linux/drivers/dma/sh/rcar-dmac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver
   4 *
   5 * Copyright (C) 2014-2019 Renesas Electronics Inc.
   6 *
   7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/interrupt.h>
  14#include <linux/list.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_dma.h>
  19#include <linux/of_platform.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24
  25#include "../dmaengine.h"
  26
  27/*
  28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
  29 * @node: entry in the parent's chunks list
  30 * @src_addr: device source address
  31 * @dst_addr: device destination address
  32 * @size: transfer size in bytes
  33 */
  34struct rcar_dmac_xfer_chunk {
  35        struct list_head node;
  36
  37        dma_addr_t src_addr;
  38        dma_addr_t dst_addr;
  39        u32 size;
  40};
  41
  42/*
  43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
  44 * @sar: value of the SAR register (source address)
  45 * @dar: value of the DAR register (destination address)
  46 * @tcr: value of the TCR register (transfer count)
  47 */
  48struct rcar_dmac_hw_desc {
  49        u32 sar;
  50        u32 dar;
  51        u32 tcr;
  52        u32 reserved;
  53} __attribute__((__packed__));
  54
  55/*
  56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
  57 * @async_tx: base DMA asynchronous transaction descriptor
  58 * @direction: direction of the DMA transfer
  59 * @xfer_shift: log2 of the transfer size
  60 * @chcr: value of the channel configuration register for this transfer
  61 * @node: entry in the channel's descriptors lists
  62 * @chunks: list of transfer chunks for this transfer
  63 * @running: the transfer chunk being currently processed
  64 * @nchunks: number of transfer chunks for this transfer
  65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
  66 * @hwdescs.mem: hardware descriptors memory for the transfer
  67 * @hwdescs.dma: device address of the hardware descriptors memory
  68 * @hwdescs.size: size of the hardware descriptors in bytes
  69 * @size: transfer size in bytes
  70 * @cyclic: when set indicates that the DMA transfer is cyclic
  71 */
  72struct rcar_dmac_desc {
  73        struct dma_async_tx_descriptor async_tx;
  74        enum dma_transfer_direction direction;
  75        unsigned int xfer_shift;
  76        u32 chcr;
  77
  78        struct list_head node;
  79        struct list_head chunks;
  80        struct rcar_dmac_xfer_chunk *running;
  81        unsigned int nchunks;
  82
  83        struct {
  84                bool use;
  85                struct rcar_dmac_hw_desc *mem;
  86                dma_addr_t dma;
  87                size_t size;
  88        } hwdescs;
  89
  90        unsigned int size;
  91        bool cyclic;
  92};
  93
  94#define to_rcar_dmac_desc(d)    container_of(d, struct rcar_dmac_desc, async_tx)
  95
  96/*
  97 * struct rcar_dmac_desc_page - One page worth of descriptors
  98 * @node: entry in the channel's pages list
  99 * @descs: array of DMA descriptors
 100 * @chunks: array of transfer chunk descriptors
 101 */
 102struct rcar_dmac_desc_page {
 103        struct list_head node;
 104
 105        union {
 106                struct rcar_dmac_desc descs[0];
 107                struct rcar_dmac_xfer_chunk chunks[0];
 108        };
 109};
 110
 111#define RCAR_DMAC_DESCS_PER_PAGE                                        \
 112        ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /    \
 113        sizeof(struct rcar_dmac_desc))
 114#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE                                  \
 115        ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /   \
 116        sizeof(struct rcar_dmac_xfer_chunk))
 117
 118/*
 119 * struct rcar_dmac_chan_slave - Slave configuration
 120 * @slave_addr: slave memory address
 121 * @xfer_size: size (in bytes) of hardware transfers
 122 */
 123struct rcar_dmac_chan_slave {
 124        phys_addr_t slave_addr;
 125        unsigned int xfer_size;
 126};
 127
 128/*
 129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
 130 * @addr: slave dma address
 131 * @dir: direction of mapping
 132 * @slave: slave configuration that is mapped
 133 */
 134struct rcar_dmac_chan_map {
 135        dma_addr_t addr;
 136        enum dma_data_direction dir;
 137        struct rcar_dmac_chan_slave slave;
 138};
 139
 140/*
 141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
 142 * @chan: base DMA channel object
 143 * @iomem: channel I/O memory base
 144 * @index: index of this channel in the controller
 145 * @irq: channel IRQ
 146 * @src: slave memory address and size on the source side
 147 * @dst: slave memory address and size on the destination side
 148 * @mid_rid: hardware MID/RID for the DMA client using this channel
 149 * @lock: protects the channel CHCR register and the desc members
 150 * @desc.free: list of free descriptors
 151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
 152 * @desc.active: list of active descriptors (activated with issue_pending)
 153 * @desc.done: list of completed descriptors
 154 * @desc.wait: list of descriptors waiting for an ack
 155 * @desc.running: the descriptor being processed (a member of the active list)
 156 * @desc.chunks_free: list of free transfer chunk descriptors
 157 * @desc.pages: list of pages used by allocated descriptors
 158 */
 159struct rcar_dmac_chan {
 160        struct dma_chan chan;
 161        void __iomem *iomem;
 162        unsigned int index;
 163        int irq;
 164
 165        struct rcar_dmac_chan_slave src;
 166        struct rcar_dmac_chan_slave dst;
 167        struct rcar_dmac_chan_map map;
 168        int mid_rid;
 169
 170        spinlock_t lock;
 171
 172        struct {
 173                struct list_head free;
 174                struct list_head pending;
 175                struct list_head active;
 176                struct list_head done;
 177                struct list_head wait;
 178                struct rcar_dmac_desc *running;
 179
 180                struct list_head chunks_free;
 181
 182                struct list_head pages;
 183        } desc;
 184};
 185
 186#define to_rcar_dmac_chan(c)    container_of(c, struct rcar_dmac_chan, chan)
 187
 188/*
 189 * struct rcar_dmac - R-Car Gen2 DMA Controller
 190 * @engine: base DMA engine object
 191 * @dev: the hardware device
 192 * @dmac_base: remapped base register block
 193 * @chan_base: remapped channel register block (optional)
 194 * @n_channels: number of available channels
 195 * @channels: array of DMAC channels
 196 * @channels_mask: bitfield of which DMA channels are managed by this driver
 197 * @modules: bitmask of client modules in use
 198 */
 199struct rcar_dmac {
 200        struct dma_device engine;
 201        struct device *dev;
 202        void __iomem *dmac_base;
 203        void __iomem *chan_base;
 204
 205        unsigned int n_channels;
 206        struct rcar_dmac_chan *channels;
 207        u32 channels_mask;
 208
 209        DECLARE_BITMAP(modules, 256);
 210};
 211
 212#define to_rcar_dmac(d)         container_of(d, struct rcar_dmac, engine)
 213
 214#define for_each_rcar_dmac_chan(i, dmac, chan)                                          \
 215        for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++)   \
 216                if (!((dmac)->channels_mask & BIT(i))) continue; else
 217
 218/*
 219 * struct rcar_dmac_of_data - This driver's OF data
 220 * @chan_offset_base: DMAC channels base offset
 221 * @chan_offset_stride: DMAC channels offset stride
 222 */
 223struct rcar_dmac_of_data {
 224        u32 chan_offset_base;
 225        u32 chan_offset_stride;
 226};
 227
 228/* -----------------------------------------------------------------------------
 229 * Registers
 230 */
 231
 232#define RCAR_DMAISTA                    0x0020
 233#define RCAR_DMASEC                     0x0030
 234#define RCAR_DMAOR                      0x0060
 235#define RCAR_DMAOR_PRI_FIXED            (0 << 8)
 236#define RCAR_DMAOR_PRI_ROUND_ROBIN      (3 << 8)
 237#define RCAR_DMAOR_AE                   (1 << 2)
 238#define RCAR_DMAOR_DME                  (1 << 0)
 239#define RCAR_DMACHCLR                   0x0080  /* Not on R-Car Gen4 */
 240#define RCAR_DMADPSEC                   0x00a0
 241
 242#define RCAR_DMASAR                     0x0000
 243#define RCAR_DMADAR                     0x0004
 244#define RCAR_DMATCR                     0x0008
 245#define RCAR_DMATCR_MASK                0x00ffffff
 246#define RCAR_DMATSR                     0x0028
 247#define RCAR_DMACHCR                    0x000c
 248#define RCAR_DMACHCR_CAE                (1 << 31)
 249#define RCAR_DMACHCR_CAIE               (1 << 30)
 250#define RCAR_DMACHCR_DPM_DISABLED       (0 << 28)
 251#define RCAR_DMACHCR_DPM_ENABLED        (1 << 28)
 252#define RCAR_DMACHCR_DPM_REPEAT         (2 << 28)
 253#define RCAR_DMACHCR_DPM_INFINITE       (3 << 28)
 254#define RCAR_DMACHCR_RPT_SAR            (1 << 27)
 255#define RCAR_DMACHCR_RPT_DAR            (1 << 26)
 256#define RCAR_DMACHCR_RPT_TCR            (1 << 25)
 257#define RCAR_DMACHCR_DPB                (1 << 22)
 258#define RCAR_DMACHCR_DSE                (1 << 19)
 259#define RCAR_DMACHCR_DSIE               (1 << 18)
 260#define RCAR_DMACHCR_TS_1B              ((0 << 20) | (0 << 3))
 261#define RCAR_DMACHCR_TS_2B              ((0 << 20) | (1 << 3))
 262#define RCAR_DMACHCR_TS_4B              ((0 << 20) | (2 << 3))
 263#define RCAR_DMACHCR_TS_16B             ((0 << 20) | (3 << 3))
 264#define RCAR_DMACHCR_TS_32B             ((1 << 20) | (0 << 3))
 265#define RCAR_DMACHCR_TS_64B             ((1 << 20) | (1 << 3))
 266#define RCAR_DMACHCR_TS_8B              ((1 << 20) | (3 << 3))
 267#define RCAR_DMACHCR_DM_FIXED           (0 << 14)
 268#define RCAR_DMACHCR_DM_INC             (1 << 14)
 269#define RCAR_DMACHCR_DM_DEC             (2 << 14)
 270#define RCAR_DMACHCR_SM_FIXED           (0 << 12)
 271#define RCAR_DMACHCR_SM_INC             (1 << 12)
 272#define RCAR_DMACHCR_SM_DEC             (2 << 12)
 273#define RCAR_DMACHCR_RS_AUTO            (4 << 8)
 274#define RCAR_DMACHCR_RS_DMARS           (8 << 8)
 275#define RCAR_DMACHCR_IE                 (1 << 2)
 276#define RCAR_DMACHCR_TE                 (1 << 1)
 277#define RCAR_DMACHCR_DE                 (1 << 0)
 278#define RCAR_DMATCRB                    0x0018
 279#define RCAR_DMATSRB                    0x0038
 280#define RCAR_DMACHCRB                   0x001c
 281#define RCAR_DMACHCRB_DCNT(n)           ((n) << 24)
 282#define RCAR_DMACHCRB_DPTR_MASK         (0xff << 16)
 283#define RCAR_DMACHCRB_DPTR_SHIFT        16
 284#define RCAR_DMACHCRB_DRST              (1 << 15)
 285#define RCAR_DMACHCRB_DTS               (1 << 8)
 286#define RCAR_DMACHCRB_SLM_NORMAL        (0 << 4)
 287#define RCAR_DMACHCRB_SLM_CLK(n)        ((8 | (n)) << 4)
 288#define RCAR_DMACHCRB_PRI(n)            ((n) << 0)
 289#define RCAR_DMARS                      0x0040
 290#define RCAR_DMABUFCR                   0x0048
 291#define RCAR_DMABUFCR_MBU(n)            ((n) << 16)
 292#define RCAR_DMABUFCR_ULB(n)            ((n) << 0)
 293#define RCAR_DMADPBASE                  0x0050
 294#define RCAR_DMADPBASE_MASK             0xfffffff0
 295#define RCAR_DMADPBASE_SEL              (1 << 0)
 296#define RCAR_DMADPCR                    0x0054
 297#define RCAR_DMADPCR_DIPT(n)            ((n) << 24)
 298#define RCAR_DMAFIXSAR                  0x0010
 299#define RCAR_DMAFIXDAR                  0x0014
 300#define RCAR_DMAFIXDPBASE               0x0060
 301
 302/* For R-Car Gen4 */
 303#define RCAR_GEN4_DMACHCLR              0x0100
 304
 305/* Hardcode the MEMCPY transfer size to 4 bytes. */
 306#define RCAR_DMAC_MEMCPY_XFER_SIZE      4
 307
 308/* -----------------------------------------------------------------------------
 309 * Device access
 310 */
 311
 312static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
 313{
 314        if (reg == RCAR_DMAOR)
 315                writew(data, dmac->dmac_base + reg);
 316        else
 317                writel(data, dmac->dmac_base + reg);
 318}
 319
 320static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
 321{
 322        if (reg == RCAR_DMAOR)
 323                return readw(dmac->dmac_base + reg);
 324        else
 325                return readl(dmac->dmac_base + reg);
 326}
 327
 328static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
 329{
 330        if (reg == RCAR_DMARS)
 331                return readw(chan->iomem + reg);
 332        else
 333                return readl(chan->iomem + reg);
 334}
 335
 336static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
 337{
 338        if (reg == RCAR_DMARS)
 339                writew(data, chan->iomem + reg);
 340        else
 341                writel(data, chan->iomem + reg);
 342}
 343
 344static void rcar_dmac_chan_clear(struct rcar_dmac *dmac,
 345                                 struct rcar_dmac_chan *chan)
 346{
 347        if (dmac->chan_base)
 348                rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
 349        else
 350                rcar_dmac_write(dmac, RCAR_DMACHCLR, BIT(chan->index));
 351}
 352
 353static void rcar_dmac_chan_clear_all(struct rcar_dmac *dmac)
 354{
 355        struct rcar_dmac_chan *chan;
 356        unsigned int i;
 357
 358        if (dmac->chan_base) {
 359                for_each_rcar_dmac_chan(i, dmac, chan)
 360                        rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
 361        } else {
 362                rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
 363        }
 364}
 365
 366/* -----------------------------------------------------------------------------
 367 * Initialization and configuration
 368 */
 369
 370static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
 371{
 372        u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 373
 374        return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
 375}
 376
 377static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
 378{
 379        struct rcar_dmac_desc *desc = chan->desc.running;
 380        u32 chcr = desc->chcr;
 381
 382        WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
 383
 384        if (chan->mid_rid >= 0)
 385                rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
 386
 387        if (desc->hwdescs.use) {
 388                struct rcar_dmac_xfer_chunk *chunk =
 389                        list_first_entry(&desc->chunks,
 390                                         struct rcar_dmac_xfer_chunk, node);
 391
 392                dev_dbg(chan->chan.device->dev,
 393                        "chan%u: queue desc %p: %u@%pad\n",
 394                        chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
 395
 396#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 397                rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 398                                     chunk->src_addr >> 32);
 399                rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 400                                     chunk->dst_addr >> 32);
 401                rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
 402                                     desc->hwdescs.dma >> 32);
 403#endif
 404                rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
 405                                     (desc->hwdescs.dma & 0xfffffff0) |
 406                                     RCAR_DMADPBASE_SEL);
 407                rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
 408                                     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
 409                                     RCAR_DMACHCRB_DRST);
 410
 411                /*
 412                 * Errata: When descriptor memory is accessed through an IOMMU
 413                 * the DMADAR register isn't initialized automatically from the
 414                 * first descriptor at beginning of transfer by the DMAC like it
 415                 * should. Initialize it manually with the destination address
 416                 * of the first chunk.
 417                 */
 418                rcar_dmac_chan_write(chan, RCAR_DMADAR,
 419                                     chunk->dst_addr & 0xffffffff);
 420
 421                /*
 422                 * Program the descriptor stage interrupt to occur after the end
 423                 * of the first stage.
 424                 */
 425                rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
 426
 427                chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
 428                     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
 429
 430                /*
 431                 * If the descriptor isn't cyclic enable normal descriptor mode
 432                 * and the transfer completion interrupt.
 433                 */
 434                if (!desc->cyclic)
 435                        chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
 436                /*
 437                 * If the descriptor is cyclic and has a callback enable the
 438                 * descriptor stage interrupt in infinite repeat mode.
 439                 */
 440                else if (desc->async_tx.callback)
 441                        chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
 442                /*
 443                 * Otherwise just select infinite repeat mode without any
 444                 * interrupt.
 445                 */
 446                else
 447                        chcr |= RCAR_DMACHCR_DPM_INFINITE;
 448        } else {
 449                struct rcar_dmac_xfer_chunk *chunk = desc->running;
 450
 451                dev_dbg(chan->chan.device->dev,
 452                        "chan%u: queue chunk %p: %u@%pad -> %pad\n",
 453                        chan->index, chunk, chunk->size, &chunk->src_addr,
 454                        &chunk->dst_addr);
 455
 456#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 457                rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 458                                     chunk->src_addr >> 32);
 459                rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 460                                     chunk->dst_addr >> 32);
 461#endif
 462                rcar_dmac_chan_write(chan, RCAR_DMASAR,
 463                                     chunk->src_addr & 0xffffffff);
 464                rcar_dmac_chan_write(chan, RCAR_DMADAR,
 465                                     chunk->dst_addr & 0xffffffff);
 466                rcar_dmac_chan_write(chan, RCAR_DMATCR,
 467                                     chunk->size >> desc->xfer_shift);
 468
 469                chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
 470        }
 471
 472        rcar_dmac_chan_write(chan, RCAR_DMACHCR,
 473                             chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
 474}
 475
 476static int rcar_dmac_init(struct rcar_dmac *dmac)
 477{
 478        u16 dmaor;
 479
 480        /* Clear all channels and enable the DMAC globally. */
 481        rcar_dmac_chan_clear_all(dmac);
 482        rcar_dmac_write(dmac, RCAR_DMAOR,
 483                        RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
 484
 485        dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
 486        if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
 487                dev_warn(dmac->dev, "DMAOR initialization failed.\n");
 488                return -EIO;
 489        }
 490
 491        return 0;
 492}
 493
 494/* -----------------------------------------------------------------------------
 495 * Descriptors submission
 496 */
 497
 498static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
 499{
 500        struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
 501        struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
 502        unsigned long flags;
 503        dma_cookie_t cookie;
 504
 505        spin_lock_irqsave(&chan->lock, flags);
 506
 507        cookie = dma_cookie_assign(tx);
 508
 509        dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
 510                chan->index, tx->cookie, desc);
 511
 512        list_add_tail(&desc->node, &chan->desc.pending);
 513        desc->running = list_first_entry(&desc->chunks,
 514                                         struct rcar_dmac_xfer_chunk, node);
 515
 516        spin_unlock_irqrestore(&chan->lock, flags);
 517
 518        return cookie;
 519}
 520
 521/* -----------------------------------------------------------------------------
 522 * Descriptors allocation and free
 523 */
 524
 525/*
 526 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
 527 * @chan: the DMA channel
 528 * @gfp: allocation flags
 529 */
 530static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 531{
 532        struct rcar_dmac_desc_page *page;
 533        unsigned long flags;
 534        LIST_HEAD(list);
 535        unsigned int i;
 536
 537        page = (void *)get_zeroed_page(gfp);
 538        if (!page)
 539                return -ENOMEM;
 540
 541        for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
 542                struct rcar_dmac_desc *desc = &page->descs[i];
 543
 544                dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
 545                desc->async_tx.tx_submit = rcar_dmac_tx_submit;
 546                INIT_LIST_HEAD(&desc->chunks);
 547
 548                list_add_tail(&desc->node, &list);
 549        }
 550
 551        spin_lock_irqsave(&chan->lock, flags);
 552        list_splice_tail(&list, &chan->desc.free);
 553        list_add_tail(&page->node, &chan->desc.pages);
 554        spin_unlock_irqrestore(&chan->lock, flags);
 555
 556        return 0;
 557}
 558
 559/*
 560 * rcar_dmac_desc_put - Release a DMA transfer descriptor
 561 * @chan: the DMA channel
 562 * @desc: the descriptor
 563 *
 564 * Put the descriptor and its transfer chunk descriptors back in the channel's
 565 * free descriptors lists. The descriptor's chunks list will be reinitialized to
 566 * an empty list as a result.
 567 *
 568 * The descriptor must have been removed from the channel's lists before calling
 569 * this function.
 570 */
 571static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
 572                               struct rcar_dmac_desc *desc)
 573{
 574        unsigned long flags;
 575
 576        spin_lock_irqsave(&chan->lock, flags);
 577        list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
 578        list_add(&desc->node, &chan->desc.free);
 579        spin_unlock_irqrestore(&chan->lock, flags);
 580}
 581
 582static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
 583{
 584        struct rcar_dmac_desc *desc, *_desc;
 585        unsigned long flags;
 586        LIST_HEAD(list);
 587
 588        /*
 589         * We have to temporarily move all descriptors from the wait list to a
 590         * local list as iterating over the wait list, even with
 591         * list_for_each_entry_safe, isn't safe if we release the channel lock
 592         * around the rcar_dmac_desc_put() call.
 593         */
 594        spin_lock_irqsave(&chan->lock, flags);
 595        list_splice_init(&chan->desc.wait, &list);
 596        spin_unlock_irqrestore(&chan->lock, flags);
 597
 598        list_for_each_entry_safe(desc, _desc, &list, node) {
 599                if (async_tx_test_ack(&desc->async_tx)) {
 600                        list_del(&desc->node);
 601                        rcar_dmac_desc_put(chan, desc);
 602                }
 603        }
 604
 605        if (list_empty(&list))
 606                return;
 607
 608        /* Put the remaining descriptors back in the wait list. */
 609        spin_lock_irqsave(&chan->lock, flags);
 610        list_splice(&list, &chan->desc.wait);
 611        spin_unlock_irqrestore(&chan->lock, flags);
 612}
 613
 614/*
 615 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
 616 * @chan: the DMA channel
 617 *
 618 * Locking: This function must be called in a non-atomic context.
 619 *
 620 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
 621 * be allocated.
 622 */
 623static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
 624{
 625        struct rcar_dmac_desc *desc;
 626        unsigned long flags;
 627        int ret;
 628
 629        /* Recycle acked descriptors before attempting allocation. */
 630        rcar_dmac_desc_recycle_acked(chan);
 631
 632        spin_lock_irqsave(&chan->lock, flags);
 633
 634        while (list_empty(&chan->desc.free)) {
 635                /*
 636                 * No free descriptors, allocate a page worth of them and try
 637                 * again, as someone else could race us to get the newly
 638                 * allocated descriptors. If the allocation fails return an
 639                 * error.
 640                 */
 641                spin_unlock_irqrestore(&chan->lock, flags);
 642                ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
 643                if (ret < 0)
 644                        return NULL;
 645                spin_lock_irqsave(&chan->lock, flags);
 646        }
 647
 648        desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
 649        list_del(&desc->node);
 650
 651        spin_unlock_irqrestore(&chan->lock, flags);
 652
 653        return desc;
 654}
 655
 656/*
 657 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
 658 * @chan: the DMA channel
 659 * @gfp: allocation flags
 660 */
 661static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 662{
 663        struct rcar_dmac_desc_page *page;
 664        unsigned long flags;
 665        LIST_HEAD(list);
 666        unsigned int i;
 667
 668        page = (void *)get_zeroed_page(gfp);
 669        if (!page)
 670                return -ENOMEM;
 671
 672        for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
 673                struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
 674
 675                list_add_tail(&chunk->node, &list);
 676        }
 677
 678        spin_lock_irqsave(&chan->lock, flags);
 679        list_splice_tail(&list, &chan->desc.chunks_free);
 680        list_add_tail(&page->node, &chan->desc.pages);
 681        spin_unlock_irqrestore(&chan->lock, flags);
 682
 683        return 0;
 684}
 685
 686/*
 687 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
 688 * @chan: the DMA channel
 689 *
 690 * Locking: This function must be called in a non-atomic context.
 691 *
 692 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
 693 * descriptor can be allocated.
 694 */
 695static struct rcar_dmac_xfer_chunk *
 696rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
 697{
 698        struct rcar_dmac_xfer_chunk *chunk;
 699        unsigned long flags;
 700        int ret;
 701
 702        spin_lock_irqsave(&chan->lock, flags);
 703
 704        while (list_empty(&chan->desc.chunks_free)) {
 705                /*
 706                 * No free descriptors, allocate a page worth of them and try
 707                 * again, as someone else could race us to get the newly
 708                 * allocated descriptors. If the allocation fails return an
 709                 * error.
 710                 */
 711                spin_unlock_irqrestore(&chan->lock, flags);
 712                ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
 713                if (ret < 0)
 714                        return NULL;
 715                spin_lock_irqsave(&chan->lock, flags);
 716        }
 717
 718        chunk = list_first_entry(&chan->desc.chunks_free,
 719                                 struct rcar_dmac_xfer_chunk, node);
 720        list_del(&chunk->node);
 721
 722        spin_unlock_irqrestore(&chan->lock, flags);
 723
 724        return chunk;
 725}
 726
 727static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
 728                                     struct rcar_dmac_desc *desc, size_t size)
 729{
 730        /*
 731         * dma_alloc_coherent() allocates memory in page size increments. To
 732         * avoid reallocating the hardware descriptors when the allocated size
 733         * wouldn't change align the requested size to a multiple of the page
 734         * size.
 735         */
 736        size = PAGE_ALIGN(size);
 737
 738        if (desc->hwdescs.size == size)
 739                return;
 740
 741        if (desc->hwdescs.mem) {
 742                dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
 743                                  desc->hwdescs.mem, desc->hwdescs.dma);
 744                desc->hwdescs.mem = NULL;
 745                desc->hwdescs.size = 0;
 746        }
 747
 748        if (!size)
 749                return;
 750
 751        desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
 752                                               &desc->hwdescs.dma, GFP_NOWAIT);
 753        if (!desc->hwdescs.mem)
 754                return;
 755
 756        desc->hwdescs.size = size;
 757}
 758
 759static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
 760                                 struct rcar_dmac_desc *desc)
 761{
 762        struct rcar_dmac_xfer_chunk *chunk;
 763        struct rcar_dmac_hw_desc *hwdesc;
 764
 765        rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
 766
 767        hwdesc = desc->hwdescs.mem;
 768        if (!hwdesc)
 769                return -ENOMEM;
 770
 771        list_for_each_entry(chunk, &desc->chunks, node) {
 772                hwdesc->sar = chunk->src_addr;
 773                hwdesc->dar = chunk->dst_addr;
 774                hwdesc->tcr = chunk->size >> desc->xfer_shift;
 775                hwdesc++;
 776        }
 777
 778        return 0;
 779}
 780
 781/* -----------------------------------------------------------------------------
 782 * Stop and reset
 783 */
 784static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
 785{
 786        u32 chcr;
 787        unsigned int i;
 788
 789        /*
 790         * Ensure that the setting of the DE bit is actually 0 after
 791         * clearing it.
 792         */
 793        for (i = 0; i < 1024; i++) {
 794                chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 795                if (!(chcr & RCAR_DMACHCR_DE))
 796                        return;
 797                udelay(1);
 798        }
 799
 800        dev_err(chan->chan.device->dev, "CHCR DE check error\n");
 801}
 802
 803static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
 804{
 805        u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 806
 807        /* set DE=0 and flush remaining data */
 808        rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
 809
 810        /* make sure all remaining data was flushed */
 811        rcar_dmac_chcr_de_barrier(chan);
 812}
 813
 814static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
 815{
 816        u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 817
 818        chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
 819                  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
 820                  RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
 821        rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
 822        rcar_dmac_chcr_de_barrier(chan);
 823}
 824
 825static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
 826{
 827        struct rcar_dmac_desc *desc, *_desc;
 828        unsigned long flags;
 829        LIST_HEAD(descs);
 830
 831        spin_lock_irqsave(&chan->lock, flags);
 832
 833        /* Move all non-free descriptors to the local lists. */
 834        list_splice_init(&chan->desc.pending, &descs);
 835        list_splice_init(&chan->desc.active, &descs);
 836        list_splice_init(&chan->desc.done, &descs);
 837        list_splice_init(&chan->desc.wait, &descs);
 838
 839        chan->desc.running = NULL;
 840
 841        spin_unlock_irqrestore(&chan->lock, flags);
 842
 843        list_for_each_entry_safe(desc, _desc, &descs, node) {
 844                list_del(&desc->node);
 845                rcar_dmac_desc_put(chan, desc);
 846        }
 847}
 848
 849static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
 850{
 851        struct rcar_dmac_chan *chan;
 852        unsigned int i;
 853
 854        /* Stop all channels. */
 855        for_each_rcar_dmac_chan(i, dmac, chan) {
 856                /* Stop and reinitialize the channel. */
 857                spin_lock_irq(&chan->lock);
 858                rcar_dmac_chan_halt(chan);
 859                spin_unlock_irq(&chan->lock);
 860        }
 861}
 862
 863static int rcar_dmac_chan_pause(struct dma_chan *chan)
 864{
 865        unsigned long flags;
 866        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 867
 868        spin_lock_irqsave(&rchan->lock, flags);
 869        rcar_dmac_clear_chcr_de(rchan);
 870        spin_unlock_irqrestore(&rchan->lock, flags);
 871
 872        return 0;
 873}
 874
 875/* -----------------------------------------------------------------------------
 876 * Descriptors preparation
 877 */
 878
 879static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
 880                                          struct rcar_dmac_desc *desc)
 881{
 882        static const u32 chcr_ts[] = {
 883                RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
 884                RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
 885                RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
 886                RCAR_DMACHCR_TS_64B,
 887        };
 888
 889        unsigned int xfer_size;
 890        u32 chcr;
 891
 892        switch (desc->direction) {
 893        case DMA_DEV_TO_MEM:
 894                chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
 895                     | RCAR_DMACHCR_RS_DMARS;
 896                xfer_size = chan->src.xfer_size;
 897                break;
 898
 899        case DMA_MEM_TO_DEV:
 900                chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
 901                     | RCAR_DMACHCR_RS_DMARS;
 902                xfer_size = chan->dst.xfer_size;
 903                break;
 904
 905        case DMA_MEM_TO_MEM:
 906        default:
 907                chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
 908                     | RCAR_DMACHCR_RS_AUTO;
 909                xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
 910                break;
 911        }
 912
 913        desc->xfer_shift = ilog2(xfer_size);
 914        desc->chcr = chcr | chcr_ts[desc->xfer_shift];
 915}
 916
 917/*
 918 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
 919 *
 920 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
 921 * converted to scatter-gather to guarantee consistent locking and a correct
 922 * list manipulation. For slave DMA direction carries the usual meaning, and,
 923 * logically, the SG list is RAM and the addr variable contains slave address,
 924 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
 925 * and the SG list contains only one element and points at the source buffer.
 926 */
 927static struct dma_async_tx_descriptor *
 928rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
 929                       unsigned int sg_len, dma_addr_t dev_addr,
 930                       enum dma_transfer_direction dir, unsigned long dma_flags,
 931                       bool cyclic)
 932{
 933        struct rcar_dmac_xfer_chunk *chunk;
 934        struct rcar_dmac_desc *desc;
 935        struct scatterlist *sg;
 936        unsigned int nchunks = 0;
 937        unsigned int max_chunk_size;
 938        unsigned int full_size = 0;
 939        bool cross_boundary = false;
 940        unsigned int i;
 941#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 942        u32 high_dev_addr;
 943        u32 high_mem_addr;
 944#endif
 945
 946        desc = rcar_dmac_desc_get(chan);
 947        if (!desc)
 948                return NULL;
 949
 950        desc->async_tx.flags = dma_flags;
 951        desc->async_tx.cookie = -EBUSY;
 952
 953        desc->cyclic = cyclic;
 954        desc->direction = dir;
 955
 956        rcar_dmac_chan_configure_desc(chan, desc);
 957
 958        max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
 959
 960        /*
 961         * Allocate and fill the transfer chunk descriptors. We own the only
 962         * reference to the DMA descriptor, there's no need for locking.
 963         */
 964        for_each_sg(sgl, sg, sg_len, i) {
 965                dma_addr_t mem_addr = sg_dma_address(sg);
 966                unsigned int len = sg_dma_len(sg);
 967
 968                full_size += len;
 969
 970#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 971                if (i == 0) {
 972                        high_dev_addr = dev_addr >> 32;
 973                        high_mem_addr = mem_addr >> 32;
 974                }
 975
 976                if ((dev_addr >> 32 != high_dev_addr) ||
 977                    (mem_addr >> 32 != high_mem_addr))
 978                        cross_boundary = true;
 979#endif
 980                while (len) {
 981                        unsigned int size = min(len, max_chunk_size);
 982
 983#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 984                        /*
 985                         * Prevent individual transfers from crossing 4GB
 986                         * boundaries.
 987                         */
 988                        if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
 989                                size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
 990                                cross_boundary = true;
 991                        }
 992                        if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
 993                                size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
 994                                cross_boundary = true;
 995                        }
 996#endif
 997
 998                        chunk = rcar_dmac_xfer_chunk_get(chan);
 999                        if (!chunk) {
1000                                rcar_dmac_desc_put(chan, desc);
1001                                return NULL;
1002                        }
1003
1004                        if (dir == DMA_DEV_TO_MEM) {
1005                                chunk->src_addr = dev_addr;
1006                                chunk->dst_addr = mem_addr;
1007                        } else {
1008                                chunk->src_addr = mem_addr;
1009                                chunk->dst_addr = dev_addr;
1010                        }
1011
1012                        chunk->size = size;
1013
1014                        dev_dbg(chan->chan.device->dev,
1015                                "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
1016                                chan->index, chunk, desc, i, sg, size, len,
1017                                &chunk->src_addr, &chunk->dst_addr);
1018
1019                        mem_addr += size;
1020                        if (dir == DMA_MEM_TO_MEM)
1021                                dev_addr += size;
1022
1023                        len -= size;
1024
1025                        list_add_tail(&chunk->node, &desc->chunks);
1026                        nchunks++;
1027                }
1028        }
1029
1030        desc->nchunks = nchunks;
1031        desc->size = full_size;
1032
1033        /*
1034         * Use hardware descriptor lists if possible when more than one chunk
1035         * needs to be transferred (otherwise they don't make much sense).
1036         *
1037         * Source/Destination address should be located in same 4GiB region
1038         * in the 40bit address space when it uses Hardware descriptor,
1039         * and cross_boundary is checking it.
1040         */
1041        desc->hwdescs.use = !cross_boundary && nchunks > 1;
1042        if (desc->hwdescs.use) {
1043                if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
1044                        desc->hwdescs.use = false;
1045        }
1046
1047        return &desc->async_tx;
1048}
1049
1050/* -----------------------------------------------------------------------------
1051 * DMA engine operations
1052 */
1053
1054static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
1055{
1056        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1057        int ret;
1058
1059        INIT_LIST_HEAD(&rchan->desc.chunks_free);
1060        INIT_LIST_HEAD(&rchan->desc.pages);
1061
1062        /* Preallocate descriptors. */
1063        ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
1064        if (ret < 0)
1065                return -ENOMEM;
1066
1067        ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
1068        if (ret < 0)
1069                return -ENOMEM;
1070
1071        return pm_runtime_get_sync(chan->device->dev);
1072}
1073
1074static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1075{
1076        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1077        struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1078        struct rcar_dmac_chan_map *map = &rchan->map;
1079        struct rcar_dmac_desc_page *page, *_page;
1080        struct rcar_dmac_desc *desc;
1081        LIST_HEAD(list);
1082
1083        /* Protect against ISR */
1084        spin_lock_irq(&rchan->lock);
1085        rcar_dmac_chan_halt(rchan);
1086        spin_unlock_irq(&rchan->lock);
1087
1088        /*
1089         * Now no new interrupts will occur, but one might already be
1090         * running. Wait for it to finish before freeing resources.
1091         */
1092        synchronize_irq(rchan->irq);
1093
1094        if (rchan->mid_rid >= 0) {
1095                /* The caller is holding dma_list_mutex */
1096                clear_bit(rchan->mid_rid, dmac->modules);
1097                rchan->mid_rid = -EINVAL;
1098        }
1099
1100        list_splice_init(&rchan->desc.free, &list);
1101        list_splice_init(&rchan->desc.pending, &list);
1102        list_splice_init(&rchan->desc.active, &list);
1103        list_splice_init(&rchan->desc.done, &list);
1104        list_splice_init(&rchan->desc.wait, &list);
1105
1106        rchan->desc.running = NULL;
1107
1108        list_for_each_entry(desc, &list, node)
1109                rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1110
1111        list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1112                list_del(&page->node);
1113                free_page((unsigned long)page);
1114        }
1115
1116        /* Remove slave mapping if present. */
1117        if (map->slave.xfer_size) {
1118                dma_unmap_resource(chan->device->dev, map->addr,
1119                                   map->slave.xfer_size, map->dir, 0);
1120                map->slave.xfer_size = 0;
1121        }
1122
1123        pm_runtime_put(chan->device->dev);
1124}
1125
1126static struct dma_async_tx_descriptor *
1127rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1128                          dma_addr_t dma_src, size_t len, unsigned long flags)
1129{
1130        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1131        struct scatterlist sgl;
1132
1133        if (!len)
1134                return NULL;
1135
1136        sg_init_table(&sgl, 1);
1137        sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1138                    offset_in_page(dma_src));
1139        sg_dma_address(&sgl) = dma_src;
1140        sg_dma_len(&sgl) = len;
1141
1142        return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1143                                      DMA_MEM_TO_MEM, flags, false);
1144}
1145
1146static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1147                                    enum dma_transfer_direction dir)
1148{
1149        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1150        struct rcar_dmac_chan_map *map = &rchan->map;
1151        phys_addr_t dev_addr;
1152        size_t dev_size;
1153        enum dma_data_direction dev_dir;
1154
1155        if (dir == DMA_DEV_TO_MEM) {
1156                dev_addr = rchan->src.slave_addr;
1157                dev_size = rchan->src.xfer_size;
1158                dev_dir = DMA_TO_DEVICE;
1159        } else {
1160                dev_addr = rchan->dst.slave_addr;
1161                dev_size = rchan->dst.xfer_size;
1162                dev_dir = DMA_FROM_DEVICE;
1163        }
1164
1165        /* Reuse current map if possible. */
1166        if (dev_addr == map->slave.slave_addr &&
1167            dev_size == map->slave.xfer_size &&
1168            dev_dir == map->dir)
1169                return 0;
1170
1171        /* Remove old mapping if present. */
1172        if (map->slave.xfer_size)
1173                dma_unmap_resource(chan->device->dev, map->addr,
1174                                   map->slave.xfer_size, map->dir, 0);
1175        map->slave.xfer_size = 0;
1176
1177        /* Create new slave address map. */
1178        map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1179                                     dev_dir, 0);
1180
1181        if (dma_mapping_error(chan->device->dev, map->addr)) {
1182                dev_err(chan->device->dev,
1183                        "chan%u: failed to map %zx@%pap", rchan->index,
1184                        dev_size, &dev_addr);
1185                return -EIO;
1186        }
1187
1188        dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1189                rchan->index, dev_size, &dev_addr, &map->addr,
1190                dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1191
1192        map->slave.slave_addr = dev_addr;
1193        map->slave.xfer_size = dev_size;
1194        map->dir = dev_dir;
1195
1196        return 0;
1197}
1198
1199static struct dma_async_tx_descriptor *
1200rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1201                        unsigned int sg_len, enum dma_transfer_direction dir,
1202                        unsigned long flags, void *context)
1203{
1204        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1205
1206        /* Someone calling slave DMA on a generic channel? */
1207        if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1208                dev_warn(chan->device->dev,
1209                         "%s: bad parameter: len=%d, id=%d\n",
1210                         __func__, sg_len, rchan->mid_rid);
1211                return NULL;
1212        }
1213
1214        if (rcar_dmac_map_slave_addr(chan, dir))
1215                return NULL;
1216
1217        return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1218                                      dir, flags, false);
1219}
1220
1221#define RCAR_DMAC_MAX_SG_LEN    32
1222
1223static struct dma_async_tx_descriptor *
1224rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1225                          size_t buf_len, size_t period_len,
1226                          enum dma_transfer_direction dir, unsigned long flags)
1227{
1228        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1229        struct dma_async_tx_descriptor *desc;
1230        struct scatterlist *sgl;
1231        unsigned int sg_len;
1232        unsigned int i;
1233
1234        /* Someone calling slave DMA on a generic channel? */
1235        if (rchan->mid_rid < 0 || buf_len < period_len) {
1236                dev_warn(chan->device->dev,
1237                        "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1238                        __func__, buf_len, period_len, rchan->mid_rid);
1239                return NULL;
1240        }
1241
1242        if (rcar_dmac_map_slave_addr(chan, dir))
1243                return NULL;
1244
1245        sg_len = buf_len / period_len;
1246        if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1247                dev_err(chan->device->dev,
1248                        "chan%u: sg length %d exceeds limit %d",
1249                        rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1250                return NULL;
1251        }
1252
1253        /*
1254         * Allocate the sg list dynamically as it would consume too much stack
1255         * space.
1256         */
1257        sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT);
1258        if (!sgl)
1259                return NULL;
1260
1261        sg_init_table(sgl, sg_len);
1262
1263        for (i = 0; i < sg_len; ++i) {
1264                dma_addr_t src = buf_addr + (period_len * i);
1265
1266                sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1267                            offset_in_page(src));
1268                sg_dma_address(&sgl[i]) = src;
1269                sg_dma_len(&sgl[i]) = period_len;
1270        }
1271
1272        desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1273                                      dir, flags, true);
1274
1275        kfree(sgl);
1276        return desc;
1277}
1278
1279static int rcar_dmac_device_config(struct dma_chan *chan,
1280                                   struct dma_slave_config *cfg)
1281{
1282        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1283
1284        /*
1285         * We could lock this, but you shouldn't be configuring the
1286         * channel, while using it...
1287         */
1288        rchan->src.slave_addr = cfg->src_addr;
1289        rchan->dst.slave_addr = cfg->dst_addr;
1290        rchan->src.xfer_size = cfg->src_addr_width;
1291        rchan->dst.xfer_size = cfg->dst_addr_width;
1292
1293        return 0;
1294}
1295
1296static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1297{
1298        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1299        unsigned long flags;
1300
1301        spin_lock_irqsave(&rchan->lock, flags);
1302        rcar_dmac_chan_halt(rchan);
1303        spin_unlock_irqrestore(&rchan->lock, flags);
1304
1305        /*
1306         * FIXME: No new interrupt can occur now, but the IRQ thread might still
1307         * be running.
1308         */
1309
1310        rcar_dmac_chan_reinit(rchan);
1311
1312        return 0;
1313}
1314
1315static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1316                                               dma_cookie_t cookie)
1317{
1318        struct rcar_dmac_desc *desc = chan->desc.running;
1319        struct rcar_dmac_xfer_chunk *running = NULL;
1320        struct rcar_dmac_xfer_chunk *chunk;
1321        enum dma_status status;
1322        unsigned int residue = 0;
1323        unsigned int dptr = 0;
1324        unsigned int chcrb;
1325        unsigned int tcrb;
1326        unsigned int i;
1327
1328        if (!desc)
1329                return 0;
1330
1331        /*
1332         * If the cookie corresponds to a descriptor that has been completed
1333         * there is no residue. The same check has already been performed by the
1334         * caller but without holding the channel lock, so the descriptor could
1335         * now be complete.
1336         */
1337        status = dma_cookie_status(&chan->chan, cookie, NULL);
1338        if (status == DMA_COMPLETE)
1339                return 0;
1340
1341        /*
1342         * If the cookie doesn't correspond to the currently running transfer
1343         * then the descriptor hasn't been processed yet, and the residue is
1344         * equal to the full descriptor size.
1345         * Also, a client driver is possible to call this function before
1346         * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1347         * will be the next descriptor, and the done list will appear. So, if
1348         * the argument cookie matches the done list's cookie, we can assume
1349         * the residue is zero.
1350         */
1351        if (cookie != desc->async_tx.cookie) {
1352                list_for_each_entry(desc, &chan->desc.done, node) {
1353                        if (cookie == desc->async_tx.cookie)
1354                                return 0;
1355                }
1356                list_for_each_entry(desc, &chan->desc.pending, node) {
1357                        if (cookie == desc->async_tx.cookie)
1358                                return desc->size;
1359                }
1360                list_for_each_entry(desc, &chan->desc.active, node) {
1361                        if (cookie == desc->async_tx.cookie)
1362                                return desc->size;
1363                }
1364
1365                /*
1366                 * No descriptor found for the cookie, there's thus no residue.
1367                 * This shouldn't happen if the calling driver passes a correct
1368                 * cookie value.
1369                 */
1370                WARN(1, "No descriptor for cookie!");
1371                return 0;
1372        }
1373
1374        /*
1375         * We need to read two registers.
1376         * Make sure the control register does not skip to next chunk
1377         * while reading the counter.
1378         * Trying it 3 times should be enough: Initial read, retry, retry
1379         * for the paranoid.
1380         */
1381        for (i = 0; i < 3; i++) {
1382                chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1383                                            RCAR_DMACHCRB_DPTR_MASK;
1384                tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
1385                /* Still the same? */
1386                if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1387                              RCAR_DMACHCRB_DPTR_MASK))
1388                        break;
1389        }
1390        WARN_ONCE(i >= 3, "residue might be not continuous!");
1391
1392        /*
1393         * In descriptor mode the descriptor running pointer is not maintained
1394         * by the interrupt handler, find the running descriptor from the
1395         * descriptor pointer field in the CHCRB register. In non-descriptor
1396         * mode just use the running descriptor pointer.
1397         */
1398        if (desc->hwdescs.use) {
1399                dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
1400                if (dptr == 0)
1401                        dptr = desc->nchunks;
1402                dptr--;
1403                WARN_ON(dptr >= desc->nchunks);
1404        } else {
1405                running = desc->running;
1406        }
1407
1408        /* Compute the size of all chunks still to be transferred. */
1409        list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1410                if (chunk == running || ++dptr == desc->nchunks)
1411                        break;
1412
1413                residue += chunk->size;
1414        }
1415
1416        /* Add the residue for the current chunk. */
1417        residue += tcrb << desc->xfer_shift;
1418
1419        return residue;
1420}
1421
1422static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1423                                           dma_cookie_t cookie,
1424                                           struct dma_tx_state *txstate)
1425{
1426        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1427        enum dma_status status;
1428        unsigned long flags;
1429        unsigned int residue;
1430        bool cyclic;
1431
1432        status = dma_cookie_status(chan, cookie, txstate);
1433        if (status == DMA_COMPLETE || !txstate)
1434                return status;
1435
1436        spin_lock_irqsave(&rchan->lock, flags);
1437        residue = rcar_dmac_chan_get_residue(rchan, cookie);
1438        cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1439        spin_unlock_irqrestore(&rchan->lock, flags);
1440
1441        /* if there's no residue, the cookie is complete */
1442        if (!residue && !cyclic)
1443                return DMA_COMPLETE;
1444
1445        dma_set_residue(txstate, residue);
1446
1447        return status;
1448}
1449
1450static void rcar_dmac_issue_pending(struct dma_chan *chan)
1451{
1452        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1453        unsigned long flags;
1454
1455        spin_lock_irqsave(&rchan->lock, flags);
1456
1457        if (list_empty(&rchan->desc.pending))
1458                goto done;
1459
1460        /* Append the pending list to the active list. */
1461        list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1462
1463        /*
1464         * If no transfer is running pick the first descriptor from the active
1465         * list and start the transfer.
1466         */
1467        if (!rchan->desc.running) {
1468                struct rcar_dmac_desc *desc;
1469
1470                desc = list_first_entry(&rchan->desc.active,
1471                                        struct rcar_dmac_desc, node);
1472                rchan->desc.running = desc;
1473
1474                rcar_dmac_chan_start_xfer(rchan);
1475        }
1476
1477done:
1478        spin_unlock_irqrestore(&rchan->lock, flags);
1479}
1480
1481static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1482{
1483        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1484
1485        synchronize_irq(rchan->irq);
1486}
1487
1488/* -----------------------------------------------------------------------------
1489 * IRQ handling
1490 */
1491
1492static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1493{
1494        struct rcar_dmac_desc *desc = chan->desc.running;
1495        unsigned int stage;
1496
1497        if (WARN_ON(!desc || !desc->cyclic)) {
1498                /*
1499                 * This should never happen, there should always be a running
1500                 * cyclic descriptor when a descriptor stage end interrupt is
1501                 * triggered. Warn and return.
1502                 */
1503                return IRQ_NONE;
1504        }
1505
1506        /* Program the interrupt pointer to the next stage. */
1507        stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1508                 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1509        rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1510
1511        return IRQ_WAKE_THREAD;
1512}
1513
1514static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1515{
1516        struct rcar_dmac_desc *desc = chan->desc.running;
1517        irqreturn_t ret = IRQ_WAKE_THREAD;
1518
1519        if (WARN_ON_ONCE(!desc)) {
1520                /*
1521                 * This should never happen, there should always be a running
1522                 * descriptor when a transfer end interrupt is triggered. Warn
1523                 * and return.
1524                 */
1525                return IRQ_NONE;
1526        }
1527
1528        /*
1529         * The transfer end interrupt isn't generated for each chunk when using
1530         * descriptor mode. Only update the running chunk pointer in
1531         * non-descriptor mode.
1532         */
1533        if (!desc->hwdescs.use) {
1534                /*
1535                 * If we haven't completed the last transfer chunk simply move
1536                 * to the next one. Only wake the IRQ thread if the transfer is
1537                 * cyclic.
1538                 */
1539                if (!list_is_last(&desc->running->node, &desc->chunks)) {
1540                        desc->running = list_next_entry(desc->running, node);
1541                        if (!desc->cyclic)
1542                                ret = IRQ_HANDLED;
1543                        goto done;
1544                }
1545
1546                /*
1547                 * We've completed the last transfer chunk. If the transfer is
1548                 * cyclic, move back to the first one.
1549                 */
1550                if (desc->cyclic) {
1551                        desc->running =
1552                                list_first_entry(&desc->chunks,
1553                                                 struct rcar_dmac_xfer_chunk,
1554                                                 node);
1555                        goto done;
1556                }
1557        }
1558
1559        /* The descriptor is complete, move it to the done list. */
1560        list_move_tail(&desc->node, &chan->desc.done);
1561
1562        /* Queue the next descriptor, if any. */
1563        if (!list_empty(&chan->desc.active))
1564                chan->desc.running = list_first_entry(&chan->desc.active,
1565                                                      struct rcar_dmac_desc,
1566                                                      node);
1567        else
1568                chan->desc.running = NULL;
1569
1570done:
1571        if (chan->desc.running)
1572                rcar_dmac_chan_start_xfer(chan);
1573
1574        return ret;
1575}
1576
1577static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1578{
1579        u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1580        struct rcar_dmac_chan *chan = dev;
1581        irqreturn_t ret = IRQ_NONE;
1582        bool reinit = false;
1583        u32 chcr;
1584
1585        spin_lock(&chan->lock);
1586
1587        chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1588        if (chcr & RCAR_DMACHCR_CAE) {
1589                struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
1590
1591                /*
1592                 * We don't need to call rcar_dmac_chan_halt()
1593                 * because channel is already stopped in error case.
1594                 * We need to clear register and check DE bit as recovery.
1595                 */
1596                rcar_dmac_chan_clear(dmac, chan);
1597                rcar_dmac_chcr_de_barrier(chan);
1598                reinit = true;
1599                goto spin_lock_end;
1600        }
1601
1602        if (chcr & RCAR_DMACHCR_TE)
1603                mask |= RCAR_DMACHCR_DE;
1604        rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1605        if (mask & RCAR_DMACHCR_DE)
1606                rcar_dmac_chcr_de_barrier(chan);
1607
1608        if (chcr & RCAR_DMACHCR_DSE)
1609                ret |= rcar_dmac_isr_desc_stage_end(chan);
1610
1611        if (chcr & RCAR_DMACHCR_TE)
1612                ret |= rcar_dmac_isr_transfer_end(chan);
1613
1614spin_lock_end:
1615        spin_unlock(&chan->lock);
1616
1617        if (reinit) {
1618                dev_err(chan->chan.device->dev, "Channel Address Error\n");
1619
1620                rcar_dmac_chan_reinit(chan);
1621                ret = IRQ_HANDLED;
1622        }
1623
1624        return ret;
1625}
1626
1627static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1628{
1629        struct rcar_dmac_chan *chan = dev;
1630        struct rcar_dmac_desc *desc;
1631        struct dmaengine_desc_callback cb;
1632
1633        spin_lock_irq(&chan->lock);
1634
1635        /* For cyclic transfers notify the user after every chunk. */
1636        if (chan->desc.running && chan->desc.running->cyclic) {
1637                desc = chan->desc.running;
1638                dmaengine_desc_get_callback(&desc->async_tx, &cb);
1639
1640                if (dmaengine_desc_callback_valid(&cb)) {
1641                        spin_unlock_irq(&chan->lock);
1642                        dmaengine_desc_callback_invoke(&cb, NULL);
1643                        spin_lock_irq(&chan->lock);
1644                }
1645        }
1646
1647        /*
1648         * Call the callback function for all descriptors on the done list and
1649         * move them to the ack wait list.
1650         */
1651        while (!list_empty(&chan->desc.done)) {
1652                desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1653                                        node);
1654                dma_cookie_complete(&desc->async_tx);
1655                list_del(&desc->node);
1656
1657                dmaengine_desc_get_callback(&desc->async_tx, &cb);
1658                if (dmaengine_desc_callback_valid(&cb)) {
1659                        spin_unlock_irq(&chan->lock);
1660                        /*
1661                         * We own the only reference to this descriptor, we can
1662                         * safely dereference it without holding the channel
1663                         * lock.
1664                         */
1665                        dmaengine_desc_callback_invoke(&cb, NULL);
1666                        spin_lock_irq(&chan->lock);
1667                }
1668
1669                list_add_tail(&desc->node, &chan->desc.wait);
1670        }
1671
1672        spin_unlock_irq(&chan->lock);
1673
1674        /* Recycle all acked descriptors. */
1675        rcar_dmac_desc_recycle_acked(chan);
1676
1677        return IRQ_HANDLED;
1678}
1679
1680/* -----------------------------------------------------------------------------
1681 * OF xlate and channel filter
1682 */
1683
1684static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1685{
1686        struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1687        struct of_phandle_args *dma_spec = arg;
1688
1689        /*
1690         * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1691         * function knows from which device it wants to allocate a channel from,
1692         * and would be perfectly capable of selecting the channel it wants.
1693         * Forcing it to call dma_request_channel() and iterate through all
1694         * channels from all controllers is just pointless.
1695         */
1696        if (chan->device->device_config != rcar_dmac_device_config)
1697                return false;
1698
1699        return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1700}
1701
1702static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1703                                           struct of_dma *ofdma)
1704{
1705        struct rcar_dmac_chan *rchan;
1706        struct dma_chan *chan;
1707        dma_cap_mask_t mask;
1708
1709        if (dma_spec->args_count != 1)
1710                return NULL;
1711
1712        /* Only slave DMA channels can be allocated via DT */
1713        dma_cap_zero(mask);
1714        dma_cap_set(DMA_SLAVE, mask);
1715
1716        chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
1717                                     ofdma->of_node);
1718        if (!chan)
1719                return NULL;
1720
1721        rchan = to_rcar_dmac_chan(chan);
1722        rchan->mid_rid = dma_spec->args[0];
1723
1724        return chan;
1725}
1726
1727/* -----------------------------------------------------------------------------
1728 * Power management
1729 */
1730
1731#ifdef CONFIG_PM
1732static int rcar_dmac_runtime_suspend(struct device *dev)
1733{
1734        return 0;
1735}
1736
1737static int rcar_dmac_runtime_resume(struct device *dev)
1738{
1739        struct rcar_dmac *dmac = dev_get_drvdata(dev);
1740
1741        return rcar_dmac_init(dmac);
1742}
1743#endif
1744
1745static const struct dev_pm_ops rcar_dmac_pm = {
1746        /*
1747         * TODO for system sleep/resume:
1748         *   - Wait for the current transfer to complete and stop the device,
1749         *   - Resume transfers, if any.
1750         */
1751        SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1752                                      pm_runtime_force_resume)
1753        SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1754                           NULL)
1755};
1756
1757/* -----------------------------------------------------------------------------
1758 * Probe and remove
1759 */
1760
1761static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1762                                struct rcar_dmac_chan *rchan)
1763{
1764        struct platform_device *pdev = to_platform_device(dmac->dev);
1765        struct dma_chan *chan = &rchan->chan;
1766        char pdev_irqname[5];
1767        char *irqname;
1768        int ret;
1769
1770        rchan->mid_rid = -EINVAL;
1771
1772        spin_lock_init(&rchan->lock);
1773
1774        INIT_LIST_HEAD(&rchan->desc.free);
1775        INIT_LIST_HEAD(&rchan->desc.pending);
1776        INIT_LIST_HEAD(&rchan->desc.active);
1777        INIT_LIST_HEAD(&rchan->desc.done);
1778        INIT_LIST_HEAD(&rchan->desc.wait);
1779
1780        /* Request the channel interrupt. */
1781        sprintf(pdev_irqname, "ch%u", rchan->index);
1782        rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1783        if (rchan->irq < 0)
1784                return -ENODEV;
1785
1786        irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1787                                 dev_name(dmac->dev), rchan->index);
1788        if (!irqname)
1789                return -ENOMEM;
1790
1791        /*
1792         * Initialize the DMA engine channel and add it to the DMA engine
1793         * channels list.
1794         */
1795        chan->device = &dmac->engine;
1796        dma_cookie_init(chan);
1797
1798        list_add_tail(&chan->device_node, &dmac->engine.channels);
1799
1800        ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1801                                        rcar_dmac_isr_channel,
1802                                        rcar_dmac_isr_channel_thread, 0,
1803                                        irqname, rchan);
1804        if (ret) {
1805                dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1806                        rchan->irq, ret);
1807                return ret;
1808        }
1809
1810        return 0;
1811}
1812
1813#define RCAR_DMAC_MAX_CHANNELS  32
1814
1815static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1816{
1817        struct device_node *np = dev->of_node;
1818        int ret;
1819
1820        ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1821        if (ret < 0) {
1822                dev_err(dev, "unable to read dma-channels property\n");
1823                return ret;
1824        }
1825
1826        /* The hardware and driver don't support more than 32 bits in CHCLR */
1827        if (dmac->n_channels <= 0 ||
1828            dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
1829                dev_err(dev, "invalid number of channels %u\n",
1830                        dmac->n_channels);
1831                return -EINVAL;
1832        }
1833
1834        /*
1835         * If the driver is unable to read dma-channel-mask property,
1836         * the driver assumes that it can use all channels.
1837         */
1838        dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
1839        of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
1840
1841        /* If the property has out-of-channel mask, this driver clears it */
1842        dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
1843
1844        return 0;
1845}
1846
1847static int rcar_dmac_probe(struct platform_device *pdev)
1848{
1849        const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1850                DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1851                DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1852                DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1853        const struct rcar_dmac_of_data *data;
1854        struct rcar_dmac_chan *chan;
1855        struct dma_device *engine;
1856        void __iomem *chan_base;
1857        struct rcar_dmac *dmac;
1858        unsigned int i;
1859        int ret;
1860
1861        data = of_device_get_match_data(&pdev->dev);
1862        if (!data)
1863                return -EINVAL;
1864
1865        dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1866        if (!dmac)
1867                return -ENOMEM;
1868
1869        dmac->dev = &pdev->dev;
1870        platform_set_drvdata(pdev, dmac);
1871        ret = dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1872        if (ret)
1873                return ret;
1874
1875        ret = dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1876        if (ret)
1877                return ret;
1878
1879        ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1880        if (ret < 0)
1881                return ret;
1882
1883        /*
1884         * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1885         * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1886         * is connected to microTLB 0 on currently supported platforms, so we
1887         * can't use it with the IPMMU. As the IOMMU API operates at the device
1888         * level we can't disable it selectively, so ignore channel 0 for now if
1889         * the device is part of an IOMMU group.
1890         */
1891        if (device_iommu_mapped(&pdev->dev))
1892                dmac->channels_mask &= ~BIT(0);
1893
1894        dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1895                                      sizeof(*dmac->channels), GFP_KERNEL);
1896        if (!dmac->channels)
1897                return -ENOMEM;
1898
1899        /* Request resources. */
1900        dmac->dmac_base = devm_platform_ioremap_resource(pdev, 0);
1901        if (IS_ERR(dmac->dmac_base))
1902                return PTR_ERR(dmac->dmac_base);
1903
1904        if (!data->chan_offset_base) {
1905                dmac->chan_base = devm_platform_ioremap_resource(pdev, 1);
1906                if (IS_ERR(dmac->chan_base))
1907                        return PTR_ERR(dmac->chan_base);
1908
1909                chan_base = dmac->chan_base;
1910        } else {
1911                chan_base = dmac->dmac_base + data->chan_offset_base;
1912        }
1913
1914        for_each_rcar_dmac_chan(i, dmac, chan) {
1915                chan->index = i;
1916                chan->iomem = chan_base + i * data->chan_offset_stride;
1917        }
1918
1919        /* Enable runtime PM and initialize the device. */
1920        pm_runtime_enable(&pdev->dev);
1921        ret = pm_runtime_resume_and_get(&pdev->dev);
1922        if (ret < 0) {
1923                dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1924                goto err_pm_disable;
1925        }
1926
1927        ret = rcar_dmac_init(dmac);
1928        pm_runtime_put(&pdev->dev);
1929
1930        if (ret) {
1931                dev_err(&pdev->dev, "failed to reset device\n");
1932                goto err_pm_disable;
1933        }
1934
1935        /* Initialize engine */
1936        engine = &dmac->engine;
1937
1938        dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1939        dma_cap_set(DMA_SLAVE, engine->cap_mask);
1940
1941        engine->dev             = &pdev->dev;
1942        engine->copy_align      = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1943
1944        engine->src_addr_widths = widths;
1945        engine->dst_addr_widths = widths;
1946        engine->directions      = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1947        engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1948
1949        engine->device_alloc_chan_resources     = rcar_dmac_alloc_chan_resources;
1950        engine->device_free_chan_resources      = rcar_dmac_free_chan_resources;
1951        engine->device_prep_dma_memcpy          = rcar_dmac_prep_dma_memcpy;
1952        engine->device_prep_slave_sg            = rcar_dmac_prep_slave_sg;
1953        engine->device_prep_dma_cyclic          = rcar_dmac_prep_dma_cyclic;
1954        engine->device_config                   = rcar_dmac_device_config;
1955        engine->device_pause                    = rcar_dmac_chan_pause;
1956        engine->device_terminate_all            = rcar_dmac_chan_terminate_all;
1957        engine->device_tx_status                = rcar_dmac_tx_status;
1958        engine->device_issue_pending            = rcar_dmac_issue_pending;
1959        engine->device_synchronize              = rcar_dmac_device_synchronize;
1960
1961        INIT_LIST_HEAD(&engine->channels);
1962
1963        for_each_rcar_dmac_chan(i, dmac, chan) {
1964                ret = rcar_dmac_chan_probe(dmac, chan);
1965                if (ret < 0)
1966                        goto err_pm_disable;
1967        }
1968
1969        /* Register the DMAC as a DMA provider for DT. */
1970        ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1971                                         NULL);
1972        if (ret < 0)
1973                goto err_pm_disable;
1974
1975        /*
1976         * Register the DMA engine device.
1977         *
1978         * Default transfer size of 32 bytes requires 32-byte alignment.
1979         */
1980        ret = dma_async_device_register(engine);
1981        if (ret < 0)
1982                goto err_dma_free;
1983
1984        return 0;
1985
1986err_dma_free:
1987        of_dma_controller_free(pdev->dev.of_node);
1988err_pm_disable:
1989        pm_runtime_disable(&pdev->dev);
1990        return ret;
1991}
1992
1993static int rcar_dmac_remove(struct platform_device *pdev)
1994{
1995        struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1996
1997        of_dma_controller_free(pdev->dev.of_node);
1998        dma_async_device_unregister(&dmac->engine);
1999
2000        pm_runtime_disable(&pdev->dev);
2001
2002        return 0;
2003}
2004
2005static void rcar_dmac_shutdown(struct platform_device *pdev)
2006{
2007        struct rcar_dmac *dmac = platform_get_drvdata(pdev);
2008
2009        rcar_dmac_stop_all_chan(dmac);
2010}
2011
2012static const struct rcar_dmac_of_data rcar_dmac_data = {
2013        .chan_offset_base       = 0x8000,
2014        .chan_offset_stride     = 0x80,
2015};
2016
2017static const struct rcar_dmac_of_data rcar_gen4_dmac_data = {
2018        .chan_offset_base       = 0x0,
2019        .chan_offset_stride     = 0x1000,
2020};
2021
2022static const struct of_device_id rcar_dmac_of_ids[] = {
2023        {
2024                .compatible = "renesas,rcar-dmac",
2025                .data = &rcar_dmac_data,
2026        }, {
2027                .compatible = "renesas,rcar-gen4-dmac",
2028                .data = &rcar_gen4_dmac_data,
2029        }, {
2030                .compatible = "renesas,dmac-r8a779a0",
2031                .data = &rcar_gen4_dmac_data,
2032        },
2033        { /* Sentinel */ }
2034};
2035MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
2036
2037static struct platform_driver rcar_dmac_driver = {
2038        .driver         = {
2039                .pm     = &rcar_dmac_pm,
2040                .name   = "rcar-dmac",
2041                .of_match_table = rcar_dmac_of_ids,
2042        },
2043        .probe          = rcar_dmac_probe,
2044        .remove         = rcar_dmac_remove,
2045        .shutdown       = rcar_dmac_shutdown,
2046};
2047
2048module_platform_driver(rcar_dmac_driver);
2049
2050MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2051MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2052MODULE_LICENSE("GPL v2");
2053