linux/drivers/gpu/drm/msm/msm_gpu.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Copyright (C) 2013 Red Hat
   4 * Author: Rob Clark <robdclark@gmail.com>
   5 */
   6
   7#ifndef __MSM_GPU_H__
   8#define __MSM_GPU_H__
   9
  10#include <linux/adreno-smmu-priv.h>
  11#include <linux/clk.h>
  12#include <linux/interconnect.h>
  13#include <linux/pm_opp.h>
  14#include <linux/regulator/consumer.h>
  15
  16#include "msm_drv.h"
  17#include "msm_fence.h"
  18#include "msm_ringbuffer.h"
  19#include "msm_gem.h"
  20
  21struct msm_gem_submit;
  22struct msm_gpu_perfcntr;
  23struct msm_gpu_state;
  24
  25struct msm_gpu_config {
  26        const char *ioname;
  27        unsigned int nr_rings;
  28};
  29
  30/* So far, with hardware that I've seen to date, we can have:
  31 *  + zero, one, or two z180 2d cores
  32 *  + a3xx or a2xx 3d core, which share a common CP (the firmware
  33 *    for the CP seems to implement some different PM4 packet types
  34 *    but the basics of cmdstream submission are the same)
  35 *
  36 * Which means that the eventual complete "class" hierarchy, once
  37 * support for all past and present hw is in place, becomes:
  38 *  + msm_gpu
  39 *    + adreno_gpu
  40 *      + a3xx_gpu
  41 *      + a2xx_gpu
  42 *    + z180_gpu
  43 */
  44struct msm_gpu_funcs {
  45        int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
  46                         uint32_t param, uint64_t *value);
  47        int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
  48                         uint32_t param, uint64_t value);
  49        int (*hw_init)(struct msm_gpu *gpu);
  50        int (*pm_suspend)(struct msm_gpu *gpu);
  51        int (*pm_resume)(struct msm_gpu *gpu);
  52        void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
  53        void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
  54        irqreturn_t (*irq)(struct msm_gpu *irq);
  55        struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
  56        void (*recover)(struct msm_gpu *gpu);
  57        void (*destroy)(struct msm_gpu *gpu);
  58#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
  59        /* show GPU status in debugfs: */
  60        void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
  61                        struct drm_printer *p);
  62        /* for generation specific debugfs: */
  63        void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
  64#endif
  65        unsigned long (*gpu_busy)(struct msm_gpu *gpu);
  66        struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
  67        int (*gpu_state_put)(struct msm_gpu_state *state);
  68        unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
  69        void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
  70        struct msm_gem_address_space *(*create_address_space)
  71                (struct msm_gpu *gpu, struct platform_device *pdev);
  72        struct msm_gem_address_space *(*create_private_address_space)
  73                (struct msm_gpu *gpu);
  74        uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
  75};
  76
  77/* Additional state for iommu faults: */
  78struct msm_gpu_fault_info {
  79        u64 ttbr0;
  80        unsigned long iova;
  81        int flags;
  82        const char *type;
  83        const char *block;
  84};
  85
  86/**
  87 * struct msm_gpu_devfreq - devfreq related state
  88 */
  89struct msm_gpu_devfreq {
  90        /** devfreq: devfreq instance */
  91        struct devfreq *devfreq;
  92
  93        /**
  94         * idle_constraint:
  95         *
  96         * A PM QoS constraint to limit max freq while the GPU is idle.
  97         */
  98        struct dev_pm_qos_request idle_freq;
  99
 100        /**
 101         * boost_constraint:
 102         *
 103         * A PM QoS constraint to boost min freq for a period of time
 104         * until the boost expires.
 105         */
 106        struct dev_pm_qos_request boost_freq;
 107
 108        /**
 109         * busy_cycles:
 110         *
 111         * Used by implementation of gpu->gpu_busy() to track the last
 112         * busy counter value, for calculating elapsed busy cycles since
 113         * last sampling period.
 114         */
 115        u64 busy_cycles;
 116
 117        /** time: Time of last sampling period. */
 118        ktime_t time;
 119
 120        /** idle_time: Time of last transition to idle: */
 121        ktime_t idle_time;
 122
 123        /**
 124         * idle_work:
 125         *
 126         * Used to delay clamping to idle freq on active->idle transition.
 127         */
 128        struct msm_hrtimer_work idle_work;
 129
 130        /**
 131         * boost_work:
 132         *
 133         * Used to reset the boost_constraint after the boost period has
 134         * elapsed
 135         */
 136        struct msm_hrtimer_work boost_work;
 137};
 138
 139struct msm_gpu {
 140        const char *name;
 141        struct drm_device *dev;
 142        struct platform_device *pdev;
 143        const struct msm_gpu_funcs *funcs;
 144
 145        struct adreno_smmu_priv adreno_smmu;
 146
 147        /* performance counters (hw & sw): */
 148        spinlock_t perf_lock;
 149        bool perfcntr_active;
 150        struct {
 151                bool active;
 152                ktime_t time;
 153        } last_sample;
 154        uint32_t totaltime, activetime;    /* sw counters */
 155        uint32_t last_cntrs[5];            /* hw counters */
 156        const struct msm_gpu_perfcntr *perfcntrs;
 157        uint32_t num_perfcntrs;
 158
 159        struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
 160        int nr_rings;
 161
 162        /**
 163         * sysprof_active:
 164         *
 165         * The count of contexts that have enabled system profiling.
 166         */
 167        refcount_t sysprof_active;
 168
 169        /**
 170         * cur_ctx_seqno:
 171         *
 172         * The ctx->seqno value of the last context to submit rendering,
 173         * and the one with current pgtables installed (for generations
 174         * that support per-context pgtables).  Tracked by seqno rather
 175         * than pointer value to avoid dangling pointers, and cases where
 176         * a ctx can be freed and a new one created with the same address.
 177         */
 178        int cur_ctx_seqno;
 179
 180        /*
 181         * List of GEM active objects on this gpu.  Protected by
 182         * msm_drm_private::mm_lock
 183         */
 184        struct list_head active_list;
 185
 186        /**
 187         * lock:
 188         *
 189         * General lock for serializing all the gpu things.
 190         *
 191         * TODO move to per-ring locking where feasible (ie. submit/retire
 192         * path, etc)
 193         */
 194        struct mutex lock;
 195
 196        /**
 197         * active_submits:
 198         *
 199         * The number of submitted but not yet retired submits, used to
 200         * determine transitions between active and idle.
 201         *
 202         * Protected by active_lock
 203         */
 204        int active_submits;
 205
 206        /** lock: protects active_submits and idle/active transitions */
 207        struct mutex active_lock;
 208
 209        /* does gpu need hw_init? */
 210        bool needs_hw_init;
 211
 212        /**
 213         * global_faults: number of GPU hangs not attributed to a particular
 214         * address space
 215         */
 216        int global_faults;
 217
 218        void __iomem *mmio;
 219        int irq;
 220
 221        struct msm_gem_address_space *aspace;
 222
 223        /* Power Control: */
 224        struct regulator *gpu_reg, *gpu_cx;
 225        struct clk_bulk_data *grp_clks;
 226        int nr_clocks;
 227        struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
 228        uint32_t fast_rate;
 229
 230        /* Hang and Inactivity Detection:
 231         */
 232#define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
 233
 234#define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
 235        struct timer_list hangcheck_timer;
 236
 237        /* Fault info for most recent iova fault: */
 238        struct msm_gpu_fault_info fault_info;
 239
 240        /* work for handling GPU ioval faults: */
 241        struct kthread_work fault_work;
 242
 243        /* work for handling GPU recovery: */
 244        struct kthread_work recover_work;
 245
 246        /** retire_event: notified when submits are retired: */
 247        wait_queue_head_t retire_event;
 248
 249        /* work for handling active-list retiring: */
 250        struct kthread_work retire_work;
 251
 252        /* worker for retire/recover: */
 253        struct kthread_worker *worker;
 254
 255        struct drm_gem_object *memptrs_bo;
 256
 257        struct msm_gpu_devfreq devfreq;
 258
 259        uint32_t suspend_count;
 260
 261        struct msm_gpu_state *crashstate;
 262
 263        /* Enable clamping to idle freq when inactive: */
 264        bool clamp_to_idle;
 265
 266        /* True if the hardware supports expanded apriv (a650 and newer) */
 267        bool hw_apriv;
 268
 269        struct thermal_cooling_device *cooling;
 270};
 271
 272static inline struct msm_gpu *dev_to_gpu(struct device *dev)
 273{
 274        struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
 275        return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
 276}
 277
 278/* It turns out that all targets use the same ringbuffer size */
 279#define MSM_GPU_RINGBUFFER_SZ SZ_32K
 280#define MSM_GPU_RINGBUFFER_BLKSIZE 32
 281
 282#define MSM_GPU_RB_CNTL_DEFAULT \
 283                (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
 284                AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
 285
 286static inline bool msm_gpu_active(struct msm_gpu *gpu)
 287{
 288        int i;
 289
 290        for (i = 0; i < gpu->nr_rings; i++) {
 291                struct msm_ringbuffer *ring = gpu->rb[i];
 292
 293                if (fence_after(ring->seqno, ring->memptrs->fence))
 294                        return true;
 295        }
 296
 297        return false;
 298}
 299
 300/* Perf-Counters:
 301 * The select_reg and select_val are just there for the benefit of the child
 302 * class that actually enables the perf counter..  but msm_gpu base class
 303 * will handle sampling/displaying the counters.
 304 */
 305
 306struct msm_gpu_perfcntr {
 307        uint32_t select_reg;
 308        uint32_t sample_reg;
 309        uint32_t select_val;
 310        const char *name;
 311};
 312
 313/*
 314 * The number of priority levels provided by drm gpu scheduler.  The
 315 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
 316 * cases, so we don't use it (no need for kernel generated jobs).
 317 */
 318#define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
 319
 320/**
 321 * struct msm_file_private - per-drm_file context
 322 *
 323 * @queuelock:    synchronizes access to submitqueues list
 324 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
 325 * @queueid:      counter incremented each time a submitqueue is created,
 326 *                used to assign &msm_gpu_submitqueue.id
 327 * @aspace:       the per-process GPU address-space
 328 * @ref:          reference count
 329 * @seqno:        unique per process seqno
 330 */
 331struct msm_file_private {
 332        rwlock_t queuelock;
 333        struct list_head submitqueues;
 334        int queueid;
 335        struct msm_gem_address_space *aspace;
 336        struct kref ref;
 337        int seqno;
 338
 339        /**
 340         * sysprof:
 341         *
 342         * The value of MSM_PARAM_SYSPROF set by userspace.  This is
 343         * intended to be used by system profiling tools like Mesa's
 344         * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
 345         *
 346         * Setting a value of 1 will preserve performance counters across
 347         * context switches.  Setting a value of 2 will in addition
 348         * suppress suspend.  (Performance counters lose state across
 349         * power collapse, which is undesirable for profiling in some
 350         * cases.)
 351         *
 352         * The value automatically reverts to zero when the drm device
 353         * file is closed.
 354         */
 355        int sysprof;
 356
 357        /**
 358         * entities:
 359         *
 360         * Table of per-priority-level sched entities used by submitqueues
 361         * associated with this &drm_file.  Because some userspace apps
 362         * make assumptions about rendering from multiple gl contexts
 363         * (of the same priority) within the process happening in FIFO
 364         * order without requiring any fencing beyond MakeCurrent(), we
 365         * create at most one &drm_sched_entity per-process per-priority-
 366         * level.
 367         */
 368        struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
 369};
 370
 371/**
 372 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
 373 *
 374 * @gpu:        the gpu instance
 375 * @prio:       the userspace priority level
 376 * @ring_nr:    [out] the ringbuffer the userspace priority maps to
 377 * @sched_prio: [out] the gpu scheduler priority level which the userspace
 378 *              priority maps to
 379 *
 380 * With drm/scheduler providing it's own level of prioritization, our total
 381 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
 382 * Each ring is associated with it's own scheduler instance.  However, our
 383 * UABI is that lower numerical values are higher priority.  So mapping the
 384 * single userspace priority level into ring_nr and sched_prio takes some
 385 * care.  The userspace provided priority (when a submitqueue is created)
 386 * is mapped to ring nr and scheduler priority as such:
 387 *
 388 *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
 389 *   sched_prio = NR_SCHED_PRIORITIES -
 390 *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
 391 *
 392 * This allows generations without preemption (nr_rings==1) to have some
 393 * amount of prioritization, and provides more priority levels for gens
 394 * that do have preemption.
 395 */
 396static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
 397                unsigned *ring_nr, enum drm_sched_priority *sched_prio)
 398{
 399        unsigned rn, sp;
 400
 401        rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
 402
 403        /* invert sched priority to map to higher-numeric-is-higher-
 404         * priority convention
 405         */
 406        sp = NR_SCHED_PRIORITIES - sp - 1;
 407
 408        if (rn >= gpu->nr_rings)
 409                return -EINVAL;
 410
 411        *ring_nr = rn;
 412        *sched_prio = sp;
 413
 414        return 0;
 415}
 416
 417/**
 418 * struct msm_gpu_submitqueues - Userspace created context.
 419 *
 420 * A submitqueue is associated with a gl context or vk queue (or equiv)
 421 * in userspace.
 422 *
 423 * @id:        userspace id for the submitqueue, unique within the drm_file
 424 * @flags:     userspace flags for the submitqueue, specified at creation
 425 *             (currently unusued)
 426 * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
 427 *             by the submitqueue's priority
 428 * @faults:    the number of GPU hangs associated with this submitqueue
 429 * @last_fence: the sequence number of the last allocated fence (for error
 430 *             checking)
 431 * @ctx:       the per-drm_file context associated with the submitqueue (ie.
 432 *             which set of pgtables do submits jobs associated with the
 433 *             submitqueue use)
 434 * @node:      node in the context's list of submitqueues
 435 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
 436 *             seqno, protected by submitqueue lock
 437 * @lock:      submitqueue lock
 438 * @ref:       reference count
 439 * @entity:    the submit job-queue
 440 */
 441struct msm_gpu_submitqueue {
 442        int id;
 443        u32 flags;
 444        u32 ring_nr;
 445        int faults;
 446        uint32_t last_fence;
 447        struct msm_file_private *ctx;
 448        struct list_head node;
 449        struct idr fence_idr;
 450        struct mutex lock;
 451        struct kref ref;
 452        struct drm_sched_entity *entity;
 453};
 454
 455struct msm_gpu_state_bo {
 456        u64 iova;
 457        size_t size;
 458        void *data;
 459        bool encoded;
 460};
 461
 462struct msm_gpu_state {
 463        struct kref ref;
 464        struct timespec64 time;
 465
 466        struct {
 467                u64 iova;
 468                u32 fence;
 469                u32 seqno;
 470                u32 rptr;
 471                u32 wptr;
 472                void *data;
 473                int data_size;
 474                bool encoded;
 475        } ring[MSM_GPU_MAX_RINGS];
 476
 477        int nr_registers;
 478        u32 *registers;
 479
 480        u32 rbbm_status;
 481
 482        char *comm;
 483        char *cmd;
 484
 485        struct msm_gpu_fault_info fault_info;
 486
 487        int nr_bos;
 488        struct msm_gpu_state_bo *bos;
 489};
 490
 491static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
 492{
 493        msm_writel(data, gpu->mmio + (reg << 2));
 494}
 495
 496static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
 497{
 498        return msm_readl(gpu->mmio + (reg << 2));
 499}
 500
 501static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
 502{
 503        msm_rmw(gpu->mmio + (reg << 2), mask, or);
 504}
 505
 506static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
 507{
 508        u64 val;
 509
 510        /*
 511         * Why not a readq here? Two reasons: 1) many of the LO registers are
 512         * not quad word aligned and 2) the GPU hardware designers have a bit
 513         * of a history of putting registers where they fit, especially in
 514         * spins. The longer a GPU family goes the higher the chance that
 515         * we'll get burned.  We could do a series of validity checks if we
 516         * wanted to, but really is a readq() that much better? Nah.
 517         */
 518
 519        /*
 520         * For some lo/hi registers (like perfcounters), the hi value is latched
 521         * when the lo is read, so make sure to read the lo first to trigger
 522         * that
 523         */
 524        val = (u64) msm_readl(gpu->mmio + (lo << 2));
 525        val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
 526
 527        return val;
 528}
 529
 530static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
 531{
 532        /* Why not a writeq here? Read the screed above */
 533        msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
 534        msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
 535}
 536
 537int msm_gpu_pm_suspend(struct msm_gpu *gpu);
 538int msm_gpu_pm_resume(struct msm_gpu *gpu);
 539
 540int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
 541struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
 542                u32 id);
 543int msm_submitqueue_create(struct drm_device *drm,
 544                struct msm_file_private *ctx,
 545                u32 prio, u32 flags, u32 *id);
 546int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
 547                struct drm_msm_submitqueue_query *args);
 548int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
 549void msm_submitqueue_close(struct msm_file_private *ctx);
 550
 551void msm_submitqueue_destroy(struct kref *kref);
 552
 553int msm_file_private_set_sysprof(struct msm_file_private *ctx,
 554                                 struct msm_gpu *gpu, int sysprof);
 555void __msm_file_private_destroy(struct kref *kref);
 556
 557static inline void msm_file_private_put(struct msm_file_private *ctx)
 558{
 559        kref_put(&ctx->ref, __msm_file_private_destroy);
 560}
 561
 562static inline struct msm_file_private *msm_file_private_get(
 563        struct msm_file_private *ctx)
 564{
 565        kref_get(&ctx->ref);
 566        return ctx;
 567}
 568
 569void msm_devfreq_init(struct msm_gpu *gpu);
 570void msm_devfreq_cleanup(struct msm_gpu *gpu);
 571void msm_devfreq_resume(struct msm_gpu *gpu);
 572void msm_devfreq_suspend(struct msm_gpu *gpu);
 573void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
 574void msm_devfreq_active(struct msm_gpu *gpu);
 575void msm_devfreq_idle(struct msm_gpu *gpu);
 576
 577int msm_gpu_hw_init(struct msm_gpu *gpu);
 578
 579void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
 580void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
 581int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
 582                uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
 583
 584void msm_gpu_retire(struct msm_gpu *gpu);
 585void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
 586
 587int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
 588                struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
 589                const char *name, struct msm_gpu_config *config);
 590
 591struct msm_gem_address_space *
 592msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
 593
 594void msm_gpu_cleanup(struct msm_gpu *gpu);
 595
 596struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
 597void __init adreno_register(void);
 598void __exit adreno_unregister(void);
 599
 600static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
 601{
 602        if (queue)
 603                kref_put(&queue->ref, msm_submitqueue_destroy);
 604}
 605
 606static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
 607{
 608        struct msm_gpu_state *state = NULL;
 609
 610        mutex_lock(&gpu->lock);
 611
 612        if (gpu->crashstate) {
 613                kref_get(&gpu->crashstate->ref);
 614                state = gpu->crashstate;
 615        }
 616
 617        mutex_unlock(&gpu->lock);
 618
 619        return state;
 620}
 621
 622static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
 623{
 624        mutex_lock(&gpu->lock);
 625
 626        if (gpu->crashstate) {
 627                if (gpu->funcs->gpu_state_put(gpu->crashstate))
 628                        gpu->crashstate = NULL;
 629        }
 630
 631        mutex_unlock(&gpu->lock);
 632}
 633
 634/*
 635 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
 636 * support expanded privileges
 637 */
 638#define check_apriv(gpu, flags) \
 639        (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
 640
 641
 642#endif /* __MSM_GPU_H__ */
 643