linux/drivers/infiniband/hw/hfi1/init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
   2/*
   3 * Copyright(c) 2015 - 2020 Intel Corporation.
   4 * Copyright(c) 2021 Cornelis Networks.
   5 */
   6
   7#include <linux/pci.h>
   8#include <linux/netdevice.h>
   9#include <linux/vmalloc.h>
  10#include <linux/delay.h>
  11#include <linux/xarray.h>
  12#include <linux/module.h>
  13#include <linux/printk.h>
  14#include <linux/hrtimer.h>
  15#include <linux/bitmap.h>
  16#include <linux/numa.h>
  17#include <rdma/rdma_vt.h>
  18
  19#include "hfi.h"
  20#include "device.h"
  21#include "common.h"
  22#include "trace.h"
  23#include "mad.h"
  24#include "sdma.h"
  25#include "debugfs.h"
  26#include "verbs.h"
  27#include "aspm.h"
  28#include "affinity.h"
  29#include "vnic.h"
  30#include "exp_rcv.h"
  31#include "netdev.h"
  32
  33#undef pr_fmt
  34#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  35
  36/*
  37 * min buffers we want to have per context, after driver
  38 */
  39#define HFI1_MIN_USER_CTXT_BUFCNT 7
  40
  41#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
  42#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
  43
  44#define NUM_IB_PORTS 1
  45
  46/*
  47 * Number of user receive contexts we are configured to use (to allow for more
  48 * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
  49 */
  50int num_user_contexts = -1;
  51module_param_named(num_user_contexts, num_user_contexts, int, 0444);
  52MODULE_PARM_DESC(
  53        num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
  54
  55uint krcvqs[RXE_NUM_DATA_VL];
  56int krcvqsset;
  57module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
  58MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
  59
  60/* computed based on above array */
  61unsigned long n_krcvqs;
  62
  63static unsigned hfi1_rcvarr_split = 25;
  64module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
  65MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
  66
  67static uint eager_buffer_size = (8 << 20); /* 8MB */
  68module_param(eager_buffer_size, uint, S_IRUGO);
  69MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
  70
  71static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
  72module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
  73MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
  74
  75static uint hfi1_hdrq_entsize = 32;
  76module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
  77MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
  78
  79unsigned int user_credit_return_threshold = 33; /* default is 33% */
  80module_param(user_credit_return_threshold, uint, S_IRUGO);
  81MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
  82
  83DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
  84
  85static int hfi1_create_kctxt(struct hfi1_devdata *dd,
  86                             struct hfi1_pportdata *ppd)
  87{
  88        struct hfi1_ctxtdata *rcd;
  89        int ret;
  90
  91        /* Control context has to be always 0 */
  92        BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
  93
  94        ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
  95        if (ret < 0) {
  96                dd_dev_err(dd, "Kernel receive context allocation failed\n");
  97                return ret;
  98        }
  99
 100        /*
 101         * Set up the kernel context flags here and now because they use
 102         * default values for all receive side memories.  User contexts will
 103         * be handled as they are created.
 104         */
 105        rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
 106                HFI1_CAP_KGET(NODROP_RHQ_FULL) |
 107                HFI1_CAP_KGET(NODROP_EGR_FULL) |
 108                HFI1_CAP_KGET(DMA_RTAIL);
 109
 110        /* Control context must use DMA_RTAIL */
 111        if (rcd->ctxt == HFI1_CTRL_CTXT)
 112                rcd->flags |= HFI1_CAP_DMA_RTAIL;
 113        rcd->fast_handler = get_dma_rtail_setting(rcd) ?
 114                                handle_receive_interrupt_dma_rtail :
 115                                handle_receive_interrupt_nodma_rtail;
 116
 117        hfi1_set_seq_cnt(rcd, 1);
 118
 119        rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
 120        if (!rcd->sc) {
 121                dd_dev_err(dd, "Kernel send context allocation failed\n");
 122                return -ENOMEM;
 123        }
 124        hfi1_init_ctxt(rcd->sc);
 125
 126        return 0;
 127}
 128
 129/*
 130 * Create the receive context array and one or more kernel contexts
 131 */
 132int hfi1_create_kctxts(struct hfi1_devdata *dd)
 133{
 134        u16 i;
 135        int ret;
 136
 137        dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
 138                               GFP_KERNEL, dd->node);
 139        if (!dd->rcd)
 140                return -ENOMEM;
 141
 142        for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
 143                ret = hfi1_create_kctxt(dd, dd->pport);
 144                if (ret)
 145                        goto bail;
 146        }
 147
 148        return 0;
 149bail:
 150        for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
 151                hfi1_free_ctxt(dd->rcd[i]);
 152
 153        /* All the contexts should be freed, free the array */
 154        kfree(dd->rcd);
 155        dd->rcd = NULL;
 156        return ret;
 157}
 158
 159/*
 160 * Helper routines for the receive context reference count (rcd and uctxt).
 161 */
 162static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
 163{
 164        kref_init(&rcd->kref);
 165}
 166
 167/**
 168 * hfi1_rcd_free - When reference is zero clean up.
 169 * @kref: pointer to an initialized rcd data structure
 170 *
 171 */
 172static void hfi1_rcd_free(struct kref *kref)
 173{
 174        unsigned long flags;
 175        struct hfi1_ctxtdata *rcd =
 176                container_of(kref, struct hfi1_ctxtdata, kref);
 177
 178        spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
 179        rcd->dd->rcd[rcd->ctxt] = NULL;
 180        spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
 181
 182        hfi1_free_ctxtdata(rcd->dd, rcd);
 183
 184        kfree(rcd);
 185}
 186
 187/**
 188 * hfi1_rcd_put - decrement reference for rcd
 189 * @rcd: pointer to an initialized rcd data structure
 190 *
 191 * Use this to put a reference after the init.
 192 */
 193int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
 194{
 195        if (rcd)
 196                return kref_put(&rcd->kref, hfi1_rcd_free);
 197
 198        return 0;
 199}
 200
 201/**
 202 * hfi1_rcd_get - increment reference for rcd
 203 * @rcd: pointer to an initialized rcd data structure
 204 *
 205 * Use this to get a reference after the init.
 206 *
 207 * Return : reflect kref_get_unless_zero(), which returns non-zero on
 208 * increment, otherwise 0.
 209 */
 210int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
 211{
 212        return kref_get_unless_zero(&rcd->kref);
 213}
 214
 215/**
 216 * allocate_rcd_index - allocate an rcd index from the rcd array
 217 * @dd: pointer to a valid devdata structure
 218 * @rcd: rcd data structure to assign
 219 * @index: pointer to index that is allocated
 220 *
 221 * Find an empty index in the rcd array, and assign the given rcd to it.
 222 * If the array is full, we are EBUSY.
 223 *
 224 */
 225static int allocate_rcd_index(struct hfi1_devdata *dd,
 226                              struct hfi1_ctxtdata *rcd, u16 *index)
 227{
 228        unsigned long flags;
 229        u16 ctxt;
 230
 231        spin_lock_irqsave(&dd->uctxt_lock, flags);
 232        for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
 233                if (!dd->rcd[ctxt])
 234                        break;
 235
 236        if (ctxt < dd->num_rcv_contexts) {
 237                rcd->ctxt = ctxt;
 238                dd->rcd[ctxt] = rcd;
 239                hfi1_rcd_init(rcd);
 240        }
 241        spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 242
 243        if (ctxt >= dd->num_rcv_contexts)
 244                return -EBUSY;
 245
 246        *index = ctxt;
 247
 248        return 0;
 249}
 250
 251/**
 252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
 253 * array
 254 * @dd: pointer to a valid devdata structure
 255 * @ctxt: the index of an possilbe rcd
 256 *
 257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
 258 * ctxt index is valid.
 259 *
 260 * The caller is responsible for making the _put().
 261 *
 262 */
 263struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
 264                                                 u16 ctxt)
 265{
 266        if (ctxt < dd->num_rcv_contexts)
 267                return hfi1_rcd_get_by_index(dd, ctxt);
 268
 269        return NULL;
 270}
 271
 272/**
 273 * hfi1_rcd_get_by_index - get by index
 274 * @dd: pointer to a valid devdata structure
 275 * @ctxt: the index of an possilbe rcd
 276 *
 277 * We need to protect access to the rcd array.  If access is needed to
 278 * one or more index, get the protecting spinlock and then increment the
 279 * kref.
 280 *
 281 * The caller is responsible for making the _put().
 282 *
 283 */
 284struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
 285{
 286        unsigned long flags;
 287        struct hfi1_ctxtdata *rcd = NULL;
 288
 289        spin_lock_irqsave(&dd->uctxt_lock, flags);
 290        if (dd->rcd[ctxt]) {
 291                rcd = dd->rcd[ctxt];
 292                if (!hfi1_rcd_get(rcd))
 293                        rcd = NULL;
 294        }
 295        spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 296
 297        return rcd;
 298}
 299
 300/*
 301 * Common code for user and kernel context create and setup.
 302 * NOTE: the initial kref is done here (hf1_rcd_init()).
 303 */
 304int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
 305                         struct hfi1_ctxtdata **context)
 306{
 307        struct hfi1_devdata *dd = ppd->dd;
 308        struct hfi1_ctxtdata *rcd;
 309        unsigned kctxt_ngroups = 0;
 310        u32 base;
 311
 312        if (dd->rcv_entries.nctxt_extra >
 313            dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
 314                kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
 315                         (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
 316        rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
 317        if (rcd) {
 318                u32 rcvtids, max_entries;
 319                u16 ctxt;
 320                int ret;
 321
 322                ret = allocate_rcd_index(dd, rcd, &ctxt);
 323                if (ret) {
 324                        *context = NULL;
 325                        kfree(rcd);
 326                        return ret;
 327                }
 328
 329                INIT_LIST_HEAD(&rcd->qp_wait_list);
 330                hfi1_exp_tid_group_init(rcd);
 331                rcd->ppd = ppd;
 332                rcd->dd = dd;
 333                rcd->numa_id = numa;
 334                rcd->rcv_array_groups = dd->rcv_entries.ngroups;
 335                rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
 336                rcd->slow_handler = handle_receive_interrupt;
 337                rcd->do_interrupt = rcd->slow_handler;
 338                rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
 339
 340                mutex_init(&rcd->exp_mutex);
 341                spin_lock_init(&rcd->exp_lock);
 342                INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
 343                INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
 344
 345                hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
 346
 347                /*
 348                 * Calculate the context's RcvArray entry starting point.
 349                 * We do this here because we have to take into account all
 350                 * the RcvArray entries that previous context would have
 351                 * taken and we have to account for any extra groups assigned
 352                 * to the static (kernel) or dynamic (vnic/user) contexts.
 353                 */
 354                if (ctxt < dd->first_dyn_alloc_ctxt) {
 355                        if (ctxt < kctxt_ngroups) {
 356                                base = ctxt * (dd->rcv_entries.ngroups + 1);
 357                                rcd->rcv_array_groups++;
 358                        } else {
 359                                base = kctxt_ngroups +
 360                                        (ctxt * dd->rcv_entries.ngroups);
 361                        }
 362                } else {
 363                        u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
 364
 365                        base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
 366                                kctxt_ngroups);
 367                        if (ct < dd->rcv_entries.nctxt_extra) {
 368                                base += ct * (dd->rcv_entries.ngroups + 1);
 369                                rcd->rcv_array_groups++;
 370                        } else {
 371                                base += dd->rcv_entries.nctxt_extra +
 372                                        (ct * dd->rcv_entries.ngroups);
 373                        }
 374                }
 375                rcd->eager_base = base * dd->rcv_entries.group_size;
 376
 377                rcd->rcvhdrq_cnt = rcvhdrcnt;
 378                rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
 379                rcd->rhf_offset =
 380                        rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
 381                /*
 382                 * Simple Eager buffer allocation: we have already pre-allocated
 383                 * the number of RcvArray entry groups. Each ctxtdata structure
 384                 * holds the number of groups for that context.
 385                 *
 386                 * To follow CSR requirements and maintain cacheline alignment,
 387                 * make sure all sizes and bases are multiples of group_size.
 388                 *
 389                 * The expected entry count is what is left after assigning
 390                 * eager.
 391                 */
 392                max_entries = rcd->rcv_array_groups *
 393                        dd->rcv_entries.group_size;
 394                rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
 395                rcd->egrbufs.count = round_down(rcvtids,
 396                                                dd->rcv_entries.group_size);
 397                if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
 398                        dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
 399                                   rcd->ctxt);
 400                        rcd->egrbufs.count = MAX_EAGER_ENTRIES;
 401                }
 402                hfi1_cdbg(PROC,
 403                          "ctxt%u: max Eager buffer RcvArray entries: %u\n",
 404                          rcd->ctxt, rcd->egrbufs.count);
 405
 406                /*
 407                 * Allocate array that will hold the eager buffer accounting
 408                 * data.
 409                 * This will allocate the maximum possible buffer count based
 410                 * on the value of the RcvArray split parameter.
 411                 * The resulting value will be rounded down to the closest
 412                 * multiple of dd->rcv_entries.group_size.
 413                 */
 414                rcd->egrbufs.buffers =
 415                        kcalloc_node(rcd->egrbufs.count,
 416                                     sizeof(*rcd->egrbufs.buffers),
 417                                     GFP_KERNEL, numa);
 418                if (!rcd->egrbufs.buffers)
 419                        goto bail;
 420                rcd->egrbufs.rcvtids =
 421                        kcalloc_node(rcd->egrbufs.count,
 422                                     sizeof(*rcd->egrbufs.rcvtids),
 423                                     GFP_KERNEL, numa);
 424                if (!rcd->egrbufs.rcvtids)
 425                        goto bail;
 426                rcd->egrbufs.size = eager_buffer_size;
 427                /*
 428                 * The size of the buffers programmed into the RcvArray
 429                 * entries needs to be big enough to handle the highest
 430                 * MTU supported.
 431                 */
 432                if (rcd->egrbufs.size < hfi1_max_mtu) {
 433                        rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
 434                        hfi1_cdbg(PROC,
 435                                  "ctxt%u: eager bufs size too small. Adjusting to %u\n",
 436                                    rcd->ctxt, rcd->egrbufs.size);
 437                }
 438                rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
 439
 440                /* Applicable only for statically created kernel contexts */
 441                if (ctxt < dd->first_dyn_alloc_ctxt) {
 442                        rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
 443                                                    GFP_KERNEL, numa);
 444                        if (!rcd->opstats)
 445                                goto bail;
 446
 447                        /* Initialize TID flow generations for the context */
 448                        hfi1_kern_init_ctxt_generations(rcd);
 449                }
 450
 451                *context = rcd;
 452                return 0;
 453        }
 454
 455bail:
 456        *context = NULL;
 457        hfi1_free_ctxt(rcd);
 458        return -ENOMEM;
 459}
 460
 461/**
 462 * hfi1_free_ctxt - free context
 463 * @rcd: pointer to an initialized rcd data structure
 464 *
 465 * This wrapper is the free function that matches hfi1_create_ctxtdata().
 466 * When a context is done being used (kernel or user), this function is called
 467 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
 468 * Other users of the context do a get/put sequence to make sure that the
 469 * structure isn't removed while in use.
 470 */
 471void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
 472{
 473        hfi1_rcd_put(rcd);
 474}
 475
 476/*
 477 * Select the largest ccti value over all SLs to determine the intra-
 478 * packet gap for the link.
 479 *
 480 * called with cca_timer_lock held (to protect access to cca_timer
 481 * array), and rcu_read_lock() (to protect access to cc_state).
 482 */
 483void set_link_ipg(struct hfi1_pportdata *ppd)
 484{
 485        struct hfi1_devdata *dd = ppd->dd;
 486        struct cc_state *cc_state;
 487        int i;
 488        u16 cce, ccti_limit, max_ccti = 0;
 489        u16 shift, mult;
 490        u64 src;
 491        u32 current_egress_rate; /* Mbits /sec */
 492        u32 max_pkt_time;
 493        /*
 494         * max_pkt_time is the maximum packet egress time in units
 495         * of the fabric clock period 1/(805 MHz).
 496         */
 497
 498        cc_state = get_cc_state(ppd);
 499
 500        if (!cc_state)
 501                /*
 502                 * This should _never_ happen - rcu_read_lock() is held,
 503                 * and set_link_ipg() should not be called if cc_state
 504                 * is NULL.
 505                 */
 506                return;
 507
 508        for (i = 0; i < OPA_MAX_SLS; i++) {
 509                u16 ccti = ppd->cca_timer[i].ccti;
 510
 511                if (ccti > max_ccti)
 512                        max_ccti = ccti;
 513        }
 514
 515        ccti_limit = cc_state->cct.ccti_limit;
 516        if (max_ccti > ccti_limit)
 517                max_ccti = ccti_limit;
 518
 519        cce = cc_state->cct.entries[max_ccti].entry;
 520        shift = (cce & 0xc000) >> 14;
 521        mult = (cce & 0x3fff);
 522
 523        current_egress_rate = active_egress_rate(ppd);
 524
 525        max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
 526
 527        src = (max_pkt_time >> shift) * mult;
 528
 529        src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
 530        src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
 531
 532        write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
 533}
 534
 535static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
 536{
 537        struct cca_timer *cca_timer;
 538        struct hfi1_pportdata *ppd;
 539        int sl;
 540        u16 ccti_timer, ccti_min;
 541        struct cc_state *cc_state;
 542        unsigned long flags;
 543        enum hrtimer_restart ret = HRTIMER_NORESTART;
 544
 545        cca_timer = container_of(t, struct cca_timer, hrtimer);
 546        ppd = cca_timer->ppd;
 547        sl = cca_timer->sl;
 548
 549        rcu_read_lock();
 550
 551        cc_state = get_cc_state(ppd);
 552
 553        if (!cc_state) {
 554                rcu_read_unlock();
 555                return HRTIMER_NORESTART;
 556        }
 557
 558        /*
 559         * 1) decrement ccti for SL
 560         * 2) calculate IPG for link (set_link_ipg())
 561         * 3) restart timer, unless ccti is at min value
 562         */
 563
 564        ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
 565        ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
 566
 567        spin_lock_irqsave(&ppd->cca_timer_lock, flags);
 568
 569        if (cca_timer->ccti > ccti_min) {
 570                cca_timer->ccti--;
 571                set_link_ipg(ppd);
 572        }
 573
 574        if (cca_timer->ccti > ccti_min) {
 575                unsigned long nsec = 1024 * ccti_timer;
 576                /* ccti_timer is in units of 1.024 usec */
 577                hrtimer_forward_now(t, ns_to_ktime(nsec));
 578                ret = HRTIMER_RESTART;
 579        }
 580
 581        spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
 582        rcu_read_unlock();
 583        return ret;
 584}
 585
 586/*
 587 * Common code for initializing the physical port structure.
 588 */
 589void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
 590                         struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
 591{
 592        int i;
 593        uint default_pkey_idx;
 594        struct cc_state *cc_state;
 595
 596        ppd->dd = dd;
 597        ppd->hw_pidx = hw_pidx;
 598        ppd->port = port; /* IB port number, not index */
 599        ppd->prev_link_width = LINK_WIDTH_DEFAULT;
 600        /*
 601         * There are C_VL_COUNT number of PortVLXmitWait counters.
 602         * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
 603         */
 604        for (i = 0; i < C_VL_COUNT + 1; i++) {
 605                ppd->port_vl_xmit_wait_last[i] = 0;
 606                ppd->vl_xmit_flit_cnt[i] = 0;
 607        }
 608
 609        default_pkey_idx = 1;
 610
 611        ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
 612        ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
 613        ppd->pkeys[0] = 0x8001;
 614
 615        INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
 616        INIT_WORK(&ppd->link_up_work, handle_link_up);
 617        INIT_WORK(&ppd->link_down_work, handle_link_down);
 618        INIT_WORK(&ppd->freeze_work, handle_freeze);
 619        INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
 620        INIT_WORK(&ppd->sma_message_work, handle_sma_message);
 621        INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
 622        INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
 623        INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
 624        INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
 625
 626        mutex_init(&ppd->hls_lock);
 627        spin_lock_init(&ppd->qsfp_info.qsfp_lock);
 628
 629        ppd->qsfp_info.ppd = ppd;
 630        ppd->sm_trap_qp = 0x0;
 631        ppd->sa_qp = 0x1;
 632
 633        ppd->hfi1_wq = NULL;
 634
 635        spin_lock_init(&ppd->cca_timer_lock);
 636
 637        for (i = 0; i < OPA_MAX_SLS; i++) {
 638                hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
 639                             HRTIMER_MODE_REL);
 640                ppd->cca_timer[i].ppd = ppd;
 641                ppd->cca_timer[i].sl = i;
 642                ppd->cca_timer[i].ccti = 0;
 643                ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
 644        }
 645
 646        ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
 647
 648        spin_lock_init(&ppd->cc_state_lock);
 649        spin_lock_init(&ppd->cc_log_lock);
 650        cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
 651        RCU_INIT_POINTER(ppd->cc_state, cc_state);
 652        if (!cc_state)
 653                goto bail;
 654        return;
 655
 656bail:
 657        dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
 658}
 659
 660/*
 661 * Do initialization for device that is only needed on
 662 * first detect, not on resets.
 663 */
 664static int loadtime_init(struct hfi1_devdata *dd)
 665{
 666        return 0;
 667}
 668
 669/**
 670 * init_after_reset - re-initialize after a reset
 671 * @dd: the hfi1_ib device
 672 *
 673 * sanity check at least some of the values after reset, and
 674 * ensure no receive or transmit (explicitly, in case reset
 675 * failed
 676 */
 677static int init_after_reset(struct hfi1_devdata *dd)
 678{
 679        int i;
 680        struct hfi1_ctxtdata *rcd;
 681        /*
 682         * Ensure chip does no sends or receives, tail updates, or
 683         * pioavail updates while we re-initialize.  This is mostly
 684         * for the driver data structures, not chip registers.
 685         */
 686        for (i = 0; i < dd->num_rcv_contexts; i++) {
 687                rcd = hfi1_rcd_get_by_index(dd, i);
 688                hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 689                             HFI1_RCVCTRL_INTRAVAIL_DIS |
 690                             HFI1_RCVCTRL_TAILUPD_DIS, rcd);
 691                hfi1_rcd_put(rcd);
 692        }
 693        pio_send_control(dd, PSC_GLOBAL_DISABLE);
 694        for (i = 0; i < dd->num_send_contexts; i++)
 695                sc_disable(dd->send_contexts[i].sc);
 696
 697        return 0;
 698}
 699
 700static void enable_chip(struct hfi1_devdata *dd)
 701{
 702        struct hfi1_ctxtdata *rcd;
 703        u32 rcvmask;
 704        u16 i;
 705
 706        /* enable PIO send */
 707        pio_send_control(dd, PSC_GLOBAL_ENABLE);
 708
 709        /*
 710         * Enable kernel ctxts' receive and receive interrupt.
 711         * Other ctxts done as user opens and initializes them.
 712         */
 713        for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
 714                rcd = hfi1_rcd_get_by_index(dd, i);
 715                if (!rcd)
 716                        continue;
 717                rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
 718                rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
 719                        HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
 720                if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
 721                        rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
 722                if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
 723                        rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
 724                if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
 725                        rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
 726                if (HFI1_CAP_IS_KSET(TID_RDMA))
 727                        rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
 728                hfi1_rcvctrl(dd, rcvmask, rcd);
 729                sc_enable(rcd->sc);
 730                hfi1_rcd_put(rcd);
 731        }
 732}
 733
 734/**
 735 * create_workqueues - create per port workqueues
 736 * @dd: the hfi1_ib device
 737 */
 738static int create_workqueues(struct hfi1_devdata *dd)
 739{
 740        int pidx;
 741        struct hfi1_pportdata *ppd;
 742
 743        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 744                ppd = dd->pport + pidx;
 745                if (!ppd->hfi1_wq) {
 746                        ppd->hfi1_wq =
 747                                alloc_workqueue(
 748                                    "hfi%d_%d",
 749                                    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
 750                                    WQ_MEM_RECLAIM,
 751                                    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
 752                                    dd->unit, pidx);
 753                        if (!ppd->hfi1_wq)
 754                                goto wq_error;
 755                }
 756                if (!ppd->link_wq) {
 757                        /*
 758                         * Make the link workqueue single-threaded to enforce
 759                         * serialization.
 760                         */
 761                        ppd->link_wq =
 762                                alloc_workqueue(
 763                                    "hfi_link_%d_%d",
 764                                    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
 765                                    1, /* max_active */
 766                                    dd->unit, pidx);
 767                        if (!ppd->link_wq)
 768                                goto wq_error;
 769                }
 770        }
 771        return 0;
 772wq_error:
 773        pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
 774        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 775                ppd = dd->pport + pidx;
 776                if (ppd->hfi1_wq) {
 777                        destroy_workqueue(ppd->hfi1_wq);
 778                        ppd->hfi1_wq = NULL;
 779                }
 780                if (ppd->link_wq) {
 781                        destroy_workqueue(ppd->link_wq);
 782                        ppd->link_wq = NULL;
 783                }
 784        }
 785        return -ENOMEM;
 786}
 787
 788/**
 789 * destroy_workqueues - destroy per port workqueues
 790 * @dd: the hfi1_ib device
 791 */
 792static void destroy_workqueues(struct hfi1_devdata *dd)
 793{
 794        int pidx;
 795        struct hfi1_pportdata *ppd;
 796
 797        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 798                ppd = dd->pport + pidx;
 799
 800                if (ppd->hfi1_wq) {
 801                        destroy_workqueue(ppd->hfi1_wq);
 802                        ppd->hfi1_wq = NULL;
 803                }
 804                if (ppd->link_wq) {
 805                        destroy_workqueue(ppd->link_wq);
 806                        ppd->link_wq = NULL;
 807                }
 808        }
 809}
 810
 811/**
 812 * enable_general_intr() - Enable the IRQs that will be handled by the
 813 * general interrupt handler.
 814 * @dd: valid devdata
 815 *
 816 */
 817static void enable_general_intr(struct hfi1_devdata *dd)
 818{
 819        set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
 820        set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
 821        set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
 822        set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
 823        set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
 824        set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
 825        set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
 826}
 827
 828/**
 829 * hfi1_init - do the actual initialization sequence on the chip
 830 * @dd: the hfi1_ib device
 831 * @reinit: re-initializing, so don't allocate new memory
 832 *
 833 * Do the actual initialization sequence on the chip.  This is done
 834 * both from the init routine called from the PCI infrastructure, and
 835 * when we reset the chip, or detect that it was reset internally,
 836 * or it's administratively re-enabled.
 837 *
 838 * Memory allocation here and in called routines is only done in
 839 * the first case (reinit == 0).  We have to be careful, because even
 840 * without memory allocation, we need to re-write all the chip registers
 841 * TIDs, etc. after the reset or enable has completed.
 842 */
 843int hfi1_init(struct hfi1_devdata *dd, int reinit)
 844{
 845        int ret = 0, pidx, lastfail = 0;
 846        unsigned long len;
 847        u16 i;
 848        struct hfi1_ctxtdata *rcd;
 849        struct hfi1_pportdata *ppd;
 850
 851        /* Set up send low level handlers */
 852        dd->process_pio_send = hfi1_verbs_send_pio;
 853        dd->process_dma_send = hfi1_verbs_send_dma;
 854        dd->pio_inline_send = pio_copy;
 855        dd->process_vnic_dma_send = hfi1_vnic_send_dma;
 856
 857        if (is_ax(dd)) {
 858                atomic_set(&dd->drop_packet, DROP_PACKET_ON);
 859                dd->do_drop = true;
 860        } else {
 861                atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
 862                dd->do_drop = false;
 863        }
 864
 865        /* make sure the link is not "up" */
 866        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 867                ppd = dd->pport + pidx;
 868                ppd->linkup = 0;
 869        }
 870
 871        if (reinit)
 872                ret = init_after_reset(dd);
 873        else
 874                ret = loadtime_init(dd);
 875        if (ret)
 876                goto done;
 877
 878        /* dd->rcd can be NULL if early initialization failed */
 879        for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
 880                /*
 881                 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
 882                 * re-init, the simplest way to handle this is to free
 883                 * existing, and re-allocate.
 884                 * Need to re-create rest of ctxt 0 ctxtdata as well.
 885                 */
 886                rcd = hfi1_rcd_get_by_index(dd, i);
 887                if (!rcd)
 888                        continue;
 889
 890                lastfail = hfi1_create_rcvhdrq(dd, rcd);
 891                if (!lastfail)
 892                        lastfail = hfi1_setup_eagerbufs(rcd);
 893                if (!lastfail)
 894                        lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
 895                if (lastfail) {
 896                        dd_dev_err(dd,
 897                                   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
 898                        ret = lastfail;
 899                }
 900                /* enable IRQ */
 901                hfi1_rcd_put(rcd);
 902        }
 903
 904        /* Allocate enough memory for user event notification. */
 905        len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
 906                         sizeof(*dd->events));
 907        dd->events = vmalloc_user(len);
 908        if (!dd->events)
 909                dd_dev_err(dd, "Failed to allocate user events page\n");
 910        /*
 911         * Allocate a page for device and port status.
 912         * Page will be shared amongst all user processes.
 913         */
 914        dd->status = vmalloc_user(PAGE_SIZE);
 915        if (!dd->status)
 916                dd_dev_err(dd, "Failed to allocate dev status page\n");
 917        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 918                ppd = dd->pport + pidx;
 919                if (dd->status)
 920                        /* Currently, we only have one port */
 921                        ppd->statusp = &dd->status->port;
 922
 923                set_mtu(ppd);
 924        }
 925
 926        /* enable chip even if we have an error, so we can debug cause */
 927        enable_chip(dd);
 928
 929done:
 930        /*
 931         * Set status even if port serdes is not initialized
 932         * so that diags will work.
 933         */
 934        if (dd->status)
 935                dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
 936                        HFI1_STATUS_INITTED;
 937        if (!ret) {
 938                /* enable all interrupts from the chip */
 939                enable_general_intr(dd);
 940                init_qsfp_int(dd);
 941
 942                /* chip is OK for user apps; mark it as initialized */
 943                for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 944                        ppd = dd->pport + pidx;
 945
 946                        /*
 947                         * start the serdes - must be after interrupts are
 948                         * enabled so we are notified when the link goes up
 949                         */
 950                        lastfail = bringup_serdes(ppd);
 951                        if (lastfail)
 952                                dd_dev_info(dd,
 953                                            "Failed to bring up port %u\n",
 954                                            ppd->port);
 955
 956                        /*
 957                         * Set status even if port serdes is not initialized
 958                         * so that diags will work.
 959                         */
 960                        if (ppd->statusp)
 961                                *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
 962                                                        HFI1_STATUS_INITTED;
 963                        if (!ppd->link_speed_enabled)
 964                                continue;
 965                }
 966        }
 967
 968        /* if ret is non-zero, we probably should do some cleanup here... */
 969        return ret;
 970}
 971
 972struct hfi1_devdata *hfi1_lookup(int unit)
 973{
 974        return xa_load(&hfi1_dev_table, unit);
 975}
 976
 977/*
 978 * Stop the timers during unit shutdown, or after an error late
 979 * in initialization.
 980 */
 981static void stop_timers(struct hfi1_devdata *dd)
 982{
 983        struct hfi1_pportdata *ppd;
 984        int pidx;
 985
 986        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 987                ppd = dd->pport + pidx;
 988                if (ppd->led_override_timer.function) {
 989                        del_timer_sync(&ppd->led_override_timer);
 990                        atomic_set(&ppd->led_override_timer_active, 0);
 991                }
 992        }
 993}
 994
 995/**
 996 * shutdown_device - shut down a device
 997 * @dd: the hfi1_ib device
 998 *
 999 * This is called to make the device quiet when we are about to
1000 * unload the driver, and also when the device is administratively
1001 * disabled.   It does not free any data structures.
1002 * Everything it does has to be setup again by hfi1_init(dd, 1)
1003 */
1004static void shutdown_device(struct hfi1_devdata *dd)
1005{
1006        struct hfi1_pportdata *ppd;
1007        struct hfi1_ctxtdata *rcd;
1008        unsigned pidx;
1009        int i;
1010
1011        if (dd->flags & HFI1_SHUTDOWN)
1012                return;
1013        dd->flags |= HFI1_SHUTDOWN;
1014
1015        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016                ppd = dd->pport + pidx;
1017
1018                ppd->linkup = 0;
1019                if (ppd->statusp)
1020                        *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1021                                           HFI1_STATUS_IB_READY);
1022        }
1023        dd->flags &= ~HFI1_INITTED;
1024
1025        /* mask and clean up interrupts */
1026        set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1027        msix_clean_up_interrupts(dd);
1028
1029        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1030                ppd = dd->pport + pidx;
1031                for (i = 0; i < dd->num_rcv_contexts; i++) {
1032                        rcd = hfi1_rcd_get_by_index(dd, i);
1033                        hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1034                                     HFI1_RCVCTRL_CTXT_DIS |
1035                                     HFI1_RCVCTRL_INTRAVAIL_DIS |
1036                                     HFI1_RCVCTRL_PKEY_DIS |
1037                                     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1038                        hfi1_rcd_put(rcd);
1039                }
1040                /*
1041                 * Gracefully stop all sends allowing any in progress to
1042                 * trickle out first.
1043                 */
1044                for (i = 0; i < dd->num_send_contexts; i++)
1045                        sc_flush(dd->send_contexts[i].sc);
1046        }
1047
1048        /*
1049         * Enough for anything that's going to trickle out to have actually
1050         * done so.
1051         */
1052        udelay(20);
1053
1054        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1055                ppd = dd->pport + pidx;
1056
1057                /* disable all contexts */
1058                for (i = 0; i < dd->num_send_contexts; i++)
1059                        sc_disable(dd->send_contexts[i].sc);
1060                /* disable the send device */
1061                pio_send_control(dd, PSC_GLOBAL_DISABLE);
1062
1063                shutdown_led_override(ppd);
1064
1065                /*
1066                 * Clear SerdesEnable.
1067                 * We can't count on interrupts since we are stopping.
1068                 */
1069                hfi1_quiet_serdes(ppd);
1070                if (ppd->hfi1_wq)
1071                        flush_workqueue(ppd->hfi1_wq);
1072                if (ppd->link_wq)
1073                        flush_workqueue(ppd->link_wq);
1074        }
1075        sdma_exit(dd);
1076}
1077
1078/**
1079 * hfi1_free_ctxtdata - free a context's allocated data
1080 * @dd: the hfi1_ib device
1081 * @rcd: the ctxtdata structure
1082 *
1083 * free up any allocated data for a context
1084 * It should never change any chip state, or global driver state.
1085 */
1086void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1087{
1088        u32 e;
1089
1090        if (!rcd)
1091                return;
1092
1093        if (rcd->rcvhdrq) {
1094                dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1095                                  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1096                rcd->rcvhdrq = NULL;
1097                if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1098                        dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1099                                          (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1100                                          rcd->rcvhdrqtailaddr_dma);
1101                        rcd->rcvhdrtail_kvaddr = NULL;
1102                }
1103        }
1104
1105        /* all the RcvArray entries should have been cleared by now */
1106        kfree(rcd->egrbufs.rcvtids);
1107        rcd->egrbufs.rcvtids = NULL;
1108
1109        for (e = 0; e < rcd->egrbufs.alloced; e++) {
1110                if (rcd->egrbufs.buffers[e].addr)
1111                        dma_free_coherent(&dd->pcidev->dev,
1112                                          rcd->egrbufs.buffers[e].len,
1113                                          rcd->egrbufs.buffers[e].addr,
1114                                          rcd->egrbufs.buffers[e].dma);
1115        }
1116        kfree(rcd->egrbufs.buffers);
1117        rcd->egrbufs.alloced = 0;
1118        rcd->egrbufs.buffers = NULL;
1119
1120        sc_free(rcd->sc);
1121        rcd->sc = NULL;
1122
1123        vfree(rcd->subctxt_uregbase);
1124        vfree(rcd->subctxt_rcvegrbuf);
1125        vfree(rcd->subctxt_rcvhdr_base);
1126        kfree(rcd->opstats);
1127
1128        rcd->subctxt_uregbase = NULL;
1129        rcd->subctxt_rcvegrbuf = NULL;
1130        rcd->subctxt_rcvhdr_base = NULL;
1131        rcd->opstats = NULL;
1132}
1133
1134/*
1135 * Release our hold on the shared asic data.  If we are the last one,
1136 * return the structure to be finalized outside the lock.  Must be
1137 * holding hfi1_dev_table lock.
1138 */
1139static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1140{
1141        struct hfi1_asic_data *ad;
1142        int other;
1143
1144        if (!dd->asic_data)
1145                return NULL;
1146        dd->asic_data->dds[dd->hfi1_id] = NULL;
1147        other = dd->hfi1_id ? 0 : 1;
1148        ad = dd->asic_data;
1149        dd->asic_data = NULL;
1150        /* return NULL if the other dd still has a link */
1151        return ad->dds[other] ? NULL : ad;
1152}
1153
1154static void finalize_asic_data(struct hfi1_devdata *dd,
1155                               struct hfi1_asic_data *ad)
1156{
1157        clean_up_i2c(dd, ad);
1158        kfree(ad);
1159}
1160
1161/**
1162 * hfi1_free_devdata - cleans up and frees per-unit data structure
1163 * @dd: pointer to a valid devdata structure
1164 *
1165 * It cleans up and frees all data structures set up by
1166 * by hfi1_alloc_devdata().
1167 */
1168void hfi1_free_devdata(struct hfi1_devdata *dd)
1169{
1170        struct hfi1_asic_data *ad;
1171        unsigned long flags;
1172
1173        xa_lock_irqsave(&hfi1_dev_table, flags);
1174        __xa_erase(&hfi1_dev_table, dd->unit);
1175        ad = release_asic_data(dd);
1176        xa_unlock_irqrestore(&hfi1_dev_table, flags);
1177
1178        finalize_asic_data(dd, ad);
1179        free_platform_config(dd);
1180        rcu_barrier(); /* wait for rcu callbacks to complete */
1181        free_percpu(dd->int_counter);
1182        free_percpu(dd->rcv_limit);
1183        free_percpu(dd->send_schedule);
1184        free_percpu(dd->tx_opstats);
1185        dd->int_counter   = NULL;
1186        dd->rcv_limit     = NULL;
1187        dd->send_schedule = NULL;
1188        dd->tx_opstats    = NULL;
1189        kfree(dd->comp_vect);
1190        dd->comp_vect = NULL;
1191        if (dd->rcvhdrtail_dummy_kvaddr)
1192                dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1193                                  (void *)dd->rcvhdrtail_dummy_kvaddr,
1194                                  dd->rcvhdrtail_dummy_dma);
1195        dd->rcvhdrtail_dummy_kvaddr = NULL;
1196        sdma_clean(dd, dd->num_sdma);
1197        rvt_dealloc_device(&dd->verbs_dev.rdi);
1198}
1199
1200/**
1201 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1202 * @pdev: Valid PCI device
1203 * @extra: How many bytes to alloc past the default
1204 *
1205 * Must be done via verbs allocator, because the verbs cleanup process
1206 * both does cleanup and free of the data structure.
1207 * "extra" is for chip-specific data.
1208 */
1209static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1210                                               size_t extra)
1211{
1212        struct hfi1_devdata *dd;
1213        int ret, nports;
1214
1215        /* extra is * number of ports */
1216        nports = extra / sizeof(struct hfi1_pportdata);
1217
1218        dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1219                                                     nports);
1220        if (!dd)
1221                return ERR_PTR(-ENOMEM);
1222        dd->num_pports = nports;
1223        dd->pport = (struct hfi1_pportdata *)(dd + 1);
1224        dd->pcidev = pdev;
1225        pci_set_drvdata(pdev, dd);
1226
1227        ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1228                        GFP_KERNEL);
1229        if (ret < 0) {
1230                dev_err(&pdev->dev,
1231                        "Could not allocate unit ID: error %d\n", -ret);
1232                goto bail;
1233        }
1234        rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1235        /*
1236         * If the BIOS does not have the NUMA node information set, select
1237         * NUMA 0 so we get consistent performance.
1238         */
1239        dd->node = pcibus_to_node(pdev->bus);
1240        if (dd->node == NUMA_NO_NODE) {
1241                dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1242                dd->node = 0;
1243        }
1244
1245        /*
1246         * Initialize all locks for the device. This needs to be as early as
1247         * possible so locks are usable.
1248         */
1249        spin_lock_init(&dd->sc_lock);
1250        spin_lock_init(&dd->sendctrl_lock);
1251        spin_lock_init(&dd->rcvctrl_lock);
1252        spin_lock_init(&dd->uctxt_lock);
1253        spin_lock_init(&dd->hfi1_diag_trans_lock);
1254        spin_lock_init(&dd->sc_init_lock);
1255        spin_lock_init(&dd->dc8051_memlock);
1256        seqlock_init(&dd->sc2vl_lock);
1257        spin_lock_init(&dd->sde_map_lock);
1258        spin_lock_init(&dd->pio_map_lock);
1259        mutex_init(&dd->dc8051_lock);
1260        init_waitqueue_head(&dd->event_queue);
1261        spin_lock_init(&dd->irq_src_lock);
1262
1263        dd->int_counter = alloc_percpu(u64);
1264        if (!dd->int_counter) {
1265                ret = -ENOMEM;
1266                goto bail;
1267        }
1268
1269        dd->rcv_limit = alloc_percpu(u64);
1270        if (!dd->rcv_limit) {
1271                ret = -ENOMEM;
1272                goto bail;
1273        }
1274
1275        dd->send_schedule = alloc_percpu(u64);
1276        if (!dd->send_schedule) {
1277                ret = -ENOMEM;
1278                goto bail;
1279        }
1280
1281        dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1282        if (!dd->tx_opstats) {
1283                ret = -ENOMEM;
1284                goto bail;
1285        }
1286
1287        dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1288        if (!dd->comp_vect) {
1289                ret = -ENOMEM;
1290                goto bail;
1291        }
1292
1293        /* allocate dummy tail memory for all receive contexts */
1294        dd->rcvhdrtail_dummy_kvaddr =
1295                dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
1296                                   &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1297        if (!dd->rcvhdrtail_dummy_kvaddr) {
1298                ret = -ENOMEM;
1299                goto bail;
1300        }
1301
1302        atomic_set(&dd->ipoib_rsm_usr_num, 0);
1303        return dd;
1304
1305bail:
1306        hfi1_free_devdata(dd);
1307        return ERR_PTR(ret);
1308}
1309
1310/*
1311 * Called from freeze mode handlers, and from PCI error
1312 * reporting code.  Should be paranoid about state of
1313 * system and data structures.
1314 */
1315void hfi1_disable_after_error(struct hfi1_devdata *dd)
1316{
1317        if (dd->flags & HFI1_INITTED) {
1318                u32 pidx;
1319
1320                dd->flags &= ~HFI1_INITTED;
1321                if (dd->pport)
1322                        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1323                                struct hfi1_pportdata *ppd;
1324
1325                                ppd = dd->pport + pidx;
1326                                if (dd->flags & HFI1_PRESENT)
1327                                        set_link_state(ppd, HLS_DN_DISABLE);
1328
1329                                if (ppd->statusp)
1330                                        *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1331                        }
1332        }
1333
1334        /*
1335         * Mark as having had an error for driver, and also
1336         * for /sys and status word mapped to user programs.
1337         * This marks unit as not usable, until reset.
1338         */
1339        if (dd->status)
1340                dd->status->dev |= HFI1_STATUS_HWERROR;
1341}
1342
1343static void remove_one(struct pci_dev *);
1344static int init_one(struct pci_dev *, const struct pci_device_id *);
1345static void shutdown_one(struct pci_dev *);
1346
1347#define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1348#define PFX DRIVER_NAME ": "
1349
1350const struct pci_device_id hfi1_pci_tbl[] = {
1351        { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1352        { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1353        { 0, }
1354};
1355
1356MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1357
1358static struct pci_driver hfi1_pci_driver = {
1359        .name = DRIVER_NAME,
1360        .probe = init_one,
1361        .remove = remove_one,
1362        .shutdown = shutdown_one,
1363        .id_table = hfi1_pci_tbl,
1364        .err_handler = &hfi1_pci_err_handler,
1365};
1366
1367static void __init compute_krcvqs(void)
1368{
1369        int i;
1370
1371        for (i = 0; i < krcvqsset; i++)
1372                n_krcvqs += krcvqs[i];
1373}
1374
1375/*
1376 * Do all the generic driver unit- and chip-independent memory
1377 * allocation and initialization.
1378 */
1379static int __init hfi1_mod_init(void)
1380{
1381        int ret;
1382
1383        ret = dev_init();
1384        if (ret)
1385                goto bail;
1386
1387        ret = node_affinity_init();
1388        if (ret)
1389                goto bail;
1390
1391        /* validate max MTU before any devices start */
1392        if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1393                pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1394                       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1395                hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1396        }
1397        /* valid CUs run from 1-128 in powers of 2 */
1398        if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1399                hfi1_cu = 1;
1400        /* valid credit return threshold is 0-100, variable is unsigned */
1401        if (user_credit_return_threshold > 100)
1402                user_credit_return_threshold = 100;
1403
1404        compute_krcvqs();
1405        /*
1406         * sanitize receive interrupt count, time must wait until after
1407         * the hardware type is known
1408         */
1409        if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1410                rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1411        /* reject invalid combinations */
1412        if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1413                pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1414                rcv_intr_count = 1;
1415        }
1416        if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1417                /*
1418                 * Avoid indefinite packet delivery by requiring a timeout
1419                 * if count is > 1.
1420                 */
1421                pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1422                rcv_intr_timeout = 1;
1423        }
1424        if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1425                /*
1426                 * The dynamic algorithm expects a non-zero timeout
1427                 * and a count > 1.
1428                 */
1429                pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1430                rcv_intr_dynamic = 0;
1431        }
1432
1433        /* sanitize link CRC options */
1434        link_crc_mask &= SUPPORTED_CRCS;
1435
1436        ret = opfn_init();
1437        if (ret < 0) {
1438                pr_err("Failed to allocate opfn_wq");
1439                goto bail_dev;
1440        }
1441
1442        /*
1443         * These must be called before the driver is registered with
1444         * the PCI subsystem.
1445         */
1446        hfi1_dbg_init();
1447        ret = pci_register_driver(&hfi1_pci_driver);
1448        if (ret < 0) {
1449                pr_err("Unable to register driver: error %d\n", -ret);
1450                goto bail_dev;
1451        }
1452        goto bail; /* all OK */
1453
1454bail_dev:
1455        hfi1_dbg_exit();
1456        dev_cleanup();
1457bail:
1458        return ret;
1459}
1460
1461module_init(hfi1_mod_init);
1462
1463/*
1464 * Do the non-unit driver cleanup, memory free, etc. at unload.
1465 */
1466static void __exit hfi1_mod_cleanup(void)
1467{
1468        pci_unregister_driver(&hfi1_pci_driver);
1469        opfn_exit();
1470        node_affinity_destroy_all();
1471        hfi1_dbg_exit();
1472
1473        WARN_ON(!xa_empty(&hfi1_dev_table));
1474        dispose_firmware();     /* asymmetric with obtain_firmware() */
1475        dev_cleanup();
1476}
1477
1478module_exit(hfi1_mod_cleanup);
1479
1480/* this can only be called after a successful initialization */
1481static void cleanup_device_data(struct hfi1_devdata *dd)
1482{
1483        int ctxt;
1484        int pidx;
1485
1486        /* users can't do anything more with chip */
1487        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1488                struct hfi1_pportdata *ppd = &dd->pport[pidx];
1489                struct cc_state *cc_state;
1490                int i;
1491
1492                if (ppd->statusp)
1493                        *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1494
1495                for (i = 0; i < OPA_MAX_SLS; i++)
1496                        hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1497
1498                spin_lock(&ppd->cc_state_lock);
1499                cc_state = get_cc_state_protected(ppd);
1500                RCU_INIT_POINTER(ppd->cc_state, NULL);
1501                spin_unlock(&ppd->cc_state_lock);
1502
1503                if (cc_state)
1504                        kfree_rcu(cc_state, rcu);
1505        }
1506
1507        free_credit_return(dd);
1508
1509        /*
1510         * Free any resources still in use (usually just kernel contexts)
1511         * at unload; we do for ctxtcnt, because that's what we allocate.
1512         */
1513        for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1514                struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1515
1516                if (rcd) {
1517                        hfi1_free_ctxt_rcv_groups(rcd);
1518                        hfi1_free_ctxt(rcd);
1519                }
1520        }
1521
1522        kfree(dd->rcd);
1523        dd->rcd = NULL;
1524
1525        free_pio_map(dd);
1526        /* must follow rcv context free - need to remove rcv's hooks */
1527        for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1528                sc_free(dd->send_contexts[ctxt].sc);
1529        dd->num_send_contexts = 0;
1530        kfree(dd->send_contexts);
1531        dd->send_contexts = NULL;
1532        kfree(dd->hw_to_sw);
1533        dd->hw_to_sw = NULL;
1534        kfree(dd->boardname);
1535        vfree(dd->events);
1536        vfree(dd->status);
1537}
1538
1539/*
1540 * Clean up on unit shutdown, or error during unit load after
1541 * successful initialization.
1542 */
1543static void postinit_cleanup(struct hfi1_devdata *dd)
1544{
1545        hfi1_start_cleanup(dd);
1546        hfi1_comp_vectors_clean_up(dd);
1547        hfi1_dev_affinity_clean_up(dd);
1548
1549        hfi1_pcie_ddcleanup(dd);
1550        hfi1_pcie_cleanup(dd->pcidev);
1551
1552        cleanup_device_data(dd);
1553
1554        hfi1_free_devdata(dd);
1555}
1556
1557static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1558{
1559        int ret = 0, j, pidx, initfail;
1560        struct hfi1_devdata *dd;
1561        struct hfi1_pportdata *ppd;
1562
1563        /* First, lock the non-writable module parameters */
1564        HFI1_CAP_LOCK();
1565
1566        /* Validate dev ids */
1567        if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1568              ent->device == PCI_DEVICE_ID_INTEL1)) {
1569                dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1570                        ent->device);
1571                ret = -ENODEV;
1572                goto bail;
1573        }
1574
1575        /* Allocate the dd so we can get to work */
1576        dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1577                                sizeof(struct hfi1_pportdata));
1578        if (IS_ERR(dd)) {
1579                ret = PTR_ERR(dd);
1580                goto bail;
1581        }
1582
1583        /* Validate some global module parameters */
1584        ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1585        if (ret)
1586                goto bail;
1587
1588        /* use the encoding function as a sanitization check */
1589        if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1590                dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1591                           hfi1_hdrq_entsize);
1592                ret = -EINVAL;
1593                goto bail;
1594        }
1595
1596        /* The receive eager buffer size must be set before the receive
1597         * contexts are created.
1598         *
1599         * Set the eager buffer size.  Validate that it falls in a range
1600         * allowed by the hardware - all powers of 2 between the min and
1601         * max.  The maximum valid MTU is within the eager buffer range
1602         * so we do not need to cap the max_mtu by an eager buffer size
1603         * setting.
1604         */
1605        if (eager_buffer_size) {
1606                if (!is_power_of_2(eager_buffer_size))
1607                        eager_buffer_size =
1608                                roundup_pow_of_two(eager_buffer_size);
1609                eager_buffer_size =
1610                        clamp_val(eager_buffer_size,
1611                                  MIN_EAGER_BUFFER * 8,
1612                                  MAX_EAGER_BUFFER_TOTAL);
1613                dd_dev_info(dd, "Eager buffer size %u\n",
1614                            eager_buffer_size);
1615        } else {
1616                dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1617                ret = -EINVAL;
1618                goto bail;
1619        }
1620
1621        /* restrict value of hfi1_rcvarr_split */
1622        hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1623
1624        ret = hfi1_pcie_init(dd);
1625        if (ret)
1626                goto bail;
1627
1628        /*
1629         * Do device-specific initialization, function table setup, dd
1630         * allocation, etc.
1631         */
1632        ret = hfi1_init_dd(dd);
1633        if (ret)
1634                goto clean_bail; /* error already printed */
1635
1636        ret = create_workqueues(dd);
1637        if (ret)
1638                goto clean_bail;
1639
1640        /* do the generic initialization */
1641        initfail = hfi1_init(dd, 0);
1642
1643        ret = hfi1_register_ib_device(dd);
1644
1645        /*
1646         * Now ready for use.  this should be cleared whenever we
1647         * detect a reset, or initiate one.  If earlier failure,
1648         * we still create devices, so diags, etc. can be used
1649         * to determine cause of problem.
1650         */
1651        if (!initfail && !ret) {
1652                dd->flags |= HFI1_INITTED;
1653                /* create debufs files after init and ib register */
1654                hfi1_dbg_ibdev_init(&dd->verbs_dev);
1655        }
1656
1657        j = hfi1_device_create(dd);
1658        if (j)
1659                dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1660
1661        if (initfail || ret) {
1662                msix_clean_up_interrupts(dd);
1663                stop_timers(dd);
1664                flush_workqueue(ib_wq);
1665                for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1666                        hfi1_quiet_serdes(dd->pport + pidx);
1667                        ppd = dd->pport + pidx;
1668                        if (ppd->hfi1_wq) {
1669                                destroy_workqueue(ppd->hfi1_wq);
1670                                ppd->hfi1_wq = NULL;
1671                        }
1672                        if (ppd->link_wq) {
1673                                destroy_workqueue(ppd->link_wq);
1674                                ppd->link_wq = NULL;
1675                        }
1676                }
1677                if (!j)
1678                        hfi1_device_remove(dd);
1679                if (!ret)
1680                        hfi1_unregister_ib_device(dd);
1681                postinit_cleanup(dd);
1682                if (initfail)
1683                        ret = initfail;
1684                goto bail;      /* everything already cleaned */
1685        }
1686
1687        sdma_start(dd);
1688
1689        return 0;
1690
1691clean_bail:
1692        hfi1_pcie_cleanup(pdev);
1693bail:
1694        return ret;
1695}
1696
1697static void wait_for_clients(struct hfi1_devdata *dd)
1698{
1699        /*
1700         * Remove the device init value and complete the device if there is
1701         * no clients or wait for active clients to finish.
1702         */
1703        if (refcount_dec_and_test(&dd->user_refcount))
1704                complete(&dd->user_comp);
1705
1706        wait_for_completion(&dd->user_comp);
1707}
1708
1709static void remove_one(struct pci_dev *pdev)
1710{
1711        struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1712
1713        /* close debugfs files before ib unregister */
1714        hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1715
1716        /* remove the /dev hfi1 interface */
1717        hfi1_device_remove(dd);
1718
1719        /* wait for existing user space clients to finish */
1720        wait_for_clients(dd);
1721
1722        /* unregister from IB core */
1723        hfi1_unregister_ib_device(dd);
1724
1725        /* free netdev data */
1726        hfi1_free_rx(dd);
1727
1728        /*
1729         * Disable the IB link, disable interrupts on the device,
1730         * clear dma engines, etc.
1731         */
1732        shutdown_device(dd);
1733        destroy_workqueues(dd);
1734
1735        stop_timers(dd);
1736
1737        /* wait until all of our (qsfp) queue_work() calls complete */
1738        flush_workqueue(ib_wq);
1739
1740        postinit_cleanup(dd);
1741}
1742
1743static void shutdown_one(struct pci_dev *pdev)
1744{
1745        struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1746
1747        shutdown_device(dd);
1748}
1749
1750/**
1751 * hfi1_create_rcvhdrq - create a receive header queue
1752 * @dd: the hfi1_ib device
1753 * @rcd: the context data
1754 *
1755 * This must be contiguous memory (from an i/o perspective), and must be
1756 * DMA'able (which means for some systems, it will go through an IOMMU,
1757 * or be forced into a low address range).
1758 */
1759int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1760{
1761        unsigned amt;
1762
1763        if (!rcd->rcvhdrq) {
1764                gfp_t gfp_flags;
1765
1766                amt = rcvhdrq_size(rcd);
1767
1768                if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1769                        gfp_flags = GFP_KERNEL;
1770                else
1771                        gfp_flags = GFP_USER;
1772                rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1773                                                  &rcd->rcvhdrq_dma,
1774                                                  gfp_flags | __GFP_COMP);
1775
1776                if (!rcd->rcvhdrq) {
1777                        dd_dev_err(dd,
1778                                   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1779                                   amt, rcd->ctxt);
1780                        goto bail;
1781                }
1782
1783                if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1784                    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1785                        rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1786                                                                    PAGE_SIZE,
1787                                                                    &rcd->rcvhdrqtailaddr_dma,
1788                                                                    gfp_flags);
1789                        if (!rcd->rcvhdrtail_kvaddr)
1790                                goto bail_free;
1791                }
1792        }
1793
1794        set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1795                      rcd->rcvhdrq_cnt);
1796
1797        return 0;
1798
1799bail_free:
1800        dd_dev_err(dd,
1801                   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1802                   rcd->ctxt);
1803        dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1804                          rcd->rcvhdrq_dma);
1805        rcd->rcvhdrq = NULL;
1806bail:
1807        return -ENOMEM;
1808}
1809
1810/**
1811 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1812 * contexts.
1813 * @rcd: the context we are setting up.
1814 *
1815 * Allocate the eager TID buffers and program them into hip.
1816 * They are no longer completely contiguous, we do multiple allocation
1817 * calls.  Otherwise we get the OOM code involved, by asking for too
1818 * much per call, with disastrous results on some kernels.
1819 */
1820int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1821{
1822        struct hfi1_devdata *dd = rcd->dd;
1823        u32 max_entries, egrtop, alloced_bytes = 0;
1824        gfp_t gfp_flags;
1825        u16 order, idx = 0;
1826        int ret = 0;
1827        u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1828
1829        /*
1830         * GFP_USER, but without GFP_FS, so buffer cache can be
1831         * coalesced (we hope); otherwise, even at order 4,
1832         * heavy filesystem activity makes these fail, and we can
1833         * use compound pages.
1834         */
1835        gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1836
1837        /*
1838         * The minimum size of the eager buffers is a groups of MTU-sized
1839         * buffers.
1840         * The global eager_buffer_size parameter is checked against the
1841         * theoretical lower limit of the value. Here, we check against the
1842         * MTU.
1843         */
1844        if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1845                rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1846        /*
1847         * If using one-pkt-per-egr-buffer, lower the eager buffer
1848         * size to the max MTU (page-aligned).
1849         */
1850        if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1851                rcd->egrbufs.rcvtid_size = round_mtu;
1852
1853        /*
1854         * Eager buffers sizes of 1MB or less require smaller TID sizes
1855         * to satisfy the "multiple of 8 RcvArray entries" requirement.
1856         */
1857        if (rcd->egrbufs.size <= (1 << 20))
1858                rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1859                        rounddown_pow_of_two(rcd->egrbufs.size / 8));
1860
1861        while (alloced_bytes < rcd->egrbufs.size &&
1862               rcd->egrbufs.alloced < rcd->egrbufs.count) {
1863                rcd->egrbufs.buffers[idx].addr =
1864                        dma_alloc_coherent(&dd->pcidev->dev,
1865                                           rcd->egrbufs.rcvtid_size,
1866                                           &rcd->egrbufs.buffers[idx].dma,
1867                                           gfp_flags);
1868                if (rcd->egrbufs.buffers[idx].addr) {
1869                        rcd->egrbufs.buffers[idx].len =
1870                                rcd->egrbufs.rcvtid_size;
1871                        rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1872                                rcd->egrbufs.buffers[idx].addr;
1873                        rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1874                                rcd->egrbufs.buffers[idx].dma;
1875                        rcd->egrbufs.alloced++;
1876                        alloced_bytes += rcd->egrbufs.rcvtid_size;
1877                        idx++;
1878                } else {
1879                        u32 new_size, i, j;
1880                        u64 offset = 0;
1881
1882                        /*
1883                         * Fail the eager buffer allocation if:
1884                         *   - we are already using the lowest acceptable size
1885                         *   - we are using one-pkt-per-egr-buffer (this implies
1886                         *     that we are accepting only one size)
1887                         */
1888                        if (rcd->egrbufs.rcvtid_size == round_mtu ||
1889                            !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1890                                dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1891                                           rcd->ctxt);
1892                                ret = -ENOMEM;
1893                                goto bail_rcvegrbuf_phys;
1894                        }
1895
1896                        new_size = rcd->egrbufs.rcvtid_size / 2;
1897
1898                        /*
1899                         * If the first attempt to allocate memory failed, don't
1900                         * fail everything but continue with the next lower
1901                         * size.
1902                         */
1903                        if (idx == 0) {
1904                                rcd->egrbufs.rcvtid_size = new_size;
1905                                continue;
1906                        }
1907
1908                        /*
1909                         * Re-partition already allocated buffers to a smaller
1910                         * size.
1911                         */
1912                        rcd->egrbufs.alloced = 0;
1913                        for (i = 0, j = 0, offset = 0; j < idx; i++) {
1914                                if (i >= rcd->egrbufs.count)
1915                                        break;
1916                                rcd->egrbufs.rcvtids[i].dma =
1917                                        rcd->egrbufs.buffers[j].dma + offset;
1918                                rcd->egrbufs.rcvtids[i].addr =
1919                                        rcd->egrbufs.buffers[j].addr + offset;
1920                                rcd->egrbufs.alloced++;
1921                                if ((rcd->egrbufs.buffers[j].dma + offset +
1922                                     new_size) ==
1923                                    (rcd->egrbufs.buffers[j].dma +
1924                                     rcd->egrbufs.buffers[j].len)) {
1925                                        j++;
1926                                        offset = 0;
1927                                } else {
1928                                        offset += new_size;
1929                                }
1930                        }
1931                        rcd->egrbufs.rcvtid_size = new_size;
1932                }
1933        }
1934        rcd->egrbufs.numbufs = idx;
1935        rcd->egrbufs.size = alloced_bytes;
1936
1937        hfi1_cdbg(PROC,
1938                  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1939                  rcd->ctxt, rcd->egrbufs.alloced,
1940                  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1941
1942        /*
1943         * Set the contexts rcv array head update threshold to the closest
1944         * power of 2 (so we can use a mask instead of modulo) below half
1945         * the allocated entries.
1946         */
1947        rcd->egrbufs.threshold =
1948                rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1949        /*
1950         * Compute the expected RcvArray entry base. This is done after
1951         * allocating the eager buffers in order to maximize the
1952         * expected RcvArray entries for the context.
1953         */
1954        max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1955        egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1956        rcd->expected_count = max_entries - egrtop;
1957        if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1958                rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1959
1960        rcd->expected_base = rcd->eager_base + egrtop;
1961        hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1962                  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1963                  rcd->eager_base, rcd->expected_base);
1964
1965        if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1966                hfi1_cdbg(PROC,
1967                          "ctxt%u: current Eager buffer size is invalid %u\n",
1968                          rcd->ctxt, rcd->egrbufs.rcvtid_size);
1969                ret = -EINVAL;
1970                goto bail_rcvegrbuf_phys;
1971        }
1972
1973        for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1974                hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1975                             rcd->egrbufs.rcvtids[idx].dma, order);
1976                cond_resched();
1977        }
1978
1979        return 0;
1980
1981bail_rcvegrbuf_phys:
1982        for (idx = 0; idx < rcd->egrbufs.alloced &&
1983             rcd->egrbufs.buffers[idx].addr;
1984             idx++) {
1985                dma_free_coherent(&dd->pcidev->dev,
1986                                  rcd->egrbufs.buffers[idx].len,
1987                                  rcd->egrbufs.buffers[idx].addr,
1988                                  rcd->egrbufs.buffers[idx].dma);
1989                rcd->egrbufs.buffers[idx].addr = NULL;
1990                rcd->egrbufs.buffers[idx].dma = 0;
1991                rcd->egrbufs.buffers[idx].len = 0;
1992        }
1993
1994        return ret;
1995}
1996