linux/drivers/hv/hv_balloon.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2012, Microsoft Corporation.
   4 *
   5 * Author:
   6 *   K. Y. Srinivasan <kys@microsoft.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/jiffies.h>
  13#include <linux/mman.h>
  14#include <linux/delay.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/kthread.h>
  19#include <linux/completion.h>
  20#include <linux/count_zeros.h>
  21#include <linux/memory_hotplug.h>
  22#include <linux/memory.h>
  23#include <linux/notifier.h>
  24#include <linux/percpu_counter.h>
  25#include <linux/page_reporting.h>
  26
  27#include <linux/hyperv.h>
  28#include <asm/hyperv-tlfs.h>
  29
  30#include <asm/mshyperv.h>
  31
  32#define CREATE_TRACE_POINTS
  33#include "hv_trace_balloon.h"
  34
  35/*
  36 * We begin with definitions supporting the Dynamic Memory protocol
  37 * with the host.
  38 *
  39 * Begin protocol definitions.
  40 */
  41
  42
  43
  44/*
  45 * Protocol versions. The low word is the minor version, the high word the major
  46 * version.
  47 *
  48 * History:
  49 * Initial version 1.0
  50 * Changed to 0.1 on 2009/03/25
  51 * Changes to 0.2 on 2009/05/14
  52 * Changes to 0.3 on 2009/12/03
  53 * Changed to 1.0 on 2011/04/05
  54 */
  55
  56#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  57#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  58#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  59
  60enum {
  61        DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  62        DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  63        DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  64
  65        DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  66        DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  67        DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  68
  69        DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  70};
  71
  72
  73
  74/*
  75 * Message Types
  76 */
  77
  78enum dm_message_type {
  79        /*
  80         * Version 0.3
  81         */
  82        DM_ERROR                        = 0,
  83        DM_VERSION_REQUEST              = 1,
  84        DM_VERSION_RESPONSE             = 2,
  85        DM_CAPABILITIES_REPORT          = 3,
  86        DM_CAPABILITIES_RESPONSE        = 4,
  87        DM_STATUS_REPORT                = 5,
  88        DM_BALLOON_REQUEST              = 6,
  89        DM_BALLOON_RESPONSE             = 7,
  90        DM_UNBALLOON_REQUEST            = 8,
  91        DM_UNBALLOON_RESPONSE           = 9,
  92        DM_MEM_HOT_ADD_REQUEST          = 10,
  93        DM_MEM_HOT_ADD_RESPONSE         = 11,
  94        DM_VERSION_03_MAX               = 11,
  95        /*
  96         * Version 1.0.
  97         */
  98        DM_INFO_MESSAGE                 = 12,
  99        DM_VERSION_1_MAX                = 12
 100};
 101
 102
 103/*
 104 * Structures defining the dynamic memory management
 105 * protocol.
 106 */
 107
 108union dm_version {
 109        struct {
 110                __u16 minor_version;
 111                __u16 major_version;
 112        };
 113        __u32 version;
 114} __packed;
 115
 116
 117union dm_caps {
 118        struct {
 119                __u64 balloon:1;
 120                __u64 hot_add:1;
 121                /*
 122                 * To support guests that may have alignment
 123                 * limitations on hot-add, the guest can specify
 124                 * its alignment requirements; a value of n
 125                 * represents an alignment of 2^n in mega bytes.
 126                 */
 127                __u64 hot_add_alignment:4;
 128                __u64 reservedz:58;
 129        } cap_bits;
 130        __u64 caps;
 131} __packed;
 132
 133union dm_mem_page_range {
 134        struct  {
 135                /*
 136                 * The PFN number of the first page in the range.
 137                 * 40 bits is the architectural limit of a PFN
 138                 * number for AMD64.
 139                 */
 140                __u64 start_page:40;
 141                /*
 142                 * The number of pages in the range.
 143                 */
 144                __u64 page_cnt:24;
 145        } finfo;
 146        __u64  page_range;
 147} __packed;
 148
 149
 150
 151/*
 152 * The header for all dynamic memory messages:
 153 *
 154 * type: Type of the message.
 155 * size: Size of the message in bytes; including the header.
 156 * trans_id: The guest is responsible for manufacturing this ID.
 157 */
 158
 159struct dm_header {
 160        __u16 type;
 161        __u16 size;
 162        __u32 trans_id;
 163} __packed;
 164
 165/*
 166 * A generic message format for dynamic memory.
 167 * Specific message formats are defined later in the file.
 168 */
 169
 170struct dm_message {
 171        struct dm_header hdr;
 172        __u8 data[]; /* enclosed message */
 173} __packed;
 174
 175
 176/*
 177 * Specific message types supporting the dynamic memory protocol.
 178 */
 179
 180/*
 181 * Version negotiation message. Sent from the guest to the host.
 182 * The guest is free to try different versions until the host
 183 * accepts the version.
 184 *
 185 * dm_version: The protocol version requested.
 186 * is_last_attempt: If TRUE, this is the last version guest will request.
 187 * reservedz: Reserved field, set to zero.
 188 */
 189
 190struct dm_version_request {
 191        struct dm_header hdr;
 192        union dm_version version;
 193        __u32 is_last_attempt:1;
 194        __u32 reservedz:31;
 195} __packed;
 196
 197/*
 198 * Version response message; Host to Guest and indicates
 199 * if the host has accepted the version sent by the guest.
 200 *
 201 * is_accepted: If TRUE, host has accepted the version and the guest
 202 * should proceed to the next stage of the protocol. FALSE indicates that
 203 * guest should re-try with a different version.
 204 *
 205 * reservedz: Reserved field, set to zero.
 206 */
 207
 208struct dm_version_response {
 209        struct dm_header hdr;
 210        __u64 is_accepted:1;
 211        __u64 reservedz:63;
 212} __packed;
 213
 214/*
 215 * Message reporting capabilities. This is sent from the guest to the
 216 * host.
 217 */
 218
 219struct dm_capabilities {
 220        struct dm_header hdr;
 221        union dm_caps caps;
 222        __u64 min_page_cnt;
 223        __u64 max_page_number;
 224} __packed;
 225
 226/*
 227 * Response to the capabilities message. This is sent from the host to the
 228 * guest. This message notifies if the host has accepted the guest's
 229 * capabilities. If the host has not accepted, the guest must shutdown
 230 * the service.
 231 *
 232 * is_accepted: Indicates if the host has accepted guest's capabilities.
 233 * reservedz: Must be 0.
 234 */
 235
 236struct dm_capabilities_resp_msg {
 237        struct dm_header hdr;
 238        __u64 is_accepted:1;
 239        __u64 reservedz:63;
 240} __packed;
 241
 242/*
 243 * This message is used to report memory pressure from the guest.
 244 * This message is not part of any transaction and there is no
 245 * response to this message.
 246 *
 247 * num_avail: Available memory in pages.
 248 * num_committed: Committed memory in pages.
 249 * page_file_size: The accumulated size of all page files
 250 *                 in the system in pages.
 251 * zero_free: The nunber of zero and free pages.
 252 * page_file_writes: The writes to the page file in pages.
 253 * io_diff: An indicator of file cache efficiency or page file activity,
 254 *          calculated as File Cache Page Fault Count - Page Read Count.
 255 *          This value is in pages.
 256 *
 257 * Some of these metrics are Windows specific and fortunately
 258 * the algorithm on the host side that computes the guest memory
 259 * pressure only uses num_committed value.
 260 */
 261
 262struct dm_status {
 263        struct dm_header hdr;
 264        __u64 num_avail;
 265        __u64 num_committed;
 266        __u64 page_file_size;
 267        __u64 zero_free;
 268        __u32 page_file_writes;
 269        __u32 io_diff;
 270} __packed;
 271
 272
 273/*
 274 * Message to ask the guest to allocate memory - balloon up message.
 275 * This message is sent from the host to the guest. The guest may not be
 276 * able to allocate as much memory as requested.
 277 *
 278 * num_pages: number of pages to allocate.
 279 */
 280
 281struct dm_balloon {
 282        struct dm_header hdr;
 283        __u32 num_pages;
 284        __u32 reservedz;
 285} __packed;
 286
 287
 288/*
 289 * Balloon response message; this message is sent from the guest
 290 * to the host in response to the balloon message.
 291 *
 292 * reservedz: Reserved; must be set to zero.
 293 * more_pages: If FALSE, this is the last message of the transaction.
 294 * if TRUE there will atleast one more message from the guest.
 295 *
 296 * range_count: The number of ranges in the range array.
 297 *
 298 * range_array: An array of page ranges returned to the host.
 299 *
 300 */
 301
 302struct dm_balloon_response {
 303        struct dm_header hdr;
 304        __u32 reservedz;
 305        __u32 more_pages:1;
 306        __u32 range_count:31;
 307        union dm_mem_page_range range_array[];
 308} __packed;
 309
 310/*
 311 * Un-balloon message; this message is sent from the host
 312 * to the guest to give guest more memory.
 313 *
 314 * more_pages: If FALSE, this is the last message of the transaction.
 315 * if TRUE there will atleast one more message from the guest.
 316 *
 317 * reservedz: Reserved; must be set to zero.
 318 *
 319 * range_count: The number of ranges in the range array.
 320 *
 321 * range_array: An array of page ranges returned to the host.
 322 *
 323 */
 324
 325struct dm_unballoon_request {
 326        struct dm_header hdr;
 327        __u32 more_pages:1;
 328        __u32 reservedz:31;
 329        __u32 range_count;
 330        union dm_mem_page_range range_array[];
 331} __packed;
 332
 333/*
 334 * Un-balloon response message; this message is sent from the guest
 335 * to the host in response to an unballoon request.
 336 *
 337 */
 338
 339struct dm_unballoon_response {
 340        struct dm_header hdr;
 341} __packed;
 342
 343
 344/*
 345 * Hot add request message. Message sent from the host to the guest.
 346 *
 347 * mem_range: Memory range to hot add.
 348 *
 349 */
 350
 351struct dm_hot_add {
 352        struct dm_header hdr;
 353        union dm_mem_page_range range;
 354} __packed;
 355
 356/*
 357 * Hot add response message.
 358 * This message is sent by the guest to report the status of a hot add request.
 359 * If page_count is less than the requested page count, then the host should
 360 * assume all further hot add requests will fail, since this indicates that
 361 * the guest has hit an upper physical memory barrier.
 362 *
 363 * Hot adds may also fail due to low resources; in this case, the guest must
 364 * not complete this message until the hot add can succeed, and the host must
 365 * not send a new hot add request until the response is sent.
 366 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 367 * times it fails the request.
 368 *
 369 *
 370 * page_count: number of pages that were successfully hot added.
 371 *
 372 * result: result of the operation 1: success, 0: failure.
 373 *
 374 */
 375
 376struct dm_hot_add_response {
 377        struct dm_header hdr;
 378        __u32 page_count;
 379        __u32 result;
 380} __packed;
 381
 382/*
 383 * Types of information sent from host to the guest.
 384 */
 385
 386enum dm_info_type {
 387        INFO_TYPE_MAX_PAGE_CNT = 0,
 388        MAX_INFO_TYPE
 389};
 390
 391
 392/*
 393 * Header for the information message.
 394 */
 395
 396struct dm_info_header {
 397        enum dm_info_type type;
 398        __u32 data_size;
 399} __packed;
 400
 401/*
 402 * This message is sent from the host to the guest to pass
 403 * some relevant information (win8 addition).
 404 *
 405 * reserved: no used.
 406 * info_size: size of the information blob.
 407 * info: information blob.
 408 */
 409
 410struct dm_info_msg {
 411        struct dm_header hdr;
 412        __u32 reserved;
 413        __u32 info_size;
 414        __u8  info[];
 415};
 416
 417/*
 418 * End protocol definitions.
 419 */
 420
 421/*
 422 * State to manage hot adding memory into the guest.
 423 * The range start_pfn : end_pfn specifies the range
 424 * that the host has asked us to hot add. The range
 425 * start_pfn : ha_end_pfn specifies the range that we have
 426 * currently hot added. We hot add in multiples of 128M
 427 * chunks; it is possible that we may not be able to bring
 428 * online all the pages in the region. The range
 429 * covered_start_pfn:covered_end_pfn defines the pages that can
 430 * be brough online.
 431 */
 432
 433struct hv_hotadd_state {
 434        struct list_head list;
 435        unsigned long start_pfn;
 436        unsigned long covered_start_pfn;
 437        unsigned long covered_end_pfn;
 438        unsigned long ha_end_pfn;
 439        unsigned long end_pfn;
 440        /*
 441         * A list of gaps.
 442         */
 443        struct list_head gap_list;
 444};
 445
 446struct hv_hotadd_gap {
 447        struct list_head list;
 448        unsigned long start_pfn;
 449        unsigned long end_pfn;
 450};
 451
 452struct balloon_state {
 453        __u32 num_pages;
 454        struct work_struct wrk;
 455};
 456
 457struct hot_add_wrk {
 458        union dm_mem_page_range ha_page_range;
 459        union dm_mem_page_range ha_region_range;
 460        struct work_struct wrk;
 461};
 462
 463static bool allow_hibernation;
 464static bool hot_add = true;
 465static bool do_hot_add;
 466/*
 467 * Delay reporting memory pressure by
 468 * the specified number of seconds.
 469 */
 470static uint pressure_report_delay = 45;
 471
 472/*
 473 * The last time we posted a pressure report to host.
 474 */
 475static unsigned long last_post_time;
 476
 477module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
 478MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 479
 480module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
 481MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 482static atomic_t trans_id = ATOMIC_INIT(0);
 483
 484static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
 485
 486/*
 487 * Driver specific state.
 488 */
 489
 490enum hv_dm_state {
 491        DM_INITIALIZING = 0,
 492        DM_INITIALIZED,
 493        DM_BALLOON_UP,
 494        DM_BALLOON_DOWN,
 495        DM_HOT_ADD,
 496        DM_INIT_ERROR
 497};
 498
 499
 500static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
 501static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
 502#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
 503#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
 504
 505struct hv_dynmem_device {
 506        struct hv_device *dev;
 507        enum hv_dm_state state;
 508        struct completion host_event;
 509        struct completion config_event;
 510
 511        /*
 512         * Number of pages we have currently ballooned out.
 513         */
 514        unsigned int num_pages_ballooned;
 515        unsigned int num_pages_onlined;
 516        unsigned int num_pages_added;
 517
 518        /*
 519         * State to manage the ballooning (up) operation.
 520         */
 521        struct balloon_state balloon_wrk;
 522
 523        /*
 524         * State to execute the "hot-add" operation.
 525         */
 526        struct hot_add_wrk ha_wrk;
 527
 528        /*
 529         * This state tracks if the host has specified a hot-add
 530         * region.
 531         */
 532        bool host_specified_ha_region;
 533
 534        /*
 535         * State to synchronize hot-add.
 536         */
 537        struct completion  ol_waitevent;
 538        /*
 539         * This thread handles hot-add
 540         * requests from the host as well as notifying
 541         * the host with regards to memory pressure in
 542         * the guest.
 543         */
 544        struct task_struct *thread;
 545
 546        /*
 547         * Protects ha_region_list, num_pages_onlined counter and individual
 548         * regions from ha_region_list.
 549         */
 550        spinlock_t ha_lock;
 551
 552        /*
 553         * A list of hot-add regions.
 554         */
 555        struct list_head ha_region_list;
 556
 557        /*
 558         * We start with the highest version we can support
 559         * and downgrade based on the host; we save here the
 560         * next version to try.
 561         */
 562        __u32 next_version;
 563
 564        /*
 565         * The negotiated version agreed by host.
 566         */
 567        __u32 version;
 568
 569        struct page_reporting_dev_info pr_dev_info;
 570};
 571
 572static struct hv_dynmem_device dm_device;
 573
 574static void post_status(struct hv_dynmem_device *dm);
 575
 576#ifdef CONFIG_MEMORY_HOTPLUG
 577static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
 578                                     unsigned long pfn)
 579{
 580        struct hv_hotadd_gap *gap;
 581
 582        /* The page is not backed. */
 583        if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
 584                return false;
 585
 586        /* Check for gaps. */
 587        list_for_each_entry(gap, &has->gap_list, list) {
 588                if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
 589                        return false;
 590        }
 591
 592        return true;
 593}
 594
 595static unsigned long hv_page_offline_check(unsigned long start_pfn,
 596                                           unsigned long nr_pages)
 597{
 598        unsigned long pfn = start_pfn, count = 0;
 599        struct hv_hotadd_state *has;
 600        bool found;
 601
 602        while (pfn < start_pfn + nr_pages) {
 603                /*
 604                 * Search for HAS which covers the pfn and when we find one
 605                 * count how many consequitive PFNs are covered.
 606                 */
 607                found = false;
 608                list_for_each_entry(has, &dm_device.ha_region_list, list) {
 609                        while ((pfn >= has->start_pfn) &&
 610                               (pfn < has->end_pfn) &&
 611                               (pfn < start_pfn + nr_pages)) {
 612                                found = true;
 613                                if (has_pfn_is_backed(has, pfn))
 614                                        count++;
 615                                pfn++;
 616                        }
 617                }
 618
 619                /*
 620                 * This PFN is not in any HAS (e.g. we're offlining a region
 621                 * which was present at boot), no need to account for it. Go
 622                 * to the next one.
 623                 */
 624                if (!found)
 625                        pfn++;
 626        }
 627
 628        return count;
 629}
 630
 631static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 632                              void *v)
 633{
 634        struct memory_notify *mem = (struct memory_notify *)v;
 635        unsigned long flags, pfn_count;
 636
 637        switch (val) {
 638        case MEM_ONLINE:
 639        case MEM_CANCEL_ONLINE:
 640                complete(&dm_device.ol_waitevent);
 641                break;
 642
 643        case MEM_OFFLINE:
 644                spin_lock_irqsave(&dm_device.ha_lock, flags);
 645                pfn_count = hv_page_offline_check(mem->start_pfn,
 646                                                  mem->nr_pages);
 647                if (pfn_count <= dm_device.num_pages_onlined) {
 648                        dm_device.num_pages_onlined -= pfn_count;
 649                } else {
 650                        /*
 651                         * We're offlining more pages than we managed to online.
 652                         * This is unexpected. In any case don't let
 653                         * num_pages_onlined wrap around zero.
 654                         */
 655                        WARN_ON_ONCE(1);
 656                        dm_device.num_pages_onlined = 0;
 657                }
 658                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 659                break;
 660        case MEM_GOING_ONLINE:
 661        case MEM_GOING_OFFLINE:
 662        case MEM_CANCEL_OFFLINE:
 663                break;
 664        }
 665        return NOTIFY_OK;
 666}
 667
 668static struct notifier_block hv_memory_nb = {
 669        .notifier_call = hv_memory_notifier,
 670        .priority = 0
 671};
 672
 673/* Check if the particular page is backed and can be onlined and online it. */
 674static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
 675{
 676        if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
 677                if (!PageOffline(pg))
 678                        __SetPageOffline(pg);
 679                return;
 680        }
 681        if (PageOffline(pg))
 682                __ClearPageOffline(pg);
 683
 684        /* This frame is currently backed; online the page. */
 685        generic_online_page(pg, 0);
 686
 687        lockdep_assert_held(&dm_device.ha_lock);
 688        dm_device.num_pages_onlined++;
 689}
 690
 691static void hv_bring_pgs_online(struct hv_hotadd_state *has,
 692                                unsigned long start_pfn, unsigned long size)
 693{
 694        int i;
 695
 696        pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
 697        for (i = 0; i < size; i++)
 698                hv_page_online_one(has, pfn_to_page(start_pfn + i));
 699}
 700
 701static void hv_mem_hot_add(unsigned long start, unsigned long size,
 702                                unsigned long pfn_count,
 703                                struct hv_hotadd_state *has)
 704{
 705        int ret = 0;
 706        int i, nid;
 707        unsigned long start_pfn;
 708        unsigned long processed_pfn;
 709        unsigned long total_pfn = pfn_count;
 710        unsigned long flags;
 711
 712        for (i = 0; i < (size/HA_CHUNK); i++) {
 713                start_pfn = start + (i * HA_CHUNK);
 714
 715                spin_lock_irqsave(&dm_device.ha_lock, flags);
 716                has->ha_end_pfn +=  HA_CHUNK;
 717
 718                if (total_pfn > HA_CHUNK) {
 719                        processed_pfn = HA_CHUNK;
 720                        total_pfn -= HA_CHUNK;
 721                } else {
 722                        processed_pfn = total_pfn;
 723                        total_pfn = 0;
 724                }
 725
 726                has->covered_end_pfn +=  processed_pfn;
 727                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 728
 729                reinit_completion(&dm_device.ol_waitevent);
 730
 731                nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 732                ret = add_memory(nid, PFN_PHYS((start_pfn)),
 733                                (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
 734
 735                if (ret) {
 736                        pr_err("hot_add memory failed error is %d\n", ret);
 737                        if (ret == -EEXIST) {
 738                                /*
 739                                 * This error indicates that the error
 740                                 * is not a transient failure. This is the
 741                                 * case where the guest's physical address map
 742                                 * precludes hot adding memory. Stop all further
 743                                 * memory hot-add.
 744                                 */
 745                                do_hot_add = false;
 746                        }
 747                        spin_lock_irqsave(&dm_device.ha_lock, flags);
 748                        has->ha_end_pfn -= HA_CHUNK;
 749                        has->covered_end_pfn -=  processed_pfn;
 750                        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 751                        break;
 752                }
 753
 754                /*
 755                 * Wait for memory to get onlined. If the kernel onlined the
 756                 * memory when adding it, this will return directly. Otherwise,
 757                 * it will wait for user space to online the memory. This helps
 758                 * to avoid adding memory faster than it is getting onlined. As
 759                 * adding succeeded, it is ok to proceed even if the memory was
 760                 * not onlined in time.
 761                 */
 762                wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
 763                post_status(&dm_device);
 764        }
 765}
 766
 767static void hv_online_page(struct page *pg, unsigned int order)
 768{
 769        struct hv_hotadd_state *has;
 770        unsigned long flags;
 771        unsigned long pfn = page_to_pfn(pg);
 772
 773        spin_lock_irqsave(&dm_device.ha_lock, flags);
 774        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 775                /* The page belongs to a different HAS. */
 776                if ((pfn < has->start_pfn) ||
 777                                (pfn + (1UL << order) > has->end_pfn))
 778                        continue;
 779
 780                hv_bring_pgs_online(has, pfn, 1UL << order);
 781                break;
 782        }
 783        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 784}
 785
 786static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 787{
 788        struct hv_hotadd_state *has;
 789        struct hv_hotadd_gap *gap;
 790        unsigned long residual, new_inc;
 791        int ret = 0;
 792        unsigned long flags;
 793
 794        spin_lock_irqsave(&dm_device.ha_lock, flags);
 795        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 796                /*
 797                 * If the pfn range we are dealing with is not in the current
 798                 * "hot add block", move on.
 799                 */
 800                if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 801                        continue;
 802
 803                /*
 804                 * If the current start pfn is not where the covered_end
 805                 * is, create a gap and update covered_end_pfn.
 806                 */
 807                if (has->covered_end_pfn != start_pfn) {
 808                        gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
 809                        if (!gap) {
 810                                ret = -ENOMEM;
 811                                break;
 812                        }
 813
 814                        INIT_LIST_HEAD(&gap->list);
 815                        gap->start_pfn = has->covered_end_pfn;
 816                        gap->end_pfn = start_pfn;
 817                        list_add_tail(&gap->list, &has->gap_list);
 818
 819                        has->covered_end_pfn = start_pfn;
 820                }
 821
 822                /*
 823                 * If the current hot add-request extends beyond
 824                 * our current limit; extend it.
 825                 */
 826                if ((start_pfn + pfn_cnt) > has->end_pfn) {
 827                        residual = (start_pfn + pfn_cnt - has->end_pfn);
 828                        /*
 829                         * Extend the region by multiples of HA_CHUNK.
 830                         */
 831                        new_inc = (residual / HA_CHUNK) * HA_CHUNK;
 832                        if (residual % HA_CHUNK)
 833                                new_inc += HA_CHUNK;
 834
 835                        has->end_pfn += new_inc;
 836                }
 837
 838                ret = 1;
 839                break;
 840        }
 841        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 842
 843        return ret;
 844}
 845
 846static unsigned long handle_pg_range(unsigned long pg_start,
 847                                        unsigned long pg_count)
 848{
 849        unsigned long start_pfn = pg_start;
 850        unsigned long pfn_cnt = pg_count;
 851        unsigned long size;
 852        struct hv_hotadd_state *has;
 853        unsigned long pgs_ol = 0;
 854        unsigned long old_covered_state;
 855        unsigned long res = 0, flags;
 856
 857        pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
 858                pg_start);
 859
 860        spin_lock_irqsave(&dm_device.ha_lock, flags);
 861        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 862                /*
 863                 * If the pfn range we are dealing with is not in the current
 864                 * "hot add block", move on.
 865                 */
 866                if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 867                        continue;
 868
 869                old_covered_state = has->covered_end_pfn;
 870
 871                if (start_pfn < has->ha_end_pfn) {
 872                        /*
 873                         * This is the case where we are backing pages
 874                         * in an already hot added region. Bring
 875                         * these pages online first.
 876                         */
 877                        pgs_ol = has->ha_end_pfn - start_pfn;
 878                        if (pgs_ol > pfn_cnt)
 879                                pgs_ol = pfn_cnt;
 880
 881                        has->covered_end_pfn +=  pgs_ol;
 882                        pfn_cnt -= pgs_ol;
 883                        /*
 884                         * Check if the corresponding memory block is already
 885                         * online. It is possible to observe struct pages still
 886                         * being uninitialized here so check section instead.
 887                         * In case the section is online we need to bring the
 888                         * rest of pfns (which were not backed previously)
 889                         * online too.
 890                         */
 891                        if (start_pfn > has->start_pfn &&
 892                            online_section_nr(pfn_to_section_nr(start_pfn)))
 893                                hv_bring_pgs_online(has, start_pfn, pgs_ol);
 894
 895                }
 896
 897                if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
 898                        /*
 899                         * We have some residual hot add range
 900                         * that needs to be hot added; hot add
 901                         * it now. Hot add a multiple of
 902                         * of HA_CHUNK that fully covers the pages
 903                         * we have.
 904                         */
 905                        size = (has->end_pfn - has->ha_end_pfn);
 906                        if (pfn_cnt <= size) {
 907                                size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
 908                                if (pfn_cnt % HA_CHUNK)
 909                                        size += HA_CHUNK;
 910                        } else {
 911                                pfn_cnt = size;
 912                        }
 913                        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 914                        hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 915                        spin_lock_irqsave(&dm_device.ha_lock, flags);
 916                }
 917                /*
 918                 * If we managed to online any pages that were given to us,
 919                 * we declare success.
 920                 */
 921                res = has->covered_end_pfn - old_covered_state;
 922                break;
 923        }
 924        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 925
 926        return res;
 927}
 928
 929static unsigned long process_hot_add(unsigned long pg_start,
 930                                        unsigned long pfn_cnt,
 931                                        unsigned long rg_start,
 932                                        unsigned long rg_size)
 933{
 934        struct hv_hotadd_state *ha_region = NULL;
 935        int covered;
 936        unsigned long flags;
 937
 938        if (pfn_cnt == 0)
 939                return 0;
 940
 941        if (!dm_device.host_specified_ha_region) {
 942                covered = pfn_covered(pg_start, pfn_cnt);
 943                if (covered < 0)
 944                        return 0;
 945
 946                if (covered)
 947                        goto do_pg_range;
 948        }
 949
 950        /*
 951         * If the host has specified a hot-add range; deal with it first.
 952         */
 953
 954        if (rg_size != 0) {
 955                ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 956                if (!ha_region)
 957                        return 0;
 958
 959                INIT_LIST_HEAD(&ha_region->list);
 960                INIT_LIST_HEAD(&ha_region->gap_list);
 961
 962                ha_region->start_pfn = rg_start;
 963                ha_region->ha_end_pfn = rg_start;
 964                ha_region->covered_start_pfn = pg_start;
 965                ha_region->covered_end_pfn = pg_start;
 966                ha_region->end_pfn = rg_start + rg_size;
 967
 968                spin_lock_irqsave(&dm_device.ha_lock, flags);
 969                list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 970                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 971        }
 972
 973do_pg_range:
 974        /*
 975         * Process the page range specified; bringing them
 976         * online if possible.
 977         */
 978        return handle_pg_range(pg_start, pfn_cnt);
 979}
 980
 981#endif
 982
 983static void hot_add_req(struct work_struct *dummy)
 984{
 985        struct dm_hot_add_response resp;
 986#ifdef CONFIG_MEMORY_HOTPLUG
 987        unsigned long pg_start, pfn_cnt;
 988        unsigned long rg_start, rg_sz;
 989#endif
 990        struct hv_dynmem_device *dm = &dm_device;
 991
 992        memset(&resp, 0, sizeof(struct dm_hot_add_response));
 993        resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
 994        resp.hdr.size = sizeof(struct dm_hot_add_response);
 995
 996#ifdef CONFIG_MEMORY_HOTPLUG
 997        pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
 998        pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
 999
1000        rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1001        rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1002
1003        if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1004                unsigned long region_size;
1005                unsigned long region_start;
1006
1007                /*
1008                 * The host has not specified the hot-add region.
1009                 * Based on the hot-add page range being specified,
1010                 * compute a hot-add region that can cover the pages
1011                 * that need to be hot-added while ensuring the alignment
1012                 * and size requirements of Linux as it relates to hot-add.
1013                 */
1014                region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1015                if (pfn_cnt % HA_CHUNK)
1016                        region_size += HA_CHUNK;
1017
1018                region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1019
1020                rg_start = region_start;
1021                rg_sz = region_size;
1022        }
1023
1024        if (do_hot_add)
1025                resp.page_count = process_hot_add(pg_start, pfn_cnt,
1026                                                rg_start, rg_sz);
1027
1028        dm->num_pages_added += resp.page_count;
1029#endif
1030        /*
1031         * The result field of the response structure has the
1032         * following semantics:
1033         *
1034         * 1. If all or some pages hot-added: Guest should return success.
1035         *
1036         * 2. If no pages could be hot-added:
1037         *
1038         * If the guest returns success, then the host
1039         * will not attempt any further hot-add operations. This
1040         * signifies a permanent failure.
1041         *
1042         * If the guest returns failure, then this failure will be
1043         * treated as a transient failure and the host may retry the
1044         * hot-add operation after some delay.
1045         */
1046        if (resp.page_count > 0)
1047                resp.result = 1;
1048        else if (!do_hot_add)
1049                resp.result = 1;
1050        else
1051                resp.result = 0;
1052
1053        if (!do_hot_add || resp.page_count == 0) {
1054                if (!allow_hibernation)
1055                        pr_err("Memory hot add failed\n");
1056                else
1057                        pr_info("Ignore hot-add request!\n");
1058        }
1059
1060        dm->state = DM_INITIALIZED;
1061        resp.hdr.trans_id = atomic_inc_return(&trans_id);
1062        vmbus_sendpacket(dm->dev->channel, &resp,
1063                        sizeof(struct dm_hot_add_response),
1064                        (unsigned long)NULL,
1065                        VM_PKT_DATA_INBAND, 0);
1066}
1067
1068static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1069{
1070        struct dm_info_header *info_hdr;
1071
1072        info_hdr = (struct dm_info_header *)msg->info;
1073
1074        switch (info_hdr->type) {
1075        case INFO_TYPE_MAX_PAGE_CNT:
1076                if (info_hdr->data_size == sizeof(__u64)) {
1077                        __u64 *max_page_count = (__u64 *)&info_hdr[1];
1078
1079                        pr_info("Max. dynamic memory size: %llu MB\n",
1080                                (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1081                }
1082
1083                break;
1084        default:
1085                pr_warn("Received Unknown type: %d\n", info_hdr->type);
1086        }
1087}
1088
1089static unsigned long compute_balloon_floor(void)
1090{
1091        unsigned long min_pages;
1092        unsigned long nr_pages = totalram_pages();
1093#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1094        /* Simple continuous piecewiese linear function:
1095         *  max MiB -> min MiB  gradient
1096         *       0         0
1097         *      16        16
1098         *      32        24
1099         *     128        72    (1/2)
1100         *     512       168    (1/4)
1101         *    2048       360    (1/8)
1102         *    8192       744    (1/16)
1103         *   32768      1512    (1/32)
1104         */
1105        if (nr_pages < MB2PAGES(128))
1106                min_pages = MB2PAGES(8) + (nr_pages >> 1);
1107        else if (nr_pages < MB2PAGES(512))
1108                min_pages = MB2PAGES(40) + (nr_pages >> 2);
1109        else if (nr_pages < MB2PAGES(2048))
1110                min_pages = MB2PAGES(104) + (nr_pages >> 3);
1111        else if (nr_pages < MB2PAGES(8192))
1112                min_pages = MB2PAGES(232) + (nr_pages >> 4);
1113        else
1114                min_pages = MB2PAGES(488) + (nr_pages >> 5);
1115#undef MB2PAGES
1116        return min_pages;
1117}
1118
1119/*
1120 * Post our status as it relates memory pressure to the
1121 * host. Host expects the guests to post this status
1122 * periodically at 1 second intervals.
1123 *
1124 * The metrics specified in this protocol are very Windows
1125 * specific and so we cook up numbers here to convey our memory
1126 * pressure.
1127 */
1128
1129static void post_status(struct hv_dynmem_device *dm)
1130{
1131        struct dm_status status;
1132        unsigned long now = jiffies;
1133        unsigned long last_post = last_post_time;
1134        unsigned long num_pages_avail, num_pages_committed;
1135
1136        if (pressure_report_delay > 0) {
1137                --pressure_report_delay;
1138                return;
1139        }
1140
1141        if (!time_after(now, (last_post_time + HZ)))
1142                return;
1143
1144        memset(&status, 0, sizeof(struct dm_status));
1145        status.hdr.type = DM_STATUS_REPORT;
1146        status.hdr.size = sizeof(struct dm_status);
1147        status.hdr.trans_id = atomic_inc_return(&trans_id);
1148
1149        /*
1150         * The host expects the guest to report free and committed memory.
1151         * Furthermore, the host expects the pressure information to include
1152         * the ballooned out pages. For a given amount of memory that we are
1153         * managing we need to compute a floor below which we should not
1154         * balloon. Compute this and add it to the pressure report.
1155         * We also need to report all offline pages (num_pages_added -
1156         * num_pages_onlined) as committed to the host, otherwise it can try
1157         * asking us to balloon them out.
1158         */
1159        num_pages_avail = si_mem_available();
1160        num_pages_committed = vm_memory_committed() +
1161                dm->num_pages_ballooned +
1162                (dm->num_pages_added > dm->num_pages_onlined ?
1163                 dm->num_pages_added - dm->num_pages_onlined : 0) +
1164                compute_balloon_floor();
1165
1166        trace_balloon_status(num_pages_avail, num_pages_committed,
1167                             vm_memory_committed(), dm->num_pages_ballooned,
1168                             dm->num_pages_added, dm->num_pages_onlined);
1169
1170        /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1171        status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1172        status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1173
1174        /*
1175         * If our transaction ID is no longer current, just don't
1176         * send the status. This can happen if we were interrupted
1177         * after we picked our transaction ID.
1178         */
1179        if (status.hdr.trans_id != atomic_read(&trans_id))
1180                return;
1181
1182        /*
1183         * If the last post time that we sampled has changed,
1184         * we have raced, don't post the status.
1185         */
1186        if (last_post != last_post_time)
1187                return;
1188
1189        last_post_time = jiffies;
1190        vmbus_sendpacket(dm->dev->channel, &status,
1191                                sizeof(struct dm_status),
1192                                (unsigned long)NULL,
1193                                VM_PKT_DATA_INBAND, 0);
1194
1195}
1196
1197static void free_balloon_pages(struct hv_dynmem_device *dm,
1198                         union dm_mem_page_range *range_array)
1199{
1200        int num_pages = range_array->finfo.page_cnt;
1201        __u64 start_frame = range_array->finfo.start_page;
1202        struct page *pg;
1203        int i;
1204
1205        for (i = 0; i < num_pages; i++) {
1206                pg = pfn_to_page(i + start_frame);
1207                __ClearPageOffline(pg);
1208                __free_page(pg);
1209                dm->num_pages_ballooned--;
1210                adjust_managed_page_count(pg, 1);
1211        }
1212}
1213
1214
1215
1216static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1217                                        unsigned int num_pages,
1218                                        struct dm_balloon_response *bl_resp,
1219                                        int alloc_unit)
1220{
1221        unsigned int i, j;
1222        struct page *pg;
1223
1224        for (i = 0; i < num_pages / alloc_unit; i++) {
1225                if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1226                        HV_HYP_PAGE_SIZE)
1227                        return i * alloc_unit;
1228
1229                /*
1230                 * We execute this code in a thread context. Furthermore,
1231                 * we don't want the kernel to try too hard.
1232                 */
1233                pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1234                                __GFP_NOMEMALLOC | __GFP_NOWARN,
1235                                get_order(alloc_unit << PAGE_SHIFT));
1236
1237                if (!pg)
1238                        return i * alloc_unit;
1239
1240                dm->num_pages_ballooned += alloc_unit;
1241
1242                /*
1243                 * If we allocatted 2M pages; split them so we
1244                 * can free them in any order we get.
1245                 */
1246
1247                if (alloc_unit != 1)
1248                        split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1249
1250                /* mark all pages offline */
1251                for (j = 0; j < alloc_unit; j++) {
1252                        __SetPageOffline(pg + j);
1253                        adjust_managed_page_count(pg + j, -1);
1254                }
1255
1256                bl_resp->range_count++;
1257                bl_resp->range_array[i].finfo.start_page =
1258                        page_to_pfn(pg);
1259                bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1260                bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1261
1262        }
1263
1264        return i * alloc_unit;
1265}
1266
1267static void balloon_up(struct work_struct *dummy)
1268{
1269        unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1270        unsigned int num_ballooned = 0;
1271        struct dm_balloon_response *bl_resp;
1272        int alloc_unit;
1273        int ret;
1274        bool done = false;
1275        int i;
1276        long avail_pages;
1277        unsigned long floor;
1278
1279        /*
1280         * We will attempt 2M allocations. However, if we fail to
1281         * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1282         */
1283        alloc_unit = PAGES_IN_2M;
1284
1285        avail_pages = si_mem_available();
1286        floor = compute_balloon_floor();
1287
1288        /* Refuse to balloon below the floor. */
1289        if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1290                pr_info("Balloon request will be partially fulfilled. %s\n",
1291                        avail_pages < num_pages ? "Not enough memory." :
1292                        "Balloon floor reached.");
1293
1294                num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1295        }
1296
1297        while (!done) {
1298                memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1299                bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1300                bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1301                bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1302                bl_resp->more_pages = 1;
1303
1304                num_pages -= num_ballooned;
1305                num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1306                                                    bl_resp, alloc_unit);
1307
1308                if (alloc_unit != 1 && num_ballooned == 0) {
1309                        alloc_unit = 1;
1310                        continue;
1311                }
1312
1313                if (num_ballooned == 0 || num_ballooned == num_pages) {
1314                        pr_debug("Ballooned %u out of %u requested pages.\n",
1315                                num_pages, dm_device.balloon_wrk.num_pages);
1316
1317                        bl_resp->more_pages = 0;
1318                        done = true;
1319                        dm_device.state = DM_INITIALIZED;
1320                }
1321
1322                /*
1323                 * We are pushing a lot of data through the channel;
1324                 * deal with transient failures caused because of the
1325                 * lack of space in the ring buffer.
1326                 */
1327
1328                do {
1329                        bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1330                        ret = vmbus_sendpacket(dm_device.dev->channel,
1331                                                bl_resp,
1332                                                bl_resp->hdr.size,
1333                                                (unsigned long)NULL,
1334                                                VM_PKT_DATA_INBAND, 0);
1335
1336                        if (ret == -EAGAIN)
1337                                msleep(20);
1338                        post_status(&dm_device);
1339                } while (ret == -EAGAIN);
1340
1341                if (ret) {
1342                        /*
1343                         * Free up the memory we allocatted.
1344                         */
1345                        pr_err("Balloon response failed\n");
1346
1347                        for (i = 0; i < bl_resp->range_count; i++)
1348                                free_balloon_pages(&dm_device,
1349                                                 &bl_resp->range_array[i]);
1350
1351                        done = true;
1352                }
1353        }
1354
1355}
1356
1357static void balloon_down(struct hv_dynmem_device *dm,
1358                        struct dm_unballoon_request *req)
1359{
1360        union dm_mem_page_range *range_array = req->range_array;
1361        int range_count = req->range_count;
1362        struct dm_unballoon_response resp;
1363        int i;
1364        unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1365
1366        for (i = 0; i < range_count; i++) {
1367                free_balloon_pages(dm, &range_array[i]);
1368                complete(&dm_device.config_event);
1369        }
1370
1371        pr_debug("Freed %u ballooned pages.\n",
1372                prev_pages_ballooned - dm->num_pages_ballooned);
1373
1374        if (req->more_pages == 1)
1375                return;
1376
1377        memset(&resp, 0, sizeof(struct dm_unballoon_response));
1378        resp.hdr.type = DM_UNBALLOON_RESPONSE;
1379        resp.hdr.trans_id = atomic_inc_return(&trans_id);
1380        resp.hdr.size = sizeof(struct dm_unballoon_response);
1381
1382        vmbus_sendpacket(dm_device.dev->channel, &resp,
1383                                sizeof(struct dm_unballoon_response),
1384                                (unsigned long)NULL,
1385                                VM_PKT_DATA_INBAND, 0);
1386
1387        dm->state = DM_INITIALIZED;
1388}
1389
1390static void balloon_onchannelcallback(void *context);
1391
1392static int dm_thread_func(void *dm_dev)
1393{
1394        struct hv_dynmem_device *dm = dm_dev;
1395
1396        while (!kthread_should_stop()) {
1397                wait_for_completion_interruptible_timeout(
1398                                                &dm_device.config_event, 1*HZ);
1399                /*
1400                 * The host expects us to post information on the memory
1401                 * pressure every second.
1402                 */
1403                reinit_completion(&dm_device.config_event);
1404                post_status(dm);
1405        }
1406
1407        return 0;
1408}
1409
1410
1411static void version_resp(struct hv_dynmem_device *dm,
1412                        struct dm_version_response *vresp)
1413{
1414        struct dm_version_request version_req;
1415        int ret;
1416
1417        if (vresp->is_accepted) {
1418                /*
1419                 * We are done; wakeup the
1420                 * context waiting for version
1421                 * negotiation.
1422                 */
1423                complete(&dm->host_event);
1424                return;
1425        }
1426        /*
1427         * If there are more versions to try, continue
1428         * with negotiations; if not
1429         * shutdown the service since we are not able
1430         * to negotiate a suitable version number
1431         * with the host.
1432         */
1433        if (dm->next_version == 0)
1434                goto version_error;
1435
1436        memset(&version_req, 0, sizeof(struct dm_version_request));
1437        version_req.hdr.type = DM_VERSION_REQUEST;
1438        version_req.hdr.size = sizeof(struct dm_version_request);
1439        version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1440        version_req.version.version = dm->next_version;
1441        dm->version = version_req.version.version;
1442
1443        /*
1444         * Set the next version to try in case current version fails.
1445         * Win7 protocol ought to be the last one to try.
1446         */
1447        switch (version_req.version.version) {
1448        case DYNMEM_PROTOCOL_VERSION_WIN8:
1449                dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1450                version_req.is_last_attempt = 0;
1451                break;
1452        default:
1453                dm->next_version = 0;
1454                version_req.is_last_attempt = 1;
1455        }
1456
1457        ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1458                                sizeof(struct dm_version_request),
1459                                (unsigned long)NULL,
1460                                VM_PKT_DATA_INBAND, 0);
1461
1462        if (ret)
1463                goto version_error;
1464
1465        return;
1466
1467version_error:
1468        dm->state = DM_INIT_ERROR;
1469        complete(&dm->host_event);
1470}
1471
1472static void cap_resp(struct hv_dynmem_device *dm,
1473                        struct dm_capabilities_resp_msg *cap_resp)
1474{
1475        if (!cap_resp->is_accepted) {
1476                pr_err("Capabilities not accepted by host\n");
1477                dm->state = DM_INIT_ERROR;
1478        }
1479        complete(&dm->host_event);
1480}
1481
1482static void balloon_onchannelcallback(void *context)
1483{
1484        struct hv_device *dev = context;
1485        u32 recvlen;
1486        u64 requestid;
1487        struct dm_message *dm_msg;
1488        struct dm_header *dm_hdr;
1489        struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1490        struct dm_balloon *bal_msg;
1491        struct dm_hot_add *ha_msg;
1492        union dm_mem_page_range *ha_pg_range;
1493        union dm_mem_page_range *ha_region;
1494
1495        memset(recv_buffer, 0, sizeof(recv_buffer));
1496        vmbus_recvpacket(dev->channel, recv_buffer,
1497                         HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1498
1499        if (recvlen > 0) {
1500                dm_msg = (struct dm_message *)recv_buffer;
1501                dm_hdr = &dm_msg->hdr;
1502
1503                switch (dm_hdr->type) {
1504                case DM_VERSION_RESPONSE:
1505                        version_resp(dm,
1506                                 (struct dm_version_response *)dm_msg);
1507                        break;
1508
1509                case DM_CAPABILITIES_RESPONSE:
1510                        cap_resp(dm,
1511                                 (struct dm_capabilities_resp_msg *)dm_msg);
1512                        break;
1513
1514                case DM_BALLOON_REQUEST:
1515                        if (allow_hibernation) {
1516                                pr_info("Ignore balloon-up request!\n");
1517                                break;
1518                        }
1519
1520                        if (dm->state == DM_BALLOON_UP)
1521                                pr_warn("Currently ballooning\n");
1522                        bal_msg = (struct dm_balloon *)recv_buffer;
1523                        dm->state = DM_BALLOON_UP;
1524                        dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1525                        schedule_work(&dm_device.balloon_wrk.wrk);
1526                        break;
1527
1528                case DM_UNBALLOON_REQUEST:
1529                        if (allow_hibernation) {
1530                                pr_info("Ignore balloon-down request!\n");
1531                                break;
1532                        }
1533
1534                        dm->state = DM_BALLOON_DOWN;
1535                        balloon_down(dm,
1536                                 (struct dm_unballoon_request *)recv_buffer);
1537                        break;
1538
1539                case DM_MEM_HOT_ADD_REQUEST:
1540                        if (dm->state == DM_HOT_ADD)
1541                                pr_warn("Currently hot-adding\n");
1542                        dm->state = DM_HOT_ADD;
1543                        ha_msg = (struct dm_hot_add *)recv_buffer;
1544                        if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1545                                /*
1546                                 * This is a normal hot-add request specifying
1547                                 * hot-add memory.
1548                                 */
1549                                dm->host_specified_ha_region = false;
1550                                ha_pg_range = &ha_msg->range;
1551                                dm->ha_wrk.ha_page_range = *ha_pg_range;
1552                                dm->ha_wrk.ha_region_range.page_range = 0;
1553                        } else {
1554                                /*
1555                                 * Host is specifying that we first hot-add
1556                                 * a region and then partially populate this
1557                                 * region.
1558                                 */
1559                                dm->host_specified_ha_region = true;
1560                                ha_pg_range = &ha_msg->range;
1561                                ha_region = &ha_pg_range[1];
1562                                dm->ha_wrk.ha_page_range = *ha_pg_range;
1563                                dm->ha_wrk.ha_region_range = *ha_region;
1564                        }
1565                        schedule_work(&dm_device.ha_wrk.wrk);
1566                        break;
1567
1568                case DM_INFO_MESSAGE:
1569                        process_info(dm, (struct dm_info_msg *)dm_msg);
1570                        break;
1571
1572                default:
1573                        pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1574
1575                }
1576        }
1577
1578}
1579
1580/* Hyper-V only supports reporting 2MB pages or higher */
1581#define HV_MIN_PAGE_REPORTING_ORDER     9
1582#define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1583static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1584                    struct scatterlist *sgl, unsigned int nents)
1585{
1586        unsigned long flags;
1587        struct hv_memory_hint *hint;
1588        int i;
1589        u64 status;
1590        struct scatterlist *sg;
1591
1592        WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1593        WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1594        local_irq_save(flags);
1595        hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1596        if (!hint) {
1597                local_irq_restore(flags);
1598                return -ENOSPC;
1599        }
1600
1601        hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1602        hint->reserved = 0;
1603        for_each_sg(sgl, sg, nents, i) {
1604                union hv_gpa_page_range *range;
1605
1606                range = &hint->ranges[i];
1607                range->address_space = 0;
1608                /* page reporting only reports 2MB pages or higher */
1609                range->page.largepage = 1;
1610                range->page.additional_pages =
1611                        (sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1612                range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1613                range->base_large_pfn =
1614                        page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1615        }
1616
1617        status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1618                                     hint, NULL);
1619        local_irq_restore(flags);
1620        if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1621                pr_err("Cold memory discard hypercall failed with status %llx\n",
1622                        status);
1623                return -EINVAL;
1624        }
1625
1626        return 0;
1627}
1628
1629static void enable_page_reporting(void)
1630{
1631        int ret;
1632
1633        /* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1634        if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1635                pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1636                return;
1637        }
1638
1639        if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1640                pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1641                return;
1642        }
1643
1644        BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1645        dm_device.pr_dev_info.report = hv_free_page_report;
1646        ret = page_reporting_register(&dm_device.pr_dev_info);
1647        if (ret < 0) {
1648                dm_device.pr_dev_info.report = NULL;
1649                pr_err("Failed to enable cold memory discard: %d\n", ret);
1650        } else {
1651                pr_info("Cold memory discard hint enabled\n");
1652        }
1653}
1654
1655static void disable_page_reporting(void)
1656{
1657        if (dm_device.pr_dev_info.report) {
1658                page_reporting_unregister(&dm_device.pr_dev_info);
1659                dm_device.pr_dev_info.report = NULL;
1660        }
1661}
1662
1663static int ballooning_enabled(void)
1664{
1665        /*
1666         * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1667         * since currently it's unclear to us whether an unballoon request can
1668         * make sure all page ranges are guest page size aligned.
1669         */
1670        if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1671                pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1672                return 0;
1673        }
1674
1675        return 1;
1676}
1677
1678static int hot_add_enabled(void)
1679{
1680        /*
1681         * Disable hot add on ARM64, because we currently rely on
1682         * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1683         * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1684         * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1685         * add_memory().
1686         */
1687        if (IS_ENABLED(CONFIG_ARM64)) {
1688                pr_info("Memory hot add disabled on ARM64\n");
1689                return 0;
1690        }
1691
1692        return 1;
1693}
1694
1695static int balloon_connect_vsp(struct hv_device *dev)
1696{
1697        struct dm_version_request version_req;
1698        struct dm_capabilities cap_msg;
1699        unsigned long t;
1700        int ret;
1701
1702        /*
1703         * max_pkt_size should be large enough for one vmbus packet header plus
1704         * our receive buffer size. Hyper-V sends messages up to
1705         * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1706         */
1707        dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1708
1709        ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1710                         balloon_onchannelcallback, dev);
1711        if (ret)
1712                return ret;
1713
1714        /*
1715         * Initiate the hand shake with the host and negotiate
1716         * a version that the host can support. We start with the
1717         * highest version number and go down if the host cannot
1718         * support it.
1719         */
1720        memset(&version_req, 0, sizeof(struct dm_version_request));
1721        version_req.hdr.type = DM_VERSION_REQUEST;
1722        version_req.hdr.size = sizeof(struct dm_version_request);
1723        version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1724        version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1725        version_req.is_last_attempt = 0;
1726        dm_device.version = version_req.version.version;
1727
1728        ret = vmbus_sendpacket(dev->channel, &version_req,
1729                               sizeof(struct dm_version_request),
1730                               (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1731        if (ret)
1732                goto out;
1733
1734        t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1735        if (t == 0) {
1736                ret = -ETIMEDOUT;
1737                goto out;
1738        }
1739
1740        /*
1741         * If we could not negotiate a compatible version with the host
1742         * fail the probe function.
1743         */
1744        if (dm_device.state == DM_INIT_ERROR) {
1745                ret = -EPROTO;
1746                goto out;
1747        }
1748
1749        pr_info("Using Dynamic Memory protocol version %u.%u\n",
1750                DYNMEM_MAJOR_VERSION(dm_device.version),
1751                DYNMEM_MINOR_VERSION(dm_device.version));
1752
1753        /*
1754         * Now submit our capabilities to the host.
1755         */
1756        memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1757        cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1758        cap_msg.hdr.size = sizeof(struct dm_capabilities);
1759        cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1760
1761        /*
1762         * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1763         * currently still requires the bits to be set, so we have to add code
1764         * to fail the host's hot-add and balloon up/down requests, if any.
1765         */
1766        cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1767        cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1768
1769        /*
1770         * Specify our alignment requirements as it relates
1771         * memory hot-add. Specify 128MB alignment.
1772         */
1773        cap_msg.caps.cap_bits.hot_add_alignment = 7;
1774
1775        /*
1776         * Currently the host does not use these
1777         * values and we set them to what is done in the
1778         * Windows driver.
1779         */
1780        cap_msg.min_page_cnt = 0;
1781        cap_msg.max_page_number = -1;
1782
1783        ret = vmbus_sendpacket(dev->channel, &cap_msg,
1784                               sizeof(struct dm_capabilities),
1785                               (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1786        if (ret)
1787                goto out;
1788
1789        t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1790        if (t == 0) {
1791                ret = -ETIMEDOUT;
1792                goto out;
1793        }
1794
1795        /*
1796         * If the host does not like our capabilities,
1797         * fail the probe function.
1798         */
1799        if (dm_device.state == DM_INIT_ERROR) {
1800                ret = -EPROTO;
1801                goto out;
1802        }
1803
1804        return 0;
1805out:
1806        vmbus_close(dev->channel);
1807        return ret;
1808}
1809
1810static int balloon_probe(struct hv_device *dev,
1811                         const struct hv_vmbus_device_id *dev_id)
1812{
1813        int ret;
1814
1815        allow_hibernation = hv_is_hibernation_supported();
1816        if (allow_hibernation)
1817                hot_add = false;
1818
1819#ifdef CONFIG_MEMORY_HOTPLUG
1820        do_hot_add = hot_add;
1821#else
1822        do_hot_add = false;
1823#endif
1824        dm_device.dev = dev;
1825        dm_device.state = DM_INITIALIZING;
1826        dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1827        init_completion(&dm_device.host_event);
1828        init_completion(&dm_device.config_event);
1829        INIT_LIST_HEAD(&dm_device.ha_region_list);
1830        spin_lock_init(&dm_device.ha_lock);
1831        INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1832        INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1833        dm_device.host_specified_ha_region = false;
1834
1835#ifdef CONFIG_MEMORY_HOTPLUG
1836        set_online_page_callback(&hv_online_page);
1837        init_completion(&dm_device.ol_waitevent);
1838        register_memory_notifier(&hv_memory_nb);
1839#endif
1840
1841        hv_set_drvdata(dev, &dm_device);
1842
1843        ret = balloon_connect_vsp(dev);
1844        if (ret != 0)
1845                return ret;
1846
1847        enable_page_reporting();
1848        dm_device.state = DM_INITIALIZED;
1849
1850        dm_device.thread =
1851                 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1852        if (IS_ERR(dm_device.thread)) {
1853                ret = PTR_ERR(dm_device.thread);
1854                goto probe_error;
1855        }
1856
1857        return 0;
1858
1859probe_error:
1860        dm_device.state = DM_INIT_ERROR;
1861        dm_device.thread  = NULL;
1862        disable_page_reporting();
1863        vmbus_close(dev->channel);
1864#ifdef CONFIG_MEMORY_HOTPLUG
1865        unregister_memory_notifier(&hv_memory_nb);
1866        restore_online_page_callback(&hv_online_page);
1867#endif
1868        return ret;
1869}
1870
1871static int balloon_remove(struct hv_device *dev)
1872{
1873        struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1874        struct hv_hotadd_state *has, *tmp;
1875        struct hv_hotadd_gap *gap, *tmp_gap;
1876        unsigned long flags;
1877
1878        if (dm->num_pages_ballooned != 0)
1879                pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1880
1881        cancel_work_sync(&dm->balloon_wrk.wrk);
1882        cancel_work_sync(&dm->ha_wrk.wrk);
1883
1884        kthread_stop(dm->thread);
1885        disable_page_reporting();
1886        vmbus_close(dev->channel);
1887#ifdef CONFIG_MEMORY_HOTPLUG
1888        unregister_memory_notifier(&hv_memory_nb);
1889        restore_online_page_callback(&hv_online_page);
1890#endif
1891        spin_lock_irqsave(&dm_device.ha_lock, flags);
1892        list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1893                list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1894                        list_del(&gap->list);
1895                        kfree(gap);
1896                }
1897                list_del(&has->list);
1898                kfree(has);
1899        }
1900        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1901
1902        return 0;
1903}
1904
1905static int balloon_suspend(struct hv_device *hv_dev)
1906{
1907        struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1908
1909        tasklet_disable(&hv_dev->channel->callback_event);
1910
1911        cancel_work_sync(&dm->balloon_wrk.wrk);
1912        cancel_work_sync(&dm->ha_wrk.wrk);
1913
1914        if (dm->thread) {
1915                kthread_stop(dm->thread);
1916                dm->thread = NULL;
1917                vmbus_close(hv_dev->channel);
1918        }
1919
1920        tasklet_enable(&hv_dev->channel->callback_event);
1921
1922        return 0;
1923
1924}
1925
1926static int balloon_resume(struct hv_device *dev)
1927{
1928        int ret;
1929
1930        dm_device.state = DM_INITIALIZING;
1931
1932        ret = balloon_connect_vsp(dev);
1933
1934        if (ret != 0)
1935                goto out;
1936
1937        dm_device.thread =
1938                 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1939        if (IS_ERR(dm_device.thread)) {
1940                ret = PTR_ERR(dm_device.thread);
1941                dm_device.thread = NULL;
1942                goto close_channel;
1943        }
1944
1945        dm_device.state = DM_INITIALIZED;
1946        return 0;
1947close_channel:
1948        vmbus_close(dev->channel);
1949out:
1950        dm_device.state = DM_INIT_ERROR;
1951#ifdef CONFIG_MEMORY_HOTPLUG
1952        unregister_memory_notifier(&hv_memory_nb);
1953        restore_online_page_callback(&hv_online_page);
1954#endif
1955        return ret;
1956}
1957
1958static const struct hv_vmbus_device_id id_table[] = {
1959        /* Dynamic Memory Class ID */
1960        /* 525074DC-8985-46e2-8057-A307DC18A502 */
1961        { HV_DM_GUID, },
1962        { },
1963};
1964
1965MODULE_DEVICE_TABLE(vmbus, id_table);
1966
1967static  struct hv_driver balloon_drv = {
1968        .name = "hv_balloon",
1969        .id_table = id_table,
1970        .probe =  balloon_probe,
1971        .remove =  balloon_remove,
1972        .suspend = balloon_suspend,
1973        .resume = balloon_resume,
1974        .driver = {
1975                .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1976        },
1977};
1978
1979static int __init init_balloon_drv(void)
1980{
1981
1982        return vmbus_driver_register(&balloon_drv);
1983}
1984
1985module_init(init_balloon_drv);
1986
1987MODULE_DESCRIPTION("Hyper-V Balloon");
1988MODULE_LICENSE("GPL");
1989