linux/drivers/gpu/drm/rcar-du/rcar_du_crtc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
   4 *
   5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/mutex.h>
  12#include <linux/platform_device.h>
  13#include <linux/sys_soc.h>
  14
  15#include <drm/drm_atomic.h>
  16#include <drm/drm_atomic_helper.h>
  17#include <drm/drm_bridge.h>
  18#include <drm/drm_crtc.h>
  19#include <drm/drm_device.h>
  20#include <drm/drm_fb_cma_helper.h>
  21#include <drm/drm_gem_cma_helper.h>
  22#include <drm/drm_plane_helper.h>
  23#include <drm/drm_vblank.h>
  24
  25#include "rcar_cmm.h"
  26#include "rcar_du_crtc.h"
  27#include "rcar_du_drv.h"
  28#include "rcar_du_encoder.h"
  29#include "rcar_du_kms.h"
  30#include "rcar_du_plane.h"
  31#include "rcar_du_regs.h"
  32#include "rcar_du_vsp.h"
  33#include "rcar_lvds.h"
  34
  35static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
  36{
  37        struct rcar_du_device *rcdu = rcrtc->dev;
  38
  39        return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
  40}
  41
  42static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
  43{
  44        struct rcar_du_device *rcdu = rcrtc->dev;
  45
  46        rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
  47}
  48
  49static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
  50{
  51        struct rcar_du_device *rcdu = rcrtc->dev;
  52
  53        rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  54                      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
  55}
  56
  57static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
  58{
  59        struct rcar_du_device *rcdu = rcrtc->dev;
  60
  61        rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  62                      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
  63}
  64
  65void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
  66{
  67        struct rcar_du_device *rcdu = rcrtc->dev;
  68
  69        rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
  70        rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
  71}
  72
  73/* -----------------------------------------------------------------------------
  74 * Hardware Setup
  75 */
  76
  77struct dpll_info {
  78        unsigned int output;
  79        unsigned int fdpll;
  80        unsigned int n;
  81        unsigned int m;
  82};
  83
  84static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
  85                                 struct dpll_info *dpll,
  86                                 unsigned long input,
  87                                 unsigned long target)
  88{
  89        unsigned long best_diff = (unsigned long)-1;
  90        unsigned long diff;
  91        unsigned int fdpll;
  92        unsigned int m;
  93        unsigned int n;
  94
  95        /*
  96         *   fin                                 fvco        fout       fclkout
  97         * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
  98         *              +-> |  |                             |
  99         *              |                                    |
 100         *              +---------------- [1/N] <------------+
 101         *
 102         *      fclkout = fvco / P / FDPLL -- (1)
 103         *
 104         * fin/M = fvco/P/N
 105         *
 106         *      fvco = fin * P *  N / M -- (2)
 107         *
 108         * (1) + (2) indicates
 109         *
 110         *      fclkout = fin * N / M / FDPLL
 111         *
 112         * NOTES
 113         *      N       : (n + 1)
 114         *      M       : (m + 1)
 115         *      FDPLL   : (fdpll + 1)
 116         *      P       : 2
 117         *      2kHz < fvco < 4096MHz
 118         *
 119         * To minimize the jitter,
 120         * N : as large as possible
 121         * M : as small as possible
 122         */
 123        for (m = 0; m < 4; m++) {
 124                for (n = 119; n > 38; n--) {
 125                        /*
 126                         * This code only runs on 64-bit architectures, the
 127                         * unsigned long type can thus be used for 64-bit
 128                         * computation. It will still compile without any
 129                         * warning on 32-bit architectures.
 130                         *
 131                         * To optimize calculations, use fout instead of fvco
 132                         * to verify the VCO frequency constraint.
 133                         */
 134                        unsigned long fout = input * (n + 1) / (m + 1);
 135
 136                        if (fout < 1000 || fout > 2048 * 1000 * 1000U)
 137                                continue;
 138
 139                        for (fdpll = 1; fdpll < 32; fdpll++) {
 140                                unsigned long output;
 141
 142                                output = fout / (fdpll + 1);
 143                                if (output >= 400 * 1000 * 1000)
 144                                        continue;
 145
 146                                diff = abs((long)output - (long)target);
 147                                if (best_diff > diff) {
 148                                        best_diff = diff;
 149                                        dpll->n = n;
 150                                        dpll->m = m;
 151                                        dpll->fdpll = fdpll;
 152                                        dpll->output = output;
 153                                }
 154
 155                                if (diff == 0)
 156                                        goto done;
 157                        }
 158                }
 159        }
 160
 161done:
 162        dev_dbg(rcrtc->dev->dev,
 163                "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
 164                 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
 165}
 166
 167struct du_clk_params {
 168        struct clk *clk;
 169        unsigned long rate;
 170        unsigned long diff;
 171        u32 escr;
 172};
 173
 174static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
 175                                 u32 escr, struct du_clk_params *params)
 176{
 177        unsigned long rate;
 178        unsigned long diff;
 179        u32 div;
 180
 181        /*
 182         * If the target rate has already been achieved perfectly we can't do
 183         * better.
 184         */
 185        if (params->diff == 0)
 186                return;
 187
 188        /*
 189         * Compute the input clock rate and internal divisor values to obtain
 190         * the clock rate closest to the target frequency.
 191         */
 192        rate = clk_round_rate(clk, target);
 193        div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
 194        diff = abs(rate / (div + 1) - target);
 195
 196        /*
 197         * Store the parameters if the resulting frequency is better than any
 198         * previously calculated value.
 199         */
 200        if (diff < params->diff) {
 201                params->clk = clk;
 202                params->rate = rate;
 203                params->diff = diff;
 204                params->escr = escr | div;
 205        }
 206}
 207
 208static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
 209        { .soc_id = "r8a7795", .revision = "ES1.*" },
 210        { /* sentinel */ }
 211};
 212
 213static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
 214{
 215        const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
 216        struct rcar_du_device *rcdu = rcrtc->dev;
 217        unsigned long mode_clock = mode->clock * 1000;
 218        unsigned int hdse_offset;
 219        u32 dsmr;
 220        u32 escr;
 221
 222        if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
 223                unsigned long target = mode_clock;
 224                struct dpll_info dpll = { 0 };
 225                unsigned long extclk;
 226                u32 dpllcr;
 227                u32 div = 0;
 228
 229                /*
 230                 * DU channels that have a display PLL can't use the internal
 231                 * system clock, and have no internal clock divider.
 232                 */
 233
 234                /*
 235                 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
 236                 * We can work around them by configuring the DPLL to twice the
 237                 * desired frequency, coupled with a /2 post-divider. Restrict
 238                 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
 239                 * no post-divider when a display PLL is present (as shown by
 240                 * the workaround breaking HDMI output on M3-W during testing).
 241                 */
 242                if (soc_device_match(rcar_du_r8a7795_es1)) {
 243                        target *= 2;
 244                        div = 1;
 245                }
 246
 247                extclk = clk_get_rate(rcrtc->extclock);
 248                rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
 249
 250                dpllcr = DPLLCR_CODE | DPLLCR_CLKE
 251                       | DPLLCR_FDPLL(dpll.fdpll)
 252                       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
 253                       | DPLLCR_STBY;
 254
 255                if (rcrtc->index == 1)
 256                        dpllcr |= DPLLCR_PLCS1
 257                               |  DPLLCR_INCS_DOTCLKIN1;
 258                else
 259                        dpllcr |= DPLLCR_PLCS0
 260                               |  DPLLCR_INCS_DOTCLKIN0;
 261
 262                rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
 263
 264                escr = ESCR_DCLKSEL_DCLKIN | div;
 265        } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) ||
 266                   rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) {
 267                /*
 268                 * Use the external LVDS or DSI PLL output as the dot clock when
 269                 * outputting to the LVDS or DSI encoder on an SoC that supports
 270                 * this clock routing option. We use the clock directly in that
 271                 * case, without any additional divider.
 272                 */
 273                escr = ESCR_DCLKSEL_DCLKIN;
 274        } else {
 275                struct du_clk_params params = { .diff = (unsigned long)-1 };
 276
 277                rcar_du_escr_divider(rcrtc->clock, mode_clock,
 278                                     ESCR_DCLKSEL_CLKS, &params);
 279                if (rcrtc->extclock)
 280                        rcar_du_escr_divider(rcrtc->extclock, mode_clock,
 281                                             ESCR_DCLKSEL_DCLKIN, &params);
 282
 283                dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
 284                        mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
 285                        params.rate);
 286
 287                clk_set_rate(params.clk, params.rate);
 288                escr = params.escr;
 289        }
 290
 291        dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
 292
 293        rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
 294        rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
 295
 296        /* Signal polarities */
 297        dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
 298             | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
 299             | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
 300             | DSMR_DIPM_DISP | DSMR_CSPM;
 301        rcar_du_crtc_write(rcrtc, DSMR, dsmr);
 302
 303        hdse_offset = 19;
 304        if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
 305                hdse_offset += 25;
 306
 307        /* Display timings */
 308        rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
 309                                        hdse_offset);
 310        rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
 311                                        mode->hdisplay - hdse_offset);
 312        rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
 313                                        mode->hsync_start - 1);
 314        rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
 315
 316        rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
 317                                        mode->crtc_vsync_end - 2);
 318        rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
 319                                        mode->crtc_vsync_end +
 320                                        mode->crtc_vdisplay - 2);
 321        rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
 322                                        mode->crtc_vsync_end +
 323                                        mode->crtc_vsync_start - 1);
 324        rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
 325
 326        rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
 327        rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
 328}
 329
 330static unsigned int plane_zpos(struct rcar_du_plane *plane)
 331{
 332        return plane->plane.state->normalized_zpos;
 333}
 334
 335static const struct rcar_du_format_info *
 336plane_format(struct rcar_du_plane *plane)
 337{
 338        return to_rcar_plane_state(plane->plane.state)->format;
 339}
 340
 341static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
 342{
 343        struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
 344        struct rcar_du_device *rcdu = rcrtc->dev;
 345        unsigned int num_planes = 0;
 346        unsigned int dptsr_planes;
 347        unsigned int hwplanes = 0;
 348        unsigned int prio = 0;
 349        unsigned int i;
 350        u32 dspr = 0;
 351
 352        for (i = 0; i < rcrtc->group->num_planes; ++i) {
 353                struct rcar_du_plane *plane = &rcrtc->group->planes[i];
 354                unsigned int j;
 355
 356                if (plane->plane.state->crtc != &rcrtc->crtc ||
 357                    !plane->plane.state->visible)
 358                        continue;
 359
 360                /* Insert the plane in the sorted planes array. */
 361                for (j = num_planes++; j > 0; --j) {
 362                        if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
 363                                break;
 364                        planes[j] = planes[j-1];
 365                }
 366
 367                planes[j] = plane;
 368                prio += plane_format(plane)->planes * 4;
 369        }
 370
 371        for (i = 0; i < num_planes; ++i) {
 372                struct rcar_du_plane *plane = planes[i];
 373                struct drm_plane_state *state = plane->plane.state;
 374                unsigned int index = to_rcar_plane_state(state)->hwindex;
 375
 376                prio -= 4;
 377                dspr |= (index + 1) << prio;
 378                hwplanes |= 1 << index;
 379
 380                if (plane_format(plane)->planes == 2) {
 381                        index = (index + 1) % 8;
 382
 383                        prio -= 4;
 384                        dspr |= (index + 1) << prio;
 385                        hwplanes |= 1 << index;
 386                }
 387        }
 388
 389        /* If VSP+DU integration is enabled the plane assignment is fixed. */
 390        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
 391                if (rcdu->info->gen < 3) {
 392                        dspr = (rcrtc->index % 2) + 1;
 393                        hwplanes = 1 << (rcrtc->index % 2);
 394                } else {
 395                        dspr = (rcrtc->index % 2) ? 3 : 1;
 396                        hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
 397                }
 398        }
 399
 400        /*
 401         * Update the planes to display timing and dot clock generator
 402         * associations.
 403         *
 404         * Updating the DPTSR register requires restarting the CRTC group,
 405         * resulting in visible flicker. To mitigate the issue only update the
 406         * association if needed by enabled planes. Planes being disabled will
 407         * keep their current association.
 408         */
 409        mutex_lock(&rcrtc->group->lock);
 410
 411        dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
 412                     : rcrtc->group->dptsr_planes & ~hwplanes;
 413
 414        if (dptsr_planes != rcrtc->group->dptsr_planes) {
 415                rcar_du_group_write(rcrtc->group, DPTSR,
 416                                    (dptsr_planes << 16) | dptsr_planes);
 417                rcrtc->group->dptsr_planes = dptsr_planes;
 418
 419                if (rcrtc->group->used_crtcs)
 420                        rcar_du_group_restart(rcrtc->group);
 421        }
 422
 423        /* Restart the group if plane sources have changed. */
 424        if (rcrtc->group->need_restart)
 425                rcar_du_group_restart(rcrtc->group);
 426
 427        mutex_unlock(&rcrtc->group->lock);
 428
 429        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
 430                            dspr);
 431}
 432
 433/* -----------------------------------------------------------------------------
 434 * Page Flip
 435 */
 436
 437void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
 438{
 439        struct drm_pending_vblank_event *event;
 440        struct drm_device *dev = rcrtc->crtc.dev;
 441        unsigned long flags;
 442
 443        spin_lock_irqsave(&dev->event_lock, flags);
 444        event = rcrtc->event;
 445        rcrtc->event = NULL;
 446        spin_unlock_irqrestore(&dev->event_lock, flags);
 447
 448        if (event == NULL)
 449                return;
 450
 451        spin_lock_irqsave(&dev->event_lock, flags);
 452        drm_crtc_send_vblank_event(&rcrtc->crtc, event);
 453        wake_up(&rcrtc->flip_wait);
 454        spin_unlock_irqrestore(&dev->event_lock, flags);
 455
 456        drm_crtc_vblank_put(&rcrtc->crtc);
 457}
 458
 459static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
 460{
 461        struct drm_device *dev = rcrtc->crtc.dev;
 462        unsigned long flags;
 463        bool pending;
 464
 465        spin_lock_irqsave(&dev->event_lock, flags);
 466        pending = rcrtc->event != NULL;
 467        spin_unlock_irqrestore(&dev->event_lock, flags);
 468
 469        return pending;
 470}
 471
 472static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
 473{
 474        struct rcar_du_device *rcdu = rcrtc->dev;
 475
 476        if (wait_event_timeout(rcrtc->flip_wait,
 477                               !rcar_du_crtc_page_flip_pending(rcrtc),
 478                               msecs_to_jiffies(50)))
 479                return;
 480
 481        dev_warn(rcdu->dev, "page flip timeout\n");
 482
 483        rcar_du_crtc_finish_page_flip(rcrtc);
 484}
 485
 486/* -----------------------------------------------------------------------------
 487 * Color Management Module (CMM)
 488 */
 489
 490static int rcar_du_cmm_check(struct drm_crtc *crtc,
 491                             struct drm_crtc_state *state)
 492{
 493        struct drm_property_blob *drm_lut = state->gamma_lut;
 494        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 495        struct device *dev = rcrtc->dev->dev;
 496
 497        if (!drm_lut)
 498                return 0;
 499
 500        /* We only accept fully populated LUT tables. */
 501        if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
 502                dev_err(dev, "invalid gamma lut size: %zu bytes\n",
 503                        drm_lut->length);
 504                return -EINVAL;
 505        }
 506
 507        return 0;
 508}
 509
 510static void rcar_du_cmm_setup(struct drm_crtc *crtc)
 511{
 512        struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
 513        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 514        struct rcar_cmm_config cmm_config = {};
 515
 516        if (!rcrtc->cmm)
 517                return;
 518
 519        if (drm_lut)
 520                cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
 521
 522        rcar_cmm_setup(rcrtc->cmm, &cmm_config);
 523}
 524
 525/* -----------------------------------------------------------------------------
 526 * Start/Stop and Suspend/Resume
 527 */
 528
 529static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
 530{
 531        /* Set display off and background to black */
 532        rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
 533        rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
 534
 535        /* Configure display timings and output routing */
 536        rcar_du_crtc_set_display_timing(rcrtc);
 537        rcar_du_group_set_routing(rcrtc->group);
 538
 539        /* Start with all planes disabled. */
 540        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 541
 542        /* Enable the VSP compositor. */
 543        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 544                rcar_du_vsp_enable(rcrtc);
 545
 546        /* Turn vertical blanking interrupt reporting on. */
 547        drm_crtc_vblank_on(&rcrtc->crtc);
 548}
 549
 550static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
 551{
 552        int ret;
 553
 554        /*
 555         * Guard against double-get, as the function is called from both the
 556         * .atomic_enable() and .atomic_begin() handlers.
 557         */
 558        if (rcrtc->initialized)
 559                return 0;
 560
 561        ret = clk_prepare_enable(rcrtc->clock);
 562        if (ret < 0)
 563                return ret;
 564
 565        ret = clk_prepare_enable(rcrtc->extclock);
 566        if (ret < 0)
 567                goto error_clock;
 568
 569        ret = rcar_du_group_get(rcrtc->group);
 570        if (ret < 0)
 571                goto error_group;
 572
 573        rcar_du_crtc_setup(rcrtc);
 574        rcrtc->initialized = true;
 575
 576        return 0;
 577
 578error_group:
 579        clk_disable_unprepare(rcrtc->extclock);
 580error_clock:
 581        clk_disable_unprepare(rcrtc->clock);
 582        return ret;
 583}
 584
 585static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
 586{
 587        rcar_du_group_put(rcrtc->group);
 588
 589        clk_disable_unprepare(rcrtc->extclock);
 590        clk_disable_unprepare(rcrtc->clock);
 591
 592        rcrtc->initialized = false;
 593}
 594
 595static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
 596{
 597        bool interlaced;
 598
 599        /*
 600         * Select master sync mode. This enables display operation in master
 601         * sync mode (with the HSYNC and VSYNC signals configured as outputs and
 602         * actively driven).
 603         */
 604        interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
 605        rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
 606                                   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
 607                                   DSYSR_TVM_MASTER);
 608
 609        rcar_du_group_start_stop(rcrtc->group, true);
 610}
 611
 612static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
 613{
 614        struct rcar_du_device *rcdu = rcrtc->dev;
 615        struct drm_crtc *crtc = &rcrtc->crtc;
 616        u32 status;
 617
 618        /* Make sure vblank interrupts are enabled. */
 619        drm_crtc_vblank_get(crtc);
 620
 621        /*
 622         * Disable planes and calculate how many vertical blanking interrupts we
 623         * have to wait for. If a vertical blanking interrupt has been triggered
 624         * but not processed yet, we don't know whether it occurred before or
 625         * after the planes got disabled. We thus have to wait for two vblank
 626         * interrupts in that case.
 627         */
 628        spin_lock_irq(&rcrtc->vblank_lock);
 629        rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 630        status = rcar_du_crtc_read(rcrtc, DSSR);
 631        rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
 632        spin_unlock_irq(&rcrtc->vblank_lock);
 633
 634        if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
 635                                msecs_to_jiffies(100)))
 636                dev_warn(rcdu->dev, "vertical blanking timeout\n");
 637
 638        drm_crtc_vblank_put(crtc);
 639}
 640
 641static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
 642{
 643        struct drm_crtc *crtc = &rcrtc->crtc;
 644
 645        /*
 646         * Disable all planes and wait for the change to take effect. This is
 647         * required as the plane enable registers are updated on vblank, and no
 648         * vblank will occur once the CRTC is stopped. Disabling planes when
 649         * starting the CRTC thus wouldn't be enough as it would start scanning
 650         * out immediately from old frame buffers until the next vblank.
 651         *
 652         * This increases the CRTC stop delay, especially when multiple CRTCs
 653         * are stopped in one operation as we now wait for one vblank per CRTC.
 654         * Whether this can be improved needs to be researched.
 655         */
 656        rcar_du_crtc_disable_planes(rcrtc);
 657
 658        /*
 659         * Disable vertical blanking interrupt reporting. We first need to wait
 660         * for page flip completion before stopping the CRTC as userspace
 661         * expects page flips to eventually complete.
 662         */
 663        rcar_du_crtc_wait_page_flip(rcrtc);
 664        drm_crtc_vblank_off(crtc);
 665
 666        /* Disable the VSP compositor. */
 667        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 668                rcar_du_vsp_disable(rcrtc);
 669
 670        if (rcrtc->cmm)
 671                rcar_cmm_disable(rcrtc->cmm);
 672
 673        /*
 674         * Select switch sync mode. This stops display operation and configures
 675         * the HSYNC and VSYNC signals as inputs.
 676         *
 677         * TODO: Find another way to stop the display for DUs that don't support
 678         * TVM sync.
 679         */
 680        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
 681                rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
 682                                           DSYSR_TVM_SWITCH);
 683
 684        rcar_du_group_start_stop(rcrtc->group, false);
 685}
 686
 687/* -----------------------------------------------------------------------------
 688 * CRTC Functions
 689 */
 690
 691static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
 692                                     struct drm_atomic_state *state)
 693{
 694        struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
 695                                                                          crtc);
 696        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
 697        struct drm_encoder *encoder;
 698        int ret;
 699
 700        ret = rcar_du_cmm_check(crtc, crtc_state);
 701        if (ret)
 702                return ret;
 703
 704        /* Store the routes from the CRTC output to the DU outputs. */
 705        rstate->outputs = 0;
 706
 707        drm_for_each_encoder_mask(encoder, crtc->dev,
 708                                  crtc_state->encoder_mask) {
 709                struct rcar_du_encoder *renc;
 710
 711                /* Skip the writeback encoder. */
 712                if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 713                        continue;
 714
 715                renc = to_rcar_encoder(encoder);
 716                rstate->outputs |= BIT(renc->output);
 717        }
 718
 719        return 0;
 720}
 721
 722static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
 723                                       struct drm_atomic_state *state)
 724{
 725        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 726        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
 727        struct rcar_du_device *rcdu = rcrtc->dev;
 728
 729        if (rcrtc->cmm)
 730                rcar_cmm_enable(rcrtc->cmm);
 731        rcar_du_crtc_get(rcrtc);
 732
 733        /*
 734         * On D3/E3 the dot clock is provided by the LVDS encoder attached to
 735         * the DU channel. We need to enable its clock output explicitly if
 736         * the LVDS output is disabled.
 737         */
 738        if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 739            rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 740                struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
 741                const struct drm_display_mode *mode =
 742                        &crtc->state->adjusted_mode;
 743
 744                rcar_lvds_clk_enable(bridge, mode->clock * 1000);
 745        }
 746
 747        rcar_du_crtc_start(rcrtc);
 748
 749        /*
 750         * TODO: The chip manual indicates that CMM tables should be written
 751         * after the DU channel has been activated. Investigate the impact
 752         * of this restriction on the first displayed frame.
 753         */
 754        rcar_du_cmm_setup(crtc);
 755}
 756
 757static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
 758                                        struct drm_atomic_state *state)
 759{
 760        struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 761                                                                         crtc);
 762        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 763        struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
 764        struct rcar_du_device *rcdu = rcrtc->dev;
 765
 766        rcar_du_crtc_stop(rcrtc);
 767        rcar_du_crtc_put(rcrtc);
 768
 769        if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 770            rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 771                struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
 772
 773                /*
 774                 * Disable the LVDS clock output, see
 775                 * rcar_du_crtc_atomic_enable().
 776                 */
 777                rcar_lvds_clk_disable(bridge);
 778        }
 779
 780        spin_lock_irq(&crtc->dev->event_lock);
 781        if (crtc->state->event) {
 782                drm_crtc_send_vblank_event(crtc, crtc->state->event);
 783                crtc->state->event = NULL;
 784        }
 785        spin_unlock_irq(&crtc->dev->event_lock);
 786}
 787
 788static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
 789                                      struct drm_atomic_state *state)
 790{
 791        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 792
 793        WARN_ON(!crtc->state->enable);
 794
 795        /*
 796         * If a mode set is in progress we can be called with the CRTC disabled.
 797         * We thus need to first get and setup the CRTC in order to configure
 798         * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
 799         * kept awake until the .atomic_enable() call that will follow. The get
 800         * operation in .atomic_enable() will in that case be a no-op, and the
 801         * CRTC will be put later in .atomic_disable().
 802         *
 803         * If a mode set is not in progress the CRTC is enabled, and the
 804         * following get call will be a no-op. There is thus no need to balance
 805         * it in .atomic_flush() either.
 806         */
 807        rcar_du_crtc_get(rcrtc);
 808
 809        /* If the active state changed, we let .atomic_enable handle CMM. */
 810        if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
 811                rcar_du_cmm_setup(crtc);
 812
 813        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 814                rcar_du_vsp_atomic_begin(rcrtc);
 815}
 816
 817static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
 818                                      struct drm_atomic_state *state)
 819{
 820        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 821        struct drm_device *dev = rcrtc->crtc.dev;
 822        unsigned long flags;
 823
 824        rcar_du_crtc_update_planes(rcrtc);
 825
 826        if (crtc->state->event) {
 827                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 828
 829                spin_lock_irqsave(&dev->event_lock, flags);
 830                rcrtc->event = crtc->state->event;
 831                crtc->state->event = NULL;
 832                spin_unlock_irqrestore(&dev->event_lock, flags);
 833        }
 834
 835        if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 836                rcar_du_vsp_atomic_flush(rcrtc);
 837}
 838
 839static enum drm_mode_status
 840rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
 841                        const struct drm_display_mode *mode)
 842{
 843        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 844        struct rcar_du_device *rcdu = rcrtc->dev;
 845        bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
 846        unsigned int min_sync_porch;
 847        unsigned int vbp;
 848
 849        if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
 850                return MODE_NO_INTERLACE;
 851
 852        /*
 853         * The hardware requires a minimum combined horizontal sync and back
 854         * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
 855         * used), and a minimum vertical back porch of 3 lines.
 856         */
 857        min_sync_porch = 20;
 858        if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
 859                min_sync_porch += 25;
 860
 861        if (mode->htotal - mode->hsync_start < min_sync_porch)
 862                return MODE_HBLANK_NARROW;
 863
 864        vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
 865        if (vbp < 3)
 866                return MODE_VBLANK_NARROW;
 867
 868        return MODE_OK;
 869}
 870
 871static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
 872        .atomic_check = rcar_du_crtc_atomic_check,
 873        .atomic_begin = rcar_du_crtc_atomic_begin,
 874        .atomic_flush = rcar_du_crtc_atomic_flush,
 875        .atomic_enable = rcar_du_crtc_atomic_enable,
 876        .atomic_disable = rcar_du_crtc_atomic_disable,
 877        .mode_valid = rcar_du_crtc_mode_valid,
 878};
 879
 880static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
 881{
 882        struct rcar_du_device *rcdu = rcrtc->dev;
 883        const char **sources;
 884        unsigned int count;
 885        int i = -1;
 886
 887        /* CRC available only on Gen3 HW. */
 888        if (rcdu->info->gen < 3)
 889                return;
 890
 891        /* Reserve 1 for "auto" source. */
 892        count = rcrtc->vsp->num_planes + 1;
 893
 894        sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
 895        if (!sources)
 896                return;
 897
 898        sources[0] = kstrdup("auto", GFP_KERNEL);
 899        if (!sources[0])
 900                goto error;
 901
 902        for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 903                struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
 904                char name[16];
 905
 906                sprintf(name, "plane%u", plane->base.id);
 907                sources[i + 1] = kstrdup(name, GFP_KERNEL);
 908                if (!sources[i + 1])
 909                        goto error;
 910        }
 911
 912        rcrtc->sources = sources;
 913        rcrtc->sources_count = count;
 914        return;
 915
 916error:
 917        while (i >= 0) {
 918                kfree(sources[i]);
 919                i--;
 920        }
 921        kfree(sources);
 922}
 923
 924static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
 925{
 926        unsigned int i;
 927
 928        if (!rcrtc->sources)
 929                return;
 930
 931        for (i = 0; i < rcrtc->sources_count; i++)
 932                kfree(rcrtc->sources[i]);
 933        kfree(rcrtc->sources);
 934
 935        rcrtc->sources = NULL;
 936        rcrtc->sources_count = 0;
 937}
 938
 939static struct drm_crtc_state *
 940rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
 941{
 942        struct rcar_du_crtc_state *state;
 943        struct rcar_du_crtc_state *copy;
 944
 945        if (WARN_ON(!crtc->state))
 946                return NULL;
 947
 948        state = to_rcar_crtc_state(crtc->state);
 949        copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
 950        if (copy == NULL)
 951                return NULL;
 952
 953        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
 954
 955        return &copy->state;
 956}
 957
 958static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
 959                                              struct drm_crtc_state *state)
 960{
 961        __drm_atomic_helper_crtc_destroy_state(state);
 962        kfree(to_rcar_crtc_state(state));
 963}
 964
 965static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
 966{
 967        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 968
 969        rcar_du_crtc_crc_cleanup(rcrtc);
 970
 971        return drm_crtc_cleanup(crtc);
 972}
 973
 974static void rcar_du_crtc_reset(struct drm_crtc *crtc)
 975{
 976        struct rcar_du_crtc_state *state;
 977
 978        if (crtc->state) {
 979                rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
 980                crtc->state = NULL;
 981        }
 982
 983        state = kzalloc(sizeof(*state), GFP_KERNEL);
 984        if (state == NULL)
 985                return;
 986
 987        state->crc.source = VSP1_DU_CRC_NONE;
 988        state->crc.index = 0;
 989
 990        __drm_atomic_helper_crtc_reset(crtc, &state->state);
 991}
 992
 993static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
 994{
 995        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 996
 997        rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
 998        rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
 999        rcrtc->vblank_enable = true;
1000
1001        return 0;
1002}
1003
1004static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
1005{
1006        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1007
1008        rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
1009        rcrtc->vblank_enable = false;
1010}
1011
1012static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1013                                         const char *source_name,
1014                                         enum vsp1_du_crc_source *source)
1015{
1016        unsigned int index;
1017        int ret;
1018
1019        /*
1020         * Parse the source name. Supported values are "plane%u" to compute the
1021         * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1022         * CRC on the composer (VSP) output.
1023         */
1024
1025        if (!source_name) {
1026                *source = VSP1_DU_CRC_NONE;
1027                return 0;
1028        } else if (!strcmp(source_name, "auto")) {
1029                *source = VSP1_DU_CRC_OUTPUT;
1030                return 0;
1031        } else if (strstarts(source_name, "plane")) {
1032                unsigned int i;
1033
1034                *source = VSP1_DU_CRC_PLANE;
1035
1036                ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1037                if (ret < 0)
1038                        return ret;
1039
1040                for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1041                        if (index == rcrtc->vsp->planes[i].plane.base.id)
1042                                return i;
1043                }
1044        }
1045
1046        return -EINVAL;
1047}
1048
1049static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1050                                          const char *source_name,
1051                                          size_t *values_cnt)
1052{
1053        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1054        enum vsp1_du_crc_source source;
1055
1056        if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1057                DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1058                return -EINVAL;
1059        }
1060
1061        *values_cnt = 1;
1062        return 0;
1063}
1064
1065static const char *const *
1066rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1067{
1068        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1069
1070        *count = rcrtc->sources_count;
1071        return rcrtc->sources;
1072}
1073
1074static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1075                                       const char *source_name)
1076{
1077        struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1078        struct drm_modeset_acquire_ctx ctx;
1079        struct drm_crtc_state *crtc_state;
1080        struct drm_atomic_state *state;
1081        enum vsp1_du_crc_source source;
1082        unsigned int index;
1083        int ret;
1084
1085        ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1086        if (ret < 0)
1087                return ret;
1088
1089        index = ret;
1090
1091        /* Perform an atomic commit to set the CRC source. */
1092        drm_modeset_acquire_init(&ctx, 0);
1093
1094        state = drm_atomic_state_alloc(crtc->dev);
1095        if (!state) {
1096                ret = -ENOMEM;
1097                goto unlock;
1098        }
1099
1100        state->acquire_ctx = &ctx;
1101
1102retry:
1103        crtc_state = drm_atomic_get_crtc_state(state, crtc);
1104        if (!IS_ERR(crtc_state)) {
1105                struct rcar_du_crtc_state *rcrtc_state;
1106
1107                rcrtc_state = to_rcar_crtc_state(crtc_state);
1108                rcrtc_state->crc.source = source;
1109                rcrtc_state->crc.index = index;
1110
1111                ret = drm_atomic_commit(state);
1112        } else {
1113                ret = PTR_ERR(crtc_state);
1114        }
1115
1116        if (ret == -EDEADLK) {
1117                drm_atomic_state_clear(state);
1118                drm_modeset_backoff(&ctx);
1119                goto retry;
1120        }
1121
1122        drm_atomic_state_put(state);
1123
1124unlock:
1125        drm_modeset_drop_locks(&ctx);
1126        drm_modeset_acquire_fini(&ctx);
1127
1128        return ret;
1129}
1130
1131static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1132        .reset = rcar_du_crtc_reset,
1133        .destroy = drm_crtc_cleanup,
1134        .set_config = drm_atomic_helper_set_config,
1135        .page_flip = drm_atomic_helper_page_flip,
1136        .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1137        .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1138        .enable_vblank = rcar_du_crtc_enable_vblank,
1139        .disable_vblank = rcar_du_crtc_disable_vblank,
1140};
1141
1142static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1143        .reset = rcar_du_crtc_reset,
1144        .destroy = rcar_du_crtc_cleanup,
1145        .set_config = drm_atomic_helper_set_config,
1146        .page_flip = drm_atomic_helper_page_flip,
1147        .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1148        .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1149        .enable_vblank = rcar_du_crtc_enable_vblank,
1150        .disable_vblank = rcar_du_crtc_disable_vblank,
1151        .set_crc_source = rcar_du_crtc_set_crc_source,
1152        .verify_crc_source = rcar_du_crtc_verify_crc_source,
1153        .get_crc_sources = rcar_du_crtc_get_crc_sources,
1154};
1155
1156/* -----------------------------------------------------------------------------
1157 * Interrupt Handling
1158 */
1159
1160static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1161{
1162        struct rcar_du_crtc *rcrtc = arg;
1163        struct rcar_du_device *rcdu = rcrtc->dev;
1164        irqreturn_t ret = IRQ_NONE;
1165        u32 status;
1166
1167        spin_lock(&rcrtc->vblank_lock);
1168
1169        status = rcar_du_crtc_read(rcrtc, DSSR);
1170        rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1171
1172        if (status & DSSR_VBK) {
1173                /*
1174                 * Wake up the vblank wait if the counter reaches 0. This must
1175                 * be protected by the vblank_lock to avoid races in
1176                 * rcar_du_crtc_disable_planes().
1177                 */
1178                if (rcrtc->vblank_count) {
1179                        if (--rcrtc->vblank_count == 0)
1180                                wake_up(&rcrtc->vblank_wait);
1181                }
1182        }
1183
1184        spin_unlock(&rcrtc->vblank_lock);
1185
1186        if (status & DSSR_VBK) {
1187                if (rcdu->info->gen < 3) {
1188                        drm_crtc_handle_vblank(&rcrtc->crtc);
1189                        rcar_du_crtc_finish_page_flip(rcrtc);
1190                }
1191
1192                ret = IRQ_HANDLED;
1193        }
1194
1195        return ret;
1196}
1197
1198/* -----------------------------------------------------------------------------
1199 * Initialization
1200 */
1201
1202int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1203                        unsigned int hwindex)
1204{
1205        static const unsigned int mmio_offsets[] = {
1206                DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1207        };
1208
1209        struct rcar_du_device *rcdu = rgrp->dev;
1210        struct platform_device *pdev = to_platform_device(rcdu->dev);
1211        struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1212        struct drm_crtc *crtc = &rcrtc->crtc;
1213        struct drm_plane *primary;
1214        unsigned int irqflags;
1215        struct clk *clk;
1216        char clk_name[9];
1217        char *name;
1218        int irq;
1219        int ret;
1220
1221        /* Get the CRTC clock and the optional external clock. */
1222        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) {
1223                sprintf(clk_name, "du.%u", hwindex);
1224                name = clk_name;
1225        } else {
1226                name = NULL;
1227        }
1228
1229        rcrtc->clock = devm_clk_get(rcdu->dev, name);
1230        if (IS_ERR(rcrtc->clock)) {
1231                dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1232                return PTR_ERR(rcrtc->clock);
1233        }
1234
1235        sprintf(clk_name, "dclkin.%u", hwindex);
1236        clk = devm_clk_get(rcdu->dev, clk_name);
1237        if (!IS_ERR(clk)) {
1238                rcrtc->extclock = clk;
1239        } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1240                return -EPROBE_DEFER;
1241        } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1242                /*
1243                 * DU channels that have a display PLL can't use the internal
1244                 * system clock and thus require an external clock.
1245                 */
1246                ret = PTR_ERR(clk);
1247                dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1248                return ret;
1249        }
1250
1251        init_waitqueue_head(&rcrtc->flip_wait);
1252        init_waitqueue_head(&rcrtc->vblank_wait);
1253        spin_lock_init(&rcrtc->vblank_lock);
1254
1255        rcrtc->dev = rcdu;
1256        rcrtc->group = rgrp;
1257        rcrtc->mmio_offset = mmio_offsets[hwindex];
1258        rcrtc->index = hwindex;
1259        rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES;
1260
1261        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC))
1262                rcrtc->dsysr |= DSYSR_TVM_TVSYNC;
1263
1264        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1265                primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1266        else
1267                primary = &rgrp->planes[swindex % 2].plane;
1268
1269        ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1270                                        rcdu->info->gen <= 2 ?
1271                                        &crtc_funcs_gen2 : &crtc_funcs_gen3,
1272                                        NULL);
1273        if (ret < 0)
1274                return ret;
1275
1276        /* CMM might be disabled for this CRTC. */
1277        if (rcdu->cmms[swindex]) {
1278                rcrtc->cmm = rcdu->cmms[swindex];
1279                rgrp->cmms_mask |= BIT(hwindex % 2);
1280
1281                drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1282                drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1283        }
1284
1285        drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1286
1287        /* Register the interrupt handler. */
1288        if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) {
1289                /* The IRQ's are associated with the CRTC (sw)index. */
1290                irq = platform_get_irq(pdev, swindex);
1291                irqflags = 0;
1292        } else {
1293                irq = platform_get_irq(pdev, 0);
1294                irqflags = IRQF_SHARED;
1295        }
1296
1297        if (irq < 0) {
1298                dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1299                return irq;
1300        }
1301
1302        ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1303                               dev_name(rcdu->dev), rcrtc);
1304        if (ret < 0) {
1305                dev_err(rcdu->dev,
1306                        "failed to register IRQ for CRTC %u\n", swindex);
1307                return ret;
1308        }
1309
1310        rcar_du_crtc_crc_init(rcrtc);
1311
1312        return 0;
1313}
1314