_cryp_irq_thread, IRQF_ONESHOT,
1769                                        dev_name(dev), cryp);
1770        if (ret) {
1771                dev_err(dev, "Cannot grab IRQ\n");
1772                return ret;
1773        }
1774
1775        cryp->clk = devm_clk_get(dev, NULL);
1776        if (IS_ERR(cryp->clk)) {
1777                dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
1778
1779                return PTR_ERR(cryp->clk);
1780        }
1781
1782        ret = clk_prepare_enable(cryp->clk);
1783        if (ret) {
1784                dev_err(cryp->dev, "Failed to enable clock\n");
1785                return ret;
1786        }
1787
1788        pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1789        pm_runtime_use_autosuspend(dev);
1790
1791        pm_runtime_get_noresume(dev);
1792        pm_runtime_set_active(dev);
1793        pm_runtime_enable(dev);
1794
1795        rst = devm_reset_control_get(dev, NULL);
1796        if (IS_ERR(rst)) {
1797                ret = PTR_ERR(rst);
1798                if (ret == -EPROBE_DEFER)
1799                        goto err_rst;
1800        } else {
1801                reset_control_assert(rst);
1802                udelay(2);
1803                reset_control_deassert(rst);
1804        }
1805
1806        platform_set_drvdata(pdev, cryp);
1807
1808        spin_lock(&cryp_list.lock);
1809        list_add(&cryp->list, &cryp_list.dev_list);
1810        spin_unlock(&cryp_list.lock);
1811
1812        /* Initialize crypto engine */
1813        cryp->engine = crypto_engine_alloc_init(dev, 1);
1814        if (!cryp->engine) {
1815                dev_err(dev, "Could not init crypto engine\n");
1816                ret = -ENOMEM;
1817                goto err_engine1;
1818        }
1819
1820        ret = crypto_engine_start(cryp->engine);
1821        if (ret) {
1822                dev_err(dev, "Could not start crypto engine\n");
1823                goto err_engine2;
1824        }
1825
1826        ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
1827        if (ret) {
1828                dev_err(dev, "Could not register algs\n");
1829                goto err_algs;
1830        }
1831
1832        ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
1833        if (ret)
1834                goto err_aead_algs;
1835
1836        dev_info(dev, "Initialized\n");
1837
1838        pm_runtime_put_sync(dev);
1839
1840        return 0;
1841
1842err_aead_algs:
1843        crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
1844err_algs:
1845err_engine2:
1846        crypto_engine_exit(cryp->engine);
1847err_engine1:
1848        spin_lock(&cryp_list.lock);
1849        list_del(&cryp->list);
1850        spin_unlock(&cryp_list.lock);
1851err_rst:
1852        pm_runtime_disable(dev);
1853        pm_runtime_put_noidle(dev);
1854
1855        clk_disable_unprepare(cryp->clk);
1856
1857        return ret;
1858}
1859
1860static int stm32_cryp_remove(struct platform_device *pdev)
1861{
1862        struct stm32_cryp *cryp = platform_get_drvdata(pdev);
1863        int ret;
1864
1865        if (!cryp)
1866                return -ENODEV;
1867
1868        ret = pm_runtime_resume_and_get(cryp->dev);
1869        if (ret < 0)
1870                return ret;
1871
1872        crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
1873        crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
1874
1875        crypto_engine_exit(cryp->engine);
1876
1877        spin_lock(&cryp_list.lock);
1878        list_del(&cryp->list);
1879        spin_unlock(&cryp_list.lock);
1880
1881        pm_runtime_disable(cryp->dev);
1882        pm_runtime_put_noidle(cryp->dev);
1883
1884        clk_disable_unprepare(cryp->clk);
1885
1886        return 0;
1887}
1888
1889#ifdef CONFIG_PM
1890static int stm32_cryp_runtime_suspend(struct device *dev)
1891{
1892        struct stm32_cryp *cryp = dev_get_drvdata(dev);
1893
1894        clk_disable_unprepare(cryp->clk);
1895
1896        return 0;
1897}
1898
1899static int stm32_cryp_runtime_resume(struct device *dev)
1900{
1901        struct stm32_cryp *cryp = dev_get_drvdata(dev);
1902        int ret;
1903
1904        ret = clk_prepare_enable(cryp->clk);
1905        if (ret) {
1906                dev_err(cryp->dev, "Failed to prepare_enable clock\n");
1907                return ret;
1908        }
1909
1910        return 0;
1911}
1912#endif
1913
1914static const struct dev_pm_ops stm32_cryp_pm_ops = {
1915        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1916                                pm_runtime_force_resume)
1917        SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
1918                           stm32_cryp_runtime_resume, NULL)
1919};
1920
1921static struct platform_driver stm32_cryp_driver = {
1922        .probe  = stm32_cryp_probe,
1923        .remove = stm32_cryp_remove,
1924        .driver = {
1925                .name           = DRIVER_NAME,
1926                .pm             = &stm32_cryp_pm_ops,
1927                .of_match_table = stm32_dt_ids,
1928        },
1929};
1930
1931module_platform_driver(stm32_cryp_driver);
1932
1933MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
1934MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
1935MODULE_LICENSE("GPL");
1936